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We provide a new geometric computation for the Jacobian of the Riemann
surface of genus 4 associated to the small stellated dodecahedron. Starting
with Threlfall’s description, we introduce other flat conformal geometries
on this surface which are related to holomorphic 1-forms. They allow us to
show that the Jacobian is isogenous to a fourfold product of a single elliptic
curve whose lattice constant can be determined in two essentially different
ways, yielding an unexpected relation between hypergeometric integrals.
We also obtain a new platonic tessellation of the surface.

1. Introduction

In his Harmonice Mundi, Kepler [1619] considers regular shapes in 2 and 3 di-
mensions. Besides the classical convex regular polygons he describes regular star
polygons, so it is natural to allow also polyhedra that have such star polygons
as faces. He comes up with several examples, among them the small stellated
dodecahedron. It is therefore plausible that he didn’t consider the 60 triangles of
the stellated dodecahedron as its natural faces but the 12 star pentagons. This given,
the polyhedron has 12 vertices and 30 edges, so the Euler formula gives

V − E + F = 12 − 30 + 12 = −6
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which is not the Euler characteristic of the sphere but of a Riemann surface of
genus 4. This was first observed by Poinsot and started some confusion about the
validity of Euler’s formula; see [Lakatos 1976].

All this can be resolved by viewing each star pentagon as a Riemann surface
with a branch point in the center: The same way a regular pentagon is composed
of 5 isosceles triangles with angle 2π/5, the regular pentagram is composed by 5
isosceles triangles with angle 4π/5. In fact, one can try to imagine the stellated
dodecahedron as an immersed surface where each star pentagon is realized as a
branched pentagon whose center branch point is hidden by a stellating pyramid. In
this way, the stellated dodecahedron inherits from its singular euclidean metric a
conformal structure and becomes a compact Riemann surface 6 of genus 4 whose
automorphism group contains at least the icosahedral group.

This possibility was probably first observed by Klein [1877], who showed that
the Riemann surface defined in P4 as the complete intersection

5∑
i=1

zi = 0,

5∑
i=1

z2
i = 0,

5∑
i=1

z3
i = 0

is biholomorphic to Kepler’s small stellated dodecahedron. We will briefly discuss
this in Section 4.

Threlfall [1932] gives a detailed description of the pentagon tessellation of this
genus 4 surface 6 in terms of hyperbolic geometry. In particular, he finds another
tessellation of the same surface by quadrilaterals such that 10 meet in one vertex.
Because he is working in hyperbolic geometry, it is clear a priori that these two
tessellations live on the same Riemann surface. Though Threlfall mentions the
term Riemann surface frequently, he is interested neither in the properties of this
particular surface as an algebraic curve nor in its automorphism group.

We will conformally replace the quadrilaterals in Threlfalls’s description by
other euclidean quadrilaterals to obtain new locally flat structures on the surface.
These lead directly to a basis of holomorphic 1-forms by taking the exterior deriv-
ative of the developing maps of the flat structures. As the periods of the 1-forms
are determined by the geometric data of the new metrics, we obtain easily a period
matrix for the surface. In particular:

Theorem 1.1. The Jacobian of 6 is isogenous to a 4-fold product of a rhombic
torus. Its lattice constant can be computed either using the Schwarz–Christoffel
formula for the new quadrilaterals or via the modular invariant of this torus.

Remark. G. Riera and R. E. Rodrı́guez [1992] follow quite a different approach to
compute the Jacobian of 6: They first show that some 1-parameter family of po-
larized abelian varieties of dimension 4 is stabilized under the only 4-dimensional
symplectic irreducible representation of S5. Then they determine the parameter
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(implicitly) using an algebraic characterization of the quotient tori 6/〈φ〉 and
6/(Z/2Z)2 that differs from our description in Section 6.

