GROMOV HYPERBOLIC GROUPS AND THE MACAEV NORM

RUI OKAYASU

Let Γ be a Gromov hyperbolic group with a finite set A of generators. We prove that $h_{\text{top}}(\Sigma(\infty)) \leq k_{\infty}^- (\lambda_A) \leq \text{gr}(\Gamma, A)$, where $\text{gr}(\Gamma, A)$ is the growth entropy, $h_{\text{top}}(\Sigma(\infty))$ is the Coornaert–Papadopoulos topological entropy of the subshift $\Sigma(\infty)$ associated with (Γ, A), and $k_{\infty}^- (\lambda_A)$ is Voiculescu’s numerical invariant, which is an obstruction to the existence of quasicentral approximate units relative to the Macaev norm for a tuple of unitary operators $\lambda_A = (\lambda_a)_{a \in A}$ in the left regular representation of Γ. We also prove that these three quantities are equal for a hyperbolic group splitting over a finite group.

1. Introduction

Let Γ be a finitely generated group with a finite generating set A. We consider the family $\lambda_A = (\lambda_a)_{a \in A}$ of left translation operators on $\ell^2(\Gamma)$, specifically the value of Voiculescu’s numerical invariant k_{∞}^- for this family. Voiculescu introduced this invariant $k_{\infty}^-(\tau)$, for a tuple τ of Hilbert space operators, in a remarkable series of papers [1979; 1981; 1990; David and Voiculescu 1990] to deal with perturbation problems.

For the case of free groups, Voiculescu gave an estimate for $k_{\infty}^- (\lambda_A)$; we obtain its exact value. For the case of certain amalgamated free product groups, we proved in [Okayasu 2004] that $k_{\infty}^- (\lambda_A)$ equals the growth entropy $\text{gr}(\Gamma, A)$ of Γ with respect to A. These groups are Gromov hyperbolic groups in the sense of [Gromov 1987]. In [Okayasu 2004], we showed that if a subshift Σ satisfies a certain condition, then $k_{\infty}^-(\tau) = h_{\text{top}}(\Sigma)$ for the family τ of creation operators on the Fock space associated with Σ, which is used to define the Matsumoto algebra [1997] associated to Σ. (Here $h_{\text{top}}(\Sigma)$ is the topological entropy of Σ.) This equation holds for every shift of finite type.

M. Coornaert and A. Papadopoulos [2001] have shown the following: Let X be a proper geodesic metric space that is δ-hyperbolic. The class of functions on X called horofunctions (a generalization of Busemann functions) gives a description of the boundary at infinity ∂X. When X is the Cayley graph of a hyperbolic group

Keywords: perturbation theory, Macaev ideal, hyperbolic groups.
\(\Gamma\), the space of cocycles associated with horofunctions that take integral values on the vertices is a shift of finite type \(\Sigma(\infty)\). (See also [Gromov 1987].)

Continuing this line of investigation, we first determine (Theorem 1.1) a lower bound for \(k^-_\infty(\lambda_A)\) in terms of the topological entropy \(h_{\text{top}}(\Sigma(\infty))\), for arbitrary hyperbolic groups. We therefore have

\[
h_{\text{top}}(\Sigma(\infty)) \leq k^-_\infty(\lambda_A) \leq \text{gr}(\Gamma, A),
\]

since the upper bound was already given in [Okayasu 2004]. We also show here that if a given hyperbolic group \(\Gamma\) splits over a finite group, the equation \(h_{\text{top}}(\Sigma(\infty)) = \text{gr}(\Gamma, A)\) holds for a certain finite generating set \(A\) of \(\Gamma\) (Corollary 1.2). As a consequence, the inequalities turn into an equalities for such groups:

\[
h_{\text{top}}(\Sigma(\infty)) = k^-_\infty(\lambda_A) = \text{gr}(\Gamma, A).
\]

It was already known from [Voiculescu 1993] that \(k^-_\infty(\lambda_A) \neq 0\) for every nonelementary hyperbolic group \(\Gamma\), because \(\Gamma\) is nonamenable.

Notation. We denote by \(\Sigma(\infty)\) the shift of finite type relative to \((\Gamma, A)\), constructed in [Coornaert and Papadopoulos 2001].

Theorem 1.1. Let \(\Gamma\) is a Gromov hyperbolic group with a finite generating set \(A\) and \(\lambda\) its left regular representation. Set \(\lambda_A = (\lambda_a)_{a \in A}\). Then we have

\[
h_{\text{top}}(\Sigma(\infty)) \leq k^-_\infty(\lambda_A) \leq \text{gr}(\Gamma, A).
\]

Corollary 1.2. Let \(\Gamma\) is a nonelementary hyperbolic group with a finite generating set \(A\), \(\lambda\) its left regular representation and \(\lambda_A = (\lambda_a)_{a \in A}\). Suppose that either

1. \(\Gamma\) can be written nontrivially as a free product \(G_1 \ast G_2\) and \(A = F_1 \cup F_2\) for some finite generating sets \(F_1, F_2\) of \(G_1, G_2\); or

2. \(\Gamma\) has a form of a free product \(G_1 \ast_H G_2\) with finite amalgamated subgroup \(H\), which is properly contained in both factors and of index greater than 2 in at least one factor, and \(A = F_1 \cup F_2\) for some finite generating sets \(F_1, F_2\) of \(G_1, G_2\), containing \(H\); or

3. \(\Gamma\) is an HNN extension

\[
G \ast_H \theta = \langle G, x \mid hx = x\theta(h) \text{ for } h \in H \rangle,
\]

where \(H\) is a proper finite subgroup of \(G\) and \(A = F \cup \{x, x^{-1}\}\) for some finite generating set \(F\) of \(G\), which contains both \(H\) and \(\theta(H)\).

Then \(k^-_\infty(\lambda_A) = \text{gr}(\Gamma, A) = h_{\text{top}}(\Sigma(\infty))\).
2. Preliminaries

Voiculescu’s perturbation theory. Let \mathcal{H} be a separable infinite dimensional Hilbert space and let $\mathcal{B}(\mathcal{H})$, $\mathcal{K}(\mathcal{H})$ denote, respectively, the spaces of bounded linear operators and compact operators on \mathcal{H}. A symmetrically normed ideal $(\mathcal{G}, \| \cdot \|_\mathcal{G})$ is an ideal \mathcal{G} of $\mathcal{K}(\mathcal{H})$ which is a Banach space endowed with the norm $\| \cdot \|_\mathcal{G}$ satisfying

$$
\| XTY \|_\mathcal{G} \leq \| X \| \cdot \| T \| \cdot \| Y \|
$$

for $T \in \mathcal{G}$ and $X, Y \in \mathcal{B}(\mathcal{H})$, where $\| \cdot \|$ is the operator norm on $\mathcal{B}(\mathcal{H})$.

