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Let F be a local nonarchimedean field of characteristic 0, and let A be an
F-central division algebra of dimension dA over F. In this paper, we first
develop some parts of the representation theory of GL(m, A), assuming the
conjecture that unitary parabolic induction is irreducible for GL(m, A)’s.
Among others, we obtain the formula for characters of irreducible unitary
representations of GL(m, A) in terms of standard characters. Then we
study the Jacquet–Langlands correspondence on the level of Grothendieck
groups of GL( pdA, F) and GL( p, A). Using this character formula, we get
explicit formulas for the Jacquet–Langlands correspondence of irreducible
unitary representations of GL(n, F) (assuming the conjecture to hold). As
a consequence, we get that the Jacquet–Langlands correspondence sends
irreducible unitary representations of GL(n, F) either to zero or to irre-
ducible unitary representations, up to a sign.

Introduction

Functoriality is a key aspect of the Langlands program [1970]. One of the first ex-
amples of functoriality which were studied in the local case was the connection be-
tween representations of various inner forms of GL(n) (see [Knapp and Rogawski
1997]). The first example, studied already in [Jacquet and Langlands 1970], was
the connection between irreducible representations of GL(2) over a local field F
and irreducible representations of the multiplicative group of the quaternion algebra
over F . (The L groups of these two groups are both GL(2, C) × Gal(F̄/F), and
the functoriality considered here corresponds to the identity mapping.)

Let F be a local nonarchimedean field of characteristic 0 and let A be an F-
central division algebra of rank dA over F . For each positive integer p, P. Deligne,
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D. Kazhdan and M.-F. Vignéras established bijections

LJpdA

between irreducible essentially square-integrable representations of GL(pdA, F)

and GL(p, A) ([Rogawski 1983] takes care of the case p = 1). The crucial require-
ment which holds for these bijections, and which characterizes them uniquely, is
that the characters 2δ and 2LJpdA (δ) of the representations δ and LJpdA(δ) satisfy
the character identity

(−1)pdA2δ(g) = (−1)p2LJpdA (δ)(g′)

whenever g and g′ have the same characteristic polynomials, and when this polyno-
mial is separable. These bijections are called Jacquet–Langlands correspondences.

A. I. Badulescu observed that Jacquet–Langlands correspondences extend in a
very natural way to mappings between Grothendieck groups

LJpdA : Groth GL(pdA, F) → Groth GL(p, A),

such that the extensions are compatible with parabolic induction, i.e. that they
commute with parabolic induction. (Essentially, such extensions are unique if we
require that characters of GL(n, F)’s go to 0 if dA -n.) Moreover, these extensions
satisfy the character identity above on the level of formal characters (for a precise
description of the extensions, see §6.1). We shall call these mappings Jacquet–
Langlands correspondences on the level of Grothendieck groups.

For the group G of rational points of a reductive group defined over a local
nonarchimedean field, we denote by G̃ the set of all the equivalence classes of
irreducible smooth representations of G. The unitary dual Ĝ of G consists of all
the unitarizable classes in G̃.

We consider GL(n, F)˜ as a subset of Groth GL(n, F) in a natural way (it
forms a Z-basis). An interesting question is to understand what happens with
irreducible representations under the Jacquet–Langlands correspondence on the
level of Grothendieck groups, and in particular, what happens with irreducible
unitary representations. Already, very simple examples will show that LJn will
carry some irreducible representations to zero. Further, it is not hard to see that
an irreducible (unitarizable) representation can go to the negative of an irreducible
representation.

In this paper we study what happens with irreducible unitary representations
under the Jacquet–Langlands correspondence, assuming the following conjecture
for general linear groups over division algebras, introduced in [Tadić 1990]:

(U0) unitary parabolic induction is irreducible for GL(m, A)’s.
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In other words, if π1 and π2 are irreducible unitary representations of GL(m1, A)

and GL(m2, A), the parabolically induced representation IndGL(m1+m2,A)(π1 ⊗π2)

is irreducible.
Note that [Vogan 1986] implies that (U0) holds in the archimedean case. Also,

J. Bernstein [1984] proved that (U0) holds if A = F (unfortunately his method
cannot be extended to the division algebra case).

Here we first develop some directions of the representation theory of GL(n)

over division algebras over a local nonarchimedean field, to be able to obtain the
formula for characters of irreducible unitary representations of GL(m, A) in terms
of standard characters. (Assuming (U0) to hold, [Tadić 1990] and [Badulescu and
Renard 2004] imply a classification of the unitary duals GL(m, A)ˆ of GL(m, A)

for all m ≥ 1.) Using this character formula, we compute explicit formulas for
LJn(π), π ∈ GL(n, F)ˆ (Propositions 7.3, 9.5 and Section 11). As a consequence:

Corollary. Assume that (U0) holds. Then

LJpdA(GL(pdA, F)ˆ) ⊆ ± GL(p, A)ˆ ∪ {0};

that is, Jacquet–Langlands correspondences send irreducible unitary representa-
tions of general linear groups over F either again to irreducible unitary represen-
tations of general linear groups over A, up to a sign, or to 0.

Remark. The following direct consequence may be of some interest. Let σ be an
element of GL(p, A)˜ (resp. of (Groth GL(p, A)) \ {0}). Suppose that (U0) holds
and suppose that there exists π ∈ GL(pdA, F)ˆ such that the characters of σ and π

are equal up to (the same) sign on elements with same characteristic polynomials.
Then σ is unitarizable (resp. σ ∈ ± GL(p, A)ˆ).

There are very strong formal similarities between the Jacquet–Langlands cor-
respondences studied in this paper and the Kazhdan–Patterson lifting studied in
[Tadić 1996].

We now give a description of the content of the paper according to sections.
Section 1 goes over notation and necessary basic results for general linear groups
over a local nonarchimedean field. Section 2 introduces notation and basic results
for general linear groups over division algebras. In Section 3 we show that the
canonical involution on irreducible representations of GL(m, A) (introduced by
A.-M. Aubert, and by P. Schneider and U. Stuhler) preserves unitarity. We also
obtain an explicit formula for the involution on irreducible unitary representations.
(We assume throughout that (U0) holds.) In Section 4 we describe irreducible
subquotients of ends of complementary series, obtaining in this way a character
identity, which enable us to compute in Section 5 characters of irreducible unitary
representations of GL(m, A) in terms of standard characters. In Section 6 we recall
the Jacquet–Langlands correspondence on the level of Grothendieck groups. In
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Section 7 we compute LJ(π) for one of four basic types of π ∈GL(n, F)ˆ, while the
unitarity of LJ(π) is shown in Section 8. Sections 9 and 10 study the same problem
for the second basic type of π . In Section 11 we compute the Jacquet–Langlands
correspondence of the remaining two basic types of π , using canonical involutions.

1. Some facts from the representation theory of GL(n, F)

We introduce the notation and basic results that we shall need for general linear
groups over a local nonarchimedean field.

1.1. We fix a local nonarchimedean field F . The modulus character of F will
be denoted by | |F (it satisfies |x |F

∫
F f (xa)da =

∫
F f (a)da for any continuous

compactly supported complex-valued function f on F , where da denotes a Haar
measure of the additive group (F, +) of the field).

1.2. Let G be the group of rational points of a reductive group over F . The set of
equivalence classes of irreducible smooth representations of G will be denoted by

G̃.

The subset of unitarizable classes in G̃ will be denoted by

Ĝ.

A representation π ∈ G̃ is called essentially square-integrable if there exists a char-
acter χ of G such that χπ is square-integrable representation modulo the center.
All the essentially square-integrable classes in G̃ will be denoted by

D(G).

The Grothendieck group of the category of all representations of G of finite length
will be denoted by

Groth G.

1.3. Now we introduce the Bernstein–Zelevinsky notation for the general linear
group GL(n, F) (for more on notation see [Zelevinsky 1980; Tadić 1986]).

For two smooth representations π1 and π2 of GL(n1, F) and GL(n2, F), we
consider π1 ⊗ π2 as a representation of GL(n1, F) × GL(n2, F). Identifying in a
natural way GL(n1, F)×GL(n2, F) with the Levi factor of the parabolic subgroup{[

g1 ∗

0 g2

]
; gi ∈ GL(ni , F) for i = 1, 2

}
,

we denote by
π1 × π2
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the smooth representation of GL(n1 + n2, F) parabolically induced by π1 ⊗ π2.
Then

(π1 × π2) × π3 ∼= π1 × (π2 × π3).

1.4. The characters of F× will be identified with characters of GL(n, F) using
the determinant homomorphism. The character of GL(n, F) corresponding to | |F

will be denoted by
ν.

