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We give an explicit description of group-theoretical quasi-Hopf algebras
up to gauge equivalence. We then use it to compute the Frobenius–Schur
indicators for group-theoretical fusion categories.

1. Introduction

There are strong analogies between the theory of finite groups and the theory of
semisimple Hopf algebras; some of them, however, still remain conjectural. In
particular, the problem of classifying semisimple Hopf algebras, say over the field
of complex numbers, seems to be a difficult one, even in low dimensions. Perhaps
the most important feature of these objects, which relates them to other branches
of mathematics and physics, is that their category of representations is a special
case of a so called fusion category. This fact leads to the consideration of the
classification problem, not only modulo Hopf algebra isomorphisms, but modulo
gauge equivalences: roughly, two finite-dimensional (quasi)-Hopf algebras H and
H ′ give rise to the same fusion category of representations if and only if they are
gauge equivalent, in the sense that H = H ′ as algebras, and the comultiplication
of H ′ is obtained by “twisting” that of H by means of 1H ′(h) = F1(h)F−1, for
some gauge transformation F ∈ (H ⊗ H)×.

An important class of examples of semisimple quasi-Hopf algebras was intro-
duced by Ostrik [2002] and studied by Etingof, Nikshych and Ostrik [Etingof et al.
2002]. Called group-theoretical, these are, by definition, those for which the cat-
egory of representations is a group-theoretical category C(G, ω, F, α), where G
is a finite group, F ⊆ G is a subgroup, ω : G × G × G → k× is a normalized 3-
cocycle and α : F × F → k× is a normalized 2-cochain, such that ω|F = dα. More
precisely, C(G, ω, F, α) is the category of kαF-bimodules in the tensor category
VecG

ω of finite-dimensional G-graded vector spaces, with associativity constraint
given by ω. All concrete known examples of semisimple Hopf algebras (and this
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does not extend to the quasi-context), turn out to be group-theoretical; this can be
seen as a consequence of our results in [Natale 2003]. The following question has
been posed in [Etingof et al. 2002]. An answer to this question (even an affirmative
one) would be of great significance in the classification program.

Question 1–1. Does there exist a semisimple Hopf algebra which is not group-
theoretical?

The categorical nature of this question leads naturally to the problem of finding
and computing gauge invariants of group-theoretical quasi-Hopf algebras, that is,
invariants which depend on the gauge equivalence class of the object rather than
on the isomorphism class itself.

Recently, Mason and Ng have constructed a gauge invariant, the Frobenius–
Schur indicators, for semisimple quasi-Hopf algebras [Mason and Ng 2005]. They
have proved a generalization of the Frobenius–Schur Theorem for finite groups;
compare [Serre 1967]. Their construction extends results of Linchenko and Mont-
gomery for semisimple Hopf algebras [Linchenko and Montgomery 2000]; it also
extends results of Bantay on the Frobenius–Schur indicators for the Dijkgraaf–
Pasquier–Roche quasi-Hopf algebra DωG, after the definition in [Bantay 1997] of
the indicators attached to conformal field theories.

Essentially, Frobenius–Schur indicators were defined in a categorical fashion for
any semisimple rigid tensor category which is pivotal, i.e., which admits a natural
tensor isomorphism between the identity and the second left duality functors, in
the work of Fuchs, Ganchev, Szlachányi and Vescernyés [Fuchs et al. 1999]. It is
shown in [Etingof et al. 2002] that representation categories of semisimple quasi-
Hopf algebras are in fact pivotal.

Other gauge invariants can be attached to a semisimple quasi-Hopf algebra. One
of the most studied is the K0-ring of its representation category. This invariant does
not distinguish the group algebras of the two nonabelian groups of order 8: the
dihedral group D4 and the quaternionic group Q2. However, by a result of Tambara
and Yamagami [1998], these two groups are not gauge equivalent. In their paper,
Mason and Ng have noted that the Frobenius–Schur indicators do distinguish the
dihedral and quaternionic groups. As pointed out to us by the referee, in some
cases it may happen that the Frobenius–Schur indicators contain less information
than the K0-ring, e.g., in the case of dual group algebras. So, in some sense, these
two invariants are of very different nature.

In this paper we give an explicit description of group-theoretical Hopf algebras
and use it to compute their irreducible characters and Frobenius–Schur indicators.
Our main original contributions in the description of the quasi-structure are on the
one hand the proof of the existence of a certain normalization of the 3-cocycle ω
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(Proposition 4.2), and on the other hand, the construction of a quasi-antipode (The-
orem 4.12) which is, of course, essential in the computation of the Frobenius–Schur
invariants. We obtain the following formula for the indicator of the irreducible
character χ :

(1–2) χ(νAop)= |F |
−1

∑
(qGx).q=e

ω(xq, xq, xq) χ(δq(xq)2),

which involves a certain normalization of the 3-cocycleω. See Corollary 5.4. Here,
q runs over an appropriate choice of representatives of G modulo F .

One instance of these examples comes from an exact factorization G = F Q of
the group G into its subgroups F and Q. In this case, there is a group

Opext(k F, k Q)

that classifies the abelian Hopf algebra extensions of k Q by k F : as a Hopf algebra,
the extension corresponding to an element [σ, τ ] ∈ Opext(k F, k Q) is a bicrossed
product k Q#τσ k F , where σ : F × F → (k Q)× and τ : Q × Q → (k F )× are a pair of
compatible cocycles; see [Natale 2003, Theorem 1.2]. In this case, the 3-cocycle
ω in our formula for the Frobenius–Schur indicators is the one associated to [σ, τ ]

in the Kac exact sequence. This gives an alternative compact expression for the
formula found by Kashina, Mason and Montgomery in [Kashina et al. 2002].

We would like to point out that the description for the quasi-Hopf algebra struc-
ture for group-theoretical quasi-Hopf algebras generalizes the construction of the
twisted quantum doubles DωG by Dijkgraaf, Pasquier and Roche. This agrees
with the characterization given in [Natale 2003] in terms of quantum (or Drinfeld)
doubles; so in some sense these quasi-Hopf algebras are all of DPR-type.

The paper is organized as follows. In Sections 2 and 3 we recall the definition
of the indicators constructed in [Mason and Ng 2005] and the definition and main
properties of group-theoretical categories as given in [Ostrik 2002; Etingof et al.
2002]. In Section 4 we give a description, up to gauge equivalence, of the structure
of group-theoretical quasi-Hopf algebras, and finally in Section 5 we give an ex-
plicit formula for the Frobenius–Schur indicators of group-theoretical categories.
We consider some examples in Section 6. Throughout this paper we work over an
algebraically closed field k of characteristic zero.