It is well-known that the Schatten p-classes $\mathcal{C}_p(\mathcal{H})$ are symmetrically normed ideals. So are the ideals $\mathcal{C}_p^-(\mathcal{H})$ defined for $1 \leq p \leq \infty$ by the norm

$$
\| T \|_p^- = \sum_{j=1}^{\infty} \lambda_j j^{-1+1/p}
$$

(where $\lambda_1 \geq \lambda_2 \geq \cdots$ are the eigenvalues of $(T^*T)^{1/2}$); they are important for perturbation theory. The particular case $\mathcal{C}_1^-(\mathcal{H})$ is also known as the Macaev ideal. Note that $\mathcal{C}_1^-(\mathcal{H}) = \mathcal{C}_1(\mathcal{H})$ but

$$
\mathcal{C}_p^-(\mathcal{H}) \subset \mathcal{C}_q^-(\mathcal{H}) \subset \mathcal{C}_q(\mathcal{H}) \quad \text{if } 1 < p < q.
$$

The dual \mathcal{G}^*, where the duality is given by the bilinear form $(X, Y) \mapsto \text{Tr}(XY)$, is again a normed ideal. We have $\mathcal{C}_p^*(\mathcal{H}) = \mathcal{C}_p(\mathcal{H})$, where $p > 1$ and $1/p + 1/q = 1$. Moreover $\mathcal{C}_p^-(\mathcal{H})^* = \mathcal{C}_q^+(\mathcal{H})$, where $\mathcal{C}_q^+(\mathcal{H})$ consists of all $T \in \mathcal{K}(\mathcal{H})$ such that

$$
\| T \|_q^+ = \sup_k \frac{\sum_{j=1}^{k} \lambda_j}{\sum_{j=1}^{k} j^{-1/q}} < \infty.
$$

Let \mathcal{G} be a symmetrically normed ideal of $\mathcal{K}(\mathcal{H})$. For an N-tuple $\tau = (T_1, \ldots, T_N)$ of bounded linear operators on \mathcal{H}, we define

$$
k_{\mathcal{G}}(\tau) = \liminf_{A \in \mathcal{F}(H)_1^+} \max_{1 \leq i \leq N} \| [A, T_i] \|_\mathcal{G},
$$

where the inferior limit is taken with respect to the natural order on

$$
\mathcal{F}(H)_1^+ = \{ T \in \mathcal{K}(\mathcal{H}) \mid T : \text{finite rank, } 0 \leq T \leq I \}
$$

and $[A, B] = AB - BA$. We write $k_{\mathcal{G}}^-(\tau)$ when $\mathcal{G} = \mathcal{C}_p^-(\mathcal{H})$.

We see from the definition that $k_{\mathcal{G}}(\tau)$ measures the obstruction to the existence of a sequence $(A_n)_{n=1}^\infty \subseteq \mathcal{F}(\mathcal{H})_1^+$ such that $A_n \not \rightarrow I$ and $\lim_{n \rightarrow \infty} \| [A_n, T_i] \|_\mathcal{G} = 0$ for $1 \leq i \leq N$. If such a sequence exists, it is called a quasicentral approximate unit for τ relative to \mathcal{G}.
Proposition 2.1 [Voiculescu 1990, Proposition 2.1]. Let \(\tau = (T_1, \ldots, T_N) \in \mathbb{B}(\mathcal{H})^N \) and \(X_i \in \mathcal{C}_1^+(\mathcal{H}) \) for \(i = 1, \ldots, N \). If
\[
\sum_{i=1}^N [X_i, T_i] \in \mathcal{C}_1(\mathcal{H}) + \mathbb{B}(\mathcal{H})_+,
\]
then
\[
\left| \text{Tr} \left(\sum_{i=1}^N [X_i, T_i] \right) \right| \leq k_\infty^-(\tau) \sum_{a=1}^N \| X_i \|_{1,1}^+,
\]
where \(\| X_i \|_{1,1}^+ = \inf_{Y \in \mathcal{F}(\mathcal{H})} \| X_i - Y \|_{1,1}^+ \).

Proposition 2.2 [Gohberg and Krein 1969, Theorem 14.1]. For \(T \in \mathcal{C}_1^+(\mathcal{H}) \), we have
\[
\| T \|_{1,1}^+ = \limsup_{n \to \infty} \frac{\sum_{j=1}^n s_j(T)}{\sum_{j=1}^n 1/j}.
\]

Subshifts. We briefly define the necessary concepts from symbolic dynamics; see [Lind and Marcus 1995] for a more leisurely introduction.

Let \(\mathcal{A} \) be a finite alphabet and \(\mathcal{A}^\infty \) the one-sided infinite product space \(\prod_{i=0}^\infty \mathcal{A} \) with the product topology (of discrete topologies). The shift map \(\sigma \) on \(\mathcal{A}^\infty \) is given by \((\sigma(x))_i = x_{i+1} \) for \(i \in \mathbb{N} \). A word over \(\mathcal{A} \) is a finite sequence \(w = (a_1, \ldots, a_n) \) with \(a_i \in \mathcal{A} \). For \(x \in \mathcal{A}^\infty \) and a word \(w = (a_1, \ldots, a_n) \), we say that \(w \) occurs in \(x \) if there is an index \(i \) such that \(x_i = a_1, \ldots, x_{i+n-1} = a_n \). For a collection \(\mathcal{F} \) of words over \(\mathcal{A}^\infty \), we define the (one-sided) subshift \(X = X_\mathcal{F} \) to be the subset of sequences in \(\mathcal{A}^\infty \) in which no word in \(\mathcal{F} \) occurs.

Let \(X \) be a subshift of \(\mathcal{A}^\infty \). We denote by \(W_n(X) \) the set of all words with length \(n \) that occur in \(X \) and we set
\[
W(X) = \bigcup_{n=0}^\infty W_n(X).
\]
Let \(\varphi : W_{m+n+1}(X) \to \mathcal{A} \) be a map, which we call a block map. The extension of \(\varphi \) from \(X \) to \(\mathcal{A}^\infty \) is defined by \((x_i)_{i \in \mathbb{N}} \mapsto (y_i)_{i \in \mathbb{N}} \), where
\[
y_i = \varphi((x_{i-m}, x_{i-m+1}, \ldots, x_{i+n})).
\]
We also denote this extension by \(\varphi \) and call it a sliding block code.

The topological entropy of a subshift \(X \) is defined by
\[
h_{\text{top}}(X) = \lim_{n \to \infty} \frac{1}{n} \log \text{card } W_n(X).
\]
A simple class of subshifts is that of shifts of finite type (SFT), those that can be described by a finite set of forbidden words. Let \(M = [M(a, b)]_{a, b \in \mathcal{A}} \) be a 0–1
matrix. Then
\[\Sigma_M := \{ (x_i)_{i=0}^{\infty} \in \mathbb{R}^N \mid M(x_i, x_{i+1}) = 1 \} \]
is called the one-sided topological Markov shift by \(M \) and it is a shift of finite type.