For any character χ of F×,

χ(π1 × π2) ∼= (χπ1) × (χπ2).

1.5. Let
Rn,F = Groth GL(n, F).

Then GL(n, F )̃ is a Z-basis of Rn,F .
We can lift × to a Z-bilinear mapping × : Rn1,F × Rn2,F → Rn1+n2,F since the

semisimplification of π1 × π2 depends only on semisimplifications of π1 and π2.
Set

RF =
⊕

n≥0 Rn,F .

One extends × to an operation × : RF × RF → RF in an obvious way, and RF

becomes an associative, commutative graded ring.
Fix a character χ of F×. Lift the mappings π 7→χπ : Rn,F → Rn,F to a Z-linear

map χ : RF → RF . In this way we get an endomorphism of the graded ring RF .
We have a natural partial ordering on Rn,F . (GL(n, F )̃ generates the cone of

positive elements in Rn,F .) Then orderings on the Rn,F ’s determine an ordering ≤

on RF in a natural way. An additive homomorphism φ : RF → RF will be called
positive if x ∈ RF , x ≥ 0 implies φ(x) ≥ 0.

1.6. Set
DF =

⋃
n≥1

D(GL(n, F)).

For δ ∈ DF there exists a unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable. The
representation ν−e(δ)δ will be denoted by δu . In this way,

δ = νe(δ)δu,

where e(δ) ∈ R and δu is unitarizable.

1.7. We now describe the Langlands classification for general linear groups. Let
M(DF ) be the set of all finite multisets in DF and d = (δ1, δ2, . . . , δk) ∈ M(DF ).
Let γ be a permutation of {1, 2, . . . , k} such that e(δγ (1))≥e(δγ (2))≥· · ·≥e(δγ (k)).
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The representation
λ(d) = δγ (1) × δγ (2) × · · · × δγ (k)

has a unique irreducible quotient. Its class depends only on d (not on γ as above).
This unique irreducible quotient will be denoted by L(d) or L(δ1, δ2, . . . , δk).
From §1.4 it follows that for a character χ of F×,

χ L(δ1, δ2, . . . , δk) ∼= L(χδ1, χδ2, . . . , χδk).

To shorten the notation, we shall often denote the semisimplification of λ(d)

simply by λ(d) ∈ RF . This will produce no confusion. From the properties of the
Langlands classification it is well-known that the λ(d) ∈ RF , d ∈ M(DF ), form a
basis of RF .

Proposition [Zelevinsky 1980]. The ring RF is a polynomial ring over DF . �

1.8. One defines addition of elements of M(DF ) by

(δ1, δ2, . . . , δk) + (δ′

1, δ
′

2, . . . , δ
′

k′) = (δ1, δ2, . . . , δk, δ
′

1, δ
′

2, . . . , δ
′

k′).

Proposition [Rodier 1982]. For d1, d2 ∈ M(DF ), L(d1 + d2) is a subquotient of
L(d1) × L(d2). The multiplicity is one. �

1.9. Let CF be the set of all the equivalence classes of irreducible cuspidal repre-
sentations of all general linear groups GL(n, F), n ≥1. For ρ ∈CF and k ∈Z, k ≥0,
the set

[ρ, νkρ] = {ρ, νρ, ν2ρ, . . . , νkρ}

is called a segment of irreducible cuspidal representations. A segment of the form
[νk1ρ, νk2ρ] (where k1, k2 ∈ R are such that k2 − k1 ∈ Z and k2 − k1 ≥ 0) will also
be denoted by

[k1, k2]
ρ .

The set of all such segments will be denoted by SF . The set of all finite multisets
in SF will be denoted by M(SF ). We consider the partial ordering ≤ on M(SF )

introduced in [Zelevinsky 1980, §7.1], defined by linking segments.

1.10. Let 1 = [ρ, νkρ] = {ρ, νρ, ν2ρ, . . . , νkρ} ∈ SF . The representation

ρ × νρ × ν2ρ × · · · × νkρ

has a unique irreducible quotient, denoted by

δ([ρ, νkρ]),

and a unique irreducible subrepresentation, denoted by

δ([ρ, νkρ])t .
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The representations δ([ρ, νkρ]) are essentially square-integrable. Further, the rep-
resentations δ([ρ, νkρ])t are called Zelevinsky’s segment representations.

By Bernstein–Zelevinsky theory, the mapping

δ : SF → DF , 1 7→ δ(1),

is a bijection.
We can state this also in the following way. For n ∈ N and ρ ∈ CF , set

δ(ρ, n) = δ([−(n − 1)/2, (n − 1)/2]
ρ).

Then (ρ, n) 7→ δ(ρ, n) is a bijection of CF × N onto DF .
We lift 1 7→ δ(1) naturally to a bijection

M(δ) : M(SF ) → M(DF ), (11, . . . ,1k) 7→ (δ(11), . . . , δ(1k)).

Using this bijection we get the Langlands classification in terms of M(SF ).
For a ∈ M(SF ) we set

L(a) = L
(
M(δ)(a)

)
and λ(a) = λ

(
M(δ)(a)

)
.

1.11. Note that §1.10 and the proposition in §1.7 imply that RF is a polynomial
algebra over δ(1), 1 ∈ SF . Therefore the mapping

δ(1) 7→ δ(1)t , 1 ∈ SF ,

extends uniquely to a ring morphism t
: RF → RF . This ring morphism is involu-

tive. A fundamental fact is that it carries irreducible representations into irreducible
ones; see [Aubert 1995; Schneider and Stuhler 1997].

Obviously, for a character χ of F×,
(
χδ(1))t ∼= χ

(
δ(1)t) for 1 ∈ SF . There-

fore, t
: RF → RF and χ : RF → RF commute, since they commute on generators.

1.12. For an irreducible representation π of a general linear group, there exists a
unique (ρ1, . . . , ρk) ∈ M(CF ) such that

π ↪→ ρ1 × . . . × ρk .

The multiset (ρ1, . . . , ρk) is called the cuspidal support of π and it is denoted by

supp(π).

It is well-known (and one easily sees it) that t
: RF → RF preserves the cuspidal

support of irreducible representations.

1.13. Denote the set of all unitarizable classes in DF by Du
F (so Du

F consists of
the square-integrable classes). For δ ∈ Du and a positive integer n denote

u(δ, n) = L(ν(n−1)/2δ, ν(n−3)/2δ, . . . , ν−(n−1)/2δ).
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The following theorem describes irreducible unitarizable representations.

Theorem [Tadić 1986]. Let

BF = {u(δ, n), ναu(δ, n) × ν−αu(δ, n) | δ ∈ Du
F , n ∈ N, 0 < α < 1

2}.

(i) If σ1, . . . , σk ∈ BF , then σ1 × . . .×σk is an irreducible unitarizable represen-
tation of some general linear group over F .

(ii) If π is an irreducible unitarizable representation of some general linear group
over F , there exist σ1, . . . , σm ∈ BF , unique up to a permutation, such that

π ∼= σ1 × . . . × σm . �

1.14. Let ρ ∈ CF . Fix positive integers d and n. Set

〈1, d〉
ρ

= [ν−(d−1)/2ρ, ν(d−1)/2ρ] ∈ SF ,

〈n, d〉
ρ

=
(
〈1, d〉

ν−(n−1)/2ρ, 〈1, d〉
ν1−(n−1)/2ρ, . . . , 〈1, d〉

ν(n−1)/2ρ
)
∈ M(SF ).

We take (formally) 〈0, d〉
ρ to be the empty multiset (then L(〈0, d〉

ρ) is the one-
dimensional representation of the trivial group GL(0, F), which is the identity of
RF ). Similarly, we also take 〈n, 0〉

ρ to be the empty multiset (so again L(〈n, 0〉
ρ)

is the identity in R). Observe that

[νk1ρ, νk2ρ] = [k1, k2]
ρ

= 〈1, k2 − k1 + 1〉
ν(k1+k2)/2ρ,

〈1, d〉
ναρ

= [−(d − 1)/2 + α, (d − 1)/2 + α]
ρ .

From §1.7 follows that for a character χ of F×

χ L(〈n, d〉
ρ) ∼= L(〈n, d〉

χρ).

Further
u(δ(ρ, d), n) = L(〈n, d〉

ρ).