2. Frobenius–Schur indicators

Let (H,1, ε,8,S, α, β) be a finite-dimensional semisimple quasi-Hopf algebra
[Drinfeld 1989] (later on indicated (H,8) for short), that is, H is an associative
unital algebra over k which is semisimple and finite-dimensional; ε : H → k and
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1 : H → H ⊗ H are algebra maps; 8 ∈ H⊗3 is an invertible element such that

(2–1)

(id ⊗ id ⊗1)(8)(1⊗id ⊗ id)(8)= (1⊗8)(id ⊗1⊗id)(8)(8⊗1),

(id ⊗ε⊗ id)(8)= 1 ⊗ 1,

(ε⊗ id)1(h)= h = (id ⊗ε)1(h),

8(1⊗ id)1(h)8−1
= (id ⊗1)1(h),

for all h ∈ H . The map S : H → H op is an algebra anti-automorphism of H ;
α, β ∈ H are such that

(2–2) S(h1)αh2 = ε(h)α and h1βS(h2)= ε(h)β for all h ∈ H

and

(2–3) 8(1)βS(8(2))α8(3) = 1 = S(8(−1))α8(−2)βS(8(−3)),

where we are using the abbreviated notation 8 = 8(1) ⊗8(2) ⊗8(3) and 8−1
=

8(−1)
⊗8(−2)

⊗8(−3).

The category Rep H =: Rep(H,8) is a fusion category, in the terminology of
[Etingof et al. 2002]. The associativity constraint is given by the natural action of
8; the left dual of an object V of Rep H is the vector space V ∗

= Hom(V, k) with
the H -action 〈h. f, v〉 = 〈 f,S(h)v〉; and the evaluation and coevaluation maps are
given, respectively, by

ev : V ∗
⊗ V → k, ev( f ⊗ v)= 〈 f, α.v〉,

coev : k → V ⊗ V ∗, 1 7→
∑

i β.vi ⊗ vi ,

for all f ∈ V ∗, v ∈ V , where (vi ) and (vi ) are dual bases of V .

Two quasi-Hopf algebras H1 and H2 are called gauge equivalent if there exists a
gauge transformation, i.e., an invertible normalized element F ∈ H1⊗H1, such that
(H1)F and H2 are isomorphic as quasi-bialgebras, where (H1)F is the quasi-Hopf
algebra (H1,1F , ε,8F ,SF , αF , βF ) defined by

1F (h)= F1(h)F−1, h ∈ H,

8F = (1 ⊗ F)(id ⊗1)(F)8(1⊗ id)(F−1)(F−1
⊗ 1),

αF = S(F (−1))αF (−2), βF = F (1)βS(F (2)),

for F = F (1) ⊗ F (2) and F−1
= F (−1)

⊗ F (−2).
Two finite-dimensional quasi-Hopf algebras H1 and H2 are gauge equivalent

if and only if Rep H1 is equivalent to Rep H2 as k-linear tensor categories. See
[Etingof and Gelaki 2002].
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Remark 2.1. It is shown in [Etingof et al. 2002] that the fusion categories of the
form Rep(H,8) are exactly those for which the Frobenius–Perron dimensions of
simple objects are integers.

Now let (H,8) be a finite-dimensional quasi-Hopf algebra. A normalized two-
sided integral of H is an element 3 ∈ H such that

h3= ε(h)3=3h for all h ∈ H

and ε(3) = 1. Suppose that (H,8) is semisimple. Then H contains a unique
normalized two-sided integral [Hausser and Nill 1999].

The following definition is due to Mason and Ng [2005]. It generalizes a previ-
ous definition for semisimple Hopf algebras given by Linchenko and Montgomery
[2000].

Definition 2.2. Let (H,8) be a finite-dimensional semisimple quasi-Hopf algebra
and let3∈ H be a normalized two-sided integral. Let also χ ∈ H∗ be an irreducible
character of H . The Frobenius–Schur indicator of χ is the element χ(νH ), where
νH is the canonical central element of H given by

νH = m(qL1(3)pL);

here, m : H ⊗ H → H is the multiplication map, and qL , pL ∈ H⊗2 are defined by

qL := S(8(−1))α8(−2)
⊗8(−3), pL :=8(2)S−1(8(1)β)⊗8(3).

The family of Frobenius–Schur indicators {χ(νH )}χ is an invariant of the k-
linear tensor category Rep(H,8). This means that it is invariant under gauge
transformations of (H,8).

Also, if α and β are invertible elements of H , then the canonical central element
νH can be computed as follows [Mason and Ng 2005, Corollary 3.5]:

νH = (3132)(βα)
−1

= (βα)−1(3132).

In analogy with finite group situation, the Frobenius–Schur indicator of the ir-
reducible character χ = χV satisfies the following:

(i) χ(νH )= 0, 1 or −1, and χ(νH ) 6= 0 if and only if χ = χ∗

(ii) χ(νH )=1 (respectively −1) if and only if V admits a nondegenerate bilinear
form 〈 , 〉 : V ⊗ V → k, with adjoint S, such that 〈x, y〉 = 〈y, g−1x〉 (respectively,
〈x, y〉 = −〈y, g−1x〉), where g ∈ H is the so called trace element of H .

3. Group theoretical fusion categories

Group theoretical categories were introduced in [Ostrik 2002, Section 3] and also
studied in [Etingof et al. 2002]. In this section we recall their definition and basic
properties.
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Let G be a finite group, and let F ⊆ G be a subgroup. The identity element of
G will be denoted by e. Let the following data be given:

• a normalized 3-cocycle ω : G × G × G → k×, meaning that ω satisfies

(3–1) ω(ab, c, d)ω(a, b, cd)= ω(a, b, c)ω(a, bc, d)ω(b, c, d)

and ω(e, a, b)= ω(a, e, b)= ω(a, b, e)= 1 for all a, b, c, d ∈ G, and

• a normalized 2-cochain α : F × F → k×,

all subject to the condition

(3–2) ω|F×F×F = dα.

Consider the category VecG
ω of finite-dimensional G-graded vector spaces, with

associativity constraint given by ω: explicitly, for any three objects U,U ′ and U ′′

of VecG
ω , we have aU,U ′,U ′′ : (U ⊗ U ′)⊗ U ′′

→ U ⊗ (U ′
⊗ U ′′), given by

aU,U ′,U ′′((u ⊗ u′)⊗ u′′)= ω(‖u‖, ‖u′
‖, ‖u′′

‖) u ⊗ (u′
⊗ u′′),

on homogeneous elements u ∈ U , u′
∈ U ′, u′′

∈ U ′′, where we use ‖ ‖ to denote
degree of homogeneity. In other words, VecG

ω is the category of representations of
the quasi-Hopf algebra kG , with associator ω ∈ (kG)⊗3.

By (3–2), the twisted group algebra kαF is an (associative unital) algebra in
VecG

ω , and one may naturally attach to it a monoidal category. Precisely, the
category C(G, ω, F, α) is by definition the k-linear monoidal category of kαF-
bimodules in VecG

ω : the tensor product is ⊗kαF and the unit object is kαF . This is
a fusion category over k with the property that the Frobenius–Perron dimensions
of its objects are integers [Etingof et al. 2002, 8.8].

Categories of the form C(G, ω, F, α) are called group-theoretical [Etingof et al.
2002, Definition 8.46]. By extension, a (quasi)-Hopf algebra A is called group-
theoretical if the category Rep A of its finite-dimensional representations is group-
theoretical.

Now let η : G × G → k× and χ : F → k× be normalized cochains, and let
ω̃ : G × G × G → k×, α̃ : F × F → k× be given by

ω̃ = ω(dη), α̃ = α(η|F×F )(dχ).