2. A hyperbolic metric on the stellated dodecahedron

We now view the small stellated dodecahedron as a surface of genus 4, which
comes with a natural tessellation by 12 star pentagons. Each star pentagon can be
obtained by gluing together 5 isosceles euclidean triangles with obtuse angle 4π/5.
Map such a triangle conformally to a hyperbolic (2π/5, 2π/10, 2π/10)-triangle
and continue this map by reflection first to the star pentagon. We obtain a conformal
map from the star pentagon to a regular hyperbolic 2π/5-pentagon. Continuing
again by reflection to the whole surface yields a nonsingular conformal hyperbolic
metric on the surface which is now tessellated by these hyperbolic pentagons. Here
is the lift of this tessellation to the hyperbolic plane; the numbers designate the 12
faces:
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Our next goal is to derive Threlfall’s tessellation of the surface by hyperbolic
quadrilaterals. The key for this is the rotation ρ of order-5 of the stellated do-
decahedron around the axes through two opposite vertices. These vertices are two
fixed points, but there are two more, namely the branch points of the dodecahedron
faces which are intersected by the rotation axes. Hence the quotient 6/〈ρ〉 is a
four-punctured sphere. More precisely:

Lemma 2.1. 6 is a fivefold cyclic branched covering over the four-punctured
sphere whose conformal structure is obtained by doubling a square. Using four
branch slits γi from the center of one of the squares to the corners, the covering is
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given by gluing together five copies of the sphere thus slit, so that the left edge of slit
γi of copy j is glued to the right edge of slit γi of copy j +di , where di = 1, 2, 4, 3.

Sketch of proof. This statement can be proved by analyzing the next figure, where
we have added to the 72◦ pentagon tessellation 10 fat hyperbolic 2π/10-squares.

Using the figure on the previous page, one checks that these 10 squares constitute
a fundamental domain for the surface. The edges are identified according to the
two dashed geodesics and the order-5 rotational symmetry around the center of the
figure. Now it is clear that two adjacent squares constitute a fundamental domain
of the group 〈ρ〉 on 6. The faces of these two squares have to be glued together
by “flipping over”, i.e., the quotient has the conformal structure claimed.

To see that the description of the covering in the lemma gives the same funda-
mental domain is straightforward; see [Threlfall 1932]. �

We digress a bit to discuss also the other natural automorphisms of the surface:
The order-3 rotation around an axes through two opposite vertices of the un-

stellated dodecahedron defines a fixed point free automorphism τ of 6 which can
be seen in the hyperbolic picture as a translation along the lower identification
geodesic by 1/3 of its length. The quotient surface 6/〈τ 〉 is a nonsingular surface
of genus 2 which comes with a tessellation by 4 hyperbolic 72◦-pentagons; it is
discussed in detail in [Threlfall 1932].

One can also obtain an order-2 rotation around the midpoints of the dodeca-
hedron edges. But it turns out that this automorphism is actually the square of
an order-4 rotation φ which is (of course) not an automorphism of the euclidean
polyhedral structure on 6 but a conformal automorphism. That this rotation is
really well defined on 6 becomes clear if we convince ourselves that the midpoints
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of some pentagon edges are also the centers of the quadrilaterals:

The left picture shows one of the quadrilaterals moved to a central position with
the pentagon geodesics inside. Comparing the angles of the (congruent) triangles
in the right picture with the two triangles in the left one shows easily the claimed
symmetry.

To actually define this automorphism φ one can check that an order-4 rotation
of one square is compatible with the identifications. One also finds a second fixed
point, so that by the Riemann–Hurwitz formula, the quotient surface 6/〈φ〉 is a
torus. Because there are many different such automorphisms, this observation is the
first indication that the Jacobian of 6 might be quite interesting. The investigation
of this torus will be one of our primary goals.

Another way to see this automorphism is by looking at a new platonic tessella-
tion of 6 by 24 right-angled regular pentagons:

The figure shows the previous pentagon tessellation and the new one with thick
lines. The order-4 rotation becomes a rotation around a vertex of this (preserved)
tessellation. From this picture one can also deduce that φ has two fixed points.
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Furthermore, the thick lines are defined as geodesics connecting midpoints of ad-
jacent pentagon edges: The sequence of edges hit by such a geodesic constitutes a
Petri polygon; see [Coxeter and Moser 1972] for details.

