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Let T' be a Gromov hyperbolic group with a finite set A of generators. We
prove that hp,(X(00)) <k (L4) < gr(I', A), where gr(I', A) is the growth
entropy, hp (X (00)) is the Coornaert-Papadopoulos topological entropy of
the subshift X.(oco) associated with (I', A), and k_ (A4) is Voiculescu’s nu-
merical invariant, which is an obstruction to the existence of quasicentral
approximate units relative to the Macaev norm for a tuple of unitary opera-
tors A4 = (Ag)qeq in the left regular representation of I'. We also prove that
these three quantities are equal for a hyperbolic group splitting over a finite
group.

1. Introduction

Let I" be a finitely generated group with a finite generating set A. We consider the
family L4 = (A;)qea of left translation operators on 22, specifically the value
of Voiculescu’s numerical invariant k_ for this family. Voiculescu introduced this
invariant k__(7), for a tuple 7 of Hilbert space operators, in a remarkable series of
papers [1979; 1981; 1990; David and Voiculescu 1990] to deal with perturbation
problems.

For the case of free groups, Voiculescu gave an estimate for k__ (A4); we ob-
tain its exact value. For the case of certain amalgamated free product groups, we
proved in [Okayasu 2004] that k__ (A4) equals the growth entropy gr(I', A) of I"
with respect to A. These groups are Gromov hyperbolic groups in the sense of
[Gromov 1987]. In [Okayasu 2004], we showed that if a subshift ¥ satisfies a
certain condition, then k__(t) = hp(X) for the family 7 of creation operators on
the Fock space associated with X, which is used to define the Matsumoto algebra
[1997] associated to X. (Here hyp(X) is the topological entropy of ¥.) This
equation holds for every shift of finite type.

M. Coornaert and A. Papadopoulos [2001] have shown the following: Let X be
a proper geodesic metric space that is §-hyperbolic. The class of functions on X
called horofunctions (a generalization of Busemann functions) gives a description
of the boundary at infinity 0 X. When X is the Cayley graph of a hyperbolic group
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", the space of cocycles associated with horofunctions that take integral values on
the vertices is a shift of finite type X (c0). (See also [Gromov 1987].)

Continuing this line of investigation, we first determine(Theorem 1.1) a lower
bound for k (1 4) in terms of the topological entropy /(% (00)), for arbitrary
hyperbolic groups. We therefore have

hiop(X(00)) < ko (ha) < (T, A),

since the upper bound was already given in [Okayasu 2004]. We also show here that
if a given hyperbolic group I' splits over a finite group, the equation A, (X (00)) =
gr(I", A) holds for a certain finite generating set A of I' (Corollary 1.2). As a
consequence, the inequalities turn into an equalities for such groups:

hiop(X(00)) = koo (A4) = gr(I', A).

It was already known from [Voiculescu 1993] that k_ (A 4) # O for every nonele-
mentary hyperbolic group I', because I" is nonamenable.

Notation. We denote by X (c0) the shift of finite type relative to (I", A), constructed
in [Coornaert and Papadopoulos 2001].

Theorem 1.1. Let I" is a Gromov hyperbolic group with a finite generating set A
and ) its left regular representation. Set Ay = (Ag)aca. Then we have

hiop(2(00)) < ko (ha) = gr(T", A).

Corollary 1.2. Let T is a nonelementary hyperbolic group with a finite generating
set A, A its left regular representation and A g = (Ag)qca. Suppose that either

(1) T can be written nontrivially as a free product G| * G, and A = F{ U F, for
some finite generating sets Fy, F> of G, Gy; or

(2) T has a form of a free product G| xg G, with finite amalgamated subgroup
H, which is properly contained in both factors and of index greater than 2 in
at least one factor, and A = F| U F, for some finite generating sets Fy, F, of
G1, Gy, containing H; or

(3) I is an HNN extension
Gxg 60 =(G,x | hx =x0(h) forh € H),

where H is a proper finite subgroup of G and A = F U{x, x~'} for some finite
generating set F of G, which contains both H and 6 (H ).