Then the categories C(G, ω, F, α) and C(G, ω̃, F, α̃) are equivalent [Etingof et al.
2002, Remark 8.39].

Remark 3.1. Let G, F , ω and α be as above. Let Q be a set of representatives of the
left cosets of F in G such that e ∈ Q; so that every element g ∈ G writes uniquely
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in the form g = xp, with p ∈ Q, x ∈ F . Consider the 2-cochain η : G × G → k×

defined in the form

η(xp, yq) := α−1(x, y), p, q ∈ Q, x, y ∈ F.

Then, taking χ = 1, we obtain α̃ = 1. Therefore the categories C(G, ω, F, α)
and C(G, ω̃, F, 1) are equivalent, where ω̃ = ω(dη). That is, up to monoidal
equivalence, we may always assume that α = 1.

Note also that the categories C(G, ω, F, 1) and C(G, ω(dη), F, 1) are tensor
equivalent for every normalized 2-cochain η : G × G → k× such that η|F×F is a
coboundary.

The fiber functors C(G, ω, F, α) → Vec, in the case they exist, are classi-
fied by conjugacy classes of subgroups 0 of G, endowed with a 2-cocycle β ∈

Z2(0, k×), such that the class of ω|0 is trivial; G = F0 and the class of the cocycle
α|F∩0β

−1
|F∩0 is nondegenerate [Ostrik 2002, Corollary 3.1].

Remark 3.2. The category C = C(G, ω, F, α) has the property that the Frobenius–
Perron dimensions of its objects are integers. A Tannaka–Krein reconstruction
argument shows that C is equivalent to the category of representations of a semisim-
ple quasi-Hopf algebra over k [Etingof et al. 2002, Theorem 8.33].

It follows from [Etingof et al. 2002, 8.8] that duals, opposites, quotient cate-
gories, full subcategories, and tensor products of group-theoretical categories are
also group-theoretical. Also, by [Etingof et al. 2002, Remark 8.47], the Drinfeld
center Z(C) is group-theoretical if and only if so is C.

However, in [Etingof et al. 2002, Remark 8.48], the authors note that there
exist semisimple quasi-Hopf algebras such that their category of representations
are not group theoretical: an explicit example is quoted there which comes from the
construction of Tambara and Yamagami [1998]. The answer to the corresponding
question for semisimple Hopf algebras is unknown.

4. Group theoretical quasi-Hopf algebras

The aim of this section is to give an explicit description, up to gauge equivalence,
of the structure of group-theoretical quasi-Hopf algebras. This will enable us to ex-
plicitly compute the Frobenius–Schur indicators of group-theoretical categories in
the next section. The description is based on a result of Schauenburg [2002a, 3.4],
which reconstructs a quasi-bialgebra structure from certain monoidal categories of
bimodules in a more general context.

Our main new result concerning this description is the explicit construction of
the quasi-antipode in the group-theoretical case, which is relevant for our purposes;
see Theorem 4.12.
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An instance of this quasi-Hopf algebra construction, for the case where ω = 1
and α = 1, was studied in [Zhu 2001]. This case was also studied in [Beggs 2003;
Beggs and Al-Shomrani 2003], from the point of view of the tensor categories of
representations. We shall adopt throughout the notation in [Beggs 2003].

In what follows we shall fix a finite group G and a subgroup F ⊆ G. Following
[Zhu 2001], we shall also fix a set of simultaneous representatives of the left and
right cosets of F in G, Q ⊆ G; this is possible since G is finite. Thus every element
g ∈ G has unique factorizations g = xq = py, where x, y ∈ F , q, p ∈ Q. We assume
that e ∈ Q.

The uniqueness of the factorization G = F Q implies that there are well defined
maps

F : Q × F → F, G : Q × F → Q,

. : Q × Q → Q, θ : Q × Q → F,

determined by the conditions

qx = (q F x)(q G x), q ∈ Q, x ∈ F;

pq = θ(p, q)p.q, p, q ∈ Q.

Lemma 4.1 [Beggs 2003, Proposition 2.4]. The following identities hold, for all
p, q, r ∈ Q, x, y ∈ G:

(i) p G xy = (p G x) G y, p G e = p.

(ii) (p.q) G x = (p G (q F x)).(q G x).

(iii) p F (q F x)= θ(p, q) ((p.q) F x) θ((p G (q F x), q G x)−1, e F x = x .

(iv) p F xy = (p F x)((p G x) F y).

(v) θ(p, q)θ(p.q, r)= (p F θ(q, r))θ(p G θ(q, r), q.r).

(vi) (p G θ(q, r)).(q.r)= (p.q).r .

(vii) θ(p, e)= θ(e, p)= e. �

Let ω : G×G×G → k× be a normalized 3-cocycle such that ω|F×F×F is trivial.
In what follows we shall fix the group-theoretical category C = C(G, ω, F, 1).
Thus the cochain α : F × F → k× of page 358 will be trivial. This is, up to
monoidal equivalence, no loss of generality thanks to Remark 3.1.

Proposition 4.2. There exists a normalized 2-cochain η : G × G → k× such that
η|F×F = 1 and ω(dη)|F×G×G = 1 = ω(dη)|F×F×Q .

Proof. Recall that the coboundary dη : G × G × G → k× is given by

(dη)(a, b, c)= η(ab, c) η(a, b) η(b, c)−1 η(a, bc)−1,

for all a, b, c ∈ G.



FROBENIUS–SCHUR INDICATORS FOR FUSION CATEGORIES 361

The proof will be done in three steps. First let η1 : G×G →k× be the normalized
cochain given by

η1(xp, yq) := ω(x, y, q), x, y ∈ F, p, q ∈ Q.

Then we have η1|G×F = 1 and for all x, y, z ∈ F , q ∈ Q, we have

(dη1)(x, y, zq)= η1(xy, zq) η1(x, y) η1(y, zq)−1 η1(x, yzq)−1

= ω(xy, z, q) ω(y, z, q)−1 ω(x, yz, q)−1 ω(x, y, z)−1

= ω(x, y, zq)−1,

the second equality holding because ω|F×F×F = 1. Thus ω(dη1)|F×F×G = 1.

Put now ω0 = ω(dη1) and define η2 : G × G → k× in the form

η2(xp, yq) := ω0(x, p, yq) ω0(p, y, q)−1, x, y ∈ F, p, q ∈ Q.

Then η2|F×G = 1 and we have

(dη2)(x, yp, zq)= η2(xyp, zq) η2(x, yp) η2(yp, zq)−1 η2(x, ypzq)−1

= ω0(xy, p, zq) ω0(p, z, q) ω0(p, z, q)−1 ω0(y, p, zq)−1

= ω0(x, yp, zq) ω0(x, y, p) ω0(x, y, pzq)−1

= ω0(x, yp, zq),

for all x, y, z ∈ F , p, q ∈ Q, where in the third and fourth equalities we have used
that ω0|F×F×G = 1. Hence ω0(dη−1

2 )|F×G×G = 1.