1.15. There are two important distinguished bases of RF , irreducible represen-
tations and standard modules λ(d), d ∈ M(DF ). The theorem in §1.13 implies
that the following theorem solves the problem of expressing irreducible unitary
representations in terms of standard modules, and irreducible unitary characters in
terms of standard characters. It is convenient to present it in the following form:

Theorem [Tadić 1995]. Let n, d ∈Z, n, d ≥1. Let Wn be the group of permutations
of the set {1, 2, . . . , n}. Set W (d)

n = {w ∈ Wn; w(i)+ d ≥ i for all 1 ≤ i ≤ n}. Then

L(([νρ, νdρ], . . . , [νnρ, νd+n−1ρ])) =

∑
w∈W (d)

n

(−1)w
n∏

i=1

δ([νiρ, νw(i)+(d−1)ρ])

in RF , where (−1)w denotes the sign of the permutation w. �
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1.16. From the following theorem one can get all the irreducible subquotients of
ends of complementary series. (This is crucial information for determining the
topology of the unitary dual.)

Theorem [Tadić 1987]. For positive integers n and d, and ρ ∈ CF , we have

ν1/2L(〈n, d〉
ρ) × ν−1/2L(〈n, d〉

ρ)

= L(〈n + 1, d〉
ρ) × L(〈n − 1, d〉

ρ) + L(〈n, d + 1〉
ρ) × L(〈n, d − 1〉

ρ). �

1.17. The following theorem implies that the involution t carries class of irre-
ducible unitary representations to itself. Moreover, it implies an explicit formula
for the involution on irreducible unitary representations.

Theorem [Tadić 1986]. For positive integers n and d, and ρ ∈ CF , we have(
L(〈n, d〉

ρ)
)t

= L(〈d, n〉
ρ).

2. Representations of GL(n) over a division algebra A

We now introduce necessary notation and basic results on general linear groups
over division algebras. Since the situation is very similar to the case of general
linear groups over a field, we only point out the differences between these two
cases. (More details can be found in [Tadić 1990].)

We assume that the characteristic of F is 0.

2.1. Let A be a finite dimensional division algebra over F whose center is F . Let

dimF A = d2
A.

Let Mat(n × n, A) be the algebra of all n × n matrices with entries in A. Then
GL(n, A) is the group of invertible matrices with the natural topology. The com-
mutator subgroup is denoted by SL(n, A). We denote by

det : GL(n, A) → GL(1, A)/ SL(1, A)

the determinant homomorphism, as defined by J. Dieudonné (for n = 1 this is just
the quotient map). The kernel is SL(n, A).

The reduced norm of Mat(n × n, A) will be denoted by RN. We identify char-
acters of GL(n, A) with characters of F× using RN. Let

ν = |RN|F : GL(n, A) → R×.

2.2. We now comment on modifications that need to be made to the material in
Sections 1.3 to 1.12 so it applies also to the case of general linear groups over
division algebras. (More details can be found in [Tadić 1990].) Only small modi-
fications are required for §1.3–§1.8; we deal with them first.
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1.3: We define by the same formula as in §1.3 the multiplication × of smooth
representations of general linear groups over A. Again as in §1.3, we have
(π1 × π2) × π3 ∼= π1 × (π2 × π3).

1.4: In §2.1 we identified characters of GL(n, A) with characters of F× using the
reduced norm RN. The character identified with | |F was again denoted by
ν. Again, for a character χ of F×, we have χ(π1 × π2) ∼= (χπ1) × (χπ2).

1.5: Define
Rn,A = Groth GL(n, A)

(recall that RF =
⊕

n≥0 Rn,F ). One defines on RA the structure of an (asso-
ciative, commutative) ring in the same way as in §1.5 was done for the field
case. Also, characters of F× lift to automorphisms of RA (as in §1.5).

1.6: All essentially square-integrable classes in
⋃

n≥1 GL(n, A)̃ are denoted by
DA. One defines e(δ) and δu for δ ∈ DA as in §1.6.

1.7: For d ∈ M(DA) we define λ(d) and L(d) in the same way as in §1.7. The
Langlands classification for general linear groups over division algebras have
the same expression as in the field case. (The parameters are in M(DA).)

Here RA is a polynomial algebra over DA.

1.8: The proposition holds in the same form for general linear groups over division
algebras; see [Tadić 1990, Proposition 2.3].

2.3. By [Deligne et al. 1984] there exists a bijection

JLp : D(GL(p, A)) → D(GL(pdA, F)), δ′
↔ δ,

such that characters 2δ′ and 2δ satisfy

(−1)p2δ′(g′) = (−1)pdA2δ(g)

whenever g′ and g have same characteristic polynomials, and when this polynomial
is separable.

This bijection is uniquely determined by the character requirement above and
is called the Jacquet–Langlands correspondence between irreducible essentially
square-integrable representations of GL(p, A) and GL(pdA, F).

This bijection commutes with twisting with characters (see [Badulescu 2002]).
Take δ′

∈ D(GL(p, A)) cuspidal and let δ′ correspond to δ ∈ D(GL(pdA, F))

by the correspondence above. We know that

δ = δ(ρ, q)

for some positive integer q which divides pdA and for some irreducible cuspidal
representation ρ of GL((pdA)/q, F). Further, it is known that q |dA and that p is
relatively prime to q (pdA is the lowest common multiple of dA and (pdA)/q).
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We define
sδ′ = q,

and a character
νδ′ = νsδ′

of F×. As we noted in §2.1, we use RN to identify the characters of F× with
characters of GL(n, A). Therefore, we can view νδ′ as a character of any GL(k, A).
(Note that in this definition, δ′ is cuspidal; soon we shall give a definition also in
the case that δ′ is essentially square-integrable.)

2.4. We continue with the modifications required so the material in §1.9 to §1.12
can apply to general linear groups over division algebras.

1.9: We denote by CA the set of equivalence classes of irreducible cuspidal repre-
sentation of all GL(n, A), n ≥ 1. For ρ ′

∈ CA and k ∈ Z, k ≥ 0, the set

[ρ ′, νk
ρ′ρ

′
] = {ρ ′, νρ′ρ ′, ν2

ρ′ρ
′, . . . , νk

ρ′ρ
′
}

is called a segment of irreducible cuspidal representations of general lin-
ear groups over division algebras. In this case, we also denote the segment
[ν

k1
ρ′ ρ

′, ν
k2
ρ′ ρ

′
] (for k1, k2 ∈ R, k2 − k1 ∈ Z and k2 − k1 ≥ 0) by

[k1, k2]
ρ′

.

The set of all such segments will be denoted by SA. The set of all finite
multisets in SA will be denoted by M(SF ) and we consider the partial ordering
≤ on M(SA) introduced in [Tadić 1990, Section 4] (defined again by linking
segments).

1.10: For 1′
= [ρ ′, νk

ρ′ρ
′
] = {ρ ′, νρ′ρ ′, ν2

ρ′ρ
′, . . . , νk

ρ′ρ
′
} ∈ SA, the representation

ρ ′
×νρ′ρ ′

×ν2
ρ′ρ

′
× . . .×νk

ρ′ρ
′ has a unique irreducible quotient, denoted by

δ([ρ ′, νk
ρ′ρ

′
]), and it has a unique irreducible subrepresentation, denoted by

δ([ρ ′, νk
ρ′ρ

′
])t .

The mapping

δ : SA → DA, 1′
7→ δ(1′),

is a bijection. If we let

δ(ρ ′, n) = δ([−(n − 1)/2, (n − 1)/2]
ρ′

),

then we can restate this as follows: (ρ ′, n) 7→ δ(ρ ′, n) is a bijection of CA×N

onto DA.
We define νδ(ρ′,n) to be νρ′ , i.e.

νδ(ρ′,n) = νρ′ .
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We lift 1′
7→ δ(1′) naturally to a bijection M(δ) : M(SA)→ M(DA). This

gives the Langlands classification for general linear groups over a division
algebra A in terms of M(SA). For a ∈ M(SA) let L(a) = L

(
M(δ)(a)

)
and

λ(a) = λ
(
M(δ)(a)

)
as before.

1.11: Since RA is a polynomial algebra over δ(1′), 1′
∈ SA, the mapping δ(1′) 7→

δ(1′)t , 1∈SA, extends uniquely to the ring morphism t
: RA → RA, which

carries irreducible representations into irreducible ones; see [Aubert 1995;
Schneider and Stuhler 1997]. This homomorphism of rings is an involution.
Again, for a character χ of F×, t

: RA → RA and χ : RA → RA commute.

1.12: One defines the cuspidal support of an irreducible representation in the same
way as before (it is an element of M(CA)). The involution t preserves the
cuspidal support.

2.5. Let Du
A be the set of all the unitarizable classes in DA. Let

u(δ′, n) = L(ν
(n−1)/2
δ′ δ′, ν

(n−3)/2
δ′ δ′, . . . , ν

−(n−1)/2
δ′ δ′).

for δ′
∈ Du

A and a positive integer n.
We first recall a conjecture from [Tadić 1990]:

(U0) If π1 and π2 are irreducible unitarizable representations of
general linear groups over A, then π1 × π2 is irreducible.