The vertices of the 90◦ pentagons are either centers of the quadrilaterals or mid-
points of the 72◦ pentagon edges.

This tessellation has also a euclidean realization as a euclidean uniform poly-
hedron, the so-called dodecadodecahedron, which is thus recognized as another
(new) conformal version of Kepler’s dodecahedron. This polyhedron has both
regular pentagons and star-pentagons as faces:

The central right-angled regular decagon in the next figure shows a fundamental
domain for the rotation φ on 6. The fixed points are marked by a dot, and the
nonadjacent edges are to be identified according to the labels.

a

a

b
b

c

c

This fundamental domain allows us to construct a degree-5 map from the quo-
tient torus T = 6/〈φ〉 to the sphere which is branched only over 3 points, as
follows. Decompose the regular decagon into ten (45◦, 45◦, 36◦)-triangles with
vertices at the decagon vertices and its center. Map one of these triangles to the
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upper half-plane and continue by reflection. In principle, such a map pins down the
conformal structure of the torus, but in general it is very hard to determine (say)
the modular invariant of the torus from this map.

Proposition 2.2. The automorphism group of 6 is S5, the symmetric group of 5
elements.

Proof. We know that Aut 6 contains the icosahedral group A5 and has order at
least 120. Assume that the automorphism group is strictly larger, that is, at least
of order 240. Now the standard proof of Hurwitz’s theorem about the order of the
automorphism group of a compact Riemann surface forces Aut 6 to be a (2, 3, 7)-
triangle group. But S5 contains no element of order 7, so Aut 6 had to have at
least 7 · 120 elements which contradicts the conclusion of Hurwitz’s theorem. �

3. 6 as an algebraic curve

In this section, we construct a base of holomorphic 1-forms on 6 and derive an
algebraic equation.

The first holomorphic 1-form ω1 can be visualized by the following figure:

This is another fundamental domain of 6, using euclidean quadrilaterals instead of
hyperbolic 2π/10-squares as in the figure on page 170. The identifications (which
are indicated by the shaded lines) are realized by euclidean parallel translations.
This is because we have chosen the quadrilateral with angles π/5, 2π/5, 4π/5,
3π/5. Hence this description gives a singular flat metric on 6 with trivial linear
holonomy. This means that the exterior derivative of the locally defined developing
map of this flat metric is a globally well-defined holomorphic 1-form on 6. Its
zeros coincide with the singular points of this metric: Whenever the angles at a
point add up to k · 2π , the holomorphic 1-form will have a zero of order k − 1.
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Hence the 1-form ω1 defined by the preceding figure has divisor P2+3P3+2P4,
where the points are located as follows:

1

l

P1 P2

P3

P4

Unfortunately, up to now we haven’t proved that the fundamental domain above
defines the correct conformal structure on 6. In fact, this is impossible, because we
haven’t really specified which quadrilateral we are going to use for this construc-
tion. To guarantee that the resulting surface is biholomorphic to 6, it is sufficient
to ensure that the chosen quadrilateral is biholomorphic to any square, or, by the
Riemann mapping theorem, to the upper half-plane with vertices at −1, 0, 1, ∞.

We do not know how explicitly it is possible to find such a quadrilateral, but at
least we know these data in terms of Schwarz–Christoffel integrals. Denote by ei

the edge Pi Pi+1. Then

e1 =

∫ 0

−1
(t −1)−1/5t−3/5(t +1)−4/5dt,

e2 =

∫ 1

0
(t −1)−1/5t−3/5(t +1)−4/5dt,

e3 =

∫
∞

1
(t −1)−1/5t−3/5(t +1)−4/5dt,

e4 =

∫
−1

−∞

(t −1)−1/5t−3/5(t +1)−4/5dt.

