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RUI OKAYASU

Let 0 be a Gromov hyperbolic group with a finite set A of generators. We
prove that htop(6(∞)) ≤ k−

∞(λA) ≤ gr(0, A), where gr(0, A) is the growth
entropy, htop(6(∞)) is the Coornaert–Papadopoulos topological entropy of
the subshift 6(∞) associated with (0, A), and k−

∞(λA) is Voiculescu’s nu-
merical invariant, which is an obstruction to the existence of quasicentral
approximate units relative to the Macaev norm for a tuple of unitary opera-
tors λA = (λa)a∈A in the left regular representation of 0. We also prove that
these three quantities are equal for a hyperbolic group splitting over a finite
group.

1. Introduction

Let 0 be a finitely generated group with a finite generating set A. We consider the
family λA = (λa)a∈A of left translation operators on `2(0), specifically the value
of Voiculescu’s numerical invariant k−

∞
for this family. Voiculescu introduced this

invariant k−
∞

(τ ), for a tuple τ of Hilbert space operators, in a remarkable series of
papers [1979; 1981; 1990; David and Voiculescu 1990] to deal with perturbation
problems.

For the case of free groups, Voiculescu gave an estimate for k−
∞

(λA); we ob-
tain its exact value. For the case of certain amalgamated free product groups, we
proved in [Okayasu 2004] that k−

∞
(λA) equals the growth entropy gr(0, A) of 0

with respect to A. These groups are Gromov hyperbolic groups in the sense of
[Gromov 1987]. In [Okayasu 2004], we showed that if a subshift 6 satisfies a
certain condition, then k−

∞
(τ ) = htop(6) for the family τ of creation operators on

the Fock space associated with 6, which is used to define the Matsumoto algebra
[1997] associated to 6. (Here htop(6) is the topological entropy of 6.) This
equation holds for every shift of finite type.

M. Coornaert and A. Papadopoulos [2001] have shown the following: Let X be
a proper geodesic metric space that is δ-hyperbolic. The class of functions on X
called horofunctions (a generalization of Busemann functions) gives a description
of the boundary at infinity ∂ X . When X is the Cayley graph of a hyperbolic group
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0, the space of cocycles associated with horofunctions that take integral values on
the vertices is a shift of finite type 6(∞). (See also [Gromov 1987].)

Continuing this line of investigation, we first determine(Theorem 1.1) a lower
bound for k−

∞
(λA) in terms of the topological entropy htop(6(∞)), for arbitrary

hyperbolic groups. We therefore have

htop(6(∞)) ≤ k−

∞
(λA) ≤ gr(0, A),

since the upper bound was already given in [Okayasu 2004]. We also show here that
if a given hyperbolic group 0 splits over a finite group, the equation htop(6(∞))=

gr(0, A) holds for a certain finite generating set A of 0 (Corollary 1.2). As a
consequence, the inequalities turn into an equalities for such groups:

htop(6(∞)) = k−

∞
(λA) = gr(0, A).

It was already known from [Voiculescu 1993] that k−
∞

(λA) 6= 0 for every nonele-
mentary hyperbolic group 0, because 0 is nonamenable.

Notation. We denote by 6(∞) the shift of finite type relative to (0, A), constructed
in [Coornaert and Papadopoulos 2001].

Theorem 1.1. Let 0 is a Gromov hyperbolic group with a finite generating set A
and λ its left regular representation. Set λA = (λa)a∈A. Then we have

htop(6(∞)) ≤ k−

∞
(λA) ≤ gr(0, A).

Corollary 1.2. Let 0 is a nonelementary hyperbolic group with a finite generating
set A, λ its left regular representation and λA = (λa)a∈A. Suppose that either

(1) 0 can be written nontrivially as a free product G1 ∗ G2 and A = F1 ∪ F2 for
some finite generating sets F1, F2 of G1, G2; or

(2) 0 has a form of a free product G1 ∗H G2 with finite amalgamated subgroup
H , which is properly contained in both factors and of index greater than 2 in
at least one factor, and A = F1 ∪ F2 for some finite generating sets F1, F2 of
G1, G2, containing H ; or

(3) 0 is an HNN extension

G ∗H θ = 〈G, x | hx = xθ(h) for h ∈ H〉,

where H is a proper finite subgroup of G and A = F ∪{x, x−1
} for some finite

generating set F of G, which contains both H and θ(H).

Then k−
∞

(λA) = gr(0, A) = htop(6(∞)).
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2. Preliminaries

Voiculescu’s perturbation theory. Let H be a separable infinite dimensional Hil-
bert space and let B(H), K(H) denote, respectively, the spaces of bounded linear
operators and compact operators on H. A symmetrically normed ideal (S, ‖ · ‖S)

is an ideal S of K(H) which is a Banach space endowed with the norm ‖ · ‖S

satisfying
‖XT Y‖S ≤ ‖X‖ · ‖T ‖S · ‖Y‖

for T ∈ S and X, Y ∈ B(H), where ‖ · ‖ is the operator norm on B(H).
It is well-known that the Schatten p-classes Cp(H) are symmetrically normed

ideals. So are the ideals C−
p (H) defined for 1 ≤ p ≤ ∞ by the norm

‖T ‖
−

p =

∞∑
j=1

λ j j−1+1/p

(where λ1 ≥ λ2 ≥ · · · are the eigenvalues of (T ∗T )1/2 ); they are important for
perturbation theory. The particular case C−

∞
(H) is also known as the Macaev ideal.

