INDEX THEORY OF TOEPLITZ OPERATORS ASSOCIATED TO TRANSFORMATION GROUP C*-ALGEBRAS

EFTON PARK
INDEX THEORY OF TOEPLITZ OPERATORS ASSOCIATED TO TRANSFORMATION GROUP C*-ALGEBRAS

EFTON PARK

Let Γ be a finite discrete group acting smoothly on a compact manifold X, and let D be a first-order elliptic self-adjoint Γ-equivariant differential operator acting on sections of some Γ-equivariant Hermitian vector bundle over X. We use these data to define Toeplitz operators with symbols in the transformation group C^*-algebra $C(X) \rtimes \Gamma$. If the symbol of such a Toeplitz operator is invertible, then the operator is Fredholm. In the case where X is a spin manifold and D is the Dirac operator, we give a geometric-topological formula for the index.

Let X be a smooth compact manifold without boundary, let V be a Hermitian vector bundle over X, and suppose D is a first-order elliptic self-adjoint differential operator acting on sections of V. Let P be the positive spectral projection of D. Then P is an order zero pseudodifferential operator, and it follows from standard facts about pseudodifferential operators on compact manifolds that given a smooth function f on X, the pointwise multiplication operator M_f acting on square-integrable sections $L^2(V)$ of V commutes with P modulo the ideal of compact operators. From this fact it is easy to show that if f is invertible, then the Toeplitz operator $PM_f : \text{Ran} P \to \text{Ran} P$ is a Fredholm operator. Furthermore, the index of PM_f can be computed using the Atiyah–Singer Index Theorem; see [Baum and Douglas 1982].

Now suppose that a discrete group Γ acts smoothly on both X and V in a compatible way, and suppose that D commutes with the action of Γ on sections of V. Then P also commutes with this action. In addition, there is a natural action ρ of the transformation group C^*-algebra $C(X) \rtimes \Gamma$ on $L^2(V)$, and P commutes with the elements of $C(X) \rtimes \Gamma$ modulo the compacts. Therefore, whenever $F \in C(X) \rtimes \Gamma$ is invertible, $T_F := P\rho(F)$ is a Fredholm operator, and it is natural to ask what the index of this operator is.

Let X be an odd-dimensional oriented spin manifold and let Γ be a finite group acting on X by isometries that preserve the orientation and spin structure of X. In [Park 2002], the case of free actions was considered; in this paper we consider

Keywords: Toeplitz operators, index theory, transformation group C^*-algebras.
general actions. We use the Lefschetz theorem in [Fang 2005] to prove a theorem that computes the Fredholm index of T_F in terms of the geometry and topology of X and a “Chern character” form explicitly constructed from F.

We begin by more precisely defining the objects under discussion. Let X be a smooth compact manifold, and let Γ be a discrete group acting smoothly on X from the right. Let V be a Γ-equivariant complex vector bundle over X, and equip V with a Γ-invariant Hermitian structure. Then Γ acts on the left on both the smooth sections $C^\infty(V)$ and the square-integrable sections $L^2(V)$ of V:

$$(\gamma \cdot s)(x) = s(x\gamma)\gamma^{-1}.$$

If $C(X)$ acts on $L^2(V)$ by pointwise multiplication, we have a covariant representation of $(C(X), \Gamma)$ on $L^2(V)$, and hence a representation ρ of $C(X) \rtimes \Gamma$ on $L^2(V)$.

Let D be a first-order, Γ-equivariant, elliptic self-adjoint differential operator acting on sections of V, and let $P = \chi_{[0, \infty)}(D)$ denote the positive spectral projection of D; this operator is also Γ-equivariant. For each F in $C(X) \rtimes \Gamma$, define the Toeplitz operator $T_F \in \mathfrak{B}(L^2(V))$ to be $T_F = P \rho(F) P + I - P$. More generally, for each positive integer n, let $P_n \in \mathfrak{B}((L^2(V))^n)$ be the matrix with P as each diagonal entry and all other entries zero, and let ρ_n denote the obvious representation of $M(n, C(X) \rtimes \Gamma)$ on $(L^2(V))^n$ determined by ρ. Then for each F in $M(n, C(X) \rtimes \Gamma)$, let $T_F = P_n \rho_n(F) P_n + I - P_n$. We note that while Toeplitz operators are typically defined as operators on the range of P_n, we have opted to extend our Toeplitz operators to all of $(L^2(V))^n$ in a way that does not affect their index theory.

Definition 2. Let V be a Γ-equivariant complex vector bundle over X, and let R be a Γ-equivariant elliptic pseudodifferential operator acting on sections of V. The Γ-invariant subspace of ker R minus the dimension of the Γ-invariant subspace of ker R^\ast.

Proposition 1. If F is in $\text{GL}(n, C(X) \rtimes \Gamma)$, then T_F is Fredholm.