Denote by li = |ei/e1| the corresponding normalized edge lengths, with l = l4.
By trigonometry,

l1 = 1, l2 = −1 + l

√
5 + 1
2

≈ 0.373129,

l3 =

√
5 + 1
2

(1 − l) ≈ 0.244905, l4 = l ≈ 0.848641.

Now three more holomorphic 1-forms ωi can be defined using the same quadri-
lateral: Because it is conformally a square, we can permute the vertices cyclically.
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This results in cyclically permuted divisors:

P1 P2 P3 P4

ω1 0 1 3 2
ω2 1 3 2 0
ω3 3 2 0 1
ω4 2 0 1 3

Using this, we can derive an algebraic equation for 6:

Proposition 3.1. 6 is biholomorphic to the algebraic curve defined by the affine
equation

y5
= (x + 1)x2(x − 1)−1.

Proof. Denote by x : 6 → P1 the branched quotient map 6 → 6/ρ, where we
choose the images of the branch points to be −1, 0, 1, ∞, which is possible by
symmetry. Hence(

(x + 1)x2(x − 1)−1)
= P5

1 + P10
2 + P−5

3 − P−10
4 .

Now put y = ω2/ω1 and obtain the same divisor for y5. After scaling y appropri-
ately, the equation follows. �

The function y will be explained geometrically in the next section.

4. Excursion: Bring’s curve

In this section we show why the small stellated dodecahedron is biholomorphic to
Bring’s curve B, which is the complete intersection in P4 of the three hypersurfaces

5∑
i=1

zi = 0,

5∑
i=1

z2
i = 0,

5∑
i=1

z3
i = 0,

This was first shown by Klein [1877; 1884]. Bring’s curve B occurs naturally
as the locus of solutions of the reduced quintic equation

z5
+ pz + q = 0

because the vanishing of the coefficients of z2, z3, z4 is equivalent to the equations
above.

For projective properties of B, see [Edge 1978].
Following Klein, we first construct a threefold branched covering

π1 : 6 → P1
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which is branched twice at all 72◦-pentagon vertices. This is done by mapping the
hyperbolic (2π/5, 2π/10, 2π/10)-triangle that constitutes one fifth of the tessel-
lating 72◦-pentagon onto a spherical (2π/5, 2π/5, 2π/5)-triangle, and continuing
this map by reflection. The image of all the triangles will form the icosahedral tes-
sellation of the sphere. Each vertex has two preimages: one is a branched pentagon
vertex, the other an unbranched pentagon midpoint.

There is also a second such map π2, using the dual 72◦-pentagon tessellation
instead. Both of these maps can be given explicitly in terms of the 1-forms ωi : By
considering divisors we see easily that (up to normalization)

ω1 ω3 = ω2 ω4,

so that we have an explicit equation of the quadric Q on which the canonical curve
of 6 lies. Now the projections on the respective factors of Q ' P1

× P1 are given
by the meromorphic functions

z 7→ ω2/ω1 and z 7→ ω4/ω1,

which have precisely the same branching behavior as the functions πi above. This
shows also that π1 is proportional to the function y from the last section. We leave
to the reader the transformation of the ωi to the z j and the proof that the latter
then satisfy the cubic equation as well. See also [Edge 1978; Klein 1884, 1877,
Slodowy 1986].

5. The Jacobian of 6

In this section, we compute the Jacobian of 6 in terms of tenth roots of unity and
the constant l of Section 3, which is the ratio of two hypergeometric functions.
This also allows us to compute the lattice of the quotient tori.

