INTEGER POINTS ON ELLIPTIC CURVES

WEN-CHEN CHI, KING FAI LAI AND KI-SENG TAN
We study Lang’s conjecture on the number of S-integer points on an elliptic curve over a number field. We improve the exponent of the bound of Gross and Silverman from quadratic to linear by using the S-unit equation method of Evertse and a formula on 2-division points.

1. Introduction

Let E be an elliptic curve defined over an algebraic number field k of degree d. For a finite set S of places of k containing all the archimedean ones, we denote the ring of S-integers of k by \mathcal{O}_S. Serge Lang conjectured that if the Weierstrass equation of E is quasiminimal, then the cardinality of the set $E(\mathcal{O}_S)$ of \mathcal{O}_S-integer points of E should be bounded in terms of the field k, the cardinality of S and the rank of the group $E(k)$ of k-rational points of E [Lang 1978, p. 140]. Silverman [1987] proved Lang’s conjecture when E has integral j-invariant. In general, if $j(E)$ is nonintegral for at most δ places of k, then a bound was also given with δ involved. However he did not compute the constants involved. Gross and Silverman [1995] used Roth’s theorem to obtain an explicit bound. To state their theorem, let us write the Weierstrass equation of the elliptic curve E as

$$(1-1) \quad Y^2 = X^3 + aX + B,$$

where $a, B \in \mathcal{O}_S$. Put $\Delta = 4a^3 + 27B^2$. Write $j(E)$ for the j-invariant of E. Let D_k and R_k be the discriminant and the regulator of k. Let M_k be the set of all places of k. For a place $v \in M_k$, let k_v be the completion of k at v and let $| \cdot |_v$ be such that, for $z \in \mathbb{Q}$,

$$|z|_v = |z|_{p^{[k_v:Q_p]/[k:Q]}}.$$
where \(p \) is the place of \(\mathbb{Q} \) lying under \(v \) and \(||_p\) is the usual absolute value. We use \(h_k \) to denote the multiplicative height. Namely, for \(x \in k \)

\[
h_k(x) = \prod_{v \in M_k} \max(|x|_v, 1).
\]

We shall write \(s \) for the cardinality of the set \(S \).

Theorem 1.1 [1995]. Suppose that (1–1) is quasiminimal and that

\[
6d(60d^2 \log 6d)^d \left(\frac{2}{\sqrt{3}} \right)^{d(d-1)/2} \cdot \max(R_k, \log |D_k|, 1).
\]

is at most

\[
\max \left\{ \log h_k(j(E)), \log |\text{Norm}_{k/\mathbb{Q}}(\Delta)| \right\}.
\]

Then

\[
\#E(\mathcal{O}_S) \leq 2 \cdot 10^{11} \cdot d \cdot \delta^{3d} \cdot (32 \cdot 10^9)^{r^3+s}.
\]

In this paper, we take a completely different approach. By using a formula on 2-division points from [2002], we associate to an \(S \)-integer point an unit equation over an extension of \(k \). Then we use the machinery developed by J.-H. Evertse [1984] to obtain a quantitative bound for the number of \(S \)-integer points. Let \(\mathfrak{D}_{E/k} \) be the ideal of the minimal discriminant of \(E/k \). Then we have

\[
(\Delta) = \mathfrak{D}_{E/k} \cdot \prod_v P_v^{12\chi_v},
\]

where \(P_v \) is the prime ideal corresponding to the place \(v \) and \(\chi_v \in \mathbb{Z} \). For \(v \in S \), \(\chi_v \geq 0 \). We factor the cubic over the algebraic closure \(\bar{k} \) of \(k \) as

\[
X^3 + aX + b = (X - \alpha)(X - \beta)(X - \gamma).
\]

Let \(k_1 = k(\alpha, \beta, \gamma) \) and \(m = [k_1 : k] \). Further, let \(M_{k,0} \) be the set of all nonarchimedean places in \(k \).

Definition 1.2. Let \(w \) be a nonarchimedean place over a field extension \(K/k_1 \). If the valuations \(w(\alpha - \beta), w(\beta - \gamma), w(\gamma - \alpha) \) are all equal, we say that \(E \) has \(G \)-type reduction at \(w \); otherwise, we say that \(E \) has \(M \)-type reduction at \(w \).

In fact, if \(w' \) is another place of \(K \) such that both \(w \) and \(w' \) are sitting over a place \(v \in M_{k,0} \), then the reductions of \(E \) at \(w \) and \(w' \) are of the same type. Therefore, we will say that at \(v \), the reduction of \(E \) is also of that type. Furthermore, in the case where \(v(2) = 0 \), \(E \) has \(G \)-type reduction if and only if it has good or potential good reduction (see Lemma 3.1).
Define
\[S_0 = \{ v \in M_{k,0} \setminus S \mid v(2) = 0, \chi_v = 0, v(\Delta) > 0, v(j(E)) \geq 0 \}, \]
\[S_1 = \{ v \in M_{k,0} \mid \chi_v > 0, v(j(E)) \geq 0 \}, \]
\[S_m = \{ v \in M_{k,0} \mid E \text{ has M-type reduction at } v \}, \]
\[S' = S \setminus (S_0 \cup S_1 \cup S_m). \]

Let \(s_1, s_m, s' \) be the cardinality of \(S_1, S_m, S' \). Then \(s_m \) is at most \(\delta + d \).

With the notations above, we can now state our main result.