Proof. It suffices to show that P commutes with elements of $C(X) \rtimes \Gamma$ modulo the compacts, for then it follows easily that $T_F T_{F^{-1}} = I = T_{F^{-1}} T_F \mod \mathfrak{B}((L^2(V))^n)$. The operator P is Γ-equivariant and therefore commutes with $\rho(\gamma)$ for each γ in Γ. On the other hand, for all f in $C(X)$, the commutator $[P, \rho(f)]$ is in $\mathfrak{B}(L^2(V))$, by [Baum and Douglas 1982, Lemma 2.10]. These elements are dense in $C(X) \rtimes \Gamma$, so the desired conclusion follows. \hfill \Box

Our goal is to find a geometric-topological formula for the index of T_F that can be computed directly from F. To this end, we will show that the Fredholm index of T_F is equal to the Γ-invariant index of a certain Γ-equivariant operator.
Proposition 3. Let R be a Γ-equivariant elliptic operator. Then

$$\text{Ind}_{\Gamma-\text{inv}}(R) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \text{Ind}_\gamma(R),$$

where $\text{Ind}_\gamma(R)$ is the trace of the Γ-equivariant index of R evaluated at γ.

Proof. Let σ be a representation of Γ on a finite-dimensional complex vector space W, and decompose σ as

$$\sigma = n_0 \mathbf{1} + \sum_{i=1}^k n_i \sigma_i,$$

where the σ_i are irreducible and distinct, and $\mathbf{1}$ denotes the trivial representation. Let W^Γ be the subspace of W that is fixed by Γ. The fact that each of the σ_i fixes only 0 implies that $n_0 = \dim W^\Gamma$. Then, by [Serre 1977, Exercise 2.5],

$$\dim W^\Gamma = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \chi(\gamma) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \text{Tr}(\sigma(\gamma)),$$

whence the result follows. \qed

For each natural number n, let $\text{Map}(\Gamma, M(n, C(X)))$ denote the C^*-algebra of all functions from the group Γ to $M(n, C(X))$. The algebra $M(n, C(X))$ acts on $\text{Map}(\Gamma, M(n, C(X)))$ via pointwise multiplication; let $\mathcal{L}(\text{Map}(\Gamma, M(n, C(X))))$ be the algebra of $M(n, C(X))$-linear maps on $\text{Map}(\Gamma, M(n, C(X)))$. We define a homomorphism

$$\mu : M(n, C(X)) \rtimes \Gamma \longrightarrow \mathcal{L}(\text{Map}(\Gamma, M(n, C(X))))$$

as follows: for all ψ in $\text{Map}(\Gamma, M(n, C(X)))$, all functions f in $M(n, C(X))$, and all elements α and γ in Γ, set $(\mu(f)\psi)(\alpha) = \mu(\alpha \cdot f)\psi(\alpha)$ and $(\mu(\gamma))\psi(\alpha) = \psi(\gamma^{-1}\alpha)$, and then extend μ to all of $M(n, C(X)) \rtimes \Gamma$ by stipulating that μ be an algebra homomorphism. If $M(n, C(X))$ acts on $(L^2(V))^n$ by pointwise multiplication and if λ denotes the left regular representation of $M(n, C(X))$ on the Hilbert space $\text{Map}(\Gamma, (L^2(V))^n)$, then $\lambda(F)$ is matrix multiplication by $\mu(F)$ for every F in $\text{Map}(\Gamma, (L^2(V))^n)$.

The group Γ acts on $\text{Map}(\Gamma, (L^2(V))^n)$ by the formula

$$(\gamma \cdot \psi)(\alpha) = \gamma \cdot (\psi(\gamma^{-1}\alpha)),$$

and the subspace $\text{Map}(\Gamma, (L^2(V))^n)\Gamma$ of elements fixed by Γ contains precisely the ψ for which $\gamma \cdot (\psi(e)) = \psi(\gamma)$ for all γ in Γ; here e denotes the identity element of Γ. Thus the elements of $\text{Map}(\Gamma, (L^2(V))^n)\Gamma$ are determined by their value at e. Conversely, specifying a value at e uniquely determines an element of $\text{Map}(\Gamma, (L^2(V))^n)\Gamma$.

Define \(U : (L^2(V))^n \to \text{Map}(\Gamma, (L^2(V))^n) \) as
\[
(U(s_1, s_2, \ldots, s_n))(\alpha) = \frac{1}{\sqrt{\lvert \Gamma \rvert}}(\alpha \cdot s_1, \alpha \cdot s_2, \ldots, \alpha \cdot s_n).
\]

Because the inner product on \(L^2(V) \) has been chosen to be \(\Gamma \)-invariant, \(U \) is a unitary operator, and \(U^* \psi = \sqrt{\lvert \Gamma \rvert} \psi (e) \) for every \(\psi \).