To compute the Jacobian, we first choose an appropriate base for the homology
of 6. This base will not be canonical but adapted to our representation of 6 as a
branched covering over a 4-punctured sphere. Denote by ck the curve on Y that
winds k times around P1, then once around P2 and finally as often around P1 as
is necessary to lift to a closed curve on 6. Similarly, denote by c̃k the curve on Y
that winds k times around P2, then once around P3 and finally as often around P2

as is necessary to lift to a closed curve on 6.
For the holomorphic 1-forms, we take the ω j of Section 3. Here we are still free

to choose a normalization. Because we intend to compute also the lattice of the
quotient torus of 6 by the order-4 rotation subgroup 〈φ〉, we will eventually need
a nonzero holomorphic 1-form that is invariant under this rotation φ and whose
periods we can compute. If we normalize the ωi in such a way that φ∗ωi = ωi+1,
the 1-form ω = ω1 +ω2 +ω3 +ω4 will do. This normalization can be achieved by
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(1) taking the same sized quadrilateral for the different 1-forms and just relabeling
the vertices, and

(2) fixing the developing map for all of them simultaneously.

Using these two normalizations, we obtain

Lemma 5.1. Denote by ζ = e2π i/10 and by 8 =
1
2(

√
5 + 1). For i = 1, 2, 3, 4, set

αi = 2iπ/5 reduced modulo 2π . Indices are to be taken cyclically. Then∫
ck

ω j = ekiα j e j (1 − eiα j+1),∫
c̃k

ω j = ekiα j+1e j+1(1 − eiα j+2)

Hence the period matrix of the Jacobian with respect to the ω j and the cycles
c0, . . . , c3, c̃0, . . . , c̃3 is given by

� =


ζ 2k(1−ζ 4)

ζ 4k+7(1−ζ 8)(−1+l8)

ζ 8k+6(1−ζ 6)8(1−l)
ζ 6k+4(1−ζ 2)l

∣∣∣∣∣∣∣∣
3

k=0

ζ 4k+7(1−ζ 8)(−1+l8)

ζ 8k+6(1−ζ 6)8(1−l)
ζ 6k+4(1−ζ 2)l
ζ 2k(1−ζ 4)

∣∣∣∣∣∣∣∣
3

k=0


Proof. To compute the period of an ωk , we use the definition of ωk by a flat metric
on the 4-punctured sphere which is given by doubling the quadrilateral of figure 9.
Because the developing map of the flat metric is the integral of the corresponding
1-form, the period can be read off from the picture: Winding around a vertex Pj

changes the direction into which we develop by the cone angle at Pj , and the
loop from Pj to Pj+1, around this point and back to Pj contributes the factor
e j (1 − eiα j+1). The rest is straightforward computation. �

For a similar computation, see [Karcher and Weber 1999].
This construction also shows that ρ acts on the 1-forms by multiplication with

roots of unity:

ω1 7→ ζ 2ω1, ω2 7→ ζ 4ω2, ω3 7→ ζ 8ω3, ω4 7→ ζ 6ω4.

This is because ρ changes the direction of the developing map by a rotation of
order 5 if we choose the base point for the development in one of the fixed points,
and the amount depends on the respective cone angle in this point.

Because we haven’t normalized our homology base, the polarization of the Ja-
cobian still has to be computed. We do this by giving the intersection matrix of the
cycles:
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Lemma 5.2. The intersection matrix of the cycles c0, . . . , c3, c̃0, . . . , c̃3 is given by

I =



0 1 1 −1 −1 0 0 1
−1 0 1 1 0 1 0 −1
−1 −1 0 1 0 −1 0 0

1 −1 −1 0 0 0 1 0
1 0 0 0 0 1 1 −1
0 −1 1 0 −1 0 1 1
0 0 0 −1 −1 −1 0 1

−1 1 0 0 1 −1 −1 0


.

The proof is straightforward but tedious and we omit it.
The claims may be checked by verifying the Riemann period conditions

�I −1�t
= 0 and − i�I −1�t > 0.

In fact,

−i�I −1�t
=

(
−5 ζ 2

− 5 ζ 3
+ 10 l 8

(
ζ 2

+ ζ 3)
− 5 l2 (1 + 8)

(
ζ + ζ 4)) I d

≈ 5.52531I d.