Theorem 1.3.

\[\#E(\mathbb{C}_S) \leq 11 \times 7^{1.64r + 2.27(s' + s_1) + 3.7s_m + 10.3md}. \]

Note that we do not require the equation (1–1) to be quasiminimal. If we did so, then, by [Silverman 1984, p. 238], we would have

\[\left| \text{Norm}_{k/Q} \prod_{v \in S_1} P^x_v \right| \leq |D_k|^6, \]

and hence

\[s_1 \leq 6 \log |D_k|. \]

The exponent in the Gross–Silverman bound is *quadratic* in \(\delta \) and \(r \), while ours is *linear*, and our constants are smaller. Also, if the ABC Conjecture holds, our method can be applied to get a bound only in terms of \(r \) and \(k \), in which the exponent is linear in \(s \) and \(r \) and differs from that obtained in [Hindry and Silverman 1988]. In fact, this has been achieved in [Chi et al. 2004] for the case where \(k \) is a function field of characteristic zero. Also, the method can be modified to bound the number of integer solutions to \(Y^n = F(X) \); see [Chi et al. \(\geq 2006 \)].

2. A formula for 2-division points

The following result can be proved by straightforward calculations. For details, see [Tan 2002] or [Chi et al. 2004, Section 2.2].

Lemma 2.1. In the notations preceding Theorem 1.3 a point \(P = (a, b) \in E(k) \) determines an extension

\[K = k_1(\sqrt{a-\alpha}, \sqrt{a-\beta}, \sqrt{a-\gamma}) \]

depending only on the class \([P] \in E(k)/2E(k)\). Given a choice of signs for \(\sqrt{a-\alpha}, \sqrt{a-\beta}, \) and \(\sqrt{a-\gamma} \) such that

\[b = \sqrt{a-\alpha} \sqrt{a-\beta} \sqrt{a-\gamma}, \]
the point \(Q := (f, g) \in E(K) \) defined by
\[
f - \alpha = (\sqrt{a - \alpha + \sqrt{a - \beta}})(\sqrt{a - \alpha + \sqrt{a - \gamma}}),
\]
and
\[
g = (\sqrt{a - \alpha + \sqrt{a - \beta}})(\sqrt{a - \beta + \sqrt{a - \gamma}})(\sqrt{a - \gamma + \sqrt{a - \alpha}}),
\]
satisfies
\[
2Q = P.
\]
Furthermore, if \(\{\alpha_1, \alpha_2, \alpha_3\} = \{\alpha, \beta, \gamma\} \), \(D_i = (\alpha_i, 0) \in E(k_1), i = 1, 2, 3 \), and \(Q^{(i)} = (f^{(i)}, g^{(i)}) = Q + D_i \), then
\[
(f - \alpha_i)(f^{(i)} - \alpha_j) = (\alpha_i - \alpha_j)(\alpha_i - \alpha_{j'}),
\]
where \(\{j, j'\} = \{1, 2, 3\} \setminus \{i\} \).

3. Local calculations

Given a point \(P \in E(k) \), let \(K \) be the field determined by \(P \) as in Lemma 2.1. For \(v \in M_k \), let \(K_w \) be the completion of \(K \) with respect to a place \(w \) lying over \(v \). Then \(K_w/k_v \) is a Galois extension. Let \(I_w \) be the inertia subgroup of \(\text{Gal}(K_w/k_v) \). In this section, we assume that \(w \) is nonarchimedean and view it as an valuation from \(K_w \) onto \(\mathbb{Z} \cup \{\infty\} \).

Lemma 3.1. Suppose \(E \) has potential good reduction at a place \(v \) of \(k \) such that \(v(2) = 0 \). Then for any place \(w \) of \(K \) lying over \(v \), we have
\[
w(\alpha - \beta) = w(\beta - \gamma) = w(\gamma - \alpha).
\]

Proof. Suppose on the contrary that
\[
w(\gamma - \alpha) > w(\alpha - \beta) = w(\beta - \gamma).
\]
We can find a field extension \(\tilde{K} \) of \(K \) such that \(\tilde{v}(\alpha - \beta) = 2m, m \in \mathbb{Z} \), where \(\tilde{v} \) is a place of \(\tilde{K} \) lying over \(w \). By our assumption, we have \(\tilde{v}(\beta - \gamma) = 2m \) and \(\tilde{v}(\gamma - \alpha) > 2m \). Consider the elliptic curve \(\tilde{E} \) defined by
\[
\tilde{E} : \tilde{Y}^2 = \tilde{X}(\tilde{X} - \tilde{\beta})(\tilde{X} - \tilde{\gamma}),
\]
which was obtained from (1–1) by the change of variables
\[
\tilde{Y} = Y/\pi^{3m}, \quad \tilde{X} = (X - \alpha)/\pi^{2m},
\]
\[
\tilde{\beta} = (\beta - \alpha)/\pi^{2m}, \quad \tilde{\gamma} = (\gamma - \alpha)/\pi^{2m}.
\]
where π is a uniformizer of the prime ideal associated to \tilde{v} in \tilde{K}. Then $\tilde{v}(\tilde{\beta}) = 0$ and $\tilde{v}(\tilde{\gamma}) > 0$. This implies that \tilde{E} has multiplicative reduction at \tilde{v}. Consequently, $\tilde{v}(j_{\tilde{E}}) = \tilde{v}(j_E) < 0$ which contradicts our hypothesis. □

Now assume that the equation for E is minimal at v. Let \mathbb{F}_v be the residue field of v and let \tilde{E} be the reduction of E at v. As usual, for $P \in E(k_v)$, we denote its image under the reduction map $E(k_v) \to \tilde{E}(\mathbb{F}_v)$ by \tilde{P}. Put

$$E_0(k_v) = \{ P \in E(k_v) \mid \tilde{P} \in \tilde{E}_n s(\mathbb{F}_v) \},$$

where \tilde{E}_ns is the set of nonsingular points of \tilde{E}. We have the following key lemma.

Here we retain the notations in Lemma 2.1.