Then k,(h4) = gr(T, A) = hyop(Z(00)).
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2. Preliminaries

Voiculescu’s perturbation theory. Let ¥ be a separable infinite dimensional Hil-
bert space and let B(#), IK(¥) denote, respectively, the spaces of bounded linear

operators and compact operators on . A symmetrically normed ideal (S, | - ||s)
is an ideal G of K(#) which is a Banach space endowed with the norm || - ||&
satisfying

IXTYlle < IXI-ITls- 1Yl

for T € G and X, Y € B(#), where || - || is the operator norm on B(F).
It is well-known that the Schatten p-classes €, (%) are symmetrically normed
ideals. So are the ideals 6, () defined for 1 < p < oo by the norm

o
”T”; — Z)‘-jj_l—‘rl/p
j=1

(where A; > A, > --- are the eigenvalues of (T*T)!/?); they are important for
perturbation theory. The particular case €_ (J€) is also known as the Macaev ideal.
Note that 6, (%) = 6, () but

€090 6,90 S (90 ifl<p<q.

The dual &*, where the duality is given by the bilinear form (X, Y) — Tr(XY),
is again a normed ideal. We have €, (%)* =%, (¥), where p>1land 1/p+1/qg=1.
Moreover 6 (%)* = 6 (), where 6} (%) consists of all T € IK(9) such that

k
j=1 )\']
k .
Zj:]] l/a

Let G be a symmetrically normed ideal of K(#). For an N-tuple t= (T, ...,Ty)
of bounded linear operators on #, we define

||T||;r=sup < 00.
k

ks(t) = liminf max [[A, T;]l|e,
AeF(H)f 1<i=N

where the inferior limit is taken with respect to the natural order on
F(H)T ={T e K(¥) | T : finite rank, 0 < T < I}

and [A, B] = AB — BA. We write k;(r) when G = %;(%).

We see from the definition that kg(7) measures the obstruction to the existence
of a sequence {A,};2, C U:(%)T such that A, /' I and lim,,_,  ||[[Ay, T;]llo = O
for 1 <i < N. If such a sequence exists, it is called a quasicentral approximate
unit for t relative to &.
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Proposition 2.1 [Voiculescu 1990, Proposition 2.1]. Let t = (Ty, ..., Ty) € B(#)"
and X; € €7 (%) fori=1,...,N.If

N
> IXi. Tl € 61(36) + B(3) 1.

i=1

then
N

Tr(Z[Xi, m)

i—1
where || X; |7 = infyerge 1 X: — Y17

Proposition 2.2 [Gohberg and Krein 1969, Theorem 14.1]. For T € %T(%), we

have .
~ i—18;(T)
IT I} = limsup L= @)
n—00 Zj:l 1/]

Subshifts. We briefly define the necessary concepts from symbolic dynamics; see
[Lind and Marcus 1995] for a more leisurely introduction.

Let s be a finite alphabet and (" the one-sided infinite product space [T,
with the product topology (of discrete topologies). The shift map o on iV is given

N
<ko(@ Y IXilf,

a=1

by (o(x)); = x;+1 for i € N. A word over o is a finite sequence w = (ay, ..., a,)
with a; € A. For x € 9N and a word w = (ay, . .., a,), we say that w occurs in x if
there is an index i such that x; =ay, ..., Xj+,—1 = a,. For a collection & of words

over AN, we define the (one-sided) subshift X = X4 to be the subset of sequences
in s4" in which no word in & occurs.

Let X be a subshift of s4"V. We denote by W, (X) the set of all words with length
n that occur in X and we set

Wm:Umay
n=0

Let @ : Wyant1(X) — A be a map, which we call a block map. The extension of
¢ from X to AN is defined by (x;)ien > (Vi)ien, Where

Vi = @((Xi—m> Xicmt1s -+ - Xign))-

We also denote this extension by ¢ and call it a sliding block code.
The topological entropy of a subshift X is defined by

1
hiop(X) = nll)rrolo ” log card W'\, (X).

A simple class of subshifts is that of shifts of finite type (SFT), those that can
be described by a finite set of forbidden words. Let M = [M (a, b)]4 pest be a 0-1
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matrix. Then
= {2 € AV | M(xi, xip1) = 1)
is called the one-sided topological Markov shift by M and it is a shift of finite type.
Gromov hyperbolic groups. For basic facts about Gromov hyperbolic spaces and
groups, see [Gromov 1987] and [Coornaert and Papadopoulos 1993].
Let (X, | |) be a metric space which is proper, geodesic and §-hyperbolic for

some § > 0. A function f : X — R is e-convex, where ¢ > 0, if for any geodesic
segment [xg, x;] in X and any ¢ € [0, 1], we have

fx) =d—0)f(xo) +1f(x1) +e,
where x; is the point on [xg, x] satisfying |xo — x;| =t |xo — x1].