Finally, let ω1 = ω0(dη−1
2 ). The condition ω1|F×G×G = 1 is equivalent to

ω1(xt, g, h)= ω1(t, g, h), for all x ∈ F , t, g, h ∈ G. Hence

ω1(zp, x, yq)= ω1(p, x, y) ω1(p, xy, q) ω1(px, y, q)−1,

for all z ∈ F .
Let η3 : G × G → k× be defined by

η3(xp, yq) := ω1(xp, y, q), x, y ∈ F, p, q ∈ Q.

Then η3|F×G = η3|G×F = 1, and for all x, y ∈ F , p, q ∈ Q,

(dη3)(p, x, yq)= η3(px, yq) η3(p, x) η3(x, yq)−1 η3(p, xyq)−1

= η3(px, yq) η3(p, xyq)−1

= ω1(px, y, q) ω1(p, xy, q)−1

= ω1(p, x, y) ω1(p, x, yq)−1.
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In particular, (dη3)(p, x, y)= 1, and thus

(4–1) ω1(dη3)(p, x, yq)= ω1(dη3)(p, x, y).

We claim that ω1(dη3)|F×G×G = 1. To see this, let x, y, z ∈ F , p, q ∈ Q. Using
the equality ω1|F×G×G = 1, we compute

(dη3)(x, yp, zq)= η3(xyp, zq) η3(x, yp) η3(yp, zq)−1 η3(x, ypzq)−1

= ω1(xyp, z, q) ω1(yp, z, q)−1

= ω1(p, z, q) ω1(p, z, q)−1
= 1,

which proves the claim.
In view of this, equation (4–1) is equivalent toω1(dη3)|G×F×Q =1. This implies

the proposition, since by construction ω1(dη3)= ω(dη), for a suitable normalized
2-cochain such that η|F×F = 1. �

By Remark 3.1, the property η|F×F =1 in Proposition 4.2 implies that C(G,ω,F,1)
is tensor equivalent to C(G, ω(dη), F, 1). Then we may and shall assume in what
follows that the 3-cocycleω :G×G×G →k× satisfies the normalization conditions

ω|F×G×G = 1,(4–2)

ω|G×F×Q = 1.(4–3)

These conditions are necessary in order to apply the results of [Schauenburg 2002a,
3.4]; see Definition 3.3.2 in the same paper.

Lemma 4.3. Let g, h ∈ G, x, y ∈ F , p, q ∈ Q.

(i) ω(xp, g, h)= ω(p, g, h).

(ii) ω(g, y, xp)= ω(g, y, x).

(iii) ω(g, x, pq)= ω(g, x, θ(p, q)).

(iv) ω(pq, g, h)= ω(p.q, g, h).

Proof. Parts (i) and (ii) follow from the cocycle condition (3–1) and the normal-
ization conditions (4–2) and (4–3). Parts (iii) and (iv) are a consequence of parts
(i) and (ii), respectively. �

Let A = k Q#σ k F be the crossed product corresponding to the action ⇀ : k F ⊗

k Q
→ k Q given by

(x ⇀ f )(p)= f (p G x) for x ∈ F, f ∈ k Q, p ∈ Q

and the invertible map σ : F × F → (k Q)× defined by σ(x, y)=
∑

p∈Q σp(x, y)δp

for x, y ∈ F , where

(4–4) σp(x, y)= ω(p, x, y) for x, y ∈ F, p ∈ Q.
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The normalized 3-cocycle condition (3–1) and the normalization assumption (4–2)
imply the following normalized 2-cocycle condition for σ :

(4–5) σpGx(y, z)σp(x, yz)= σp(xy, z)σp(x, y),

σe(x, y)= σp(e, y)= σp(x, e)= 1,

for all x, y, z ∈ F , p ∈ Q. Thus A is an associative algebra with unit element∑
p∈Q δp ⊗ 1. For f ∈ k Q , x ∈ F , the element f ⊗ x ∈ A will be denoted by f x .

Hence, for all x, y ∈ F , p, q ∈ Q, we have (δpx).(δq y) := δpGx,qσp(x, y)δpxy.

Consider the (nonassociative) crossed product coalgebra structure on A corre-
sponding to the action F and the invertible normalized map τ : Q × Q → (k F )×

defined by τ(p, q)=
∑

x∈F τx(p, q)δx , where

τx(p, q)= ω(p, q, x), x ∈ F, p, q ∈ Q.

Using (4–2) and again (3–1), we find that τ satisfies the “twisted” normalized 2-
cocycle condition

τx(pGθ(q,t),q.t)τx(q,t)ω(p,q,t)σp(θ(q,t),q.tFx)σp
(
qF(tFx),θ(qG(tFx),tGx)

)−1

= τx(p.q,t)τtFx(p,q)ω(p G (q F (t F x)),q G (t F x),t G x)

and τe(p, q)= τx(e, q)= τx(p, e)= 1, for all x ∈ F , p, q, t ∈ Q.
Explicitly, we have

1(δpx) :=

∑
s.t=p

τx(s, t) δs(t F x)⊗ δt x, p ∈ Q, x ∈ F.

The counit for this coalgebra is ε⊗ ε.

Theorem 4.4. These algebra and coalgebra structures combine into a quasi-
bialgebra structure on Aop with associator 8 ∈ A⊗3 given by

8=

∑
p,q,r∈Q

ω(p, q, r) δp θ(q, r)⊗ δq ⊗ δr .

There is a monoidal equivalence Rep(Aop,8)∼ C(G, F, ω, 1).

Note that 8 is invertible, with inverse

8−1
=

∑
p,q,r∈Q

ω(p, q, r)−1σp
(
θ(q, r), θ(q, r)−1)−1

δpGθ(q,r)θ(q, r)−1
⊗ δq ⊗ δr .

Proof. Our definitions are dual to the ones in [Schauenburg 2002a, 3.4.2, 3.4.5];
with the conventions of that paper, 8 is replaced by 8−1 in condition (2–1). Thus
Aop is a quasi-bialgebra. The monoidal equivalence Rep(Aop,8)∼ C(G, F, ω, 1)
follows from Corollary 3.4.4 in the same paper. �
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Since C(G, ω, F, 1) is a rigid tensor category, it follows from [Schauenburg
2002b] that Aop is a quasi-Hopf algebra. We shall give the quasi-antipode in the
next subsection.

By Remark 3.1, every group-theoretical category is equivalent to one of the form
C(G, ω, F, 1), for suitable G, F and ω, where ω satisfies (4–2), (4–3), in view of
Proposition 4.2. This gives us the following theorem.

Theorem 4.5. Let (H, φ) be a finite-dimensional quasi-Hopf algebra. Then (H, φ)
is group-theoretical if and only if it is gauge equivalent to a quasi-Hopf algebra of
the form (Aop,8), associated to suitable data G, F , Q and ω satisfying (4–2) and
(4–3). �

We shall use the symbol ◦ to denote the multiplication in Aop, so that a◦b = b.a
for all a, b ∈ Aop.