Lemma 3.2. Assume that at v, where $v(2) = 0$, the Weierstrass equation (1–1) is minimal and E has potential good reduction. For $P_1, P_2 \in E(\mathbb{Q}_v)$, let $Q_i = (f_i, g_i) \in E(\mathbb{Q}_w)$, for $i = 1, 2$, be such that $2Q_i = P_i$. If $Q_1 - Q_2 \in E_0(k_v)$, then

$$w(f_1 - \alpha) = w(f_2 - \alpha) \quad \text{and} \quad w(f_1 - \beta) = w(f_2 - \beta).$$

Before we give the proof of Lemma 3.2, we recall some basic facts on the formal group associated to an elliptic curve.

Suppose $w(\alpha - \beta) = 2a + \epsilon$, where $a \in \mathbb{N} \cup \{0\}$ and $\epsilon = 0$ or 1. By Lemma 3.1, $w(\beta - \gamma) = w(\gamma - \alpha) = 2a + \epsilon$. Consider the change of variables

$$\tilde{Y} = Y/\pi^{2a}, \quad \tilde{X} = (X - \alpha)/\pi^{2a}, \quad \tilde{\beta} = (\beta - \alpha)/\pi^{2a}, \quad \tilde{\gamma} = (\gamma - \alpha)/\pi^{2a},$$

where π is a uniformizer of the prime ideal associated to w. Then

$$\tilde{E} : \tilde{Y}^2 = \tilde{X}(\tilde{X} - \tilde{\beta})(\tilde{X} - \tilde{\gamma}),$$

is a minimal Weierstrass equation for E over K_w. For $i = 1, 2$, let $\tilde{Q}_i = (\tilde{f}_i, \tilde{g}_i)$ be the points on \tilde{E} corresponding to Q_i. Let \hat{E} be the formal group associated to \tilde{E}/K_w. For $m \geq 0$, set

$$\hat{E}_m = \begin{cases} \tilde{E}_0(K_w) & \text{if } m = 0, \\ \hat{E}(\pi^m \mathbb{Q}_w) & \text{if } m > 0. \end{cases}$$

Then we have the filtration

$$\cdots \subset \hat{E}_{m+1} \subset \hat{E}_m \subset \cdots \subset \hat{E}_1 \subset \hat{E}_0.$$

Also, recall that we have the exact sequence

$$0 \to \hat{E}_1 \to \hat{E}_0 \to \tilde{E}_ns \to 0,$$

where \tilde{E}_ns is the nonsingular part of the reduction of \tilde{E}.
For a point \(R = (\tilde{X}, \tilde{Y}) \) in \(\tilde{E}(K_w) \), let \(\tilde{t} = -\tilde{X}/\tilde{Y} \). The following lemma follows easily from [Silverman 1986, Chapter IV].

Lemma 3.3. Let notations be as above.

1. If \(m > 0 \), then
 \[
 R \in \hat{E}_m \setminus \hat{E}_{m+1} \iff w(\tilde{t}) = m \iff (w(\tilde{X}) = -2m \text{ and } w(\tilde{Y}) = -3m).
 \]
2. If \(m = 0 \) and \(\epsilon = 0 \), then
 \[
 R \in \hat{E}_0 \setminus \hat{E}_1 \iff w(\tilde{t}) \leq 0 \iff (w(\tilde{X}) \geq 0 \text{ and } w(\tilde{Y}) \geq 0).
 \]
3. If \(m = 0 \) and \(\epsilon = 1 \), then
 \[
 R \in \hat{E}_0 \setminus \hat{E}_1 \iff w(\tilde{t}) = 0 \iff (w(\tilde{X}) = 0 \text{ and } w(\tilde{Y}) = 0).
 \]

Note that if \(\epsilon = 0 \), then \(\tilde{E} \) has good reduction at \(w \). In this case, \(\hat{E}_0 = \tilde{E}(K_w) \).

Lemma 3.4. Under the hypothesis of Lemma 3.2, suppose that \(w(\alpha - \beta) = 2a + \epsilon \) and \(Q = (f, g) \in E_0(k_v) \). Then \(\tilde{Q} \in \hat{E}_a \subset \hat{E}_0 \).

Proof. Recall that the reduction of \(E \) is
\[
\bar{E} : \bar{Y}^2 = (\bar{X} - \bar{\alpha})(\bar{X} - \bar{\beta})(\bar{X} - \bar{\gamma}).
\]
The singularity of \(\bar{E} \) is \((\bar{\alpha}, 0) \).

If \(Q = (f, g) \in E_0(k_v) \), then \(w(f - \alpha) \leq 0 \). Since \(\tilde{f} = (f - \alpha)/\pi^{2a} \), \(\tilde{g} = g/\pi^{3a} \), we have \(w(\tilde{f}) \leq -2a \). By Lemma 3.3, we have \(\tilde{Q} \in \hat{E}_a \subset \hat{E}_0 \). \[\square\]