Note that C−

1 (H) = C1(H) but

C−

p (H) $ Cp(H) $ C−

q (H) if 1 < p < q.

The dual S∗, where the duality is given by the bilinear form (X, Y ) 7→ Tr(XY ),
is again a normed ideal. We have Cp(H)∗ =Cq(H), where p >1 and 1/p+1/q =1.
Moreover C−

p (H)∗ = C+
q (H), where C+

q (H) consists of all T ∈ K(H) such that

‖T ‖
+

q = sup
k

∑k
j=1 λ j∑k

j=1 j−1/q
< ∞.

Let S be a symmetrically normed ideal of K(H). For an N -tuple τ=(T1, . . . ,TN )

of bounded linear operators on H, we define

kS(τ ) = lim inf
A∈F(H)+1

max
1≤i≤N

‖[A, Ti ]‖S,

where the inferior limit is taken with respect to the natural order on

F(H)+1 = {T ∈ K(H) | T : finite rank, 0 ≤ T ≤ I }

and [A, B] = AB − B A. We write k−
p (τ ) when S = C−

p (H).
We see from the definition that kS(τ ) measures the obstruction to the existence

of a sequence {An}
∞

n=1 ⊆ F(H)+1 such that An ↗ I and limn→∞ ‖[An, Ti ]‖8 = 0
for 1 ≤ i ≤ N . If such a sequence exists, it is called a quasicentral approximate
unit for τ relative to S.
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Proposition 2.1 [Voiculescu 1990, Proposition 2.1]. Let τ = (T1, . . . , TN )∈B(H)N

and X i ∈ C+

1 (H) for i = 1, . . . , N . If

N∑
i=1

[X i , Ti ] ∈ C1(H) + B(H)+,

then ∣∣∣∣Tr
( N∑

i=1

[X i , Ti ]

)∣∣∣∣ ≤ k−

∞
(τ )

N∑
a=1

‖X i‖
+̃

1 ,

where ‖X i‖
+̃

1 = infY∈F(H) ‖X i − Y‖
+

1 .

Proposition 2.2 [Gohberg and Kreı̆n 1969, Theorem 14.1]. For T ∈ C+

1 (H), we
have

‖T ‖
+̃

1 = lim sup
n→∞

∑n
j=1 s j (T )∑n

j=1 1/j
.

Subshifts. We briefly define the necessary concepts from symbolic dynamics; see
[Lind and Marcus 1995] for a more leisurely introduction.

Let A be a finite alphabet and AN the one-sided infinite product space
∏

∞

i=0 A

with the product topology (of discrete topologies). The shift map σ on AN is given
by (σ (x))i = xi+1 for i ∈ N. A word over A is a finite sequence w = (a1, . . . , an)

with ai ∈ A. For x ∈ AN and a word w = (a1, . . . , an), we say that w occurs in x if
there is an index i such that xi = a1, . . . , xi+n−1 = an . For a collection F of words
over AN, we define the (one-sided) subshift X = XF to be the subset of sequences
in AN in which no word in F occurs.

Let X be a subshift of AN. We denote by Wn(X) the set of all words with length
n that occur in X and we set

W(X) =

∞⋃
n=0

Wn(X).

Let ϕ : Wm+n+1(X) → A be a map, which we call a block map. The extension of
ϕ from X to AN is defined by (xi )i∈N 7→ (yi )i∈N, where

yi = ϕ((xi−m, xi−m+1, . . . , xi+n)).

We also denote this extension by ϕ and call it a sliding block code.
The topological entropy of a subshift X is defined by

htop(X) = lim
n→∞

1
n

log card Wn(X).

A simple class of subshifts is that of shifts of finite type (SFT), those that can
be described by a finite set of forbidden words. Let M = [M(a, b)]a,b∈A be a 0–1
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matrix. Then

6M := {(xi )
∞

i=0 ∈ AN
| M(xi , xi+1) = 1}

is called the one-sided topological Markov shift by M and it is a shift of finite type.

Gromov hyperbolic groups. For basic facts about Gromov hyperbolic spaces and
groups, see [Gromov 1987] and [Coornaert and Papadopoulos 1993].

Let (X, | |) be a metric space which is proper, geodesic and δ-hyperbolic for
some δ ≥ 0. A function f : X → R is ε-convex, where ε ≥ 0, if for any geodesic
segment [x0, x1] in X and any t ∈ [0, 1], we have

f (xt) ≤ (1 − t) f (x0) + t f (x1) + ε,

where xt is the point on [x0, x1] satisfying |x0 − xt | = t |x0 − x1|.

Definition 2.3. Let ε≥0. An ε-horofunction on X is an ε-convex function h :X →R

satisfying h(x)−λ = dist(x, h−1(λ)) for every x ∈ X and λ ∈ R such that h(x) ≥ λ.