Definition 2.3. Let ¢ >0. An e-horofunction on X is an e-convex function z: X — R
satisfying i (x) — A =dist(x, =1 (1)) for every x € X and A € R such that 4 (x) > A.

Definition 2.4. Let r : [0, c0) — X be a geodesic ray. The associated Busemann
function h, : X — R is defined by

hy(x) = lim |x —r(®)] 1.

A Busemann function on a §-hyperbolic X is a 46-horofunction [Coornaert and
Papadopoulos 2001, Proposition 2.5]. Thus Busemann functions form an important
class of horofunctions.

Definition 2.5. A function ¢ : X x X — R is called an e-cocycle if there is an
e-horofunction 4 : X — R such that

@(x,y) =h(x) —h(y)

for every x, y € X. We call such a function & a primitive for ¢. (If h is a primitive
for ¢, so is h + ¢ for any constant c.)

Proposition 2.6 [Coornaert and Papadopoulos 2001, Proposition 2.7]. Let ¢ be a
cocycle on X. For x,y, z and w € X, we have

(1) ¢(x,x) =0,

(2) o(x,y) ==y, x),

(3) o(x,y) =9¢x,2) +¢(z, y),

@) oG, »| <Ix—yl,

5) lptx, y) =@ w)| < |x —z|+ ]y —wl
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Let y be an isometry of X, & : X — R an e-horofunction and ¢ : X x X — R
an e-cocycle. The functions yh and y ¢ defined by

1

yhx)=h(y~'x), yex,») =@ 'x,y 'y,

for x, y € X, are an e-horofunction and an e-cocycle, respectively. If ¢ is the
cocycle of &, then y ¢ is the cocycle of yh. Let @ be the set of e-cocycles on X for
all possible values of ¢ > 0. We equip ¢ with the topology of uniform convergence
on compact sets.

Definition 2.7. Let ¢ be a cocycle on X. A ¢-gradient arc isapath g : [ — X,
parameterized by arclength, satisfying

p(g(t), g(t)) =1t"—1t

for every ¢, € I. If I = R or I = [0, 00), we say that g is a ¢-gradient line or
ray, respectively. If g(0) = x, we say that g starts at x.

Lemma 2.8 [Coornaert and Papadopoulos 2001, Lemma 2.9]. Let ¢ be a cocycle
on X and I C R an interval witha € I, Iy = I N(—oco,a] and I, = I N[a, c0). If
g : I — X is a path whose restrictions to 1| and I, are @-gradient arcs, then g is
itself a -gradient arc.

Proposition 2.9 [Coornaert and Papadopoulos 2001, Proposition 2.10]. Let ¢ be a
cocycle on X.

(1) Any @-gradient arc g : I — X is a geodesic.

2) If x,y € X satisfying ¢(x,y) = |x —y|, and if g : [a, b] — X is a geodesic
Jjoining x and y, then g is a p-gradient arc.

Proposition 2.10 [Coornaert and Papadopoulos 2001, Proposition 2.13]. For every

cocycle ¢ on X and for every x € X, there is a ¢-gradient ray g : [0, 00) — X
starting at x.

Let ¢ be acocycle on X and g:[0, o0) — X a p-gradient ray. By Proposition 2.9,
part (1), g is a geodesic and so converges to a well-defined point g(co) € 9X.

Proposition 2.11 [Coornaert and Papadopoulos 2001, Proposition 3.1]. Let ¢ be a
cocycle on X and let g, g’ : [0, 00) — X be @-gradient rays. Then g(00) = g'(00).
Definition 2.12. We define a map 7 : ® — 9X by setting ®(p) = g(o0) € dX,
where g : [0, c0) — X is a ¢-gradient ray.

Let Isom(X) denote the group of isometries of X. The action of Isom(X) on &

defined by (y, ¢) — y ¢ is continuous.

Proposition 2.13 [Coornaert and Papadopoulos 2001, Proposition 3.3]. The map
m : ® — 0X is continuous, surjective, and commutes with the actions of Isom(X)
on ® and 0X.
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For any cocycle ¢, any geodesic ray r : [0, o0) — X satisfying r(oc0) = 7 (@),
and any ¢ > 0, we set

Ry, ={x e X |o(x,r()=0}NB(r), 165).