Remark 4.6. Using the properties listed in Lemma 4.1 and the normalization
conditions (4–2) and (4–3), it is not difficult to check that Aop is a quasi-bialgebra.
For instance, 1 : A ⊗ A → A is an algebra map because of parts (ii) and (iv) of
Lemma 4.1 and the following relationship between σ and τ :

(4–6) σt.s(x, y)τxy(t, s)= τx(t, s) τy(tG(sFx), sGx) σt(sFx, (sGx)Fy) σs(x, y),

for all s, t ∈ Q, x, y ∈ F , which is a consequence of (4–3) and (3–1). Compare
with [Masuoka 1999, Proposition 4.7].

Remark 4.7. Identify σ and τ with maps

σ : Q × F × F → k×, τ : Q × Q × F → k×.

Then the tuple

(1G, 1, 1, . : Q × Q → Q, G, F, θ, ω|Q×Q×Q, τ, σ )

constitutes the skeleton of (kG, ω) [Schauenburg 2002a, Definition 4.1.1].

We now give the construction of a quasi-antipode for Aop. We shall need the ex-
istence of inverses for the (nonassociative) multiplication in Q. This is guaranteed
by the next lemma.

Lemma 4.8. The set Q has well-defined left and right inverses with respect to the
multiplication . ; that is, for every p ∈ Q there exist unique pL , pR

∈ Q such that
pL.p = e = p.pR .

(By definition, ppR
= θ(p, pR) and pL p = θ(pL , p).)

Proof. As to left inverses, the lemma is contained in [Beggs 2003, Proposition 2.3].
To prove the statement concerning right inverses, we shall use the assumption that
Q is also a set of representatives of the left cosets of F in G.
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Let p ∈ Q. Since the factorization G = QF is exact, there exist unique s ∈ Q,
x ∈ F , such that p−1

= sx . Then e = pp−1
= psx = θ(p, s)(p.s)x ; thus

θ(p, s)−1
= (p.s)x .

Because p.s ∈ Q and θ(p, s)−1, x ∈ F , the exactness of the factorization G = QF
implies that p.s = e.

We now show the uniqueness of such s, which gives the statement with s = pR .
Suppose that s ′

∈ Q is such that p.s ′
= e. Then ps ′, ps ∈ F , and therefore also

(s ′)−1s = (ps ′)−1 ps ∈ F . This implies that s ′
= s, whence the uniqueness. �

For later use, we give in the next lemma some of the relations between ( )L ,
( )R and the actions F, G. The content of the lemma is part of [Beggs 2003,
Section 4].

Lemma 4.9. The following relations hold, for all p ∈ Q:

(i) p−1
= θ(pL , p)−1 pL

= pRθ(p, pR)−1.

(ii) pL
G θ(p, pR)= pR and pL

F θ(p, pR)= θ(pL , p).

(iii) pL L
= p G θ(pL , p)−1.

(iv) (p G x)L
= pL

G (p F x).

Proof. This follows from the definitions and Lemma 4.1. �

Definition 4.10. We introduce for notational convenience the map � : Q × F → F
defined by

p � x = θ(p, pR)−1 (p F x) θ(p G x, (p G x)R),

for all p ∈ Q, x ∈ F .

Lemma 4.11. Let p ∈ Q and x, y ∈ F .

(i) p � (pR
F x)= x = pR

F (p � x).

(ii) (p G x)R
G (p � x)−1

= pR .

(iii) p � (xy)= (p � x)((p G x)� y).

(iv) p � θ(pL , p)−1
= θ(p, pR)−1.

In particular, for all p ∈ Q the map p � : F → F is bijective, the inverse being
pR

F : F → F .

Proof. We shall prove part (iv), the proof of (i)–(iii) being straightforward. By
Lemma 4.9(iii), we have pθ(pL , p)−1

= (p F θ(pL , p)−1)pL L , and on the other
hand, pθ(pL , p)−1

= (pL)−1
= θ(pL L , pL)−1 pL L .

By the exactness of the factorization G = F Q, we get

θ(pL L , pL)−1
= p F θ(pL , p)−1.
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From this and the definitions, we get

p � θ(pL , p)−1
= θ(p, pR)−1 (p F θ(pL , p)−1) θ(pL L , pL)= θ(p, pR)−1 �

Theorem 4.12. There is a quasi-Hopf algebra structure on Aop with quasi-antipode
S : Aop

→ Aop given by

S(δpx)= τp�x(p, pR)−1 σpR (p � x, (p � x)−1)−1 δ(pGx)R (p � x)−1.

We have α = 1 and

β =

∑
q∈Q

ω(q−1, q, q−1) δqθ(q L , q)−1
=

∑
q∈Q

ω(q, q−1, q)−1 δqθ(q L , q)−1.

Compare with the formulas given in [Zhu 2001; Beggs 2003] for the case where
ω = 1.

Proof. We use freely the relations in Lemma 4.3 and the normalization conditions
(4–2) and (4–3). Using relation (4–6) and Lemma 4.11, it is straightforward to see
that S is an anti-algebra map. The injectivity of S follows from the injectivity of
the map p � : F → F and from Lemma 4.11(ii). Therefore S : Aop

→ Aop is
an algebra anti-automorphism.

We now check condition (2–2). Let p ∈ Q, x ∈ F , and let X = δpx ∈ Aop. Then

S(X1) ◦α ◦ X2 = S(X1) ◦ X2 = X2.S(X1)

=

∑
s.t=p

τx(s, t) δt x .S(δs(t F x))

=

∑
s.t=p

τx(s, t) τs�(tFx)(s, s R)−1 σs R (s � (t F x), (s � (t F x))−1)−1

× δt x .δ(sG(tFx))R (s � (t F x))−1

=

∑
s.t=p

τx(s, t) τs�(tFx)(s, s R)−1 σs R (s � (t F x), (s � (t F x))−1)−1

× δtGx,(sG(tFx))R σt(x, (s � (t F x))−1) δt x(s � (t F x))−1.

By Lemma 4.9(iv), we have δtGx,(sG(tFx))R = δs,t L . Hence, using Lemma 4.11(i),
the last expression equals

δp,e

∑
s∈Q

τx(s, s R) τs�(s RFx)(s, s R)−1 σs R (s � (s R
F x), (s � (s R

F x))−1)−1

× σs R (x, (s � (s R
F x))−1) δs R x(s � (s R

F x))−1

= δp,e

∑
s∈Q

δs R = δp,e1 = δp,eα.
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This proves the right-hand identity in (2–2). We now compute

X1 ◦β ◦ S(X2)

= S(X2).β.X1

=

∑
s.t=p

τx(s, t)S(δt x) .β .δs(t F x)

=

∑
s.t=p

∑
q

ω(q, q−1, q)−1 τx(s, t)S(δt x) .δqθ(q L , q)−1 .δs(t F x)

=

∑
s.t=p

∑
q

ω(q, q−1, q)−1 τx(s, t) τt�x(t, t R)−1 σt R (t � x, (t � x)−1)−1

× δ(tGx)R (t � x)−1.δqθ(q L , q)−1.δs(t F x)

=

∑
s.t=p

∑
q

ω(q, q−1, q)−1 τx(s, t) τt�x(t, t R)−1 σt R (t � x, (t � x)−1)−1

× δ(tGx)RG(t�x)−1,q σ(tGx)R ((t � x)−1, θ(q L , q)−1)

× δ(tGx)R (t � x)−1θ(q L , q)−1 δs(t F x).