Definition 2.4. Let r : [0, ∞) → X be a geodesic ray. The associated Busemann
function hr : X → R is defined by

hr (x) = lim
t→∞

|x − r(t)| − t.

A Busemann function on a δ-hyperbolic X is a 4δ-horofunction [Coornaert and
Papadopoulos 2001, Proposition 2.5]. Thus Busemann functions form an important
class of horofunctions.

Definition 2.5. A function ϕ : X × X → R is called an ε-cocycle if there is an
ε-horofunction h : X → R such that

ϕ(x, y) = h(x) − h(y)

for every x, y ∈ X . We call such a function h a primitive for ϕ. (If h is a primitive
for ϕ, so is h + c for any constant c.)

Proposition 2.6 [Coornaert and Papadopoulos 2001, Proposition 2.7]. Let ϕ be a
cocycle on X . For x, y, z and w ∈ X , we have

(1) ϕ(x, x) = 0,

(2) ϕ(x, y) = −ϕ(y, x),

(3) ϕ(x, y) = ϕ(x, z) + ϕ(z, y),

(4) |ϕ(x, y)| ≤ |x − y|,

(5) |ϕ(x, y) − ϕ(z, w)| ≤ |x − z| + |y − w|.
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Let γ be an isometry of X , h : X → R an ε-horofunction and ϕ : X × X → R

an ε-cocycle. The functions γ h and γ ϕ defined by

γ h(x) = h(γ −1x), γ ϕ(x, y) = ϕ(γ −1x, γ −1 y),

for x, y ∈ X , are an ε-horofunction and an ε-cocycle, respectively. If ϕ is the
cocycle of h, then γ ϕ is the cocycle of γ h. Let 8 be the set of ε-cocycles on X for
all possible values of ε ≥ 0. We equip 8 with the topology of uniform convergence
on compact sets.

Definition 2.7. Let ϕ be a cocycle on X . A ϕ-gradient arc is a path g : I → X ,
parameterized by arclength, satisfying

ϕ(g(t), g(t ′)) = t ′
− t

for every t, t ′
∈ I . If I = R or I = [0, ∞), we say that g is a ϕ-gradient line or

ray, respectively. If g(0) = x , we say that g starts at x .

Lemma 2.8 [Coornaert and Papadopoulos 2001, Lemma 2.9]. Let ϕ be a cocycle
on X and I ⊆ R an interval with a ∈ I , I1 = I ∩ (−∞, a] and I2 = I ∩ [a, ∞). If
g : I → X is a path whose restrictions to I1 and I2 are ϕ-gradient arcs, then g is
itself a ϕ-gradient arc.

Proposition 2.9 [Coornaert and Papadopoulos 2001, Proposition 2.10]. Let ϕ be a
cocycle on X .

(1) Any ϕ-gradient arc g : I → X is a geodesic.

(2) If x, y ∈ X satisfying ϕ(x, y) = |x − y|, and if g : [a, b] → X is a geodesic
joining x and y, then g is a ϕ-gradient arc.

Proposition 2.10 [Coornaert and Papadopoulos 2001, Proposition 2.13]. For every
cocycle ϕ on X and for every x ∈ X , there is a ϕ-gradient ray g : [0, ∞) → X
starting at x .

Let ϕ be a cocycle on X and g : [0, ∞)→ X a ϕ-gradient ray. By Proposition 2.9,
part (1), g is a geodesic and so converges to a well-defined point g(∞) ∈ ∂ X .

Proposition 2.11 [Coornaert and Papadopoulos 2001, Proposition 3.1]. Let ϕ be a
cocycle on X and let g, g′

: [0, ∞) → X be ϕ-gradient rays. Then g(∞) = g′(∞).

Definition 2.12. We define a map π : 8 → ∂ X by setting 8(ϕ) = g(∞) ∈ ∂ X ,
where g : [0, ∞) → X is a ϕ-gradient ray.

Let Isom(X) denote the group of isometries of X . The action of Isom(X) on 8

defined by (γ, ϕ) 7→ γ ϕ is continuous.

Proposition 2.13 [Coornaert and Papadopoulos 2001, Proposition 3.3]. The map
π : 8 → ∂ X is continuous, surjective, and commutes with the actions of Isom(X)

on 8 and ∂ X .
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For any cocycle ϕ, any geodesic ray r : [0, ∞) → X satisfying r(∞) = π(ϕ),
and any t ≥ 0, we set

Rϕ,t = {x ∈ X | ϕ(x, r(t)) = 0} ∩ B(r(t), 16δ).

Proposition 2.14 [Coornaert and Papadopoulos 2001, Proposition 3.4]. For ϕ ∈8,
let r : [0, ∞) → X be a geodesic ray such that r(∞) = π(ϕ). For all x ∈ X and
t ∈ R satisfying t > |x − r(0)| + 16δ, we have

ϕ(x, r(t)) = dist(x, Rϕ,t).