Proposition 2.14 [Coornaert and Papadopoulos 2001, Proposition 3.4]. For ¢ € P,
let r : [0, 00) — X be a geodesic ray such that r(00) = w(p). For all x € X and
t € R satisfying t > |x —r(0)| + 1668, we have

@(x, r(t)) =dist(x, Ry ;).

In all that follows, I' is a §-hyperbolic group with respect to a finite set of
generators A and X is the Cayley graph associated to the pair (I', A). We denote
by X° =T the set of vertices and by X' the set of edges of X. For x € ', we
denote by |x| the word length of x with respect to A.

Definition 2.15. A horofunction 4 : X — R is said to be integral if h(x) € Z for
every x € X%, A cocycle having an integral horofunction as a primitive is called
an integral cocycle.

Every integral cocycle is completely determined by its values on I' x I, by
[Coornaert and Papadopoulos 2001, Corollary 4.4]. Thus we can regard an integral
cocycle on X as a function from I' x I" to Z. Let &y € @ be the space of integral
cocycles on X. The topology induced on &y by & is the topology of pointwise
convergence on I x I'. For simplicity, we denote by 7 : ®; — dI" the restriction
of the map 7 : & — 9T'.

Proposition 2.16 [Coornaert and Papadopoulos 2001, Proposition 4.5]. The map
w : ®g — 0T is continuous, I'-equivalent, surjective and uniformly finite to one.
In fact, for every & € 91" we have

card{p € ®g | m(p) =&} < 2Ny + DM,
where Ny is the integral part of 166 + 1 and N is the number of elements in I’
contained in the closed ball of radius Ny centered at the identity.

Lemma 2.17 [Coornaert and Papadopoulos 2001, Lemma 5.1]. For every ¢ € &g
and x € X°, there is a € A such that ¢(x,xa)=1.

Now we fix a total order relation on the finite generating set A. Let ¢ € @y
and x € X°. The lexicographic order on A" induces a total order on the set of
@-gradient rays starting at x.

Proposition 2.18 [Coornaert and Papadopoulos 2001, Proposition 5.2]. Let ¢ € @
and x € X°. The set of p-gradient rays starting at x has a smallest element.

Definition 2.19. We define a map o : &g — D by a(p) = a~'¢, where ¢ €
and a is the smallest element in A satisfying ¢(e, a) = 1.
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Proposition 2.20 [Coornaert and Papadopoulos 2001, Proposition 5.6]. The map
o Dy — D¢ is continuous.

Proposition 2.21 [Coornaert and Papadopoulos 2001, Proposition 5.7]. Let ¢ € @
and g : [0, 00) — X be the smallest p-gradient ray starting at e. For n € N, let
a, € A be the label of the oriented edge from g(n) to g(n+1) and g, : [0, c0) > X
the smallest a" (p)-gradient ray starting at e.

(1) o" () =gm) o
(2) ga(t) = g(n)~'g(t +n) for any t € [0, 00).
(3) For every k € N, the label of oriented edge from g, (k) to g,(k + 1) is axy,.

Next we introduce the shift of finite type (X(0c0), T') and the conjugacy P from
(®y, o) to (X(00), T). We take integers R > 100§ + 1 and L > 2R 4325 + 1. For
asubset ¥ C X and ¢ > 0, we set

N(Y,e)={x e X |dist(x,Y) <¢e}.
For ¢ € @, let g : [0, 00) — X be the smallest ¢-gradient ray starting at e. Set

Vip)=N(([0, LD, R).

V () is contained in the closed ball B(e, L + R) of radius L + R centered at e.
For each ¢ € ®(, we define a function p(¢) : V(¢) - R by

p(p)(x) = @(x, e)
for x € V(p). Note that p(¢) is the restriction to V (¢) of the primitive & of ¢ with
h(e) =0. We set
S={p(p):V(p) > Rlg e Do}
Lemma 2.22 [Coornaert and Papadopoulos 2001, Lemma 6.2]. The set S is finite.
Definition 2.23. Let X be the set of sequences (0,),>0 with o, € S for n > 0,

and give it the product topology (of discrete topologies on copies of §). The map
T : ¥ — ¥ is the shift map. Define a map P : &y — X by

q)O S¢ (Gn)nzo € 25
where g, = p(a”" (¢)) for n > 0.