By Lemma 4.11(ii), this equals∑
s.t=p

ω(t R, (t R)−1, t R)−1 τx(s, t) τt�x(t, t R)−1 σt R (t � x, (t � x)−1)−1

× σ(tGx)R ((t � x)−1, θ(t, t R)−1) δ(tGx)R (t � x)−1θ(t, t R)−1 δs(t F x),

or again∑
s.t=p

ω(t R, (t R)−1, t R)−1 τx(s, t) τt�x(t, t R)−1 σt R (t � x, (t � x)−1)−1

× σ(tGx)R ((t � x)−1, θ(t, t R)−1) σ(tGx)R ((t � x)−1θ(t, t R)−1, t F x)

× δ(tGx)RG(t�x)−1θ(t,t R)−1,s δ(tGx)R (t � x)−1θ(t, t R)−1(t F x),

which in turn, by Lemma 4.11(ii) and Definition 4.10, is equal to

δp,e

∑
t

ω(t R, (t R)−1, t R)−1 τx(t L , t) τt�x(t, t R)−1

× σt R (t � x, (t � x)−1)−1 σ(tGx)R ((t � x)−1, θ(t, t R)−1)

× σ(tGx)R ((t � x)−1θ(t, t R)−1, t F x) δ(tGx)R θ(t G x, (t G x)R)−1.

We now evaluate the product

σt R (t�x, (t�x)−1)−1 σ(tGx)R ((t�x)−1, θ(t, t R)−1) σ(tGx)R ((t�x)−1θ(t, t R)−1, tFx)

appearing in the last sum. We use the cocycle condition (4–5) and Lemma 4.9 and
obtain for it
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σt R (θ(t, t R)−1, t F x) σt R (t � x, θ(t G x, (t G x)R)−1)−1

= ω(t R, θ(t, t R)−1, t F x)

×ω(t R, θ(t, t R)−1(t F x)θ(t G x, (t G x)R), θ(t G x, (t G x)R)−1)−1

= ω(t R, θ(t, t R)−1, t F x) ω((t G x)L , θ(t G x, (t G x)R), θ(t G x, (t G x)R)−1)−1

×ω(t R, θ(t, t R)−1(t F x), θ(t G x, (t G x)R)),

= ω((t G x)L , θ(t G x, (t G x)R), θ(t G x, (t G x)R)−1)−1

×ω(t L , t F x, θ(t G x, (t G x)R)) ω(t R, θ(t, t R)−1, (t F x)θ(t G x, (t G x)R))

= ω((t G x)L , θ(t G x, (t G x)R), θ(t G x, (t G x)R)−1)−1

×ω((t G x)L , t G x, (t G x)R)−1 ω(t L , t, x)−1 ω(t L , t, x(t G x)R)

×ω(t R, θ(t, t R)−1, (t F x)θ(t G x, (t G x)R)),

where we have used the definition of σ (4–4), the cocycle condition on ω, and
Lemma 4.3(iii).

On the other hand,

ω((t G x)L , θ(t G x, (t G x)R), θ(t G x, (t G x)R)−1)−1 ω((t G x)L , t G x, (t G x)R)−1

=ω((t G x)R, θ(t G x, (t G x)R)−1, (t G x)(t G x)R)−1 ω((t G x)L , t G x, (t G x)R)−1

= ω((t G x)−1, t G x, (t G x)R) ω((t G x)R, ((t G x)R)−1, (t G x)R)−1

×ω((t G x)L , t G x, (t G x)R)−1

= ω((t G x)R, ((t G x)R)−1, (t G x)R)−1.

Therefore

ω(t R, (t R)−1, t R)−1 τx(t L , t) τt�x(t, t R)−1 σt R (t � x, (t � x)−1)−1

× σ(tGx)R ((t � x)−1, θ(t, t R)−1) σ(tGx)R ((t � x)−1θ(t, t R)−1, t F x)

= ω(t R, (t R)−1, t R)−1 ω(t, t R, t � x)−1 ω((t G x)R, ((t G x)R)−1, (t G x)R)−1

×ω(t−1, t, x(t G x)R) ω(t R, θ(t, t R)−1, (t F x)θ(t G x, (t G x)R))

= ω(t R, (t R)−1, t R)−1 ω(t, t Rθ(t, t R)−1, (t F x)θ(t G x, (t G x)R))−1

×ω(t, t R, θ(t, t R)−1)−1 ω((t G x)R, ((t G x)R)−1, (t G x)R)−1

×ω(t L , t, x(t G x)R)

= ω(t R, (t R)−1, t R)−1 ω(t, t−1, t x(t G x)R)−1 ω(t, t R, θ(t, t R)−1)−1

×ω((t G x)R, ((t G x)R)−1, (t G x)R)−1 ω(t−1, t, x(t G x)R)

=ω(t R, (t R)−1, t R)−1 ω(t, t−1, t)−1 ω(t−1, t, x(t Gx)R)−1 ω(t, t R, θ(t, t R)−1)−1

×ω((t G x)R, ((t G x)R)−1, (t G x)R)−1 ω(t L , t, x(t G x)R)

= ω(t R, (t R)−1, t R)−1 ω(t, t Rθ(t, t R)−1, t)−1 ω(t, t R, θ(t, t R)−1)−1

×ω((t G x)R, ((t G x)R)−1, (t G x)R)−1
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= (ω(t R, (t R)−1, t R)ω(t, t R, θ(t, t R)−1t)ω((t G x)R, ((t G x)R)−1, (t G x)R))−1

= ω(t R, (t R)−1, t R)−1

×ω((t R)−1, t R, (t R)−1)−1 ω((t G x)R, ((t G x)R)−1, (t G x)R)−1

= ω((t G x)R, ((t G x)R)−1, (t G x)R)−1.

Hence we get

X1◦β◦S(X2)= δp,e
∑

t ω((tGx)R, ((tGx)R)−1, (tGx)R)−1δ(tGx)R θ(tGx, (tGx)R)−1

= δp,eβ,

which gives the right-hand identity in (2–2).
The proof of conditions (2–3) is straightforward, using the properties listed in

Lemma 4.9 and the cocycle conditions. This finishes the proof of the theorem. �

5. Frobenius–Schur indicators for C(G, ω, F, 1)

Let G be a finite group, F ⊆ G a subgroup, and ω : G × G × G → k× a 3-cocycle
subject to the normalization conditions (4–2) and (4–3). We keep the notation of
the previous sections for the skeleton maps F, G, θ , σ and τ .

We have a k-linear monoidal equivalence Rep(Aop,8)∼ C(G, F, ω, 1), where
(Aop,8) is the quasi-Hopf algebra attached to the data (G, F, ω) in Section 4. Our
aim in this section is to give an explicit description of the canonical central element
νAop ∈ Aop and then of the Frobenius–Schur indicators for the quasi-Hopf algebra
Aop. It follows from gauge invariance of the Frobenius–Schur indicators that these
depend only on the fusion category C(G, F, ω, 1).