Proof of Lemma 3.2. We apply Lemma 2.1 with \(\alpha_1 = \alpha \), \(\alpha_2 = \beta \), and \(\alpha_3 = \gamma \). Then \(Q'_1 = Q_1 + (\alpha, 0) \), and so on. By (2–1), we have
\[
(f_1 - \alpha)(f'_1 - \alpha) = (\alpha - \beta)(\alpha - \gamma).
\]
This and Lemma 3.1 imply
\[
w(f_1 - \alpha) + w(f'_1 - \alpha) = 2(2a + \epsilon),
\]
and
\[
(3–1) \quad w(\tilde{f}_1) + w(\tilde{f}'_1) = 2\epsilon.
\]
Similarly,
\[
(3–2) \quad w(\tilde{f}_2) + w(\tilde{f}'_2) = 2\epsilon.
\]
First we consider the case where
\[
w(f_1 - \alpha) \leq 2a + \epsilon.
\]
Then \(w(\tilde{f}_1) \leq \epsilon \). If \(w(\tilde{f}_1) > 0 \), then \(w(\tilde{f}_1) = \epsilon = 1 \). In this situation, \(\tilde{E} \) has additive reduction at \(w \) and \((0,0)\) is the singularity of the reduction. Therefore, \(\tilde{Q}_1 \not\in \tilde{E}_0(K_w) \). By Lemma 3.4, \(\tilde{Q}_1 - \tilde{Q}_2 \in \tilde{E}_a \subset \tilde{E}_0 \), and consequently \(\tilde{Q}_2 \) is not in \(\tilde{E}_0(K_w) \). Hence \(w(\tilde{f}_2) > 0 \). By (3–1), we also have \(w(\tilde{f}_1') = 1 \). Repeating the above argument, we also conclude that \(w(\tilde{f}_2') > 0 \). Then (3–2) implies that \(w(\tilde{f}_2') = w(\tilde{f}_2') = 1 \).

Now, assume that \(w(\tilde{f}_1') = -2m \leq 0 \). Note that by Lemma 2.1 \(Q_i \in E(C_w), i = 1, 2 \) and we have \(w(f_i - \alpha) \geq 0 \). Hence,

\[
(3-3) \quad w(\tilde{f}_1') \geq -2a.
\]

This means that \(\tilde{Q}_1 \not\in \tilde{E}_{a+1} \) and \(\tilde{Q}_1 \in \tilde{E}_m \setminus \tilde{E}_{m+1} \). If \(a > m \), then by Lemma 3.3 and Lemma 3.4, we also have \(\tilde{Q}_2 \in \tilde{E}_m \setminus \tilde{E}_{m+1} \)
and hence \(w(\tilde{f}_2') = -2m \). If \(a = m \), then we have \(\tilde{Q}_2 \in \tilde{E}_a \) and hence \(w(\tilde{f}_2') \leq -2a \).

For the case where

\[
(\text{2–1}) \quad w(f_1 - \alpha) > 2a + \epsilon,
\]

we consider \(f_1' \), which, according to (2–1), satisfies

\[
w(f_1' - \alpha) < 2a + \epsilon.
\]

Then the argument above can be applied to verify that

\[
w(f_2' - \alpha) = w(f_1' - \alpha).
\]

We complete the proof by applying (2–1).

Let \(K \) be as given in Lemma 2.1 and let \(w \) be a nonarchimedean place of \(K \). A point \(Q = (f, g) \in E(K_w) \) is called special if

\[
w(f - \alpha) \leq \min\{w(\alpha - \beta), w(\beta - \gamma), w(\gamma - \alpha)\}.
\]

If \(Q \) is special, then

\[
w(f - \alpha) = w(f - \beta) = w(f - \gamma).
\]

Put \(\{\alpha_1, \alpha_2, \alpha_3\} = \{\alpha, \beta, \gamma\} \), and let \(Q^{(i)} \) be as in Lemma 2.1.

Lemma 3.5. Suppose that \(Q^{(0)} = Q \in E(K_w) \) and \(E \) has \(G \)-type reduction at \(w \) with

\[
w(\alpha_1 - \alpha_2) = w(\alpha_2 - \alpha_3) = w(\alpha_3 - \alpha_1) = \epsilon.
\]
(1) If \(Q \) is special and \(w(f - \alpha_1) = \epsilon - e < \epsilon \), then for \(j = 1, 2, 3 \), \(Q^{(j)} \) is not special and

\[
w(f^{(j)} - \alpha_i) = \begin{cases}
\epsilon + e & \text{if } i = j, \\
\epsilon & \text{if } i \neq j.
\end{cases}
\]

(2) If every \(Q^{(j)} \) is not special for \(j = 0, 1, 2, 3 \), then for every \(i \) and \(j \),

\[
w(f^{(j)} - \alpha_i) = \epsilon.
\]

Proof. Suppose that \(Q \) is special. By (2–1),

\[
w(f^{(j)} - \alpha_j) = 2w(\alpha - \beta) - w(f - \alpha) = \epsilon + e.
\]

If \(i \neq j \), then

\[
w(f^{(j)} - \alpha_i) = w(f^{(j)} - \alpha_j + \alpha_j - \alpha_i) = \min(\epsilon + e, \epsilon) = \epsilon.
\]

If every \(Q^{(j)} \), \(j = 0, 1, 2, 3 \), is not special, then for every \(i \), \(w(f^{(j)} - \alpha_i) \geq \epsilon \).

By (2–1) again, we must have \(w(f^{(j)} - \alpha_i) \leq \epsilon \). \(\Box \)

Lemma 3.6. Suppose that \(Q \in E(K_w) \) and \(E \) has \(M \)-type reduction with

\[
\epsilon_1 = w(\alpha_1 - \alpha_2) = w(\alpha_1 - \alpha_3) < w(\alpha_2 - \alpha_3) = \epsilon_2.
\]

(1) If \(Q \) is special and \(w(f - \alpha_1) = \epsilon_1 - e < \epsilon_1 \), then, for \(j = 1, 2, 3 \), \(Q^{(j)} \) is not special and

\[
w(f^{(j)} - \alpha_i) = \begin{cases}
\epsilon_1 + e & \text{if } i = j = 1, \\
\epsilon_2 + e & \text{if } i = j = 2, 3, \\
\epsilon_1 & \text{if } (j = 1, i \neq 1) \text{ or } (i = 1, j \neq 1), \\
\epsilon_2 & \text{if } i, j = 2, 3, j \neq i.
\end{cases}
\]