In all that follows, 0 is a δ-hyperbolic group with respect to a finite set of
generators A and X is the Cayley graph associated to the pair (0, A). We denote
by X0

= 0 the set of vertices and by X1 the set of edges of X . For x ∈ 0, we
denote by |x | the word length of x with respect to A.

Definition 2.15. A horofunction h : X → R is said to be integral if h(x) ∈ Z for
every x ∈ X0. A cocycle having an integral horofunction as a primitive is called
an integral cocycle.

Every integral cocycle is completely determined by its values on 0 × 0, by
[Coornaert and Papadopoulos 2001, Corollary 4.4]. Thus we can regard an integral
cocycle on X as a function from 0 × 0 to Z. Let 80 ⊆ 8 be the space of integral
cocycles on X . The topology induced on 80 by 8 is the topology of pointwise
convergence on 0 × 0. For simplicity, we denote by π : 80 → ∂0 the restriction
of the map π : 8 → ∂0.

Proposition 2.16 [Coornaert and Papadopoulos 2001, Proposition 4.5]. The map
π : 80 → ∂0 is continuous, 0-equivalent, surjective and uniformly finite to one.
In fact, for every ξ ∈ ∂0 we have

card{ϕ ∈ 80 | π(ϕ) = ξ} ≤ (2N0 + 1)N1,

where N0 is the integral part of 16δ + 1 and N1 is the number of elements in 0

contained in the closed ball of radius N0 centered at the identity.

Lemma 2.17 [Coornaert and Papadopoulos 2001, Lemma 5.1]. For every ϕ ∈ 80

and x ∈ X0, there is a ∈ A such that ϕ(x, xa) = 1.

Now we fix a total order relation on the finite generating set A. Let ϕ ∈ 80

and x ∈ X0. The lexicographic order on AN induces a total order on the set of
ϕ-gradient rays starting at x .

Proposition 2.18 [Coornaert and Papadopoulos 2001, Proposition 5.2]. Let ϕ ∈80

and x ∈ X0. The set of ϕ-gradient rays starting at x has a smallest element.

Definition 2.19. We define a map α : 80 → 80 by α(ϕ) = a−1ϕ, where ϕ ∈ 80

and a is the smallest element in A satisfying ϕ(e, a) = 1.



148 RUI OKAYASU

Proposition 2.20 [Coornaert and Papadopoulos 2001, Proposition 5.6]. The map
α : 80 → 80 is continuous.

Proposition 2.21 [Coornaert and Papadopoulos 2001, Proposition 5.7]. Let ϕ ∈80

and g : [0, ∞) → X be the smallest ϕ-gradient ray starting at e. For n ∈ N, let
an ∈ A be the label of the oriented edge from g(n) to g(n +1) and gn : [0, ∞) → X
the smallest αn(ϕ)-gradient ray starting at e.

(1) αn(ϕ) = g(n)−1ϕ.

(2) gn(t) = g(n)−1g(t + n) for any t ∈ [0, ∞).

(3) For every k ∈ N, the label of oriented edge from gn(k) to gn(k + 1) is ak+n .

Next we introduce the shift of finite type (6(∞), T ) and the conjugacy P from
(80, α) to (6(∞), T ). We take integers R ≥ 100δ +1 and L ≥ 2R +32δ +1. For
a subset Y ⊆ X and ε ≥ 0, we set

N (Y, ε) = {x ∈ X | dist(x, Y ) ≤ ε}.

For ϕ ∈ 80, let g : [0, ∞) → X be the smallest ϕ-gradient ray starting at e. Set

V (ϕ) = N (g([0, L]), R).

V (ϕ) is contained in the closed ball B(e, L + R) of radius L + R centered at e.
For each ϕ ∈ 80, we define a function ρ(ϕ) : V (ϕ) → R by

ρ(ϕ)(x) = ϕ(x, e)

for x ∈ V (ϕ). Note that ρ(ϕ) is the restriction to V (ϕ) of the primitive h of ϕ with
h(e) = 0. We set

S = {ρ(ϕ) : V (ϕ) → R | ϕ ∈ 80}.

Lemma 2.22 [Coornaert and Papadopoulos 2001, Lemma 6.2]. The set S is finite.

Definition 2.23. Let 6 be the set of sequences (σn)n≥0 with σn ∈ S for n ≥ 0,
and give it the product topology (of discrete topologies on copies of S). The map
T : 6 → 6 is the shift map. Define a map P : 80 → 6 by

80 3 ϕ 7→ (σn)n≥0 ∈ 6,

where σn = ρ(αn(ϕ)) for n ≥ 0.

Let s ∈ S. We denote by V (s) the domain of the function s. Since R ≥ 1, the
domain V (s) contains the closed unit ball B(e, 1). Hence the value s(a) is well-
defined for all a ∈ A. Since the finite generating set A is equipped with a fixed
total order relation, we can define w(s) to be the smallest element a ∈ A satisfying
s(a) = −1. (Such an a exists because of Lemma 2.17.)
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Let σ = (σn)n≥0 ∈ 6. We define a sequence (γn(σ ))n≥0 by setting

γ0(σ ) = e, γn(σ ) = w(σ0) · · · w(σn−1) for n ≥ 1.