Let 30 := |F |
−1 ∑

x∈F x ∈ k F be the normalized integral. The normalized
two-sided integral 3 ∈ Aop has the form

(5–1) 3= δe30 = |F |
−1

∑
x∈F

δex .

Proposition 5.1. The element β is invertible with inverse

β−1
=

∑
p∈Q

ω(pL , p, pR) δpL θ(p, pR).

In addition, S(β)= β−1.

Proof. It is not difficult to check that the expression∑
p∈Q

ω(pR, (pR)−1, pR) σpR (θ(p, pR)−1, θ(p, pR))−1 δpL θ(p, pR)
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defines an inverse for β. We claim that

ω(pR, (pR)−1, pR) σpR (θ(p, pR)−1, θ(p, pR))−1
= ω(pL , p, pR),

for all p ∈ Q. This will imply the claimed expression for β−1.
Letting q = pR , the equality of two lines above is equivalent to

ω(q, q−1, q) σq(θ(q L , q)−1, θ(q L , q))−1
= ω(q G θ(q L , q)−1, q L , q).

To establish this latter equality, we note that θ(q L , q) = q Lq ∈ F , for all q ∈ Q.
Then, applying the cocycle and normalization conditions on ω, we get

ω(q G θ(q L , q)−1, q L , q)= ω(q, q−1, q) ω(q, θ(q L , q)−1, q Lq)−1

= ω(q, q−1, q) ω(q, θ(q L , q)−1, θ(q L , q))−1,

proving the claim.
Next, using Lemma 4.11(iv), we get

S(δpθ(pL , p)−1)= τθ(p,pR)−1(p, pR)−1σpR (θ(p, pR)−1,θ(p, pR))−1δpL θ(p, pR).

We now compute

τθ(p,pR)−1(p, pR)= ω(p, pR, (ppR)−1)

= ω(ppR, (pR)−1, p−1)−1ω(p, pR, (pR)−1)ω(pR, (pR)−1, p−1)

= ω(p, pR, (pR)−1)ω(pR, (pR)−1, p−1),

because ppR
∈ F . Similarly,

σpR (θ(p, pR)−1, θ(p, pR))

= ω(pR, (pR)−1 p−1, ppR)

= ω(pR, (pR)−1, p−1)−1 ω((pR)−1, p−1, ppR)−1 ω(pR, (pR)−1, pR)

= ω(pR, (pR)−1, pR) ω(p, p−1, (ppR))−1.

Hence

τθ(p,pR)−1(p, pR) σpR (θ(p, pR)−1, θ(p, pR))= ω(p, p−1, p)−1 ω(p−1, p, pR)−1

= ω(p, p−1, p)−1 ω(pL , p, pR)−1.

Thus,
S(β)=

∑
p

ω(p−1, p, p−1)S(δpθ(pL , p)−1)

=

∑
p

ω(pL , p, pR) δpL θ(p, pR)= β−1. �
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Theorem 5.2. The canonical central element νAop is given by

(5–2) νAop = |F |
−1

∑
(qGx).q=e

ω(xq, xq, xq) δq(xq)2.

Moreover,

νAop = |F |
−1

∑
(qGx).q=e

τx(q G x, q) σq(x, q F x) ω((q G x)L , q G x, q)

× σq(x(q F x), (q G x)q) δq(xq)2.

Proof. Since the element β corresponding to the quasi-antipode of Aop is invertible
and α = 1, we have νAop = (31 ◦32) ◦β

−1
= β−1

◦ (31 ◦32), and thus

νAop = β−1
◦ (31 ◦32)= (31 ◦32).β

−1.

Using formula (5–1) for the integral 3, we find

1(3)=31 ⊗32 = |F |
−1

∑
x∈F

∑
q∈Q

τx(q L , q) δq L (q F x)⊗ δq x;

thus

31 ◦32 =32.31 = |F |
−1

∑
(qGx).q=e

τx(q G x, q) σq(x, q F x) δq x(q F x).

From these, we compute β−1
◦ (31 ◦32) and get the second expression for νAop .

Now, for all x ∈ F and q ∈ Q such that (q G x).q = e, we have

σq(x, q F x) σq(x(q F x), (q G x)q)

= σqGx(q F x, (q G x)q) σq(x, qxq)

= ω(q G x, q F x, (q G x)q) ω(q, x, qxq)

= ω(q G x, q F x, (q G x)q) ω(q G x, q, xq)−1 ω(q, xq, xq)

= ω(q G x, q F x, (q G x)q) ω(q G x, q, x)−1 ω(qx, qx, q)−1 ω(q, xq, xq),

the last equality because

ω(q G x, q, xq)= ω(q G x, q, x) ω(q G x, qx, q)= ω(q G x, q, x) ω(qx, qx, q).

On the other hand,

ω((q G x)L , q G x, q)= ω(q L
G (q F x), q G x, q)

= ω(q L , qx, q) ω(q L , q F x, (q G x)q)−1

= ω(q G x, qx, q) ω(q G x, q F x, (q G x)q)−1

= ω(qx, qx, q) ω(q G x, q F x, (q G x)q)−1.
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Therefore, as needed for (5–2),

τx(q G x, q) σq(x, q F x) ω((q G x)L , q G x, q) σq(x(q F x), (q G x)q)

= ω(q, xq, xq)= ω(xq, xq, xq). �

Remark 5.3. Computing instead (31 ◦32) ◦β
−1, we get

νAop = |F |
−1

∑
(qGx).q=e

τx(q G x, q) σq(x, q F x) ω((q G x)L , q G x, q)

×ω((q G x)L , (q G x)q, x(q F x)) δ(qGx)L ((q G x)(q F x))2.

As a consequence of Theorem 5.2, we get the following expression for the
Frobenius–Schur indicators. After suitable normalization, this expression allows
to compute the Frobenius–Schur indicators for every group-theoretical category.

Corollary 5.4. Suppose χ is an irreducible character of Aop. The Frobenius–Schur
indicator of χ is given by

χ(νAop)= |F |
−1

∑
(qGx).q=e

ω(xq, xq, xq) χ(δq(xq)2)

= |F |
−1

∑
(qGx).q=e

τx(q G x, q) σq(x, q F x) ω((q G x)L , q G x, q)

× σq(x(q F x), (q G x)q) χ(δq(xq)2). �

In the remainder of this section we aim to give an explicit description of the
irreducible characters (and hence of the indicators) of C(G, ω, F, 1) in terms of
the groups G and F .

As an algebra A = k Q#σ k F is a crossed product (page 362). Hence the irre-
ducible left A-modules can be described using Clifford theory.

On the other hand, to every left A-module V one can associate the left Aop-
module V ∗, the action of a ∈ Aop being the transpose of the action of a ∈ A on
V . This gives a bijective correspondence between (irreducible) left A-modules V
and (irreducible) left Aop-modules. Moreover, this bijection preserves characters:
χV ∗ = χV , for all finite-dimensional left A-module V .

Let F p
⊆ F denote the isotropy subgroup of p ∈ Q. Then the restriction of σp

defines a normalized 2-cocycle

σp : F p
× F p

→ k×.