Gromov hyperbolic groups. For basic facts about Gromov hyperbolic spaces and groups, see [Gromov 1987] and [Coornaert and Papadopoulos 1993].

Let \((X, | |)\) be a metric space which is proper, geodesic and \(\delta \)-hyperbolic for some \(\delta \geq 0 \). A function \(f : X \to \mathbb{R} \) is \(\varepsilon \)-convex, where \(\varepsilon \geq 0 \), if for any geodesic segment \([x_0, x_1]\) in \(X \) and any \(t \in [0, 1] \), we have
\[f(x_t) \leq (1 - t)f(x_0) + tf(x_1) + \varepsilon, \]
where \(x_t \) is the point on \([x_0, x_1]\) satisfying \(|x_0 - x_t| = t|x_0 - x_1| \).

Definition 2.3. Let \(\varepsilon \geq 0 \). An \(\varepsilon \)-horofunction on \(X \) is an \(\varepsilon \)-convex function \(h : X \to \mathbb{R} \) satisfying \(h(x) - \lambda = \text{dist}(x, h^{-1}(\lambda)) \) for every \(x \in X \) and \(\lambda \in \mathbb{R} \) such that \(h(x) \geq \lambda \).

Definition 2.4. Let \(r : [0, \infty) \to X \) be a geodesic ray. The associated Busemann function \(h_r : X \to \mathbb{R} \) is defined by
\[h_r(x) = \lim_{t \to \infty} |x - r(t)| - t. \]

A Busemann function on a \(\delta \)-hyperbolic \(X \) is a \(4\delta \)-horofunction [Coornaert and Papadopoulos 2001, Proposition 2.5]. Thus Busemann functions form an important class of horofunctions.

Definition 2.5. A function \(\varphi : X \times X \to \mathbb{R} \) is called an \(\varepsilon \)-cocycle if there is an \(\varepsilon \)-horofunction \(h : X \to \mathbb{R} \) such that
\[\varphi(x, y) = h(x) - h(y) \]
for every \(x, y \in X \). We call such a function \(h \) a primitive for \(\varphi \). (If \(h \) is a primitive for \(\varphi \), so is \(h + c \) for any constant \(c \).)

Proposition 2.6 [Coornaert and Papadopoulos 2001, Proposition 2.7]. Let \(\varphi \) be a cocycle on \(X \). For \(x, y, z \) and \(w \in X \), we have
\begin{align*}
(1) \quad & \varphi(x, x) = 0, \\
(2) \quad & \varphi(x, y) = -\varphi(y, x), \\
(3) \quad & \varphi(x, y) = \varphi(x, z) + \varphi(z, y), \\
(4) \quad & |\varphi(x, y)| \leq |x - y|, \\
(5) \quad & |\varphi(x, y) - \varphi(z, w)| \leq |x - z| + |y - w|.
\end{align*}
Let \(\gamma \) be an isometry of \(X \), \(h : X \to \mathbb{R} \) an \(\varepsilon \)-horofunction and \(\varphi : X \times X \to \mathbb{R} \) an \(\varepsilon \)-cocycle. The functions \(\gamma h \) and \(\gamma \varphi \) defined by
\[
\gamma h(x) = h(\gamma^{-1} x), \quad \gamma \varphi(x, y) = \varphi(\gamma^{-1} x, \gamma^{-1} y),
\]
for \(x, y \in X \), are an \(\varepsilon \)-horofunction and an \(\varepsilon \)-cocycle, respectively. If \(\varphi \) is the cocycle of \(h \), then \(\gamma \varphi \) is the cocycle of \(\gamma h \). Let \(\Phi \) be the set of \(\varepsilon \)-cocycles on \(X \) for all possible values of \(\varepsilon \geq 0 \). We equip \(\Phi \) with the topology of uniform convergence on compact sets.

Definition 2.7. Let \(\varphi \) be a cocycle on \(X \). A \(\varphi \)-gradient arc is a path \(g : I \to X \), parameterized by arclength, satisfying
\[
\varphi(g(t), g(t')) = t' - t
\]
for every \(t, t' \in I \). If \(I = \mathbb{R} \) or \(I = [0, \infty) \), we say that \(g \) is a \(\varphi \)-gradient line or ray, respectively. If \(g(0) = x \), we say that \(g \) starts at \(x \).

Lemma 2.8 [Coornaert and Papadopoulos 2001, Lemma 2.9]. Let \(\varphi \) be a cocycle on \(X \) and \(I \subseteq \mathbb{R} \) an interval with \(a \in I \), \(I_1 = I \cap (-\infty, a] \) and \(I_2 = I \cap [a, \infty) \). If \(g : I \to X \) is a path whose restrictions to \(I_1 \) and \(I_2 \) are \(\varphi \)-gradient arcs, then \(g \) is itself a \(\varphi \)-gradient arc.

Proposition 2.9 [Coornaert and Papadopoulos 2001, Proposition 2.10]. Let \(\varphi \) be a cocycle on \(X \).

1. Any \(\varphi \)-gradient arc \(g : I \to X \) is a geodesic.
2. If \(x, y \in X \) satisfying \(\varphi(x, y) = |x - y| \), and if \(g : [a, b] \to X \) is a geodesic joining \(x \) and \(y \), then \(g \) is a \(\varphi \)-gradient arc.

Proposition 2.10 [Coornaert and Papadopoulos 2001, Proposition 2.13]. For every cocycle \(\varphi \) on \(X \) and for every \(x \in X \), there is a \(\varphi \)-gradient ray \(g : [0, \infty) \to X \) starting at \(x \).

Let \(\varphi \) be a cocycle on \(X \) and \(g : [0, \infty) \to X \) a \(\varphi \)-gradient ray. By Proposition 2.9, part (1), \(g \) is a geodesic and so converges to a well-defined point \(g(\infty) \in \partial X \).

Proposition 2.11 [Coornaert and Papadopoulos 2001, Proposition 3.1]. Let \(\varphi \) be a cocycle on \(X \) and let \(g, g' : [0, \infty) \to X \) be \(\varphi \)-gradient rays. Then \(g(\infty) = g'(\infty) \).

Definition 2.12. We define a map \(\pi : \Phi \to \partial X \) by setting \(\Phi(\varphi) = g(\infty) \in \partial X \), where \(g : [0, \infty) \to X \) is a \(\varphi \)-gradient ray.

Let \(\text{Isom}(X) \) denote the group of isometries of \(X \). The action of \(\text{Isom}(X) \) on \(\Phi \) defined by \((\gamma, \varphi) \mapsto \gamma \varphi \) is continuous.