Now [Tadić 1990, Section 6] and [Badulescu and Renard 2004] imply:

Proposition. Assume that (U0) holds. Let

BA = {u(δ′, n), να
δ′u(δ′, n) × ν−α

δ′ u(δ′, n) | δ′
∈ Du

A, n ∈ N, 0 < α < 1
2}.

Then

(i) If σ1, . . . , σk ∈ BA, then σ1 × . . . × σk is an irreducible unitarizable repre-
sentation of some general linear group over A.

(ii) If π is an irreducible unitarizable representation of some general linear
group over A, then there exist σ1, . . . , σm ∈ BA, unique up to a permutation,
such that

π ∼= σ1 × . . . × σm . �

2.6. For ρ ′
∈ CA and positive integers d, n, set

〈1, d〉
ρ′

= [ν
−(d−1)/2
ρ′ ρ ′, ν

(d−1)/2
ρ′ ρ ′

] ∈ SA,

〈n, d〉
ρ′

= (〈1, d〉
ν

−(n−1)/2
ρ′ ρ′

, 〈1, d〉
ν

1−(n−1)/2
ρ′ ρ′

, . . . , 〈1, d〉
ν

(n−1)/2
ρ′ ρ′

) ∈ M(SA).
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Further, 〈0, d〉
ρ′

and 〈n, 0〉
ρ′

are empty multisets (so L(〈0, d〉
ρ′

) and L(〈n, 0〉
ρ′

)

are both the identity in RA). As before, we have

[ν
k1
ρ′ ρ

′, ν
k2
ρ′ ρ

′
] = [k1, k2]

ρ′

= 〈1, k2 − k1 + 1〉
ν

(k1+k2)/2
ρ′ ρ′

,

〈1, d〉
να
ρ′ρ

′

= [−(d − 1)/2 + α, (d − 1)/2 + α]
ρ′

.

For a character χ of F× we have χ L(〈n, d〉
ρ′

) ∼= L(〈n, d〉
χρ′

). Also

u(δ(ρ ′, d), n) = L(〈n, d〉
ρ′

).

3. Involution and unitarity on unitary duals of GL(n, A)

3.1. We call an irreducible representation π of a general linear group over A rigid if

e(ρ ′)/sρ′ ∈
1
2 Z

for all ρ ′ in the cuspidal support of π .

Lemma. Assume that (U0) holds. For d, n ∈ N, ρ ′
∈ CA we have

L(〈n, d〉
ρ′

)t
= L(〈d, n〉

ρ′

).

Proof. Since t commutes with character automorphisms χ : RA → RA, it is enough
to prove the equality for unitary ρ ′

∈ CA.
The proof goes in several steps.
First we prove that L(〈n, d〉

ρ′

)t is unitarizable. We prove it by induction with
respect to n. For n = 1 we know L(〈1, d〉

ρ′

)t
= L(〈d, 1〉

ρ′

), which is unitarizable
by the proposition in §2.5.

Let n ≥ 1 and suppose that we have proved the unitarity of the representations
L(〈n, d〉

ρ′

)t for that n. The division algebra version of the proposition from §1.8
(see §2.2), together with (U0), implies that

L(〈n + 1, d〉
ρ′

) × L(〈n − 1, d〉
ρ′

) ≤ ν
−1/2
ρ′ L(〈n, d〉

ρ′

) × ν
1/2
ρ′ L(〈n, d〉

ρ′

).

Applying the involution t
: RA → RA to this relation, we get

L(〈n + 1, d〉
ρ′

)t
× L(〈n − 1, d〉

ρ′

)t
≤ ν

−1/2
ρ′ L(〈n, d〉

ρ′

)t
× ν

1/2
ρ′ L(〈n, d〉

ρ′

)t .

First observe that L(〈n, d〉
ρ′

)t is rigid (since t preserves the cuspidal support).
This fact, the unitarity of L(〈n, d〉

ρ′

)t and The proposition in §2.5 imply that
L(〈n, d〉

ρ′

)t is a product of elements of the form L(〈n′, d ′
〉
ρ′′

), where ρ ′′
∈ CA

are unitarizable. The same proposition implies that all representations

ν−α
ρ′′ L(〈n′, d ′

〉
ρ′′

) × να
ρ′′ L(〈n′, d ′

〉
ρ′′

), 0 < α < 1
2 ,
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are unitarizable. This implies that the representations

ν−α
ρ′ L(〈n, d〉

ρ′

)t
× να

ρ′ L(〈n, d〉
ρ′

)t , 0 < α < 1
2 ,

are also unitarizable. Recall that all the irreducible subquotients at the end of com-
plementary series are unitarizable ([Miličić 1973], see also [Tadić 1986] and [Tadić
1988]). This implies that all the irreducible subquotients of ν

−1/2
ρ′ L(〈n, d〉

ρ′

)t
×

ν
1/2
ρ′ L(〈n, d〉

ρ′

)t are unitarizable. In particular,

L(〈n + 1, d〉
ρ′

)t
× L(〈n − 1, d〉

ρ′

)t

is unitarizable (and irreducible, since t carries irreducible representations to the
irreducible ones).

For an irreducible representation π denote by π+ the Hermitian contragredient
of π . Then π 7→ π+ lifts to an automorphism of RA. Observe that t carries the
class of irreducible Hermitian representations to itself, since the automorphisms t

and π 7→ π+ of RA commute (one directly checks this on generators). Therefore,
L(〈n + 1, d〉

ρ′

)t
⊗ L(〈n − 1, d〉

ρ′

)t is Hermitian. Now (d) in section 3 of [Tadić
1993] implies that L(〈n + 1, d〉

ρ′

)t
⊗ L(〈n − 1, d〉

ρ′

)t is (irreducible) unitarizable,
which implies that L(〈n + 1, d〉

ρ′

)t is unitarizable. Therefore, we have proved the
inductive step.

So, we have proved that representations L(〈n, d〉
ρ′

)t for ρ ′
∈ CA unitarizable,

are unitarizable in general.

We will now get an explicit formula for L(〈n, d〉
ρ′

)t .
First note that L(〈n, d〉

ρ′

) is not induced from a proper parabolic subgroup
by an irreducible unitarizable representation (see Proposition 2.5). Therefore,
L(〈n, d〉

ρ′

)t is also not induced in that way. The proposition in §2.5 implies that
(L(〈n, d〉

ρ′

))t
= L(〈n′, d ′

〉
ρ′′

) for some n′, d ′ and ρ ′′. Since t preserves the cuspidal
support, one gets directly ρ ′ ∼= ρ ′′ and {n, d} = {n′, d ′

}. This implies the lemma if
n = d .

It remains to consider the case n 6= d . Actually, in this case it is enough to prove

L(〈n, d〉
ρ′

)t
6= L(〈n, d〉

ρ′

).

Since t is an involution, our previous discussion implies that it is enough to prove
this relation in the case

d < n.

We do this by induction on d . For d = 1,

L(〈n, 1〉
ρ′

)t
= L(〈1, n〉

ρ′

),

which is different from L(〈n, 1〉
ρ′

) since n > 1.
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Suppose d ≥ 1 and that we have proved the claim for d ′
≤ d . Let d +1 < n. We

have already observed that L(〈n +1, d〉
ρ′

)× L(〈n −1, d〉
ρ′

) ≤ ν
−1/2
ρ L(〈n, d〉

ρ′

)×

ν
1/2
ρ L(〈n, d〉

ρ′

). Applying t to this relation and using the inductive assumption, we
get

L(〈n + 1, d〉
ρ′

)t
× L(〈d, n − 1〉

ρ′

) ≤ ν−1/2
ρ L(〈d, n〉

ρ′

) × ν1/2
ρ L(〈d, n〉

ρ′

).

Suppose
L(〈n + 1, d〉

ρ′

)t
= L(〈n + 1, d〉

ρ′

).

Then

L(〈n + 1, d〉
ρ′

) × L(〈d, n − 1〉
ρ′

) ≤ ν−1/2
ρ L(〈d, n〉

ρ′

) × ν1/2
ρ L(〈d, n〉

ρ′

).