Let kσp F p denote the corresponding twisted group algebra.
The space of isomorphism classes of irreducible A-modules can be parametrized

by the modules Vp,W , where

Vp,W = Ind k Q#σ k F p p ⊗ W = A ⊗k Q#σ k F p (p ⊗ W ),
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where p runs over a set of representatives of the action of F on Q, and W runs
over a system of representatives of isomorphism classes of irreducible left kσp F p-
modules. See [Kashina et al. 2002, Section 3].

There is a natural identification between Q and the space F\G ={Fg : g ∈ G} of
left cosets of F in G. Under this identification, the action Q× F → Q corresponds
to the natural action of F on F\G by right multiplication: Fg.x = F(gx), g ∈ G,
x ∈ F .

This gives in turn a natural identification between the space of orbits of the
action Q × F → Q and the space F\G/F of double cosets of F in G. Moreover,
the isotropy subgroup of an element p ∈ Q is F p

= F ∩ p−1 Fp. Hence we get

Proposition 5.5. The set of isomorphism classes of irreducible Aop-modules is
parametrized by the modules Up,W , where

Up,W = V ∗

p,W = (Ind k Q#σ k F p p ⊗ W )∗,

where p runs over a set of representatives of the double cosets of F in G, F p
=

F ∩ p−1 Fp, and W runs over a system of representatives of isomorphism classes
of irreducible left kσp F p-modules.

The character of the irreducible Aop-module Up,W is given by the formula

(5–3) χp,W (δq z)=

∑
y−1zy∈F p

δp,qGy σq(z, y) σq(y, y−1zy)−1 χW (y−1zy),

where the sum is over all y running over a set of representatives of the right cosets
of F p in F , and χW is the character of W .

Observe that dim Up,W = [F : F ∩ p−1 Fp] dim W . So the proposition immedi-
ately implies that the dimensions of the irreducible modules of a group-theoretical
quasi-Hopf algebra divide its dimension, i.e., that Kaplanksy’s conjecture holds in
this case.

Proof. We only need to prove the formula for the character. The character of Up,W

coincides with the character of Vp,W . Let Y be a set of representatives of the right
cosets of F p in F . A basis of Vp,W is given by y ⊗ p ⊗ v, where (v) is a basis of
W , and y ∈ Y .

For all q ∈ Q, y, z ∈ F , we have

(δq z).y = σq(z, y) δq zy

= σq(z, y) δq y(y−1zy)

= σq(z, y) σq(y, y−1zy)−1 y.(δqGy y−1zy).
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Hence, the action of δq z on this basis is

(δq z).y ⊗ p ⊗ v = (δq z).y ⊗ p ⊗ v

= σq(z, y) σq(y, y−1zy)−1 y.(δqGy y−1zy)⊗ p ⊗ v.

Thus, in order to compute the trace of this action, we only need to consider those
basis vectors y ⊗ p ⊗ v, for which y−1zy ∈ F p; and for such y, we have

(δq z).y ⊗ p ⊗ v = σq(z, y) σq(y, y−1zy)−1 y(δqGy y−1zy)⊗ p ⊗ v

= δp,qGy σq(z, y) σq(y, y−1zy)−1 y ⊗ p ⊗ (y−1zy).v.

This implies the desired formula. �

Remark 5.6. The parametrization in Proposition 5.5 yields the statement in [Ostrik
2002, Remark after Proposition 3.1], for the category C(G, ω, F, 1). Indeed, the 2-
cocycle ψ p(x, y)∈ Z2(F p, k×) considered there coincides with our σp(y−1, x−1);
and this is cohomologous to σp(x, y) via d(γ ), where γ (x)= σp(x−1, x), x ∈ F .

6. Examples

We now discuss some special cases of the results in the last two sections.

Abelian extensions. Suppose that G = F Q is an exact factorization of the group
G; that is, Q is a subgroup of G and (F, Q) is a matched pair of finite groups with
the actions F : Q × F → F , G : Q × F → Q. We refer the reader to [Masuoka
1999; 2002] for the main notions used here, and in particular for the study of the
cohomology theory associated to the matched pair (F, Q).

Fix a representative (τ, σ ) of a class in Opext(kG, k F); that is,

σ : F × F → (k Q)× and τ : Q × Q → (k F )×

are normalized 2-cocycles subject to compatibility conditions. Then consider the
3-cocycle ω : G × G × G → k× given by

ω(τ, σ ) (xp, yq, zr)= τz(p G y, q) σp(y, q F z), x, y, z ∈ F, p, q, r ∈ Q.

The class of the cocycle ω= ω(τ, σ ) is the image of the class of (τ, σ ) in the Kac
exact sequence [Schauenburg 2002a; Masuoka 2002].

It is not difficult to see that σ and τ have the same meaning as in Section 4
(pages 362–363). Note that ω|Q×Q×Q = 1.

There is a bicrossed product Hopf algebra A := kG τ#σ k F corresponding to
these data. As is well-known, this correspondence gives a bijection between the
equivalence classes of Hopf algebra extensions

1 → k Q
→ A → k F → 1,
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and the abelian group Opext(kG, k F). The Hopf algebra Aop coincides with the
(quasi-)Hopf algebra corresponding to G, F and ω, as in Theorem 4.4.

Applying Corollary 5.4, we find the following expression for the Frobenius–
Schur indicators.

Proposition 6.1. Let χ be an irreducible character of Aop. Then the Frobenius–
Schur indicator of χ is given by

χ(νAop)= |F |
−1

∑
qGx=q−1

τx(q−1, q) σq(x, q F x) χ(δq x(q F x))

= |F |
−1

∑
qGx=q−1

τx(q−1, q) σq(x, qxq) χ(δq(xq)2). �

This formula coincides with the expression found in [Kashina et al. 2002], where
the Frobenius–Schur indicators of cocentral abelian extensions are computed, i.e.,
extensions giving rise to the trivial action F : F × Q → Q. Corollary 5.4 gives also
an alternative expression in terms of the 3-cocycle ω attached to σ and τ via the
Kac exact sequence.

Twisted quantum doubles. Let G be a finite group and let ω be 3-cocycle on G.
Consider the Dijkgraaf–Pasquier–Roche quasi-Hopf algebra DωG, also called the
twisted quantum double of G [Dijkgraaf et al. 1991]. By the results in [Natale
2003], a semisimple quasi-Hopf algebra H is group-theoretical if and only if its
quantum double is gauge equivalent to a quasi-Hopf algebra DωG. The Frobenius–
Schur indicators for DωG have been computed in [Mason and Ng 2005], and seen
to coincide in this case with the indicators introduced by Bantay [1997].

It is shown in [Ostrik 2002] that the category Rep DωG is equivalent to C(G ×

G, ω̃,1(G), 1), where 1(G)' G is the diagonal subgroup of G ×G, and ω̃ is the
3-cocycle on G × G given by ω̃ = p∗

1ω(p
∗

2ω)
−1; that is,

ω̃((a1, a2), (b1, b2), (c1, c2))= ω(a1, b1, c1) ω(a2, b2, c2)
−1, ai , bi ∈ G.

Thus Corollary 5.4 gives an alternative formula for the Frobenius–Schur indi-
cators of DωG in terms of an appropriate normalization of the 3-cocycle ω̃.
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