Vol. 222, No. 2, 2005

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 334: 1  2
Vol. 334: 1
Vol. 333: 1  2
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Analytic flows on the unit disk: angular derivatives and boundary fixed points

Manuel D. Contreras and Santiago Díaz-Madrigal

Vol. 222 (2005), No. 2, 253–286
Abstract

We use the concept of angular derivative and the hyperbolic metric in the unit disk 𝔻, to study the dynamical aspects of the equilibrium points belonging to 𝔻 of some complex-analytic dynamical systems on 𝔻. Our results show a deep connection between the dynamical properties of those equilibrium points and the geometry of certain simply connected domains of . As a consequence, and in the context of semigroups of analytic functions, we give some geometric insight to a well-known inequality of Cowen and Pommerenke about the angular derivative of an analytic function.

Keywords
angular derivative, fixed points, planar vector fields, semigroups of analytic functions
Mathematical Subject Classification 2000
Primary: 30C20, 30D05, 37F99
Secondary: 30F45, 37E35
Milestones
Received: 31 March 2004
Revised: 4 November 2005
Accepted: 9 November 2004
Published: 1 December 2005
Authors
Manuel D. Contreras
Camino de los Descubrimientos, s/n
Departamento de Matemática Aplicada II
Escuela Superior de Ingenieros
Universidad de Sevilla
41092, Sevilla
Spain
Santiago Díaz-Madrigal
Camino de los Descubrimientos, s/n
Departamento de Matemática Aplicada II
Escuela Superior de Ingenieros
Universidad de Sevilla
41092, Sevilla
Spain