Then by the definition of the ordering ≤ on M(SA), we can not have on the left
hand side more segments than on the right hand side (since ordering is generated
by linking segments). This implies n + 1 + d ≤ 2d , i.e., n + 1 ≤ d which implies
n < d . This contradicts d + 1 < n. Thus L(〈n + 1, d〉

ρ′

)t
6= L(〈n + 1, d〉

ρ′

), what
we needed to prove. �

3.2. Corollary. Assume that (U0) holds. Then t carries the class of irreducible
unitary representations to itself .

4. On ends of complementary series of GL(n, A); character identities

4.1. The following proposition describes irreducible subquotients in the ends of
complementary series. Besides the fact that this is crucial information for deter-
mining the topology of the unitary dual, this result (essentially character identity)
will be crucial for us in obtaining formulas for (characters of) irreducible unitary
representations in terms of (characters of) standard modules.

Proposition. Assume that (U0) holds. Then for n, d ∈ N, ρ ′
∈ CA we have in RA

ν
−1/2
ρ′ L(〈n, d〉

ρ′

) × ν
1/2
ρ′ L(〈n, d〉

ρ′

) =

L(〈n − 1, d〉
ρ′

) × L(〈n + 1, d〉
ρ′

) + L(〈n, d − 1〉
ρ′

) × L(〈n, d + 1〉
ρ′

).

Proof. It is enough to prove the equality for ρ ′ unitarizable. Further, by [Tadić
1990, Proposition 4.3], it is enough to prove the proposition for n ≥ 2. Applying
involution t , we conclude that it is enough to consider only the case d ≥ 2.

Let
π = ν

−1/2
ρ′ L(〈n, d〉

ρ′

) × ν
1/2
ρ′ L(〈n, d〉

ρ′

).

We know that L(〈n − 1, d〉
ρ′

) × L(〈n + 1, d〉
ρ′

) is a subquotient of multiplicity
one in π (see §2.2).
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Applying the same argument to π ′
= ν

−1/2
ρ′ L(〈d, n〉

ρ′

)×ν
1/2
ρ′ L(〈d, n〉

ρ′

), we get
that L(〈d − 1, n〉

ρ′

) × L(〈d + 1, n〉
ρ′

) is a subquotient of π ′ of multiplicity one.
Applying t to π ′, we get from the lemma in §3.1 that L(〈n, d −1〉

ρ′

)×L(〈n, d +

1〉
ρ′

) is a subquotient of π = (π ′)t of multiplicity one. Therefore, to complete the
proof, it is enough to prove that there are no additional irreducible subquotients
besides these two.

Let σ be an irreducible subquotient of π different from the two subquotients
above. Since π is an end of complementary series, σ must be unitarizable. Since
π is rigid, σ must be rigid. This easily implies that

σ = L(〈n1, d1〉
ρ′

) × . . . × L(〈nk, dk〉
ρ′

)

for some ni ’s and di ’s. After renumbering, we can (and shall) assume that

n1 + d1 ≥ n2 + d2 ≥ · · · ≥ nk + dk .

Look at the cuspidal representation ν
−(n+d)/2+1−1/2
ρ′ ρ ′

= ν
−(n+d)/2+1/2
ρ′ ρ ′. This

is the first representation (from the negative left hand side) in the cuspidal support
of π . Then the cuspidal support tells

n1 + d1 = n + d + 1.

(We must have n1 + d1 > n2 + d2, since the multiplicity of ν
−(n+d)/2+1/2
ρ′ ρ ′ in the

cuspidal support of π is one.)
The rules for linking segments imply

d ≤ d1.

(Since ν
−(n+d)/2+1/2
ρ′ ρ ′ is the left end of only one segment in π , and there are no

segments which are more to the left, the segment starting with ν
−(n+d)/2+1/2
ρ′ ρ ′ must

be at least of length d .) Applying t , invoking the lemma in §3.1, and repeating the
preceding argument, we get

n ≤ n1.

The three relations above imply

(n1, d1) = (n + 1, d) or (n1, d1) = (n, d + 1),

that is,

L(〈n1, d1〉
ρ′

) = L(〈n + 1, d〉
ρ′

) or L(〈n1, d1〉
ρ′

) = L(〈n, d + 1〉
ρ′

).

Now the first remaining representation in the cuspidal support is

ν
−(n+d)/2+1/2+1
ρ′ ρ = ν

−(n+d)/2+3/2
ρ′ ρ.



UNITARITY IN THE JACQUET–LANGLANDS CORRESPONDENCE 183

(As above, looking at the cuspidal support of π , we can conclude that n2 + d2 >

n3 + d3 if k ≥ 3.) This implies

n2 + d2 = n + d − 1.

Now looking at the rules for linking segments, one gets directly

d − 1 ≤ d2.

(Note that ν
−(n+d)/2+3/2
ρ′ ρ ′ must be the beginning of a segment in 〈n2, d2〉

ρ′

, and
the shortest segment that can have this beginning is of length d − 1, which one
gets by intersecting the most left segment in π with the segment in π starting at
ν

−(n+d)/2+1/2
ρ′ ρ ′).

Repeating the preceding argument in the case of π t and using the lemma in §3.1
we get

n − 1 ≤ n2.

The three relations above imply

(n2, d2) = (n − 1, d) or (n2, d2) = (n, d − 1),

that is,

L(〈n2, d2〉
ρ′

) = L(〈n − 1, d〉
ρ′

) or L(〈n2, d2〉
ρ′

) = L(〈n, d − 1〉
ρ′

).

We now have four possibilities for the first two factors of σ . We shall analyze
two possibilities. Let

σ ′
=

{
L(〈n3, d3〉

ρ′

) × · · · × L(〈nk, dk〉
ρ′

) if k ≥ 3,

1 otherwise.

Suppose that σ is isomorphic to

L(〈n+1, d〉
ρ′

)× L(〈n, d −1〉
ρ′

)×σ ′ or L(〈n, d +1〉
ρ′

)× L(〈n−1, d〉
ρ′

)×σ ′.

The first representation cannot be a subquotient of π since it corresponds to at least
2n+1 segments, while π is defined by 2n segments. For the second representation,
observe that(
L(〈n, d +1〉

ρ′

)× L(〈n −1, d〉
ρ′

)×σ
)t

= L(〈d +1, n〉
ρ′

)× L(〈d, n −1〉
ρ′

)× (σ ′)t

is a subquotient of π t
= ν

−1/2
ρ′ L(〈d, n〉

ρ′

) × ν
1/2
ρ′ L(〈d, n〉

ρ′

). This is impossible,
for the same reason as in the first case.

Therefore, the only two remaining possibilities for σ are

L(〈n−1, d〉
ρ′

)×L(〈n+1, d〉
ρ′

)×σ ′ and L(〈n, d −1〉
ρ′

)×L(〈n, d +1〉
ρ′

)×σ ′.
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But since both

L(〈n − 1, d〉
ρ′

) × L(〈n + 1, d〉
ρ′

) and L(〈n, d − 1〉
ρ′

) × L(〈n, d + 1〉
ρ′

)

have in their cuspidal supports 2nd representations (counted with multiplicities),
which is exactly the number of representations in the cuspidal support of π (counted
with multiplicities), we conclude that σ ′

= 1, as needed. �

5. On characters of irreducible unitary representations of GL(n, A)

5.1. The set of nonnegative integers is denoted by Z+. Fix ρ ∈ CF and ρ ′
∈ CA.

Let RF (ρ) be the subalgebra of RF generated by{
δ([νk1ρ, νk2ρ]) | k1, k2 ∈

1
2 Z, k2 − k1 ∈ Z+

}
and RA(ρ ′) the subalgebra of RA generated by{

δ([ν
k1
ρ′ ρ

′, ν
k2
ρ′ ρ

′
]) | k1, k2 ∈

1
2 Z, k2 − k1 ∈ Z+

}
.

Clearly, both algebras are polynomial over these sets of generators. Define an
algebra isomorphism 9ρ,ρ′ : RF (ρ) → R′

A(ρ ′) by

9ρ,ρ′ : δ([νk1ρ, νk2ρ]) 7→ δ([ν
k1
ρ′ ρ

′, ν
k2
ρ′ ρ

′
])

for all k1, k2 ∈
1
2 Z, k2 − k1 ∈ Z+.

Lemma. If we assume (U0), then

9ρ,ρ′ : (L(〈n, d〉
νkρ) = L(〈n, d〉

νk
ρ′ρ

′

)

for all n, d ∈ N and k ∈
1
2 Z.

Proof. We work by induction on n. For n = 1 (and all d) the lemma holds by
definition of 9ρ,ρ′ (see §1.14 and §2.6). Fix n ≥ 1 and assume that the formula of
the lemma holds for all n′

≤ n. Applying 9ρ,ρ′ to the formula of the theorem in
§1.15 (with νkρ instead of ρ) and using the inductive assumption we get

ν
1/2
ρ′ L(〈n, d〉

νk
ρ′ρ

′

) × ν
−1/2
ρ′ L(〈n, d〉

νk
ρ′ρ

′

)

=9ρ,ρ′

(
L(〈n+1, d〉

νkρ)
)
×L(〈n−1, d〉

νk
ρ′ρ

′

)+L(〈n, d+1〉
νk
ρ′ρ

′

)×L(〈n, d−1〉
νk
ρ′ρ

′

).