For n ≥ 0, we set
Vn(σ ) = γn(σ )V (σn).

This depends only on the first n + 1 coordinates of σ . We also define functions
fn(σ ) : Vn(σ ) → R by fn(σ )(x) = σn(γn(σ )−1x) − n for x ∈ Vn(σ ).

Lemma 2.24 [Coornaert and Papadopoulos 2001, Lemma 6.5]. For ϕ ∈ 80, take
σ = P(ϕ) and let g : [0, ∞) → X be the smallest ϕ-gradient ray starting at e.
Assume n ≥ 0.

(1) γn(σ ) = g(n).

(2) Vn(σ ) = N (g([n, n + L]), R).

(3) fn(σ ) is the restriction to Vn(σ ) of the primitive h of ϕ with h(e) = 0.

Definition 2.25. Let σ ∈ 6. We say that σ is consistent if for all i, j ≥ 0, we have

fi (σ )(x) = f j (σ )(x)

for all x ∈ Vi (σ )∩ V j (σ ). We denote by 6(∞) the set of all consistent sequences.

Lemma 2.26 [Coornaert and Papadopoulos 2001, Lemma 6.8]. P(80) ⊆ 6(∞).

Theorem 2.27 [Coornaert and Papadopoulos 2001, Theorem 7.18]. The set of con-
sistent sequences 6(∞) is a shift of finite type. Moreover (80, α) and (6(∞), T )

are conjugate via the map P .

3. The topological entropy of 6(∞)

Let 0 be a Gromov hyperbolic group with a finite generating set A on which we
fix a total order relation. Let 6(∞) the corresponding SFT.

For n ∈ N, we denote by Wn the set of all words with length n that occur in
6(∞) and by An the set of all elements in 0 with word length n with respect to
the finite generating set A (as a particular case, A0 ={e}). We set Dn =

⋃
1≤k≤n Wk

and Bn =
⋃

0≤k≤n Ak . For each s ∈ S, we set

Wn(s) = {(σ0, . . . , σn−1) ∈ Wn | σ0 = s},

and for each a ∈ A,
An(a) = {aγ ∈ An | γ ∈ An−1}.

We write Dn(s) =
⋃

1≤k≤n Wk(s) and Bn(a) =
⋃

1≤k≤n An(a).
We denote by gr(0, A) the growth entropy of 0 with respect to A:

gr(0, A) = lim
n→∞

1
n

log card An.



150 RUI OKAYASU

We also define

An = {γ ∈ An | γ = w(σ0) · · · w(σn−1) for some (σ0, . . . , σn−1) ∈ Wn},

Bn =

⋃
1≤k≤n

An,

An(w(s)) = {γ ∈ An(w(s)) | γ = w(σ0) · · · w(σn−1)

for some (σ0, . . . , σn−1) ∈ Wn(s)},
Bn(w(s)) =

⋃
1≤k≤n

An(w(s)).

Lemma 3.1. There is a constant K > 0 such that

card{(σ0, . . . , σn−1) ∈ Wn | w(σ0) . . . w(σn−1) = γ } ≤ K ,

for every n ≥ 1 and every γ ∈ An .

Proof. Let ϕ, ϕ′
∈ 80 and g, g′ their smallest gradient rays starting at e such that

g(n) = g′(n) = γ ∈ An . Note that ϕ(γ, e) = ϕ′(γ, e) = −n. We denote σ = P(ϕ)

and σ ′
= P(ϕ′). By Lemma 2.24, we have γn(σ ) = γn(σ

′) = γ .
We first claim that g = g′ on [0, n]. We now assume that g 6= g′ on [0, n]. We

may assume that g′ < g in the lexicographic order on AN without loss of generality.
Note that ϕ(e, γ ) = ϕ(g(0), g(n)) = n = |e − γ |, and g′

: [0, n] → X is a
geodesic joining e and γ . From Proposition 2.9(2) it follows that g′

: [0, n] → X
is a ϕ-gradient arc. Then we define the path ḡ : [0, ∞) → X by

ḡ(k) =

{
g′(k) for 0 ≤ k ≤ n,

g(k) for n ≤ k.

By Lemma 2.8, the path ḡ is ϕ-gradient ray starting at e such that ḡ < g in the
lexicographic order on AN. Therefore g would be not the smallest ϕ-gradient ray.
Hence we have g = g′ on [0, n].

Let h, h′ be primitives for ϕ, ϕ′ satisfying h(e) = h′(e) = 0, respectively. We
set B = B(γ, L + R).

We secondly claim that if h = h′ on B, then h = h′ on N (g([0, n + L]), R).
Notice that R > 16δ and L > 2R. Let k ∈ [0, n] satisfying n − k ≤ 2R. Since
N (g([k, n + L]), R) ⊆ B, we have h = h′ on N (g([k, n + L]), R). Next let k ≥ 0
satisfying n − k > 2R. For x ∈ B(g(k), R), we have

n = |g(0) − g(n)| = |g(0) − g(k)| + |g(k) − g(n)|

≥ |g(0) − x | − |x − g(k)| + |g(k) − g(n)| ≥ |g(0) − x | − R + (n − k)

> |g(0) − x | + R > |g(0) − x | + 16δ.