Define \(\hat{\mathcal{D}} \) on \(\text{Map}(\Gamma, (L^2(V))^n) \) by the formula \((\hat{\mathcal{D}} \psi)(\alpha) = D(\psi(\alpha)) \). Let \(\hat{\mathcal{P}} \) be the positive spectral projection of \(\hat{\mathcal{D}} \), and for each \(F \) in \(\mathcal{M}(n, C(X) \rtimes \Gamma) \), define
\[
\tilde{T}_F = \hat{\mathcal{P}} \lambda(F) \hat{\mathcal{P}} + I - \hat{\mathcal{P}}.
\]

We can express the Fredholm index of Toeplitz operators \(T_F \) in terms of the \(\tilde{T}_F \):

Proposition 4. For every \(F \) in \(\text{GL}(n, C(X) \rtimes \Gamma) \),
\[
\text{Ind } T_F = \frac{1}{\lvert \Gamma \rvert} \sum_{\gamma \in \Gamma} \text{Ind}_\gamma \tilde{T}_F.
\]

Proof. For each \(F \), the operator \(\tilde{T}_F \) is \(\Gamma \)-equivariant with symbol \(\mu(F) \). Furthermore, when \(\tilde{T}_F \) is restricted to the Hilbert space \(\text{Map}(\Gamma, (L^2(V))^n)^\Gamma \), we have \(\tilde{T}_F = UT_F U^* \). Thus the result follows immediately from Propositions 1 and 3. \(\square \)

For the remainder of the paper, we will assume that \(X \) is a \((2m+1)\)-dimensional spin manifold with spinor bundle \(S \) and Dirac operator \(D \), and that \(\Gamma \) acts on \(X \) by orientation-preserving isometries that preserve the spin structure. In this case, we can combine Proposition 4 with the index theorem in [Fang 2005] to get a geometric-topological index formula for the index of \(T_F \).

Theorem 5. For each \(\gamma \) in \(\Gamma \), let \(X^\gamma_1, X^\gamma_2, \ldots, X^\gamma_{K_\gamma} \) be the connected components of the fixed point set of \(\gamma \), and for each \(1 \leq k \leq K_\gamma \), let \(N X^\gamma_k \) denote the normal bundle of \(X^\gamma_k \) in \(X \). Then for all \(F \) in \(\text{GL}(n, C^\infty(X) \rtimes \Gamma) \),
\[
\text{Ind } T_F = \frac{1}{\lvert \Gamma \rvert} \sum_{\gamma \in \Gamma} \sum_{k=1}^{K_\gamma} \left(\frac{-i}{2\pi} \right)^{(1+\dim X^\gamma_k)/2} \int_{X^\gamma_k} \hat{A}(X^\gamma_k) \text{ch}(\mu(F)) \Lambda^{-1},
\]
where
\[
\text{ch}(\mu(F)) = \sum_{k=0}^{\infty} (-1)^k \frac{k!}{(2k+1)!} \text{Tr}((\mu(F))^{-1} d\mu(F))^{2k+1}
\]
and
\[
\Lambda = \text{Pf} \left(2 \sin \left(\frac{i}{2} (R(N X^\gamma_k) + \ln J(X^\gamma_k)) \right) \right);
\]
here \(\text{Pf} \) is the Pfaffian, \(R(N X^\gamma_k) \) is the curvature of \(N X^\gamma_k \), and \(J(X^\gamma_k) \) is the Jacobian matrix of the action of \(\gamma \) on \(N X^\gamma_k \).
For this theorem to be useful to us, we need to be able to express \(\text{ch}(\mu(F)) \) in terms of \(F \).

The action of \(F \) on \(X \) induces an action on the algebra \(\Omega^*(X) \) of smooth differential forms, and we can extend our map \(\mu \) to an algebra homomorphism

\[
\mu : M(n, \Omega^*(X)) \rtimes \Gamma \to \mathcal{L}(\text{Map}(\Gamma, M(n, \Omega^*(X)))).
\]

Take \(\sum_{\gamma \in \Gamma} \omega_{\gamma} \) in \(M(n, \Omega^*(X)) \rtimes \Gamma \). Then for all \(\psi \) in \(\text{Map}(\Gamma, M(n, \Omega^*(X))) \),

\[
\left(\mu \left(\sum_{\gamma \in \Gamma} \omega_{\gamma} \right) \right)(\alpha) = \sum_{\gamma \in \Gamma} (\alpha \cdot \omega_{\gamma}) \psi(\alpha \gamma).
\]