Proposition 2.13 [Coornaert and Papadopoulos 2001, Proposition 3.3]. The map \(\pi : \Phi \to \partial X \) is continuous, surjective, and commutes with the actions of \(\text{Isom}(X) \) on \(\Phi \) and \(\partial X \).
For any cocycle \(\varphi \), any geodesic ray \(r : [0, \infty) \to X \) satisfying \(r(\infty) = \pi(\varphi) \), and any \(t \geq 0 \), we set

\[
R_{\varphi,t} = \{ x \in X \mid \varphi(x, r(t)) = 0 \} \cap B(r(t), 16\delta).
\]

Proposition 2.14 [Coornaert and Papadopoulos 2001, Proposition 3.4]. For \(\varphi \in \Phi \), let \(r : [0, \infty) \to X \) be a geodesic ray such that \(r(\infty) = \pi(\varphi) \). For all \(x \in X \) and \(t \in \mathbb{R} \) satisfying \(t > |x - r(0)| + 16\delta \), we have

\[
\varphi(x, r(t)) = \text{dist}(x, R_{\varphi,t}).
\]

In all that follows, \(\Gamma \) is a \(\delta \)-hyperbolic group with respect to a finite set of generators \(A \) and \(X \) is the Cayley graph associated to the pair \((\Gamma, A) \). We denote by \(X^0 = \Gamma \) the set of vertices and by \(X^1 \) the set of edges of \(X \). For \(x \in \Gamma \), we denote by \(|x| \) the word length of \(x \) with respect to \(A \).

Definition 2.15. A horofunction \(h : X \to \mathbb{R} \) is said to be integral if \(h(x) \in \mathbb{Z} \) for every \(x \in X^0 \). A cocycle having an integral horofunction as a primitive is called an integral cocycle.

Every integral cocycle is completely determined by its values on \(\Gamma \times \Gamma \), by [Coornaert and Papadopoulos 2001, Corollary 4.4]. Thus we can regard an integral cocycle on \(X \) as a function from \(\Gamma \times \Gamma \) to \(\mathbb{Z} \). Let \(\Phi_0 \subseteq \Phi \) be the space of integral cocycles on \(X \). The topology induced on \(\Phi_0 \) by \(\Phi \) is the topology of pointwise convergence on \(\Gamma \times \Gamma \). For simplicity, we denote by \(\pi : \Phi_0 \to \partial \Gamma \) the restriction of the map \(\pi : \Phi \to \partial \Gamma \).

Proposition 2.16 [Coornaert and Papadopoulos 2001, Proposition 4.5]. The map \(\pi : \Phi_0 \to \partial \Gamma \) is continuous, \(\Gamma \)-equivalent, surjective and uniformly finite to one. In fact, for every \(\xi \in \partial \Gamma \) we have

\[
\text{card} \{ \varphi \in \Phi_0 \mid \pi(\varphi) = \xi \} \leq (2N_0 + 1)^{N_1},
\]

where \(N_0 \) is the integral part of \(16\delta + 1 \) and \(N_1 \) is the number of elements in \(\Gamma \) contained in the closed ball of radius \(N_0 \) centered at the identity.

Lemma 2.17 [Coornaert and Papadopoulos 2001, Lemma 5.1]. For every \(\varphi \in \Phi_0 \) and \(x \in X^0 \), there is \(a \in A \) such that \(\varphi(x, xa) = 1 \).

Now we fix a total order relation on the finite generating set \(A \). Let \(\varphi \in \Phi_0 \) and \(x \in X^0 \). The lexicographic order on \(A^{N} \) induces a total order on the set of \(\varphi \)-gradient rays starting at \(x \).

Proposition 2.18 [Coornaert and Papadopoulos 2001, Proposition 5.2]. Let \(\varphi \in \Phi_0 \) and \(x \in X^0 \). The set of \(\varphi \)-gradient rays starting at \(x \) has a smallest element.

Definition 2.19. We define a map \(\alpha : \Phi_0 \to \Phi_0 \) by \(\alpha(\varphi) = a^{-1}\varphi \), where \(\varphi \in \Phi_0 \) and \(a \) is the smallest element in \(A \) satisfying \(\varphi(e, a) = 1 \).
Proposition 2.20 [Coornaert and Papadopoulos 2001, Proposition 5.6]. The map \(\alpha : \Phi_0 \rightarrow \Phi_0 \) is continuous.

Proposition 2.21 [Coornaert and Papadopoulos 2001, Proposition 5.7]. Let \(\varphi \in \Phi_0 \) and \(g : [0, \infty) \rightarrow X \) be the smallest \(\varphi \)-gradient ray starting at \(e \). For \(n \in \mathbb{N} \), let \(a_n \in A \) be the label of the oriented edge from \(g(n) \) to \(g(n+1) \) and \(g_n : [0, \infty) \rightarrow X \) the smallest \(\alpha^n(\varphi) \)-gradient ray starting at \(e \).

1. \(\alpha^n(\varphi) = g(n)^{-1}\varphi \).
2. \(g_n(t) = g(n)^{-1}g(t+n) \) for any \(t \in [0, \infty) \).
3. For every \(k \in \mathbb{N} \), the label of oriented edge from \(g_n(k) \) to \(g_n(k+1) \) is \(a_{k+n} \).

Next we introduce the shift of finite type \((\Sigma(\infty), T)\) and the conjugacy \(P \) from \((\Phi_0, \alpha) \) to \((\Sigma(\infty), T)\). We take integers \(R \geq 100\delta + 1 \) and \(L \geq 2R + 32\delta + 1 \). For a subset \(Y \subseteq X \) and \(\epsilon \geq 0 \), we set \(N(Y, \epsilon) = \{ x \in X \mid \text{dist}(x, Y) \leq \epsilon \} \).

For \(\varphi \in \Phi_0 \), let \(g : [0, \infty) \rightarrow X \) be the smallest \(\varphi \)-gradient ray starting at \(e \). Set \(V(\varphi) = N(g([0, L]), R) \).

\(V(\varphi) \) is contained in the closed ball \(B(e, L + R) \) of radius \(L + R \) centered at \(e \).

For each \(\varphi \in \Phi_0 \), we define a function \(\rho(\varphi) : V(\varphi) \rightarrow \mathbb{R} \) by

\[
\rho(\varphi)(x) = \varphi(x, e)
\]

for \(x \in V(\varphi) \). Note that \(\rho(\varphi) \) is the restriction to \(V(\varphi) \) of the primitive \(h \) of \(\varphi \) with \(h(e) = 0 \). We set

\[
S = \{ \rho(\varphi) : V(\varphi) \rightarrow \mathbb{R} \mid \varphi \in \Phi_0 \}.
\]

Lemma 2.22 [Coornaert and Papadopoulos 2001, Lemma 6.2]. The set \(S \) is finite.

Definition 2.23. Let \(\Sigma \) be the set of sequences \((\sigma_n)_{n \geq 0} \) with \(\sigma_n \in S \) for \(n \geq 0 \), and give it the product topology (of discrete topologies on copies of \(S \)). The map \(T : \Sigma \rightarrow \Sigma \) is the shift map. Define a map \(P : \Phi_0 \rightarrow \Sigma \) by

\[
\Phi_0 \ni \varphi \mapsto (\sigma_n)_{n \geq 0} \in \Sigma,
\]

where \(\sigma_n = \rho(\alpha^n(\varphi)) \) for \(n \geq 0 \).