By Proposition 2.14, we have ϕ(x, g(n)) = dist(x, Rϕ,n). Recall that

Rϕ,n = {x ∈ X | ϕ(x, g(n)) = 0} ∩ B(g(n), 16δ).
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Hence h(x) + n = dist(x, Rϕ,n). This shows that the value of h(x) depends only
on the restriction of h on B(g(n), 16δ) ⊆ B. Namely we obtain our claim.

We now assume that h =h′ on B. In this case, we remark that g =g′ on [0, n+L].
By Proposition 2.21, we have V (αk(ϕ))= N (g(k)−1g([k, k+L]), R)= V (αk(ϕ′))

for 0 ≤ k ≤ n. For each x ∈ V (αk(ϕ)), since

N (g(k)−1g([k, k + L]), R) = g(k)−1 N (g([k, k + L]), R),

there is y ∈ N (g([k, k + L]), R) such that x = g(k)−1 y. Then

ρ(αk(ϕ))(x) = g(k)−1ϕ(x, e) = ϕ(y, g(k)) = h(y) − h(g(k)) = h(y) + k.

Similarly we also obtain ρ(αk(ϕ))(x) = h′(y) + k. Hence if h = h′ on B, then it
follows from the second claim that

ρ(αk(ϕ))(x) = h(y) + k = h′(y) + k = ρ(αk(ϕ′)).

Therefore ρ(αk(ϕ)) = ρ(αk(ϕ′)); that is, σk = σ ′

k for all 0 ≤ k ≤ n.
Hence it suffices to set K = (2(L+R)+1)b, where b=card B =card B(e, L+R).

Indeed, for every x ∈ B we have, using Proposition 2.6,

|h(x) + n| = |h(x) − h(γ )| = |ϕ(x, γ )| ≤ |x − γ | ≤ L + R.

This easily leads to the assertion. �

Corollary 3.2. htop(6(∞)) ≤ gr(0, A).

Proof. For each n ≥ 0, the map Wn 3 (σ0, . . . , σn−1) 7→ w(σ0) · · · w(σn−1) ∈ An

is uniformly finite-to-one by Lemma 3.1. Thus

card Wn ≤ K card An.

The assertion follows immediately. �

Remark 3.3. A fundamental theorem of J. Stallings [1971] shows that a finitely
generated group 0 has infinitely many ends if and only if it has a form of either
(2) or (3) of Corollary 1.2. In particular, a torsion-free group has the form (1).

4. Proof of main results

Proof of Corollary 1.2. In view of Corollary 3.2, we just need to show that
htop(6(∞))≥gr(0, A) if one of the conditions (1)–(3) of Corollary 1.2 is satisfied.
Remark 3.3 shows that it suffices to check cases (2) and (3); but we check case (1)
explicitly as well because it is very simple.

Case (1): It suffices to show that the map (σ0, . . . , σn−1) 7→ w(σ0) · · · w(σn−1)

from Wn to An is surjective. Let γ ∈ An . There is the smallest geodesic segment
r : [0, n]→ X from e to γ . We can take g to be a geodesic ray extending r , meaning
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that r(k) = g(k) for all 0 ≤ k ≤ n. Indeed, by assumption, we have 0 = G1 ∗ G2.
Then γ is written as a reduced word g1 · · · gm , where gk ∈ Gik with ik 6= ik+1 for
1 ≤ k ≤ m − 1. Hence for l ≥ 1, it is enough to set

g(n + 2l) = γ · ab · · · ab︸ ︷︷ ︸
2l

, g(n + 2l − 1) = γ · ab · · · ba︸ ︷︷ ︸
2l−1

,

for some a ∈ Fi and b ∈ Fim with i 6= im and a, b 6= e.
We consider the cocycle ϕg having the Busemann function hg as a primitive.

It is clear that g is a ϕg-gradient ray. Moreover by definition, g is, in fact, the
smallest ϕg-gradient ray starting at e. Hence γ = w(P(ϕg)) · · · w(P(αn−1(ϕg))).
It follows that the map above is surjective. Thus card An ≤ card Wn , and gr(0, A)≤

htop(6(∞)) as needed.

Case (2): Now we assume that 0 = G1 ∗H G2. Let γ ∈ An with n ≥ 2. We express
the element γ by the reduced word g1 · · · gm , where gk ∈ Gik \ H with ik 6= ik+1 for
1 ≤ k ≤ m − 1. We take a sequence (gm+1, gm+2, . . . ) such that gk ∈ Fik \ H with
ik−1 6= ik for all k ≥ m+1. We define a sequence (g(k))∞k=1 in X by g(k)= g1 . . . gk

for k ≥ 1. Let 〈y, z〉 =
1
2(|y|+|z|−|y − z|) be the Gromov product based at e. For

l ≥ k ≥ m,

2〈g(k), g(l)〉 = |g(k)| + |g(l)| − |g(k)−1g(l)|

≥ k + l − |g(k)−1g(l)| = k + l − |gk+1 · · · gl |

≥ k + l − (l − k) = 2k

tends to ∞ with k; thus there exists ξ ∈ ∂ X such that the sequence (g(k))∞k=1
converges to ξ . Let r : [0, ∞) → X be a geodesic ray starting at e with r(∞) =