Corollary 5.3. The lattice of the quotient torus 6/〈φ〉 is spanned by

τ1 = (1 + ζ )2 (
−1 + l + ζ − ζ 2)

≈ 1.79303 − 0.321884i,

τ2 = (1 + ζ )
(
−1 + 2l − l ζ + ζ 2

+ l ζ 2
− l ζ 3)

≈ 1.26139 + 1.31433i,

τ2/τ1 =
−1 + ζ 2

+ (1 + ζ−1)l
−1 + ζ−2 + (1 + ζ )l

= ζ̄ ·
l − ζ(1 − ζ )

l − ζ̄ (1 − ζ̄ )
≈ 0.554051 + 0.832482i.

Proof. We have to show that the periods π j , π̃ j of ω =ω1+ω2+ω3+ω4 constitute
this lattice. By Lemma 5.1 we have π̃ j =π j and π0 = τ1, π1 = τ2, π2 =−2τ1+τ2,
π3 = 0, π4 = τ1 − 2τ2. �

Remark. The specific value of l is only defined by the condition that our euclidean
quadrilateral has to be a square. This also means that the formulas above do not
make sense for any other surface.

We have computed the Jacobian of 6 and found at least three different quotient
maps from 6 to tori. The relationship between all these tori will now be clarified.

Lemma 5.4. Let 0 be a lattice in Cn and α1, . . . , αn be n linearly independent
linear functionals on Cn such that 0i = αi (0) is a lattice in C. Then Cn/0 is
isogenous to the product C/01 × · · · × C/0n .

Proof. The regular linear map α1 ×· · ·×αn : Cn
→ Cn induces a holomorphic Lie

group homomorphism Cn/0 → C/01 ×· · ·×C/0n . If this map had a nondiscrete
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kernel, there would be a v ∈ Cn
− {0} such that αi (v) = 0 for all i , contradicting

the linear independence of the αi . �

Corollary 5.5. Jac 6 is isogenous to the product T × T × T × T .

Proof. The idea is to conjugate the map φ by ρ to obtain enough different quotient
maps to the same torus. In our base of the lattice, the functional z 7→ z1+z2+z3+z4

describes the map to the quotient torus induced by the quotient map 6 → 6/〈φ〉.
Now we can as well consider the quotient maps associated to the conjugate maps
ρ−kφρk which are different quotient maps to the same torus. By the definition of
the ωi , ρ acts on them by multiplication as

ωi 7→ ζ 2i
ωi .

Thus ρ−1φρ acts as

ω1 7→ ζ 8ω2, ω2 7→ ζ 6ω3, ω3 7→ ζ 2ω4, ω4 7→ ζ 4ω1

and hence the induced map from Jac 6 → Jac T is described by the functional z 7→

ζ 4z1+ζ 8z2+ζ 6z3+ζ 2z4. Similarly, the functionals z 7→ ζ 8z1+ζ 6z2+ζ 2z3+ζ 4z4

and z 7→ ζ 2z1 + ζ 4z2 + ζ 8z3 + ζ 6z4 describe the maps induced by ρ−2φρ2 and
ρ−3φρ3. These 4 functionals are clearly independent, and the claim follows from
the previous lemma. �

Corollary 5.6. All holomorphic image tori of 6 are isogenous.

Proof. Any holomorphic surjective map f : 6 → E to an elliptic curve induces a
group homomorphism f : Jac 6 → Jac E = E . This map cannot be trivial on all
factors of Jac 6; hence there is a nontrivial restriction f1 : T → E that is necessarily
a covering. �

6. An algebraic equation for the quotient torus

In this section we derive an algebraic equation for the quotient torus T = 6/〈φ〉

and compute its modular invariant. The arithmetic nature of this torus has been
investigated by Serre [1980], and an equation is given (without proof) in [Slodowy
1986].

