Vol. 221, No. 1, 2005

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Generalized reductive algebras and a quantum example

Daniel R. Farkas, Gail Letzter and Lance W. Small

Vol. 221 (2005), No. 1, 29–48
Abstract

The universal enveloping algebra of a semisimple Lie algebra is FCR. Complete reducibility for finite-dimensional modules is generalized to encompass the representations of reductive Lie algebras. A quantum example is presented as a nontrivial illustration of these ideas.

Keywords
reductive algebras, quantum symmetric pairs, residually finite-dimensional
Mathematical Subject Classification 2000
Primary: 17B37, 16H05
Milestones
Received: 25 March 2003
Revised: 25 November 2003
Accepted: 23 June 2004
Published: 1 September 2005
Authors
Daniel R. Farkas
Department of Mathematics
Virginia Tech
Blacksburg, VA 24061
http://www.math.vt.edu/people/farkas/index.html
Gail Letzter
Department of Mathematics
Virginia Tech
Blacksburg, VA 24061
http://www.math.vt.edu/people/letzter/index.html
Lance W. Small
Department of Mathematics
University of California San Diego
La Jolla, CA 92093-0112