ξ . We denote by ϕr the cocycle with respect to the Busemann function hr . Let
g′

: [0, ∞) → X be the smallest ϕr -gradient ray starting at e. Because r is also a
ϕr -gradient ray, it follows from Proposition 2.11 that g′(∞) = ξ . We can express
g′ by the infinite reduced word (g′

1, g′

2, . . . ) with g′

k ∈ G jk \ H and jk 6= jk+1 for
k ≥ 1. Since g′(∞) = ξ , we have ik = jk for all k ≥ 1. Moreover we obtain
γ = g(m) = g1 · · · gm = g′

1 · · · g′
mh for some h ∈ H . Let km ≥ 1 such that g′(km) =

g′

1 · · · g′
m . Then we have |g(m) − g′(km)| ≤ 1. Note that n − 1 ≤ km ≤ n + 1.

Hence we have proved that for any γ ∈ An , there is γ ′
∈ An such that γ ′

∈ B(γ, 2)

and γ ′
= w(σ0) · · · w(σn−1) for some (σ0, . . . , σn−1) ∈ Wn . Therefore card An ≤

card B(e, 2) · card Wn , and the assertion follows.

Case (3): We assume that 0 = G ∗H θ . Let γ ∈ An . The element γ can be
represented by either (i) g0 ∈ G or (ii) a reduced word g0xε0 · · · gm−1xεm−1 gm ,
where gk ∈ G and εk ∈ {1, −1} for all 0 ≤ k ≤ m. In case (i), we set gk = e for
k ≥ 1 and εk = 1 for k ≥ 0. In case (ii), we set gk = e for k ≥ m +1 and εk = εm−1
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for k ≥ m. Then we define the sequence (g(k))∞k=0 in X by g(k) = g0xε0 · · · gk xεk

for all k ≥ 0. Again, for l ≥ k ≥ m,

2〈g(k), g(l)〉 = |g(k)| + |g(l)| − |g(k)−1g(l)| ≥ k + l − |xεk+1 · · · xεl | = 2k

goes to ∞ with k; hence (g(k))∞k=0 converges to some ξ ∈ ∂0. Let r : [0, ∞) → X
be a geodesic ray with r(0) = e and r(∞) = ξ . We denote by ϕr the cocycle with
respect to the Busemann function hr . Let g′

: [0, ∞) → X be the smallest ϕr -
gradient ray starting at e. We can also represent the geodesic ray g′ as the infinite
reduced word (g′

0xδ0, g′

1xδ1, . . . ). Since g′(∞) = ξ , we have εi = δi for all i ≥ 0.
Moreover we obtain γ = g0xε0 · · · gm = g′

0xε0 · · · g′
m g, for some either g ∈ H if

εm = 1, or g ∈ θ(H) if εm = −1. Let km ≥ 1 such that g′(km) = g′

0xε0 · · · g′
m . Then

we have |γ −g(km)|≤1. Note that n−1≤km ≤n+1. Hence we have shown that for
each γ ∈ An , there is γ ′

∈ An such that γ ′
∈ B(γ, 2) and γ ′

= w(σ0) · · · w(σn−1)

for some (σ0, . . . , σn−1) ∈ Wn . Therefore card An ≤ card B(e, 2) · card Wn , and
htop(6(∞)) ≤ gr(0, A) as needed. �

Remark 4.1. It is easy to check that the topological entropy htop(6(∞)) does not
depend on the choice of total order relations on A.

Proof of Theorem 1.1. It suffices to show that htop(6(∞)) ≤ k−
∞

(λA), because the
inequality k−

∞
(λA)≤ gr(0, A) has been proved in [Okayasu 2004, Proposition 4.1].

Let λw(S) = {λw(s) | s ∈ S}. Note that k−
∞

(λw(S)) ≤ k−
∞

(λA).
Since 6(∞) is an SFT, there are N ∈ N and W ⊆ SN+1 such that

6(∞) = {(σn)n≥0 ∈ 6 | (σn, . . . , σn+N ) ∈ W for any n ≥ 0}.

Let I = SN and βN :6(∞)→ I N be the N -th higher block code. Then the subshift
βN (6(∞)) is the Markov shift 6M for some matrix M = [M(i, j)]i, j∈I . Let µ be
the maximal measure on 6(∞), i.e., htop(6(∞)) = hµ(T |6(∞)). For simplicity,
we denote by h the topological entropy of 6(∞). We denote by [σ0, . . . , σn−1]

the cylinder set at 0-th coordinate. For (σ0, . . . , σn−1) ∈ Wn with n ≥ N , we have

µ([σ0, . . . , σn−1]) =
lir j

e(n−N )h ,

where i = (σ0, . . . , σN−1), j = (σn−N , . . . , σn−1) ∈ I and l, r are the left and right
Perron vectors of M with

∑
i∈I liri = 1 (see [Kitchens 1998]).