Our strategy for producing such an equation is as follows: Using the represen-
tation of 6 as a branched covering over the four-punctured sphere, we construct a
degree-3 function y and a degree-4 function w on 6 having poles of order at most
2 and 3, respectively, and only at the branch points of the covering π :6 →6/〈ρ〉.
Averaging this function over the action of φ yields functions of degrees 2 and 3 on
the quotient torus T . To determine an equation, we investigate these functions at
their poles.
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To start, we need to understand the action of φ in terms of the equation

y5
= (x + 1)x2(x − 1)−1

(see Section 3). Recall that y represents a function on 6 with divisor P1 + 2P2 −

P3 − 2P4 and x has branch points of order 5 with values −1, 0, 1, ∞ at the Pi .
This implies that the new function

z = y2/x

has divisor 2P1 − P2 − 2P3 + P4 and is therefore proportional to the function π2

from Section 5. From the two equations above one easily obtains

(∗) yz2
=

y2
+ z

y2 − z

and this equation reflects the order-4 automorphism φ as the map

y 7→ z z 7→ −1/y.

Hence the average
Y = y + z − 1/y − 1/z

of Y will descend to T as a function with one double-order pole at the image of
the Pi . Similarly, the function

w = y/z

on 6 has divisor −P1 + 3P2 + P3 − 3P4 and the average

W =
y
z

−
1
yz

+
z
y

− yz

descends to T as a function with one triple-order pole at the image of the Pi . We
keep the names Y and W for the functions on T .

This means that there are constants a, b, c, d, e, f ∈ C such that

(∗∗) (W − aY )2
− bY 3

− cY 2
− dW − eY − f ≡ 0.

To determine them, we compute this expression on 6 in a neighborhood of P1,
using y as a local coordinate. Note that

z = −y2
+ O(y7)

because x = z/y2 has a branch point of order-5 with value −1 at P1. This leads to

1−b
y6 +

−2 a+3 b
y5 +

−2+2 a+a2
−3 b−c

y4 +
2 a−2 a2

−2 b+2 c−d
y3

+
−1−4 a+a2

+9 b−c−e
y2 + O(y−1) = 0,
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which determines the first 5 constants as

a =
3
2 , b = 1, c =

1
4 , d = −3, e = 4.

Putting this back into (∗∗) gives

h = (y3
+y z+y5 z+y2 z2

+y3 z2
−y4 z2

+z3
+y2 z3

−4 y3 z3
−y4 z3

−y6 z3

−y2 z4
−y3 z4

+y4 z4
+y z5

+y5 z5
−y3 z6)/(y3 z3),

which reduces to −4 using (∗).
Hence we obtain the desired equation in Y and W :

4 − 4 Y −
Y 2

4
− Y 3

+ 3 W +

(
−3 Y

2
+ W

)2
= 0.

In new variables this equation can be brought into the form

y2
= 4x3

− 75x − 1475.

These equations allow to compute the modular invariant λ of T as the cross ratio
of ∞ and the three algebraic numbers

1
8

(( 11
5

)1/3
(59 − 24

√
6)1/3

+ 52/3(59 + 24
√

6)1/3
− 13

)
,

(52/3/16)
(
(−1 + i

√
3)(59 − 24

√
6)1/3

− (1 + i
√

3)(59 + 24
√

6)1/3
− 26

)
,

(52/3/16)
(
−(1 + i

√
3)(59 − 24

√
6)1/3

− (1 − i
√

3)(59 + 24
√

6)1/3
− 26

)
,

which gives roughly

λ ≈ 0.660609 − 0.75073i.

This modular invariant can be used to compute the periods of the quotient torus
in a different way. One obtains the period quotient τ2/τ1 of T as a quotient of two
hypergeometric integrals, but this time as

τ2

τ1
=

∫
∞

1 u−1/2(u − 1)−1/2(u − λ)−1/2du∫ 1
0 u−1/2(u − 1)−1/2(u − λ)−1/2du

.

Combining this expression with Corollary 5.3 gives an unexpected identity between
hypergeometric integrals.
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