Let \(s \in S \). We denote by \(V(s) \) the domain of the function \(s \). Since \(R \geq 1 \), the domain \(V(s) \) contains the closed unit ball \(B(e, 1) \). Hence the value \(s(a) \) is well-defined for all \(a \in A \). Since the finite generating set \(A \) is equipped with a fixed total order relation, we can define \(w(s) \) to be the smallest element \(a \in A \) satisfying \(s(a) = -1 \). (Such an \(a \) exists because of Lemma 2.17.)
Let $\sigma = (\sigma_n)_{n \geq 0} \in \Sigma$. We define a sequence $(\gamma_n(\sigma))_{n \geq 0}$ by setting $\gamma_0(\sigma) = e$, $\gamma_n(\sigma) = w(\sigma_0) \cdots w(\sigma_{n-1})$ for $n \geq 1$.

For $n \geq 0$, we set $V_n(\sigma) = \gamma_n(\sigma)V(\sigma_n)$. This depends only on the first $n + 1$ coordinates of σ. We also define functions $f_n(\sigma) : V_n(\sigma) \to \mathbb{R}$ by $f_n(\sigma)(x) = \gamma_n(\sigma)^{-1}x - n$ for $x \in V_n(\sigma)$.

Lemma 2.24 [Coornaert and Papadopoulos 2001, Lemma 6.5]. For $\varphi \in \Phi_0$, take $\sigma = P(\varphi)$ and let $g : [0, \infty) \to X$ be the smallest φ-gradient ray starting at e. Assume $n \geq 0$.

1. $\gamma_n(\sigma) = g(n)$.
2. $V_n(\sigma) = N(\varphi([n, n + L]), R)$.
3. $f_n(\sigma)$ is the restriction to $V_n(\sigma)$ of the primitive h of φ with $h(e) = 0$.

Definition 2.25. Let $\sigma \in \Sigma$. We say that σ is consistent if for all $i, j \geq 0$, we have $f_i(\sigma)(x) = f_j(\sigma)(x)$ for all $x \in V_i(\sigma) \cap V_j(\sigma)$. We denote by $\Sigma(\infty)$ the set of all consistent sequences.

Lemma 2.26 [Coornaert and Papadopoulos 2001, Lemma 6.8]. $P(\Phi_0) \subseteq \Sigma(\infty)$.

Theorem 2.27 [Coornaert and Papadopoulos 2001, Theorem 7.18]. The set of consistent sequences $\Sigma(\infty)$ is a shift of finite type. Moreover (Φ_0, α) and $(\Sigma(\infty), T)$ are conjugate via the map P.

3. The topological entropy of $\Sigma(\infty)$

Let Γ be a Gromov hyperbolic group with a finite generating set A on which we fix a total order relation. Let $\Sigma(\infty)$ the corresponding SFT.

For $n \in \mathbb{N}$, we denote by W_n the set of all words with length n that occur in $\Sigma(\infty)$ and by A_n the set of all elements in Γ with word length n with respect to the finite generating set A (as a particular case, $A_0 = \{e\}$). We set $D_n = \bigcup_{1 \leq k \leq n} W_k$ and $B_n = \bigcup_{0 \leq k \leq n} A_k$. For each $s \in S$, we set $W_n(s) = \{ (\sigma_0, \ldots, \sigma_{n-1}) \in W_n \mid \sigma_0 = s \}$, and for each $a \in A$, $A_n(a) = \{ a \gamma \in A_n \mid \gamma \in A_{n-1} \}$.

We write $D_n(s) = \bigcup_{1 \leq k \leq n} W_k(s)$ and $B_n(a) = \bigcup_{1 \leq k \leq n} A_n(a)$.

We denote by $\text{gr}(\Gamma, A)$ the growth entropy of Γ with respect to A:

$$\text{gr}(\Gamma, A) = \lim_{n \to \infty} \frac{1}{n} \log \text{card} A_n.$$
We also define
\[
\overline{A}_n = \{ \gamma \in A_n \mid \gamma = w(\sigma_0) \cdots w(\sigma_{n-1}) \text{ for some } (\sigma_0, \ldots, \sigma_{n-1}) \in W_n \},
\]
\[
\overline{B}_n = \bigcup_{1 \leq k \leq n} \overline{A}_k.
\]
\[
\overline{A}_n(w(s)) = \{ \gamma \in A_n(w(s)) \mid \gamma = w(\sigma_0) \cdots w(\sigma_{n-1}) \text{ for some } (\sigma_0, \ldots, \sigma_{n-1}) \in W_n(s) \},
\]
\[
\overline{B}_n(w(s)) = \bigcup_{1 \leq k \leq n} \overline{A}_n(w(s)).
\]

Lemma 3.1. There is a constant $K > 0$ such that
\[
\text{card} \{(\sigma_0, \ldots, \sigma_{n-1}) \in W_n \mid w(\sigma_0) \cdots w(\sigma_{n-1}) = \gamma\} \leq K,
\]
for every $n \geq 1$ and every $\gamma \in A_n$.

Proof. Let $\varphi, \varphi' \in \Phi_0$ and g, g' their smallest gradient rays starting at e such that $g(n) = g'(n) = \gamma \in A_n$. Note that $\varphi(e, \gamma) = \varphi'(e, \gamma) = -n$. We denote $\sigma = P(\varphi)$ and $\sigma' = P(\varphi')$. By Lemma 2.24, we have $\gamma_n(\sigma) = \gamma_n(\sigma') = \gamma$.

We first claim that $g = g'$ on $[0, n]$. We now assume that $g \neq g'$ on $[0, n]$. We may assume that $g' < g$ in the lexicographic order on A^0. Without loss of generality, we may assume that $g' < g$ in the lexicographic order on A^0. Therefore g would be not the smallest φ-gradient ray.

Hence we have $g = g'$ on $[0, n]$.

Let h, h' be primitives for φ, φ' satisfying $h(e) = h'(e) = 0$, respectively. We set $B = B(\gamma, L + R)$.

We secondly claim that if $h = h'$ on B, then $h = h'$ on $N(g([0, n + L]), R)$. Notice that $R > 16\delta$ and $L > 2R$. Let $k \in [0, n]$ satisfying $n - k \leq 2R$. Since $N(g([k, n + L]), R) \subseteq B$, we have $h = h'$ on $N(g([k, n + L]), R)$. Next let $k \geq 0$ satisfying $n - k > 2R$. For $x \in B(g(k), R)$, we have
\[
n = |g(0) - g(n)| = |g(0) - g(k)| + |g(k) - g(n)|
\leq |g(0) - x| - |x - g(k)| + |g(k) - g(n)|
\geq |g(0) - x| - R + (n - k)
\geq |g(0) - x| + R > |g(0) - x| + 16\delta.
\]

By Proposition 2.14, we have $\varphi(x, g(n)) = \text{dist}(x, R_{\varphi, n})$. Recall that
\[
R_{\varphi, n} = \{ x \in X \mid \varphi(x, g(n)) = 0 \} \cap B(g(n), 16\delta).
\]
Hence \(h(x) + n = \text{dist}(x, R_{g,n}) \). This shows that the value of \(h(x) \) depends only on the restriction of \(h \) on \(B(g(n), 16\delta) \subseteq B \). Namely we obtain our claim.