For each n ≥ 0, denote by Pn the projection onto the subspace

span {δγ ∈ `2(0) | |γ | = n}.

For a ∈ A, define the partial isometry Ta ∈ B(`2(0)) [Okayasu 2002; 2004] by

Ta =

∑
n≥0

Pn+1λa Pn.
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For each s ∈ S, we define Xs by∑
n≥1

∑
(σ0,σ1,...,σn−1)

∈Wn(s)

µ([σ0, σ1, . . . σn−1])Tw(σ1) · · · Tw(σn−1) P0T ∗

w(σn−1)
· · · T ∗

w(σ1)
T ∗

w(σ0)
.

Then
∑

s∈S [Xs, λw(s)] = P0, because∑
s∈S

λw(s)Xs

=

∑
n≥1

∑
s∈S

∑
(σ0,...,σn−1)

∈Wn(s)

µ([σ0, . . . σn−1])Tw(σ0) · · · Tw(σn−1) P0T ∗

w(σn−1)
· · · T ∗

w(σ0)

=

∑
n≥1

∑
(σ0,...,σn−1)

∈Wn

µ([σ0, . . . σn−1])Tw(σ0) · · · Tw(σn−1) P0T ∗

w(σn−1)
· · · T ∗

w(σ0)

and∑
s∈S

Xsλw(s)

=

∑
n≥1

∑
s∈S

∑
(σ0,...,σn−1)

∈Wn(s)

µ([σ0, σ1, . . . σn−1])Tw(σ1) · · · Tw(σn−1) P0T ∗

w(σn−1)
· · · T ∗

w(σ1)

= P0 +

∑
n≥1

∑
(σ0,...,σn−1)

∈Wn

µ([σ0, σ1, . . . σn−1])Tw(σ0) · · · Tw(σn−1) P0T ∗

w(σn−1)
· · · T ∗

w(σ0)
.

Next we give an estimate of ‖Xs‖
+̃

1 . For n ∈ N and γ ∈ An(w(s)), we define

sγ =

∑
(σ0,...,σn−1)∈Wn (s)

γ=w(σ0)···w(σn−1)

µ([σ0, . . . , σn−1]).

This sum is uniformly finite by Lemma 3.1. Thus

C1e−nh
≤ sγ ≤ C2e−nh

for constants C1, C2 > 0, independent of n and γ .
Let s1 ≥ s2 ≥ · · · be the eigenvalues of (X∗

s Xs)
1/2. For each j ∈ N, there is

γ j ∈ An j (w(s)) such that s j = sγ j .

Let ε > 0. Recall that

‖Xs‖
+̃

1 = inf
Y∈F(`2(0))+1

‖Xs − Y‖
+

1 .

By doing finite rank perturbations if necessary, we may assume that for all j ≥ 1,

e−n j (h+ε)
≤ s j ≤ e−n j (h−ε).
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Let N ∈ N with e−Nε
≤ C1 and n ≥ N . If there is m > n such that j ≤

card Bn(w(s)) and γ j ∈ Am(w(s)), we have

e−m(h−ε)
≥ e−n(h+ε).

For otherwise we would have

s j ≤ em(h−ε) < e−n(h+ε)
≤ e−nε sγ

C1
≤ sγ

for all γ ∈ Bn(w(s)) and this is a contradiction. Therefore em(h−ε)
≥ e−n(h+ε),

namely

m ≤ n
h + ε

h − ε
.

We put

k = max
{

m ∈ N

∣∣∣∣ m ≤ n
h + ε

h − ε

}
.

Since

µ([s]) =

∑
(σ0,...,σn−1)∈Wn(s)

µ([σ0, . . . , σn−1]) ≤ card Wn(s) · Ce−nh,

for some C > 0, we obtain

µ([s])enh

C
≤ card Wn(s).

Hence

‖Xs‖
+̃

1 ≤ lim sup
n→∞

∑card Bn(w(s))
j=1 s j∑card Bn(w(s))

j=1 j−1

≤ lim sup
n→∞

∑k
l=1

∑
γ∈Al (w(s))

∑
w(σ0)···w(σl−1)=γ µ([σ0, . . . , σl−1])

log card Bn(w(s))

= lim sup
n→∞

∑k
l=1 µ([s])

log card Bn(w(s))

≤ lim sup
n→∞

n

log card An(w(s))

h + ε

h − ε
µ([s])

≤ lim sup
n→∞

n
log card Wn(s) − log K

h + ε

h − ε
µ([s])

≤ lim sup
n→∞

n
log µ([s]) + nh − log C − log K

h + ε

h − ε
µ([s])

=
h + ε

h(h − ε)
µ([s]).
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Here we have used that card Wn(s) ≤ K card An(w(s)) (Lemma 3.1). Since ε > 0
is arbitrary, we have

‖Xs‖
+̃

1 ≤
1
h

µ([s]).

Thanks to Proposition 2.1, we obtain

h = htop(6(∞)) ≤ k−

∞
(λw(S)) ≤ k−

∞
(λA) ≤ gr(0, A). �
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