Subtracting this from the formula of the proposition in §4.1 (with νk
ρ′ρ

′ instead
of ρ ′ in the formula) and using the fact that RA is an integral domain, one gets
9ρ,ρ′(L(〈n + 1, d〉

νkρ) = L(〈n + 1, d〉
νk
ρ′ρ

′

), as needed. �

5.2. From the preceding lemma and the theorem in §1.15, we immediately get:
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Proposition. Assume that (U0) holds. Let ρ ′
∈CA and n, d ∈Z, n, d ≥1. Let Wn be

the group of permutations of the set {1, 2, . . . , n}. Set W (d)
n ={w ∈ Wn; w(i)+d ≥ i

for all 1 ≤ i ≤ n}. Then we have in RA

L(([νρ′ρ ′, νd
ρ′ρ

′
], [ν2

ρ′ρ
′, νd+1

ρ′ ρ ′
], . . . , [νn

ρ′ρ
′, νd+n−1

ρ′ ρ ′
]))

=

∑
w∈W (d)

n

(−1)w
n∏

i=1

δ([νi
ρ′ρ

′, ν
w(i)+(d−1)
ρ′ ρ ′

]). �

6. Jacquet–Langlands correspondence

6.1. A. I. Badulescu [2002] studied very natural extensions of Jacquet–Langlands
correspondences. We recall here some of his considerations (in a slightly different
notation).

In §2.3 we recalled the Jacquet–Langlands correspondences

JLp : D(GL(p, A)) → D(GL(pdA, F)),

which are uniquely determined by the requirement that the characters 2δ′ and
2JLp(δ′) satisfy

(−1)p2δ′(g′) = (−1)pdA2JLp(δ′)(g)

whenever g′ and g have the same characteristic polynomials, and when this poly-
nomial is separable.

The correspondences above are bijections, so instead of the correspondences
JLp, we could consider their inverses JL−1

p .
The mappings JLp, p ≥ 1, define in a natural way an injective mapping

JL : DA → DF .

Since the algebras RA and RF are polynomial over DA and DF respectively, JLp

can be uniquely extended to a ring homomorphism of RA into RF , which will be
again denoted by

JL : RA → RF .

Clearly, the extension is also injective.
The homomorphism JL carries Groth GL(p, A) to Groth GL(pdA, F), and we

denote this restriction again by

JLp : Groth GL(p, A) → Groth GL(pdA, F).

Then this extended JLp again satisfies the relation

(−1)p2π ′(π ′) = (−1)pdA2JLp(π ′)(g)

for any π ∈ GL(p, A)˜.
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Let
D(dA)

F =
⋃
p≥1

D(GL(pdA, F)).

Then JL defines a bijection of DA onto D(dA)
F . Denote the inverse mapping by

LJ : D(dA)
F → DA.

There exists a unique ring homomorphism RF → RA which extends LJ and which
sends all the elements from DF \ D(dA)

F to 0 ∈ RA. This extension will be denoted
again by

LJ : RF → RA.

If dA |m, we denote by LJm the restriction

LJm : Groth GL(m, F) → Groth GL(m/dA, A).

Otherwise, we take (formally) LJm = 0 (as a mapping from Groth GL(m, F) into
RA).

Let IF,A be the ideal in RF generated by DF \D(dA)
F (clearly, this ideal is graded).

This is just the kernel of LJ. Therefore,

RA ∼= RF/IF,A.

Further, suppose that ϕ ∈Groth GL(m, F) is in IF,A and dA |m. Then for regular
semisimple g ∈ GL(m, F) we have 2ϕ(g) = 0, where 2ϕ denotes the formal
character of ϕ. Therefore,

(−1)m2ϕ(g) = (−1)m/dA2LJ(ϕ)(g′)

whenever g and g′ have the same characteristic polynomials, and when this poly-
nomial is separable. Clearly,

LJ ◦ JL = idRA .

The correspondence JL: RA → RF , which we considered first, does not behave
well with respect to irreducibility. Namely, one sees easily (as in the comments
after [Badulescu 2002, Theorem 3.1]) that JL does not in general carry irreducible
representations to irreducible ones (up to a sign). A similar situation happens with
unitarity. In general even irreducible unitary representations are carried neither
to irreducible unitary representations (up to a sign), nor to linear combinations of
irreducible unitary representations.

Assuming (U0) holds, we shall see in the rest of the paper that the correspon-
dence LJ: RF → RA behave well with respect to irreducible unitary representations,
i.e., that it carries such representations either again to the irreducible unitary rep-
resentations (up to a sign) or to 0.
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6.2. Let ρ ′
∈ CA. Suppose that δ([ρ, νsρ′−1ρ]) ∈ DF corresponds to ρ ′ under the

Jacquet–Langlands correspondence (here ρ ∈ CF ). Then δ([ρ, νsρ′ k−1ρ]) corre-
sponds to δ([ρ ′, νk−1

ρ′ ρ ′
]).

6.3. Fix an irreducible cuspidal representation ρ of GL(m, F). Let s ′m be the
smallest common multiple of m and dA. The fact s ′m |dAm implies

s ′
|dA.

Note that δ([ρ, νs′
−1ρ]) is an irreducible essentially square-integrable represen-

tation of GL(s ′m, F). Therefore, it lifts under the Jacquet–Langlands correspon-
dence to an irreducible essentially square-integrable representation ρ ′ in RA. A
short discussion implies that ρ ′ is cuspidal, and then sρ′ = s ′.

Now ρ ′ is a representation of GL(p, A), where p = msρ′/dA. Since s ′m is
the smallest common multiple of m and dA, this implies (p, sρ′) = 1 (if k were
the greatest common divisor, then kdA and km would divide s ′m). Further, the
smallest common multiple of dA and pdA/sρ′ = m is sρ′m = pdA.

6.4. Assuming (U0) we shall compute LJ(π) for irreducible unitary representa-
tions of general linear groups over the field. Since LJ is a ring homomorphism, for
this it will be enough to compute

LJ(L(〈r, d〉
ρ) ∈ RA, r, d ∈ N.

Suppose that we are in the situation of §6.3, and suppose that sρ′ = 1 (which
means that ρ corresponds to ρ ′ under the Jacquet–Langlands correspondence).
Then the theorem in §1.15 and the proposition in §5.2 directly imply

LJ(L(〈r, d〉
ρ)) = L(〈r, d〉

ρ′

).

It remains therefore to consider the case

sρ′ ≥ 2.

We shall assume this in the rest of the paper.
If r = 1, then we know LJ(L(〈1, d〉

ρ)) by §6.2, so we can assume also r ≥ 2.
To simplify the notation, we shall often denote below sρ′ by n:

sρ′ = n.

7. Calculation of the Jacquet–Langlands correspondence in the unitary case
I: the case r ≤ d and sρ′ | d

7.1. In this section, we assume r ≤ d and sρ′ |d (i.e., n |d).
We shall use below the following technical lemma, identical to [Tadić 1996,

Lemma 3.1], whose statement we repeat here for convenience.
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Denote by W ′
r the group of permutations of {0, 1, . . . , r − 1}. The sign of a

permutation w will be denoted by (−1)w.

Lemma. Write r = an + b, with a, b ∈ Z such that 0 ≤ b ≤ n − 1.

(i) Let

W ′

r (n) = {w ∈ W ′

r ; n |(w(i) − i) for all 0 ≤ i ≤ r − 1}.

For 0 ≤ ` ≤ min(n, r) − 1, set

W ′

r (n; `) = {w ∈ W ′

r (n) ; w(i) = i if n -(i − `)}.

Then W ′
r (n) is a subgroup of W ′

r , W ′
r (n; `) are subgroups of W ′

r (n) and
W ′

r (n) is a direct product of W ′
r (n; `), for ` = 0, 1, 2, . . . , min(n, r) − 1.

(ii) Let 0 ≤ ` ≤ b−1 (resp. b ≤ ` ≤ min(n, r)−1). For w ∈ W ′

a+1 (resp. w ∈ W ′
a)

define w∗
∈ W ′

r by

w∗( j) =

{
j if n -(i − `),

` + nw(i) if j = ` + ni.