We now assume that \(h = h' \) on \(B \). In this case, we remark that \(g = g' \) on \([0, n+L] \). By Proposition 2.21, we have \(V(\alpha^k(\varphi)) = N(g(k)^{-1}g([k, k+L]), R) = V(\alpha^k(\varphi')) \) for \(0 \leq k \leq n \). For each \(x \in V(\alpha^k(\varphi)) \), since

\[
N(g(k)^{-1}g([k, k+L]), R) = g(k)^{-1}N(g([k, k+L]), R),
\]

there is \(y \in N(g([k, k+L]), R) \) such that \(x = g(k)^{-1}y \). Then

\[
\rho(\alpha^k(\varphi))(x) = g(k)^{-1}\varphi(x, e) = \varphi(y, g(k)) = h(y) - h(g(k)) = h(y) + k.
\]

Similarly we also obtain \(\rho(\alpha^k(\varphi))(x) = h'(y) + k \). Hence if \(h = h' \) on \(B \), then it follows from the second claim that

\[
\rho(\alpha^k(\varphi))(x) = h(y) + k = h'(y) + k = \rho(\alpha^k(\varphi')).
\]

Therefore \(\rho(\alpha^k(\varphi)) = \rho(\alpha^k(\varphi')) \); that is, \(\sigma_k = \sigma_k' \) for all \(0 \leq k \leq n \).

Hence it suffices to set \(K = (2(L+R)+1)^b \), where \(b = \text{card } B = \text{card } B(e, L+R) \). Indeed, for every \(x \in B \) we have, using Proposition 2.6,

\[
|h(x) + n| = |h(x) - h(y)| = |\varphi(x, y)| = |x - y| \leq L + R.
\]

This easily leads to the assertion. \(\square \)

Corollary 3.2. \(h_{\text{top}}(\Sigma(\infty)) \leq \text{gr}(\Gamma, A) \).

Proof. For each \(n \geq 0 \), the map \(W_n \ni (\sigma_0, \ldots, \sigma_{n-1}) \mapsto w(\sigma_0) \cdots w(\sigma_{n-1}) \in A_n \) is uniformly finite-to-one by Lemma 3.1. Thus

\[
\text{card } W_n \leq K \text{card } A_n.
\]

The assertion follows immediately. \(\square \)

Remark 3.3. A fundamental theorem of J. Stallings [1971] shows that a finitely generated group \(\Gamma \) has infinitely many ends if and only if it has a form of either (2) or (3) of Corollary 1.2. In particular, a torsion-free group has the form (1).

4. Proof of main results

Proof of Corollary 1.2. In view of Corollary 3.2, we just need to show that \(h_{\text{top}}(\Sigma(\infty)) \geq \text{gr}(\Gamma, A) \) if one of the conditions (1)–(3) of Corollary 1.2 is satisfied. Remark 3.3 shows that it suffices to check cases (2) and (3); but we check case (1) explicitly as well because it is very simple.

Case (1): It suffices to show that the map \((\sigma_0, \ldots, \sigma_{n-1}) \mapsto w(\sigma_0) \cdots w(\sigma_{n-1})\) from \(W_n \) to \(A_n \) is surjective. Let \(\gamma \in A_n \). There is the smallest geodesic segment \(r : [0, n] \to X \) from \(e \) to \(\gamma \). We can take \(g \) to be a geodesic ray extending \(r \), meaning
that \(r(k) = g(k) \) for all \(0 \leq k \leq n \). Indeed, by assumption, we have \(\Gamma = G_1 \ast G_2 \).

Then \(\gamma \) is written as a reduced word \(g_1 \cdots g_m \), where \(g_k \in G_{i_k} \) with \(i_k \neq i_{k+1} \) for \(1 \leq k \leq m - 1 \). Hence for \(l \geq 1 \), it is enough to set

\[
g(n + 2l) = \gamma \cdot ab \cdots ab, \quad g(n + 2l - 1) = \gamma \cdot ab \cdots ba,
\]

for some \(a \in F_i \) and \(b \in F_{i_m} \), with \(i \neq i_m \) and \(a, b \neq e \).

We consider the cocycle \(\varphi_g \) having the Busemann function \(h_g \) as a primitive. It is clear that \(g \) is a \(\varphi_g \)-gradient ray. Moreover by definition, \(g \), is in fact, the smallest \(\varphi_g \)-gradient ray starting at \(e \). Hence \(\gamma = w(P(\varphi_g)) \cdots w(P(\varphi_{g-1})) \).

It follows that the map above is surjective. Thus \(\text{card } A_n \leq \text{card } W_n \), and \(\text{gr}(\Gamma, A) \leq h_{\text{top}}(\Sigma(\infty)) \) as needed.

Case (2): Now we assume that \(\Gamma = G_1 \ast H G_2 \). Let \(\gamma \in A_n \) with \(n \geq 2 \). We express the element \(\gamma \) by the reduced word \(g_1 \cdots g_m \), where \(g_k \in G_{i_k} \setminus H \) with \(i_k \neq i_{k+1} \) for \(1 \leq k \leq m - 1 \). We take a sequence \((g_{m+1}, g_{m+2}, \ldots) \) such that \(g_k \in F_{i_k} \setminus H \) with \(i_{k-1} \neq i_k \) for all \(k \geq m + 1 \). We define a sequence \((g(k))_{k=1}^\infty \) in \(X \) by \(g(k) = g_1 \cdots g_k \) for \(k \geq 1 \).

Let \((y, z) = \frac{1}{2}(|y| + |z| - |y - z|) \) be the Gromov product based at \(e \). For \(l \geq k \geq m \),

\[
2(g(k), g(l)) = |g(k)| + |g(l)| - |g(k)^{-1}g(l)| \geq k + l - |g(k)^{-1}g(l)| = k + l - |g_{k+1} \cdots g_l|
\]

\[
\geq k + l - (l - k) = 2k
\]

tends to \(\infty \) with \(k \); thus there exists \(\xi \in \partial X \) such that the sequence \((g(k))_{k=1}^\infty \) converges to \(\xi \). Let \(r : [0, \infty) \to X \) be a geodesic ray starting at \(e \) with \(r(\infty) = \xi \). We denote by \(\varphi_r \) the cocycle with respect to the Busemann function \(h_r \). Let \(g' : [0, \infty) \to X \) be the smallest \(\varphi_r \)-gradient ray starting at \(e \). Because \(r \) is also a \(\varphi_r \)-gradient ray, it follows from Proposition 2.11 that \(g'(\infty) = \xi \). We can express \(g' \) by the infinite reduced word \((g'_1, g'_2, \ldots) \) with \(g'_k \in G_{j_k} \setminus H \) and \(j_k \neq j_{k+1} \) for \(k \geq 1 \). Since \(g'(\infty) = \xi \), we have \(i_k = j_k \) for all \(k \geq 1 \). Moreover we obtain \(\gamma = g(m) = g_1 \cdots g_m = g'_1 \cdots g'_m h \) for some \(h \in H \). Let \(k_m \geq 1 \) such that \(g'(k_m) = g'_1 \cdots g'_m \). Then we have \(|g(m) - g'(k_m)| \leq 1 \). Note that \(n - 1 \leq k_m \leq n + 1 \).