Let s € S. We denote by V (s) the domain of the function s. Since R > 1, the
domain V (s) contains the closed unit ball B(e, 1). Hence the value s(a) is well-
defined for all @ € A. Since the finite generating set A is equipped with a fixed
total order relation, we can define w(s) to be the smallest element a € A satisfying
s(a) = —1. (Such an a exists because of Lemma 2.17.)
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Let 0 = (0,)n>0 € . We define a sequence (y,(0))n>0 by setting
yo(o) =e, Yu(0) =w(op) - --w(oy—1) forn=1.
For n > 0, we set
Vu(0) = yu (o) V(on).
This depends only on the first n + 1 coordinates of . We also define functions
Jn(@) : V(o) = Rby fu(o)(x) = Gn(yn(a)_lx) —n for x € V, (o).

Lemma 2.24 [Coornaert and Papadopoulos 2001, Lemma 6.5]. For ¢ € ®y, take
o = P(p) and let g : [0, 00) — X be the smallest p-gradient ray starting at e.
Assume n > 0.

(1) yu(o) =gn).
(2) Vu(o)=N(g([n,n+ L], R).
) fn(o0) is the restriction to V, (o) of the primitive h of ¢ with h(e) = 0.

Definition 2.25. Let o € X. We say that o is consistent if for all i, j > 0, we have

filo)(x) = fj(o)(x)
for all x € V;(0) NV;(0). We denote by X (c0) the set of all consistent sequences.
Lemma 2.26 [Coornaert and Papadopoulos 2001, Lemma 6.8]. P(®g) € X (00).

Theorem 2.27 [Coornaert and Papadopoulos 2001, Theorem 7.18]. The set of con-
sistent sequences %(00) is a shift of finite type. Moreover (®g, o) and (X(00), T)
are conjugate via the map P.

3. The topological entropy of X (oc0)

Let I be a Gromov hyperbolic group with a finite generating set A on which we
fix a total order relation. Let X (oco) the corresponding SFT.

For n € N, we denote by W, the set of all words with length n that occur in
¥ (00) and by A, the set of all elements in I' with word length n with respect to
the finite generating set A (as a particular case, Ag={e}). We set D, =, .1, Wk
and B, = Jy-4<, Ak. For each s € S, we set o

Wa(s) ={(00, ..., 0n-1) € Wy | 00 =5},

and for each a € A,
Ap(a) ={ay € Ay |y € An—1}-

We write Dy (s) = J; <<, Wi(s) and B, (a) = ;<1 <, An(a).
We denote by gr(I", A) the growth entropy of I with respect to A:

1
gr(l’, A) = lim —logcard A,.
n—-oon
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We also define
Ay={y €A,y =w(op)  w(o,_1) for some (0o, ...,0n_1) € Wy},
<§n:: LJ <Kn,
1<k<n

Ap(w(s)) ={y € Ay(w(s)) | y =w(op) - - w(op—1)
_ B for some (oy, ...,0,_1) € W,(s)},
Byw(s) = | An(w(s)).

1<k<n

Lemma 3.1. There is a constant K > 0 such that
Card{(UO, ceey O'nfl) e Wl’l | W(GO) .. w(o'nfl) = y} S K’
foreveryn > 1 andevery y € A,.

Proof. Let ¢, ¢’ € ®¢ and g, g’ their smallest gradient rays starting at e such that
gn) =g'(n) =y € A,. Note that ¢(y, e) = ¢'(y, ¢) = —n. We denote o = P (¢)
and o’ = P(¢’). By Lemma 2.24, we have y, (o) = y,(c’) = y.
We first claim that g = g’ on [0, n]. We now assume that g # g’ on [0, n]. We
may assume that g’ < g in the lexicographic order on AN without loss of generality.
Note that ¢(e, y) = ¢(g(0),g(n)) =n=1le—y|,and g’ : [0,n] — X is a
geodesic joining e and y. From Proposition 2.9(2) it follows that g’ : [0, n] — X

is a ¢-gradient arc. Then we define the path g : [0, c0) — X by
i} g'(k)y for0<k=<n,
g(k) =
gk) formn<k.

By Lemma 2.8, the path g is ¢-gradient ray starting at e such that g < g in the
lexicographic order on AN. Therefore ¢ would be not the smallest ¢-gradient ray.
Hence we have g = g’ on [0, n].