For any element \(B \) of \(\mathcal{L}(\text{Map}(\Gamma, M(n, \Omega^*(X)))) \), its trace is computed by the formula

\[
\text{Tr}(B) = \sum_{\alpha \in \Gamma} (B \delta_{\alpha})(\alpha),
\]

where \(\delta_{\alpha} \) is the constant function 1 when evaluated at \(\alpha \in \Gamma \), and is otherwise zero. Thus

\[
\text{Tr} \left(\mu \left(\sum_{\gamma \in \Gamma} \omega_{\gamma} \right) \right) = \sum_{\alpha, \gamma \in \Gamma} (\mu(\omega_{\gamma}) \delta_{\alpha})(\alpha) = \sum_{\alpha, \gamma \in \Gamma} (\alpha \cdot \omega_{\gamma}) \delta_{\alpha}(\alpha \gamma) = \sum_{\alpha \in \Gamma} \alpha \cdot \omega_{e}.
\]

Definition 6. Let \(\nu : M(n, \Omega^*(X)) \rtimes \Gamma \to \Omega^*(X) \) be given by the formula

\[
\nu \left(\sum_{\gamma \in \Gamma} \omega_{\gamma} \right) = \sum_{\alpha \in \Gamma} \alpha \cdot \omega_{e},
\]

and for all \(F \) in \(\text{GL}(n, C^\infty(X)) \rtimes \Gamma \), define

\[
\hat{\text{ch}}(F) = \sum_{k=0}^{\infty} (-1)^k \frac{k!}{(2k+1)!} \nu((F^{-1}dF)^{2k+1}),
\]

where the exterior derivative \(d \) is extended to \(M(n, \Omega^*(X)) \rtimes \Gamma \) by applying \(d \) entrywise in \(M(n, C^\infty(X)) \) and setting

\[
d \left(\sum_{\gamma \in \Gamma} \omega_{\gamma} \right) = \sum_{\gamma \in \Gamma} (d \omega_{\gamma}) \gamma.
\]

Combining Theorem 5 and Definition 6, we have:
Theorem 7. For all \(F \) in \(\text{GL}(n, C^\infty(X) \times \Gamma) \),

\[
\text{Ind} T_F = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \sum_{k=1}^{K_{\gamma}} (-i \frac{1}{2\pi})^{(1+\dim X_\gamma')/2} \int_{X_\gamma'} \hat{A}(X_\gamma') \hat{\text{ch}}(F) \Lambda^{-1}.
\]

This formula looks rather daunting, but in many cases it simplifies considerably.

Example 8. Let \(\text{SO}(2m + 2) \) act on \(\mathbb{R}^{2m+2} \) in the usual way, let \(\Gamma \) be a finite subgroup of \(\text{SO}(2m + 2) \), and let \(S^{2m+1} \) be the unit sphere in \(\mathbb{R}^{2m+2} \). The action of \(\Gamma \) on \(\mathbb{R}^{2m+2} \) restricts to an action on \(S^{2m+1} \), and because spheres have unique spin structures [Lawson and Michelsohn 1989], the action of \(\Gamma \) on \(S^{2m+1} \) trivially preserves the spin structure. Now, each \(\gamma \) in \(\Gamma \) fixes a subspace of \(\mathbb{R}^{2m+2} \), and so the fixed point set \(X' \) of \(\gamma \) acting on \(S^{2m+1} \) is an equatorial sphere, and in particular, the fixed point set is connected. Furthermore, all spheres have stably trivial tangent bundles, so \(\hat{A}(X') = 1 \) for all \(\gamma \) in \(\Gamma \). Finally, a straightforward computation shows that the normal bundle of an equatorial sphere has curvature zero, and so

\[
\text{Ind} T_F = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} (-i \frac{1}{2\pi})^{(1+\dim X')/2} \int_{X'} \hat{\text{ch}}(F) (\text{Pf}(2 \sin(\frac{1}{2} \ln J(X'))))^{-1}.
\]

Given \(\gamma \) in \(\Gamma \), there exists an orthonormal frame of \(N X' \) for which the action of \(\gamma \) on \(N X' \) decomposes into blocks

\[
\begin{pmatrix}
\cos \theta_{j}' & \sin \theta_{j}' \\
-\sin \theta_{j}' & \cos \theta_{j}'
\end{pmatrix},
\]

with \(0 < \theta_{j}' < 2\pi \) and \(j = 1, 2, \ldots, L' = m - \frac{1}{2} (\dim X' + 1) \) (see [Lawson and Michelsohn 1989]). Incorporating this into our formula we obtain

\[
\text{Ind} T_F = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} (-i \frac{1}{2\pi})^{(1+\dim X')/2} \frac{1}{\sin(\theta_{1}'/2) \cdots \sin(\theta_{L'}'/2)} \int_{X'} \hat{\text{ch}}(F).
\]

Acknowledgment

The author thanks Ken Richardson for helpful discussions.

References

EFTON PARK
DEPARTMENT OF MATHEMATICS
TEXAS CHRISTIAN UNIVERSITY
BOX 298900
FORT WORTH, TX 76129
e.park@tcu.edu