Hence we have proved that for any \(\gamma \in A_n \), there is \(\gamma' \in A_n \) such that \(\gamma' \in B(\gamma, 2) \) and \(\gamma' = w(\sigma_0) \cdots w(\sigma_{n-1}) \) for some \((\sigma_0, \ldots, \sigma_{n-1}) \in W_n \). Therefore \(\text{card } A_n \leq \text{card } B(e, 2) \cdot \text{card } W_n \), and the assertion follows.

Case (3): We assume that \(\Gamma = G \ast_H \theta \). Let \(\gamma \in A_n \). The element \(\gamma \) can be represented by either (i) \(g_0 \in G \) or (ii) a reduced word \(g_0x^{\epsilon_0} \cdots g_{m-1}x^{\epsilon_{m-2}}g_m \), where \(g_k \in G \) and \(\epsilon_k \in \{1, -1\} \) for all \(0 \leq k \leq m \). In case (i), we set \(g_k = e \) for \(k \geq 1 \) and \(\epsilon_k = 1 \) for \(k \geq 0 \). In case (ii), we set \(g_k = e \) for \(k \geq m + 1 \) and \(\epsilon_k = \epsilon_{m-1} \).
for $k \geq m$. Then we define the sequence $(g(k))_{k=0}^{\infty}$ in X by $g(k) = g_0 x^{\varepsilon_0} \cdots g_k x^{\varepsilon_k}$ for all $k \geq 0$. Again, for $l \geq k \geq m$,

$$2\langle g(k), g(l) \rangle = |g(k)| + |g(l)| - |g(k)^{-1}g(l)| \geq k + l - |x^{\varepsilon_{k+1}} \cdots x^{\varepsilon_l}| = 2k$$

goes to ∞ with k; hence $(g(k))_{k=0}^{\infty}$ converges to some $\xi \in \partial \Gamma$. Let $r : [0, \infty) \to X$ be a geodesic ray with $r(0) = e$ and $r(\infty) = \xi$. We denote by φ_r the cocycle with respect to the Busemann function h_r. Let $g' : [0, \infty) \to X$ be the smallest φ_r-gradient ray starting at e. We can also represent the geodesic ray g' as the infinite reduced word $(g_0' x^{\varepsilon_0'}, g_1' x^{\varepsilon_1'}, \ldots)$. Since $g'(\infty) = \xi$, we have $\varepsilon_i = \delta_i$ for all $i \geq 0$. Moreover we obtain $\gamma = g_0 x^{\varepsilon_0} \cdots g_m = g_0' x^{\varepsilon_0} \cdots g_m'$, for some either $g \in H$ if \(\varepsilon_m = 1 \), or $g \in \theta(H)$ if $\varepsilon_m = -1$. Let $k_m \geq 1$ such that $g'(k_m) = g_0' x^{\varepsilon_0} \cdots g_m'$. Then we have $|\gamma - g(k_m)| \leq 1$. Note that $n - 1 \leq k_m \leq n + 1$. Hence we have shown that for each $\gamma \in A_n$, there is $\gamma' \in A_n$ such that $\gamma' \in B(\gamma, 2)$ and $\gamma' = w(\sigma_0) \cdots w(\sigma_{n-1})$ for some $(\sigma_0, \ldots, \sigma_{n-1}) \in W_n$. Therefore card $A_n \leq \text{card } B(e, 2) \cdot \text{card } W_n$, and $h_{\text{top}}(\Sigma(\infty)) \leq \text{gr}(\Gamma, A)$ as needed.

□

Remark 4.1. It is easy to check that the topological entropy $h_{\text{top}}(\Sigma(\infty))$ does not depend on the choice of total order relations on A.

Proof of Theorem 1.1. It suffices to show that $h_{\text{top}}(\Sigma(\infty)) \leq k_{\infty}(\lambda_A)$, because the inequality $k_{\infty}(\lambda_A) \leq \text{gr}(\Gamma, A)$ has been proved in [Okayasu 2004, Proposition 4.1]. Let $\lambda_{w(S)} = \{\lambda_{w(s)} \mid s \in S\}$. Note that $k_{\infty}(\lambda_{w(S)}) \leq k_{\infty}(\lambda_A)$.

Since $\Sigma(\infty)$ is an SFT, there are $N \in \mathbb{N}$ and $W \subseteq \mathbb{N}^{N+1}$ such that

$$\Sigma(\infty) = \{(\sigma_n)_{n \geq 0} \in \Sigma \mid (\sigma_n, \ldots, \sigma_{n+N}) \in W \text{ for any } n \geq 0\}.$$

Let $I = \mathbb{N}^N$ and $\beta_N : \Sigma(\infty) \to I^\mathbb{N}$ be the N-th higher block code. Then the subshift $\beta_N(\Sigma(\infty))$ is the Markov shift Σ_M for some matrix $M = [M(i, j)]_{i, j \in I}$. Let μ be the maximal measure on $\Sigma(\infty)$, i.e., $h_{\text{top}}(\Sigma(\infty)) = h_\mu(T|_{\Sigma(\infty)})$. For simplicity, we denote by h the topological entropy of $\Sigma(\infty)$. We denote by $[\sigma_0, \ldots, \sigma_{n-1}]$ the cylinder set at 0-th coordinate. For $(\sigma_0, \ldots, \sigma_{n-1}) \in W_n$ with $n \geq N$, we have

$$\mu([\sigma_0, \ldots, \sigma_{n-1}]) = \frac{l_i r_j}{e^{(n-N)h}},$$

where $i = (\sigma_0, \ldots, \sigma_{N-1})$, $j = (\sigma_{n-N}, \ldots, \sigma_{n-1}) \in I$ and l_i, r_j are the left and right Perron vectors of M with $\sum_{i,j} l_i r_j = 1$ (see [Kitchens 1998]).