Let A, h' be primitives for ¢, ¢’ satisfying h(e) = h’(e) = 0, respectively. We
set B=B(y,L+ R).

We secondly claim that if 7 = A" on B, then h = h’ on N(g([0,n + L]), R).
Notice that R > 166 and L > 2R. Let k € [0, n] satisfying n — k < 2R. Since
N(g(lk,n+L]), R) € B, we have h = h’ on N(g([k,n+ L]), R). Nextletk >0
satisfying n — k > 2R. For x € B(g(k), R), we have

n=|g(0)—gm)|=|g(0)—gk)|+|gk) — gn)|
> 18(0) — x| —|x =g +1g(k) —g(n)| = |g(0) —x| — R+ (n — k)
> |g(0) — x|+ R > |g(0) — x|+ 166.
By Proposition 2.14, we have ¢(x, g(n)) = dist(x, Ry, ,). Recall that
Ry ={x € X |¢(x,gn)) =0}NB(gn), 163).
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Hence h(x) +n = dist(x, Ry ). This shows that the value of 4 (x) depends only
on the restriction of 4 on B(g(n), 166) C B. Namely we obtain our claim.

We now assume that 2 =5’ on B. In this case, we remark that g =g’ on [0, n+L].
By Proposition 2.21, we have V (a*(¢)) = N (g (k) "' g([k, k+L]), R) =V (a* (¢"))
for 0 <k <n. Foreach x € V((xk(go)), since

N(gk) ' gk, k+ L1, R) = g(k)"'N(g([k, k + L1), R),
there is y € N(g([k, k + L]), R) such that x = g(k)~'y. Then

p(@" () (x) = gth) " p(x, ) = p(y, g(k)) = h(y) — h(g(k)) = h(y) +k.
Similarly we also obtain p(a*(¢))(x) = h’(y) + k. Hence if 4 = h’ on B, then it
follows from the second claim that

o (@ (@) (x) = h(y) +k = (y) +k = p(a*(¢)).

Therefore p(a*(¢)) = p (¥ (¢')); that is, o = o, forall 0 <k <n.
Hence it suffices to set K = (2(L+R)+1)?, where b=card B =card B(e, L+R).
Indeed, for every x € B we have, using Proposition 2.6,

|h(x) +n|=1h(x) —h(y)|=lex, y)| <lx —y[<L+R.
This easily leads to the assertion. U
Corollary 3.2. hp(X(00)) < gr(T', A).

Proof. For each n > 0, the map W, 5> (0g, ..., 0,-1) — w(op) - - - w(oyu—1) € Ay,
is uniformly finite-to-one by Lemma 3.1. Thus

card W, < Kcard A,,.

The assertion follows immediately. g

Remark 3.3. A fundamental theorem of J. Stallings [1971] shows that a finitely
generated group I' has infinitely many ends if and only if it has a form of either
(2) or (3) of Corollary 1.2. In particular, a torsion-free group has the form (1).

4. Proof of main results

Proof of Corollary 1.2. In view of Corollary 3.2, we just need to show that
hiop(2(00)) > gr(T", A) if one of the conditions (1)—(3) of Corollary 1.2 is satisfied.
Remark 3.3 shows that it suffices to check cases (2) and (3); but we check case (1)
explicitly as well because it is very simple.

Case (1): It suffices to show that the map (oy,...,0,—1) = w(op) - - wW(o,—1)
from W, to A, is surjective. Let y € A,,. There is the smallest geodesic segment
r:[0, n] — X from e to y. We can take g to be a geodesic ray extending r, meaning
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that r (k) = g(k) for all 0 < k < n. Indeed, by assumption, we have I' = G| * G».
Then y is written as a reduced word g - - - g, where gx € G;, with iy # iy for
1 <k <m—1. Hence for [ > 1, it is enough to set

gn+2l)=y-ab---ab, gn+2l—-1)=y-ab---ba,
2 2-1

for some a € F; and b € F;, withi #1i, anda, b #e.

We consider the cocycle ¢, having the Busemann function hg as a primitive.
It is clear that g is a @g-gradient ray. Moreover by definition, g is, in fact, the
smallest @, -gradient ray starting at e. Hence y = w(P(¢g)) - - w(P (" (@g))).
It follows that the map above is surjective. Thus card A,, <card W,,, and gr(I", A) <

hiop(X(00)) as needed.