Then w 7→w∗ is an isomorphism of W ′

a+1 (resp. W ′
a) onto W ′

r (n; `). Further,
(−1)w = (−1)w

∗

. �

7.2. Let

5 = L(([ρ, νd−1ρ], [νρ, νdρ], . . . , [νr−1ρ, νr−1+d−1ρ])).

We now start the computation of

LJ(5) = LJ
(
L(([ρ, νd−1ρ], [νρ, νdρ], . . . , [νr−1ρ, νr−1+d−1ρ]))

)
=

∑
w∈W ′

r

(−1)w
r−1∏
i=0

LJ
(
δ([νiρ, νw(i)+(d−1)ρ])

)
=

∑
w∈W ′

r (n)

(−1)w
r−1∏
i=0

LJ
(
δ([νiρ, νw(i)+(d−1)ρ])

)
,

where we have used the fact that n |d and r ≤ d .
Write r = an +b with a, b ∈ Z and 0 ≤ b ≤ n −1. We use the preceding lemma

to modify the sum:

LJ(5) =

∑
w∈W ′

r (n)

(−1)w
r−1∏
i=0

LJ
(
δ([νiρ, νw(i)+(d−1)ρ])

)
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=

∑
w0,w1,...,

wb−1∈W ′

a+1

∑
wb,wb+1...,

wmin(n,r)−1∈W ′
a

b−1∏
`=0

(−1)w`

a∏
i=0

LJ(δ([ν`+n iρ, ν`+n w`(i)+(d−1)ρ]))

×

min(n,r)−1∏
`=b

(−1)w`

a−1∏
i=0

LJ(δ([ν`+n iρ, ν`+n w`(i)+(d−1)ρ]))

=

b−1∏
`=0

∑
w`∈W ′

a+1

(−1)w`

a∏
i=0

LJ(δ([ν`+n iρ, ν`+n w`(i)+(d−1)ρ]))

×

min(n,r)−1∏
`=b

∑
w`∈W ′

a

(−1)w`

a−1∏
i=0

LJ(δ([ν`+n iρ, ν`+n w`(i)+(d−1)ρ])).

Now assume that δ([ρ, νn−1ρ]) and ρ ′ correspond under the Jacquet–Langlands
correspondence as in §6.2. Then

LJ(5) = (

b−1∏
`=0

∑
w`∈W ′

a+1

(−1)w`

a∏
i=0

δ([ν`+n iρ ′, ν`+n iν
w`(i)−i+(d/n−1)

ρ′ ρ ′
])

×

min(n,r)−1∏
`=b

∑
w`∈W ′

a

(−1)w`

a−1∏
i=0

δ([ν`+n iρ ′, ν`+n iν
w`(i)−i+(d/n−1)

ρ′ ρ ′
])

= (

b−1∏
`=0

ν
`/n
ρ′

∑
w`∈W ′

a+1

(−1)w`

a∏
i=0

δ([νi
ρ′ρ

′, ν
w`(i)+(d/n−1)

ρ′ ρ ′
])

×

min(n,r)−1∏
`=b

ν
`/n
ρ′

∑
w`∈W ′

a

(−1)w`

a−1∏
i=0

δ([νi
ρ′ρ

′, ν
w`(i)+(d/n−1)

ρ′ ρ ′
]).

Note that r ≤ d implies r − b ≤ d , which implies a ≤ d/n.
If b ≥ 1, then r −b < d, which implies a < d/n and further a +1 ≤ d/n (since

n |d). Therefore

LJ(5) =

b−1∏
`=0

ν
`/n
ρ′ L(([ρ ′, ν

d/n−1
ρ′ ρ ′

], [νρ′ρ ′, ν
d/n
ρ′ ρ ′

], . . . , [νa
ρ′ρ

′, ν
a+d/n−1
ρ′ ρ ′

]))

×

min(n,r)−1∏
`=b

ν
`/n
ρ′ L(([ρ ′, ν

d/n−1
ρ′ ρ ′

], [νρ′ρ ′, ν
d/n
ρ′ ρ ′

], . . . , [νa−1
ρ′ ρ ′, ν

a−1+d/n−1
ρ′ ρ ′

])).
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7.3. Now suppose that ρ is unitary and that δ(ρ, sρ′) = δ(ρ, n) corresponds to ρ ′′

under the Jacquet–Langlands correspondence. Then ρ ′′ is unitary. Further

ρ ′′
= LJ(δ(ρ, n)) = LJ(ν−(n−1)/2δ([ρ, νn−1ρ])) = ν−(n−1)/2LJ(δ([ρ, νn−1ρ]))

= ν
−(n−1)/(2n)

ρ′ ρ ′.

Note that νρ′ = νρ′′ .
Now we compute (for r ≤ d and n |d)

LJ(L(〈r, d〉
ρ))

= LJ
(
ν

−
r+d

2 +1L(([ρ, νd−1ρ], [νρ, νdρ], . . . , [νr−1ρ, νr−1+d−1ρ]))
)

= ν
−

r+d
2 +1

b−1∏
`=0

ν
`
n
ρ′ ν

a+1+d/n
2 −1

ρ′ L(〈a + 1, d/n〉
ρ′

)

×

min(n,r)−1∏
`=b

ν
`
n
ρ′ ν

a+d/n
2 −1

ρ′ L(〈a, d/n〉
ρ′

).

Since

ν
−

r+d
2 +1

= ν
−r−d+2

2n
ρ′ = ν

−an−b−d+2
2n

ρ′ ,

we have

LJ(L(〈r, d〉
ρ))

=

b−1∏
`=0

ν
−b+2+2`−n

2n
ρ′ L(〈a + 1, d/n〉

ρ′

)

min(n,r)−1∏
`=b

ν
−b+2+2`−2n

2n
ρ′ L(〈a, d/n〉

ρ′

)

=

b−1∏
`=0

ν
−b+2+2`−n

2n
ρ′ L(〈a + 1, d/n〉

ν

n−1
2n

ρ′ ρ′′

)

×

min(n,r)−1∏
`=b

ν
−b+2+2`−2n

2n
ρ′ L(〈a, d/n〉

ν

n−1
2n

ρ′ ρ′′

)

=

b−1∏
`=0

ν
−b+1+2`

2n
ρ′′ L(〈a + 1, d/n〉

ρ′′

)

min(n,r)−1∏
`=b

ν
−b+1+2`−n

2n
ρ′′ L(〈a, d/n〉

ρ′′

)

=

b−1
2∏

`′=−
b−1

2

ν
`′

n
ρ′′ L(〈a + 1, d/n〉

ρ′′

)

min(n,r)−1∏
`=b

ν
(−b−n+1)/2+`

n
ρ′′ L(〈a, d/n〉

ρ′′

).

For an irreducible representation π of GL(l, A), positive integer l and a non-
negative integer k, define the string

strνρ′ (k, l, π)
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as

(ν

−(k−1)/2
l

ρ′ π) × (ν

−(k−1)/2+1
l

ρ′ π) × (ν

−(k−1)/2+2
l

ρ′ π) × · · · × (ν

(k−1)/2
l

ρ′ π).

If k = 0, we take the string to be the identity of RA (i.e., the trivial representation
of the trivial group GL(0, A)).

The next result follows directly from this:

Proposition. Suppose that (U0) holds. Assume that δ(ρ, n) corresponds to ρ ′′
∈CA

under the Jacquet–Langlands correspondence. Let

r ≤ d, n |d, 1 ≤ n.

Write
r = an + b, a, b ∈ Z, 0 ≤ b ≤ n − 1.

Then

LJ(L(〈r, d〉
ρ)) = strνρ′′ (b, n, L(〈a + 1, d/n〉

ρ′′

))

× strνρ′′ (min(n, r) − b, n, L(〈a, d/n〉
ρ′′

)). �

Remark. Our definition of strνρ′ (k, l, π) is more general than we need here. In this
paper, whenever we use strνρ′ (k, l, π), we have l = sρ′ = n. Then strνρ′ (k, n, π),
which equals strν(k, 1, π) in this case, will be denoted simply by

str(k, π),

and we have

str(k, π) = (ν−(k−1)/2π) × (ν−(k−1)/2+1π) × (ν−(k−1)/2+2π) × · · · × (ν(k−1)/2π),

with neither νρ′ nor n = sρ′ showing up on the right-hand side.
We shall use both notations, str(k, π) and strνρ′ (k, n, π). The later will be con-

venient when we study unitarity.

Now the proposition above can be rewritten:

Proposition′. With the same assumptions as in the preceding proposition, we have

LJ(L(〈r, d〉
ρ)) = str(b, L(〈a + 1, d/n〉

ρ′′

)) str(min(n, r) − b, L(〈a, d/n〉
ρ′′

)). �

We can rewrite this formula as

LJ(L(〈r, d〉
ρ)) = str(r − [r/n]n, L(〈[r/n] + 1, d/n〉

ρ′′

))

× str(min(n, r) − r + [r/n]n, L(〈[r/n], d/n〉
ρ′′

)),

where [x] denotes the greatest integer which does not exceed x .