(2) If every \(Q^{(j)} \), \(j = 0, 1, 2, 3 \), is not special and \(w(f - \alpha_2) = \epsilon_1 + e \), then

\[
\epsilon_1 = w(f - \alpha_1) \leq \epsilon + e = w(f - \alpha_3) \leq \epsilon_2.
\]

Moreover, for \(i, j = 1, 2, 3 \),

\[
w(f^{(j)} - \alpha_i) = \begin{cases}
\epsilon_1 + e & \text{if } j = 1, i \neq 1 \\
\epsilon_1 & \text{if } i = 1 \\
\epsilon_2 - e & \text{if } i \neq 1, j \neq 1.
\end{cases}
\]

Proof. Most of the proof is similar to that of Lemma 3.5. Only the valuations of \(f^{(1)} - \alpha_i, i \neq 1 \), need special calculation. But, since \(Q^{(1)} = Q^{(2)} + D_3 \) and
Applying Lemma 3.2 to Q_{x}, we see that

$$w(f(2) - \alpha) + w(f(1) - \alpha_2) = \epsilon_1 + \epsilon_2,$$

$$w(f(3) - \alpha_3) + w(f(1) - \alpha_3) = \epsilon_1 + \epsilon_2.$$ \hfill \Box

4. Unit equations

Let $$\mathcal{E} = \{(P, Q) \mid P \in E(\mathbb{C}_S), \ 2Q = P\}.$$

For $(P_1, Q_1), (P_2, Q_2) \in \mathcal{E}$, we define an equivalence relation as follows:

$$(P_1, Q_1) \sim (P_2, Q_2) \text{ if and only if } Q_1 - Q_2 \in 12E(k).$$

Let $(P_1, Q_1), \ldots, (P_r, Q_r)$ represent all the equivalence classes in \mathcal{E}. Then

$$c \leq 4 \times E(k)/24E(k) \leq 4 \times 2^{r+2}.$$

Now, we fix an equivalence class represented by (P_1, Q_1). If $(P, Q) \sim (P_1, Q_1)\text{ and } Q = (f, g), Q_1 = (f_1, g_1)$, then the quantities

$$(4-1) \quad x = (f - \alpha)/(f_i - \alpha), \quad y = (f - \beta)/(f_i - \beta),$$

$$\lambda = (f_i - \alpha)/(\beta - \alpha), \quad \mu = (\beta - f_i)/(\beta - \alpha)$$

satisfy

$$(4-2) \quad \lambda x + \mu y = 1.$$

Note that Q and Q_1 determine the same field extension K/k. Let

$$\tilde{S} = \{w \mid w \in M_K \text{ and } w|v\text{, for some } v \in S' \cup S_1 \cup S_m\}.$$

Using (2–1), we see that x and y are units at every place w not sitting over $S \cup S_0 \cup S_1 \cup S_m$. For $v \in S_0$, E has additive reduction at v. Therefore,

$$12E(k_v) \subset E_0(k_v).$$

Applying Lemma 3.2 to Q and Q_1, we see that (4–2) is an \tilde{S}-unit equation.

Now we apply the theory of [Evertse 1984] to bound the cardinality of the equivalence class of (P_1, Q_1). We will follow the setting in that paper. Fix a primitive third root ρ of 1 and put $L = K(\rho)$. Given (P, Q) in the equivalence class of (P_1, Q_1), we define x, y, λ, μ by (4–1) and put

$$\xi = \xi(x, y) = \lambda x - \rho \mu y, \quad \eta = \eta(x, y) = \lambda x - \rho^2 \mu y, \quad \zeta = \zeta(x, y) = \xi/\eta.$$

We denote by γ^0 the set of those $\zeta \in L$ for which an \tilde{S}-unit solution (x, y) of (4–2) exists with $\lambda x/\mu y$ not a root of one and such that $\xi = \xi(x, y)$. We denote by γ^1 the subset consisting of those $\xi(x, y)$ such that x and y are defined by (4–1)
using a point \((P, Q)\) in the equivalence class of \((P_l, Q_l)\). We can recover \(x\) and \(y\) from \(\zeta\). Therefore, it is enough to bound the number of elements in \(\mathcal{V}^1\).

Let \(T\) be the set of places of \(L\) sitting over \(\tilde{S}\) and put

\[
A = \left(\prod_{V \in T} |3|_V \right)^{1/2} \prod_{V \in T} |\lambda \mu|_V \left(\prod_{V \notin T} \max(|\lambda|_V \cdot |\mu|_V) \right)^3.
\]

Definition 4.1. For \(V \in M_L, \zeta \in L\), put

\[
m_V(\zeta) = \min_{i=0,1,2} (1, \max(\left| 1 - \rho^i \zeta \right|_V, \left| 1 - \rho^{-i} \zeta^{-1} \right|_V)).
\]

Lemma 4.2 [Evertse 1984, Lemma 3]. We have

\[
\prod_{V \in T} m_V(\zeta) \leq 8Ah(\zeta)^{-3} \text{ for } \zeta \in \mathcal{V}^0.
\]

The next lemma follows by direct calculation.

Lemma 4.3. Suppose that \(V \in M_L\) is nonarchimedean and \(\zeta = \zeta(x, y) \in \mathcal{V}^0\).