Case (2): Now we assume that I' = G| xg G;. Let y € A,, with n > 2. We express
the element y by the reduced word g - - - g, Where gx € G;, \ H with i} # ;4 for
1 <k <m—1. We take a sequence (gm+1, &m+2, - - - ) such that g € F;, \ H with
ix—1 # iy for all k > m—+1. We define a sequence (g(k))72, in X by g(k) =g1 ... gk
fork > 1. Let (y, z) = %(Iyl +1z| — |y —z|) be the Gromov product based at e. For
[>k>m,

2(g(k), g)) =g + gD —1gk) ' g D))

>k+1—|gk) gD =k+1—|gis1- gl
>k+1—(1—k) =2k

tends to oo with k; thus there exists £ € dX such that the sequence (g(k))72,
converges to §. Let r : [0, 00) — X be a geodesic ray starting at e with r(oc0) =
&. We denote by ¢, the cocycle with respect to the Busemann function 4,. Let
g [0, 00) — X be the smallest ¢,-gradient ray starting at e. Because r is also a
@,-gradient ray, it follows from Proposition 2.11 that g’(co) = &. We can express
g’ by the infinite reduced word (g7, g5, ...) with g, € G, \ H and ji # ji+1 for
k > 1. Since g'(c0) = &, we have iy = ji for all k > 1. Moreover we obtain
y=g(m)=gi---gn=2g; - 8&yhforsomeh e H. Letk,, > 1 such that g’(k,,) =
g} -+ &n- Then we have |g(m) — g'(k,,)| < 1. Note thatn — 1 <k, <n+ 1.
Hence we have proved that for any y € A, there is ¥’ € A, such that y’ € B(y, 2)
and y' = w(oy) - - - w(o,_1) for some (oy, ...,0,_1) € W,. Therefore card A, <
card B(e, 2) - card W,,, and the assertion follows.

Case (3): We assume that I' = G g 0. Let y € A,. The element y can be
represented by either (i) go € G or (ii) a reduced word gox® --- gu_1x5" gy,
where g € G and ¢; € {1, —1} for all 0 < k < m. In case (i), we set gx = e for
k>1and e, =1 for k > 0. In case (ii), we set gy = e fork >m +1 and g = &,
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for k > m. Then we define the sequence (g(k));2, in X by g(k) = gox® - - - ggx®
for all £ > 0. Again, forl > k > m,

2(gk), g)) = g + gD — lgk) gD = k +1— |x™+ .. x| =2k

goes to oo with k; hence (g(k));2,, converges to some & € 9", Let r : [0, 00) — X
be a geodesic ray with r(0) = e and r(co) = &. We denote by ¢, the cocycle with
respect to the Busemann function 4,. Let g’ : [0, 00) — X be the smallest ¢,-
gradient ray starting at e. We can also represent the geodesic ray g’ as the infinite
reduced word (g(’)x50, g;x‘sl, ...). Since g’(00) =&, we have ¢; = §; foralli > 0.
Moreover we obtain y = gox - -- g, = g(x*--- g, g, for some either g € H if
em=1,0r g €0(H)if e, =—1. Letk,, > 1 such that g’(k,,) = g(x® - - - g,,. Then
we have |y —g (k)| < 1. Note that n—1 <k,, <n+1. Hence we have shown that for
each y € A,, there is y’ € A, such that y’ € B(y,2) and y’' = w(op) - - - w(o,_1)
for some (o9, ...,0,-1) € W,. Therefore card A, < card B(e, 2) - card W,,, and
hiop(2X(00)) < gr(I', A) as needed. O

Remark 4.1. It is easy to check that the topological entropy /(2 (00)) does not
depend on the choice of total order relations on A.

Proof of Theorem 1.1. It suffices to show that A, (X (00)) <k (X4), because the
inequality k_ (A 4) < gr(I', A) has been proved in [Okayasu 2004, Proposition 4.1].
Let Aw(s) = {)\w(s) | s € §}. Note that kgo(kw(S)) < kgo()\.A).

Since ¥ (00) is an SFT, there are N € N and W € S¥*! such that

¥(00) = {(on)n>0 € X | (On, - .., Ontn) € W for any n > 0}.