For each $n \geq 0$, denote by P_n the projection onto the subspace

$$\text{span}\{\delta_\gamma \in \ell^2(\Gamma) \mid |\gamma| = n\}.$$

For $a \in A$, define the partial isometry $T_a \in \mathcal{B}(\ell^2(\Gamma))$ [Okayasu 2002; 2004] by

$$T_a = \sum_{n \geq 0} P_{n+1} \lambda_a P_n.$$
For each \(s \in S \), we define \(X_s \) by
\[
\sum_{n \geq 1} \sum_{(\sigma_0, \sigma_1, \ldots, \sigma_{n-1}) \in W_n(s)} \mu([\sigma_0, \sigma_1, \ldots, \sigma_{n-1}]) T_{w(\sigma_1)} \cdots T_{w(\sigma_{n-1})} P_0 T_{w(\sigma_{n-1})}^* \cdots T_{w(\sigma_1)}^* T_{w(\sigma_0)}^*.
\]
Then \(\sum_{s \in S} [X_s, \lambda(w(s))] = P_0 \), because
\[
\sum_{s \in S} \lambda(w(s)) X_s
\]
\[= \sum_{n \geq 1} \sum_{s \in S} \sum_{(\sigma_0, \ldots, \sigma_{n-1}) \in W_n(s)} \mu([\sigma_0, \ldots, \sigma_{n-1}]) T_{w(\sigma_1)} \cdots T_{w(\sigma_{n-1})} P_0 T_{w(\sigma_{n-1})}^* \cdots T_{w(\sigma_1)}^* T_{w(\sigma_0)}^*.
\]
and
\[
\sum_{s \in S} X_s \lambda(w(s))
\]
\[= \sum_{n \geq 1} \sum_{s \in S} \sum_{(\sigma_0, \ldots, \sigma_{n-1}) \in W_n(s)} \mu([\sigma_0, \ldots, \sigma_{n-1}]) T_{w(\sigma_1)} \cdots T_{w(\sigma_{n-1})} P_0 T_{w(\sigma_{n-1})}^* \cdots T_{w(\sigma_1)}^* T_{w(\sigma_0)}^*.
\]
Next we give an estimate of \(\|X_s\|_1^+ \). For \(n \in \mathbb{N} \) and \(\gamma \in \tilde{A}_n(w(s)) \), we define
\[
s_{\gamma} = \sum_{(\sigma_0, \ldots, \sigma_{n-1}) \in W_n(s)} \mu([\sigma_0, \ldots, \sigma_{n-1}])
\]
This sum is uniformly finite by Lemma 3.1. Thus
\[
C_1 e^{-nh} \leq s_{\gamma} \leq C_2 e^{-nh}
\]
for constants \(C_1, C_2 > 0 \), independent of \(n \) and \(\gamma \).
Let \(s_1 \geq s_2 \geq \cdots \) be the eigenvalues of \((X_s^* X_s)^{1/2}\). For each \(j \in \mathbb{N} \), there is \(\gamma_j \in \tilde{A}_{n_j}(w(s)) \) such that \(s_j = s_{\gamma_j} \).
Let \(\varepsilon > 0 \). Recall that
\[
\|X_s\|_1^+ = \inf_{Y \in \mathcal{F}(\Gamma)_1^+} \|X_s - Y\|_1^+.
\]
By doing finite rank perturbations if necessary, we may assume that for all \(j \geq 1 \),
\[
e^{-n_j(h+\varepsilon)} \leq s_j \leq e^{-n_j(h-\varepsilon)}.
\]
Let \(N \in \mathbb{N} \) with \(e^{-N\varepsilon} \leq C_1 \) and \(n \geq N \). If there is \(m > n \) such that \(j \leq \text{card } \overline{B}_n(w(s)) \) and \(\gamma_j \in \overline{A}_m(w(s)) \), we have
\[
e^{-m(h-\varepsilon)} \geq e^{-n(h+\varepsilon)}.
\]

For otherwise we would have
\[
s_j \leq e^{n(h-\varepsilon)} < e^{-n(h+\varepsilon)} \leq e^{-n\varepsilon} \frac{S_\gamma}{C_1} \leq s_n
\]
for all \(\gamma \in \overline{B}_n(w(s)) \) and this is a contradiction. Therefore \(e^{-m(h-\varepsilon)} \geq e^{-n(h+\varepsilon)} \), namely
\[
m \leq n \frac{h + \varepsilon}{h - \varepsilon}.
\]

We put
\[
k = \max \left\{ m \in \mathbb{N} \mid m \leq n \frac{h + \varepsilon}{h - \varepsilon} \right\}.
\]

Since
\[
\mu(\{s\}) = \sum_{(\sigma_0, \ldots, \sigma_{n-1}) \in W_n(s)} \mu(\{\sigma_0, \ldots, \sigma_{n-1}\}) \leq \text{card } W_n(s) \cdot C e^{-nh},
\]
for some \(C > 0 \), we obtain
\[
\frac{\mu(\{s\}) e^{nh}}{C} \leq \text{card } W_n(s).
\]

Hence
\[
\|X_s\|_1^\perp \leq \limsup_{n \to \infty} \frac{\sum_{j=1}^{\text{card } \overline{B}_n(w(s))} s_j}{\sum_{j=1}^{\text{card } \overline{B}_n(w(s))} j^{-1}} \leq \limsup_{n \to \infty} \frac{\sum_{j=1}^{k} \sum_{\gamma \in \overline{A}_j(w(s))} \sum_{w(\sigma_0) \ldots w(\sigma_{j-1}) = \gamma} \mu(\{\sigma_0, \ldots, \sigma_{j-1}\}) \log \text{card } \overline{B}_n(w(s))}{\log \text{card } \overline{B}_n(w(s))} \leq \limsup_{n \to \infty} \frac{n}{\log \text{card } \overline{A}_n(w(s))} \frac{h + \varepsilon}{h - \varepsilon} \mu(\{s\}) \leq \limsup_{n \to \infty} \frac{n}{\log \text{card } W_n(s) - \log K} \frac{h + \varepsilon}{h - \varepsilon} \mu(\{s\}) \leq \frac{h + \varepsilon}{h(h - \varepsilon)} \mu(\{s\}).
\]
Here we have used that \(\text{card } W_n(s) \leq K \text{card } \overline{A}_n(w(s)) \) (Lemma 3.1). Since \(\varepsilon > 0 \) is arbitrary, we have
\[
\| X_s \|_{\tilde{1}} \leq \frac{1}{h} \mu([s]).
\]
Thanks to Proposition 2.1, we obtain
\[
h = h_{\text{top}}(\Sigma(\infty)) \leq k_\infty^-(\lambda_{w(S)}) \leq k_\infty^-(\lambda_{A}) \leq \text{gr}(\Gamma, A).
\]

\[\square\]

Acknowledgment

The author expresses his gratitude to Masaki Izumi for his constant encouragement and important suggestions.

References

Received September 23, 2003. Revised May 7, 2005.

RUI OKAYASU
DEPARTMENT OF MATHEMATICS
OSAKA KYOIKU UNIVERSITY
ASAHIGAOKA KASHIWARA 582-8582
JAPAN
rui@cc.osaka-kyoiku.ac.jp