1. If \(|\mu y|_V < 1\), then
 \[
 m_V(\zeta) = |1 - \zeta|_V = (1 - \rho)\mu y|_V < |1 - \rho^i \zeta|_V, \text{ for } i \neq 0.
 \]

2. If \(|\lambda x|_V < 1\), then
 \[
 m_V(\zeta) = |1 - \rho \zeta|_V = (1 - \rho)\lambda x|_V < |1 - \rho^i \zeta|_V, \text{ for } i \neq 1.
 \]

3. If \(|\lambda x V^{-1}| < 1\), then
 \[
 m_V(\zeta) = |1 - \rho^2 \zeta|_V = (1 - \rho)(\lambda x)^{-1}|_V < |1 - \rho^i \zeta|_V, \text{ for } i \neq 2.
 \]

4. If \(|\lambda x|_V = |\mu y|_V = 1\), then
 \[
 m_V(\zeta) = |1 - \zeta|_V = |1 - \rho \zeta|_V = |1 - \rho^2 \zeta|_V = |1 - \rho|_V.
 \]

Definition 4.4. For a \(\zeta\) in \(\mathcal{V}^0\) and \(V \in T\), we choose a \(\rho_V \in \{1, \rho, \rho^2\}\) such that

\[
m_V(\zeta) = \min(1, \max(|1 - \rho_V \zeta|_V, |1 - \rho_V^{-1} \zeta^{-1}|_V)).
\]

If \(V\) is nonarchimedean and we are in case (4) of the preceding lemma, we choose \(\rho_V = 1\).
For a nonarchimedean place \(v \in S' \cup S_1 \cup S_m \), let
\[
T_v = \{ V \in T \mid V|v \}. \]

Recall that if \(\zeta \in \mathbb{V}^1 \), there is an associated \((P, Q) \in \mathcal{E} \).

From now on, we fix the indices so that \(\alpha_1 = \alpha, \alpha_2 = \beta, \alpha_3 = \gamma, D_i = (\alpha_i, 0) \), and as before, we put \(Q^{(i)} = Q + D_i \).

Definition 4.5. Let \(\zeta \) be in \(\mathbb{V}^1 \) and let \(V \) be a nonarchimedean place. We say that \(\zeta \) is **of type \(i \)**, where \(i = 0, 1, 2, 3 \), if \(Q^{(i)} \) is special at \(V \). If none of the \(Q^{(i)} \) is special, we say that \(\zeta \) is of type 4.

Consider the set of numbers
\[
\left| \left(f^{(j)} - \alpha_{j_i} \right)/(\alpha_{j_1} - \alpha_{j_2}) \right|_V
\]
and their inverses, where we take \(j = 0, 1, 2, 3 \), \(j_1, j_2 = 1, 2, 3, \) and \(j_1 \neq j_2 \). By the **conductor** of \(\zeta \) at \(V \) we mean the set \(C_V(\zeta) \) consisting of all those numbers in this set which are at most one. We list the elements of \(C_V(\zeta) \) as \(c_{V,i} \) with \(i = 0, 1, 2, \ldots \) and \(c_{V,0} = 1 \). If \(E \) has G-type reduction at \(V \), then Lemma 3.5 implies that
\[
C_V = \begin{cases}
\{1, c_{V,1}\} & \text{if } \zeta \text{ is of type } 0, 1, 2, 3; \\
\{1\} & \text{if } \zeta \text{ is of type } 4.
\end{cases}
\]

Also, if \(E \) has M-type reduction at \(V \), then Lemma 3.6 implies that
\[
C_V = \begin{cases}
\{1, c_{V,1}, c_{V,2}\} & \text{if } \zeta \text{ is of type } 0, 1, 2, 3; \\
\{1, c_{V}\} \text{ or } \{1, c_{V,1}, c_{V,2}\} & \text{if } \zeta \text{ is of type } 4.
\end{cases}
\]

Set \(\mathcal{G} = \text{Gal}(L/k) \). Then \(\mathcal{G} \) acts transitively on \(T_v \) and for \(z \in L, \sigma \in \mathcal{G} \), we have
\[
(4–3) \quad |z|_{\sigma(v)} = |\sigma^{-1}(z)|_V.
\]

For \(z = (f - \alpha)/(\alpha - \beta) \), or \(z = (f - \beta)/(\alpha - \beta) \), we have
\[
\sigma^{-1}(z) \in \{(f^{(j)} - \alpha_i)/(\alpha_i - \alpha_{i'}) \mid j = 0, 1, 2, 3, i, i' = 1, 2, 3\}.
\]

From these facts and Lemma 4.3, we can deduce the next result:

Lemma 4.6. Let \(v \in S' \cup S_1 \cup S_m \) be a nonarchimedean place and let \(V_0 \) be a place in \(T_v \). Then, for a given \(\zeta \in \mathbb{V}^1 \), the map \(T_v \to \{1, \rho, \rho^2\} \), \(V \mapsto \rho_V \), depends only on the type of \(\zeta \) at \(V_0 \). Moreover, if \(E \) has G-type reduction at \(v \) and \(C_{V_0} = \{1\} \) or \(\{1, c_{V_0,1}\} \), there is a decomposition
\[
T_v = T_v^0 \cup T_v^1,
\]
which depends only on the type of ξ such that

$$m_V = \begin{cases} 1 & \text{if } V \in T_v^0, \\ c_{V_0,1} & \text{if } V \in T_v^1. \end{cases}$$

Also, if E has M-type reduction at v, there is a decomposition

$$T_v = T_v^0 \cup T_v^1 \cup T_v^2,$$

which depends only on the type of ξ such that

$$m_V = \begin{cases} 1 & \text{if } V \in T_v^0, \\ c_{V_0,1} & \text{if } V \in T_v^1, \\ c_{V_0,2} & \text{if } V \in T_v^2. \end{cases}$$

Let $v \in S' \cup S_1 \cup S_m$ be a nonarchimedean place. We fix a place V_0 in T_v, and put $t_v^i = \#T_v^i$. If E has G-type reduction at v, define

$$m_v = c_{V_0,1}^t.$$

If E has M-type reduction at v, define

$$m_v,1 = c_{V_0,1}^t \quad \text{and} \quad m_v,2 = c_{V_0,2}^t.$$

Here we use the convention that if T_v^i is empty, the associated m_v or m_v,i is 1.