Let I =SV and Bn :X(00) > 1 N'be the N-th higher block code. Then the subshift
Bn (X (00)) is the Markov shift 3y, for some matrix M = [M (i, j)]; jes. Let u be
the maximal measure on X (00), i.e., hp(2(00)) = h, (T |5 (0)). For simplicity,
we denote by £ the topological entropy of X (oco). We denote by [oy, ..., 0,—1]
the cylinder set at O-th coordinate. For (oy, ..., 0,—-1) € W, with n > N, we have

lil"j
M([007 LA ] Gn—l]) = e(’l—N)h ’

where i = (09, ..., 0nN—-1), j = (Ou—N,...,0,—1) € ] and [, r are the left and right
Perron vectors of M with Zi e liri = 1 (see [Kitchens 1998]).
For each n > 0, denote by P, the projection onto the subspace

span {8, € £*(T') | |y| =n}.
For a € A, define the partial isometry T, € B(¢2(I")) [Okayasu 2002; 2004] by

T, =2Pn+])\apn-

n>0
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For each s € S, we define X by

Z Z w00, 01, -+ 01D Two) -+ * Twa1) P T,y " * Tootop) Tovton)-

n>1 (09,01,...,0n-1)

Then ) ¢ [ Xy, Au(s)] = Po, because

Z )\w(s) Xs

seS
=22 2 oo oD uy  Twior ) PoTiio, )+ T
n>1 seS (o0p,...,0n—1)
€W, (s)
= Z Z 1 (00, - - - 0n—11)Twioo) ** * Twou1) PoT oo,y " ** Tovton)
n>1 (00,...,0n-1)
ew,
and
ZXS)\'LU(S)
seS

= Z Z Z u(loo, o1, - 01D Tww) -+ Tw,) Po T,y " * Tonoy)

=P+ Z Z n(loo, o1, . 0n—1DTuoo) * ** Twiou ) PoTasio, 1) ** Tarioo)-

Next we give an estimate of ||Xs||;~r. ForneNand y € An(w(s)), we define

5y = Z ;,L([O'(), ..-sUn—l])-
(00+-05,—1)EWn (s)
y=w(00) - w(on—1)

This sum is uniformly finite by Lemma 3.1. Thus

Cie™ < sy < Cre

for constants Cy, C; > 0, independent of n and y .

Let s1 > 5o > --- be the eigenvalues of (X;sz)l/z. For each j € N, there is
Vj € Z,,_/(w(s)) such that s; = s,,,.

Let ¢ > 0. Recall that

IXsllf = inf X, =Y.
YeF2I)f

By doing finite rank perturbations if necessary, we may assume that for all j > 1,

i) < g < gnih=e),
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Let N € N with e™V¢ < C; and n > N. If there is m > n such that j <
card B, (w(s)) and y; € A, (w(s)), we have

efm(hfs) > e " (h+e) )

For otherwise we would have

m(h—e) <efn(h+£) <e —ne V

sji=<e
Ci

<sy

for all y € B,(w(s)) and this is a contradiction. Therefore "8 > ¢—n(h+e)
namely

h+e
m<n
~ h—¢
We put
h+e¢
k=maximeN|m<n .
h—e
Since
plsh= > p(oo.-...00-1]) < card Wy(s) - Ce ™™,

(00,-..,0n—1)EW, (5)

for some C > 0, we obtain

nh
M E Card Wn(s)‘
C

Hence

card B, (w(s))

1 X ||1 < lim sup ]dlB ooy i
card B, (w(s)) ._
n—00 Zj:l j 1

k
Zl:l Z}/Gg[(w(s)) Zw(o‘o)mw(a‘l_l):y M([007 R O’l*l])

< lim sup =
n—00 log card B, (w(s))
k
=limsu 2= 15D
n—oo log card B, (w(s))
<1i " )
im su S
n%oop logcard A, (w(s)) h — e
<1 n h+e (Is])
im su S
n—)oop logcard W, (s) —log K h — M
n h+e¢
<l
S e (5] Tk —Tog € —Tog K h—e (P
h+¢
———u(s]).

T hh—e)



156 RUI OKAYASU

Here we have used that card W, (s) < Kcard A,,(w(s)) (Lemma 3.1). Since ¢ > 0
is arbitrary, we have

~ 1
IX0T < o w(sD

Thanks to Proposition 2.1, we obtain

h = hiop(X(00)) < koo (Au(s)) < koo (ha) < gr(l', A). o
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