The following lemma is similar to [Evertse 1984, Lemma 5]. Let S_∞ and T_∞ be respectively the set of all infinite places in k and L, also, let $s_\infty = \#S_\infty$ and $t_\infty = \#T_\infty$. Note that every place in T_∞ is complex, and hence

$$t_\infty = [L : \mathbb{Q}]/2 \leq 4md.$$

For a real number B with $0 < B < 1$, put

$$R(B) = (1 - B)^{-1}B^{B/(B-1)}.$$

Lemma 4.7. Let B be a real number with $1/2 \leq B < 1$. There exists a set \mathcal{W}_1 of cardinality at most

$$5^{s_1 + s_m - s_\infty} \times 3^{t_\infty} \times R(B)^{s_1 + 2s_m - s_\infty + t_\infty - 1},$$

consisting of tuples $((\rho_V)_{V \in T}, (\Gamma_V)_{V \in T})$ with $\rho_V^3 = 1$ and $\Gamma_V \geq 0$ for $V \in T$ and $\sum_{V \in T} \Gamma_V = B$ with the following property: for every $\xi \in \mathcal{V}$ there is a tuple $((\rho_V)_{V \in T}, (\Gamma_V)_{V \in T}) \in \mathcal{W}_1$ such that ξ satisfies

$$\min(1, |1 - \rho_V \xi|_V) \leq (8Ah(\xi)^{-3})^{\Gamma_V}, \quad \text{for } V \in T.$$

(4–4)
Proof. Consider the index set

\[I = \{(w, j) \mid (j = 1, \ w \in (S' \cup S_1 \cup T_\infty) \setminus (S_m \cup S_\infty)) \text{ or } (j = 1, 2, \ w \in S_m)\}. \]

Then \(\#I \leq q := s' + s_1 + 2s_m - s_\infty + t_\infty. \) For \(\xi \in \mathcal{V}^1 \) and \((w, j) \in I \), let

\[
m_{w, j} = \begin{cases}
 m_v & \text{if } w = v \in (S' \cup S_1) \setminus (S_m \cup S_\infty), \\
 m_V & \text{if } w = V \in T_\infty, \\
 m_{v, 1} & \text{if } w = v \in S_m \text{ and } j = 1, \\
 m_{v, 2} & \text{if } w = v \in S_m \text{ and } j = 2.
\end{cases}
\]

By Lemma 4.2, we have

\[
\prod_{(w, j) \in I} m_{w, j} \leq 8Ah(\xi)^{-3}, \quad \text{for } \xi \in \mathcal{V}^1.
\]

We know from [Evertse 1984, Lemma 4] that there exists a set \(\mathcal{W} \) of cardinality at most \(R(B)^{d-1} \) consisting of tuples \((\Phi_{w, j})_{(w, j) \in I} \) such that for every \(\xi \in \mathcal{V}^1 \) there is a tuple \((\Phi_{w, j})_{(w, j) \in I} \) such that

\[
m_{w, j} \leq (8Ah(\xi)^{-3})^{\Phi_{w, j}}.
\]

Here the tuples can be chosen such that if \(m_{w, j} = 1 \), then \(\Phi_{w, j} = 0 \). In particular, if \(T_v \) is empty, we put \(\Phi_{w, j}/t_v^j = 0 \). We define

\[
\Gamma_v = \begin{cases}
 0 & \text{if } V \in T_v^0 \text{ for some } v \in S' \cup S_1 \cup S_m \setminus S_\infty, \\
 \Phi_{w, 1}/t_v^1 & \text{if } V \in T_v^1 \text{ for some } v \in (S' \cup S_1 \cup S_m) \setminus S_\infty, \\
 \Phi_{w, 2}/t_v^2 & \text{if } V \in T_v^2 \text{ for some } v \in S_m, \\
 \Phi_{w, j} & \text{if } V \in T_\infty.
\end{cases}
\]

Then inequality (4–4) holds. By Lemma 4.6, there are at most \(5^{s' + s_1 + s_m - s_\infty} \times 3^{t_\infty} \) choices of \(\rho_v \)'s.

Now take \(B = 0.846 \). The total number of \(\xi \in \mathcal{W}^1 \) that satisfy a fixed system (4–4) and for which we have \(h(\xi) \geq e^8/2 \) is at most 25 (see [Evertse 1984, p. 583]). The cardinality of \(\mathcal{W}^1 \) is at most

\[
5^{s' + s_1 + s_m - s_\infty} \times 3^{t_\infty} \times R(B)^{s' + s_1 + 2s_m - s_\infty + t_\infty - 1} \leq 5^{s' + s_1 + s_m - s_\infty} \times 3^{t_\infty} \times (49/3)^{s' + s_1 + 2s_m - s_\infty + t_\infty - 1} \leq 2/25 \times (3/49) \times (245/3)^{s' + s_1} \times (12005/9)^{s_m} \times (3/245)^{s_\infty} \times (7)^{2t_\infty}.
\]

We note that \(t_\infty \) is at most \(4md \). A simple calculation shows that

\[
\#\mathcal{W}^1 \leq 2/25 \times (3/49) \times 7^{2.27(s' + s_1) + 3.7s_m + 8md} \times (3/245)^{s_\infty}.
\]
By [Evertse 1984, (36)], we have \(h(\lambda x/\mu y) \leq 2h(\zeta(x, y)) \). All of this yields the following lemma.

Lemma 4.8. The total number of \((P, Q) \sim (P_1, Q_1)\) with \(Q = (f, g)\) such that \(h((f - \alpha)/(f - \beta)) \geq e^8\) is at most

\[
6/49 \times 7^{2.27(s' + s_1)} + 7.2m + 8md \times (3/245)^{t_\infty}.
\]

Proof of Theorem 1.3. We first fix the equivalence class of \((P_1, Q_1)\). We follow the argument in [Evertse 1984, p. 583]. Let \(\tilde{s} = \#S\). The group of \(\tilde{S}\)-units is the direct product of \(s\) multiplicative cyclic groups, one of which is finite. The fraction \((f - \alpha)/(f - \beta)\) is a \(\tilde{S}\)-unit. We assume that for each \(v \in S' \cup S_1 \cup S_m \setminus S_{\infty}\), a place \(V_v \in T_v\) is chosen. Consider the index set

\[
\Phi := \{(i_v)_v \mid i_v = 1, 2, 3, 4, 5, v \in S' \cup S_1 \cup S_m \setminus S_{\infty}\}.
\]

For each \(\phi = (i_v)_v \in \Phi\), let

\[
\mathcal{V}^1_{\phi} = \{\zeta \in \mathcal{V}^1 \mid \zeta \text{ is of type } i_v \text{ at every } v \in S' \cup S_1 \cup S_m \setminus S_{\infty}\}.
\]

Then by (2–1) and (4–3), under the map

\[
\mathcal{V}^1 \rightarrow \prod_{V \in \tilde{S} \setminus \tilde{S}_{\infty}} K^*_V,
\]

\[
\zeta \rightarrow ((f - \alpha)/(f - \beta)|_V),
\]

the image of each \(\mathcal{V}^1_{\phi}\) is in a coset of a subgroup which is a direct product of less than \(s' + s_1 + s_m - s_{\infty}\) multiplicative cyclic groups. This shows that, for a fixed \(\phi\), the set of all \((f - \alpha)/(f - \beta)\) for which \(\zeta \in \mathcal{V}^1_{\phi}\) is in a coset of a subgroup which is a direct product of less than \(s_3 := t_{\infty} + s'_1 + s_1 + s_m - s_{\infty}\) multiplicative cyclic groups. Let \(n\) be a positive integer. Then there is an \(\tilde{S}\)-unit \(z\) and an element \(\omega \in K\) belonging to a fixed set of cardinality at most \(n^{s_3}\) which does not depend on \(f\) such that \((f - \alpha)/(f - \beta) = \omega z^n\). Let \(\omega\) be a fixed element of this set and let \(\theta\) be a fixed \(n\)th root of \(\omega\). By [Evertse 1984, Lemma 1], the number of nonzero \(z\) in \(K\) with \(h(\theta z) < e^{8/n}\) is at most \(5(2e^{24/n})^{[K:Q]}\). Also, the fraction \((f - \alpha)/(f - \beta)\) determines \(\zeta\). Using these and taking \(n = 49/3\), we see that the cardinality of the subset of \(\mathcal{V}^1\) consisting of those \(\zeta\) with \(h((f - \alpha)/(f - \beta)) < e^8\) is at most

\[
5^{s'/s_1 + s_m - s_{\infty}} \times 5 n^{s_3} (2e^{24/n})^{[K:Q]} \leq (245/3)^{s'/s_1 + s_m - s_{\infty}} \times 5 \times (49/3)^{t_{\infty}} \times 8.79^{4md}
\]

\[
\leq 5 \times 7^{2.27(s'/s_1 + s_m) + 10.3md} \times (3/245)^{t_{\infty}}.
\]
Therefore,
\[
\# \mathcal{E} \leq 4 \times |E(k)/24E(k)| \times (3/245)^{s_\infty} \times (6/49 \times 7^{2.27(s' + s_1) + 3.7s_n + 8md} \\
+ 3/49 \times 7^{2.27(s' + s_1 + s_n) + 10.3md}) \\
\leq 4 \times |E(k)_{tor}/24E(k)_{tor}| \times (3/245)^{s_\infty} \times 24^r \times 6 \times 7^{2.27(s' + s_1) + 3.7s_n + 10.3md} \\
\leq 4 \times 6 \times |E(k)_{tor}/24E(k)_{tor}| \times (3/245)^{s_\infty} \times 7^{1.64r + 2.27(s' + s_1) + 3.7s_n + 10.3md}.
\]

The map \(e \mapsto E(C_S) \) given by \((P, Q) \mapsto P\) is 4 to 1. If \(s_\infty \geq 2 \), then
\[
6 \times |E(k)_{tor}/24E(k)_{tor}| \times (3/245)^{s_\infty} \leq 6 \times 24^2 \times (3/245)^2 < 1,
\]
and the theorem is proved. Otherwise, the number field \(k \) has degree at most 2, and the order of the torsion part of the multiplicative group \(k^* \) is at most 6. In this case, via Weil pairing, we see that if \(E(k)_{tor} \) contains a subgroup of the form \(\mathbb{Z}/N\mathbb{Z} \times \mathbb{Z}/N\mathbb{Z} \), then \(N \leq 6 \). Consequently, we have \(|E(k)_{tor}/24E(k)_{tor}| \leq 24 \times 6 \) and hence
\[
6 \times |E(k)_{tor}/24E(k)_{tor}| \times (3/245)^{s_\infty} \leq 36 \times 24 \times (3/245) < 11,
\]
as we wished to show. \(\square \)

References

Received April 19, 2004.

WEN-CHEN CHI
DEPARTMENT OF MATHEMATICS
NATIONAL TAIWAN NORMAL UNIVERSITY
TAIPEI
TAIWAN
wchi@math.ntnu.edu.tw

KING FAI LAI
SCHOOL OF MATHEMATICS AND STATISTICS
UNIVERSITY OF SYDNEY
SYDNEY, NSW 2006
AUSTRALIA
kflai@maths.usyd.edu.au

KI-SENG TAN
DEPARTMENT OF MATHEMATICS
NATIONAL TAIWAN UNIVERSITY
TAIPEI
TAIWAN
tan@math.ntu.edu.tw