192 MARKO TADIĆ

8. Unitarity of the Jacquet–Langlands correspondence of irreducible unitary
representations, I

8.1. We now show that LJ(L(〈r, d〉
ρ)), which we have computed in the previous

section, is irreducible and unitary if ρ ∈ CF is unitary. After this, we shall show
that LJ(νβ(L(〈r, d〉

ρ)) × ν−β(L(〈r, d〉
ρ))) is unitary for 0 < β < 1

2 .
If b = 0, then strνρ′′ (b, n, L(〈a+1, d/n〉

ρ′′

)) is irreducible unitary since it equals
1. Suppose b ≥ 1. Then 0 ≤ (b − 1)/(2n) < n/(2n) =

1
2 , and we conclude that

strνρ′′ (b, n, L(〈a + 1, d/n〉
ρ′′

)) is again irreducible unitary.
If r < n, then strνρ′′ (min(n, r)−b, n, L(〈a, d/n〉

ρ′′

)) is irreducible unitary since
it equals 1. Suppose r ≥ n. Then

strνρ′′ (min(n, r) − b, n, L(〈a, d/n〉
ρ′′

)) = strνρ′′ (n − b, n, L(〈a, d/n〉
ρ′′

)).

Since now 0 ≤ (n − b − 1)/(2n) ≤ (n − 1)/(2n) < 1
2 , this implies that, once more,

strνρ′′ (min(n, r) − b, n, L(〈a, d/n〉
ρ′′

) is irreducible unitary. Thus LJ(L(〈r, d〉
ρ))

is irreducible unitary.

For 0 < β < 1
2 , set

π(L(〈r, d〉
ρ), β) = νβ L(〈r, d〉

ρ) × ν−β L(〈r, d〉
ρ).

We show that LJ(π(L(〈r, d〉
ρ), β)) is irreducible unitary. Observe that

LJ(π(L(〈r, d〉
ρ), β))

= νβLJ(L(〈r, d〉
ρ))ν−βLJ(L(〈r, d〉

ρ))

= ν
β/n
ρ′′ strνρ′′ (b, n, L(〈a + 1, d/n〉

ρ′′

)) × ν
−β/n
ρ′′ strνρ′′ (b, n, L(〈a + 1, d/n〉

ρ′′

))

× ν
β/n
ρ′′ strνρ′′ (min(n, r) − b, n, L(〈a, d/n〉

ρ′′

))

× ν
−β/n
ρ′′ strνρ′′ (min(n, r) − b, n, L(〈a, d/n〉

ρ′′

)).

This implies that it is enough to show unitarity (and irreducibility, which follows
from unitarity) for

ν
β/n
ρ′′ strνρ′′ (b, n, L(〈a + 1, d/n〉

ρ′′

)) × ν
−β/n
ρ′′ strνρ′′ (b, n, L(〈a + 1, d/n〉

ρ′′

))

if b ≥ 1, and for

ν
β/n
ρ′′ strνρ′′ (n − b, n, L(〈a, d/n〉

ρ′′

)) × ν
−β/n
ρ′′ strνρ′′ (n − b, n, L(〈a, d/n〉

ρ′′

))

if r ≥n. For the first representation, we need to show that 0≤ (b−1)/(2n)+β/n < 1
2

if b ≥ 1; for the second, that 0 ≤ (n−b−1)/(2n)+β/n < 1
2 if r ≥ n. This obviously

holds since β < 1
2 .
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9. Calculation of the Jacquet–Langlands correspondence in the unitary case
II: the case r ≤ d and sρ′ not dividing d

9.1. In this section we assume that r ≤ d and sρ′ -d (i.e., n -d).
If n -rd, then one sees directly that

LJ
(
L(([ρ, νd−1ρ], [νρ, νdρ], . . . , [νr−1ρ, νr−1+d−1ρ]))

)
= 0.

Therefore, we need only to consider the case n |rd. Soon we shall see that a stronger
assumption needs to be imposed to get a nonzero result.

Write r = an + b, with a, b ∈ Z and 0 ≤ b ≤ n − 1. Now n |rd implies n |bd.
We continue to assume

n ≥ 2.

If r = 1, then LJ(L(([ρ, νd−1ρ]))) = 0 since n -d. Therefore, we shall assume
in the sequel that

r ≥ 2.

9.2. The next result is a modification of [Tadić 1996, Lemma 4.1].

Lemma. Suppose n -d . If the set

Xr (n, d) = {w ∈ W ′

r ; n |(d + w(i) − i) for all 0 ≤ i ≤ r − 1}

= {w ∈ W ′

r ; n |(d + i − w−1(i)) for all 0 ≤ i ≤ r − 1}

is nonempty, then n |r .

Proof. Suppose Xr (n, d) 6= ∅. Clearly, the identity is not in Xr (n, d) since n -d .
Take some w ∈ Xr (n, d). Note that for 0 ≤ i ≤ r − 2, n |(d + w(i) − i) and

n |(d+w(i+1)−i−1) imply n |(w(i)−w(i+1)+1) Suppose w(i)−w(i+1)+1=0
for all i as above. This implies w(1) = w(0)+1, w(2) = w(0)+2, . . . , w(r −2) =

w(0) + r − 2, which implies w(0) = 1 (since w cannot be identity). This implies
w(r − 1) = 0.

Since w ∈ Xr (n, d), we get n |(d+1) and n |(d+w(r−1)−(r−1))= (d+1−r).
These two relations imply n |r .

Therefore it remains to consider the case when

w(i) − w(i + 1) + 1 6= 0

for some 0 ≤ i ≤ r −2. If w(i)−w(i +1)+1 is negative, then w(i)−w(i +1)+1 ≤

−n, which implies w(i) + n + 1 ≤ w(i + 1). This implies n + 1 ≤ r − 1. If
w(i)−w(i +1)+1 is positive, then n ≤ w(i)−w(i +1)+1, which implies n ≤ r .
Thus we have proved (up to now) that

n ≤ r.
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We have written r = an + b with a, b ∈ Z and 0 ≤ b ≤ n − 1. We know that
a ≥ 1. Write

d = cn + d ′, with c, d ′
∈ Z and 1 ≤ d ′

≤ n − 1 ≤ r − 1,

which is possible since n -d .
Since the elements of Xr (n, d)⊆ W ′

r are bijections, for each i ∈ {0, 1, . . . , n−1}

we must have

card({i + kn; k ∈ Z} ∩ [0, r − 1]) = card({i − d + kn; k ∈ Z} ∩ [0, r − 1])

= card({i − d ′
+ kn; k ∈ Z} ∩ [0, r − 1])

= card({i + kn; k ∈ Z} ∩ [d ′, d ′
+ r − 1]).

From this we get

card({i + kn; k ∈ Z} ∩ [0, d ′
− 1]) + card({i + kn; k ∈ Z} ∩ [d ′, r − 1])

= card({i + kn; k ∈ Z} ∩ [d ′, r − 1]) + card({i + kn; k ∈ Z} ∩ [r, d ′
+ r − 1]).

Thus for each i ∈ {0, 1, . . . , n − 1} we have

card({i + kn; k ∈ Z} ∩ [0, d ′
− 1]) = card({i + kn; k ∈ Z} ∩ [r, d ′

+ r − 1]).

The last relation can be written as

card({i +kn; k ∈ Z}∩[0, d ′
−1]) = card({i +kn; k ∈ Z}∩[an+b, an+b+d ′

−1]).

Therefore, for each i ∈ {0, 1, . . . , n − 1}

card({i + kn; k ∈ Z} ∩ [0, d ′
− 1]) = card({i + kn; k ∈ Z} ∩ [b, b + d ′

− 1]),

i.e.,
card({i} ∩ [0, d ′

− 1]) = card({i + kn; k ∈ Z} ∩ [b, b + d ′
− 1]).

Suppose b ≥ 1. The preceding relation for i = d ′
−1 implies b ≤ d ′

−1, and further
b < d ′. The case i = d ′ implies d ′ < b. This is a contradiction. The proof is now
complete. �

9.3. We also need the following result, a slight modification of [Tadić 1996,
Lemma 4.2]. The proof is almost the same. Therefore, we omit it here.

Lemma. Suppose r = an (a ∈ Z, a ≥ 1) and n -d.

(i) W ′
r (n)Xr (n, d)W ′

r (n) = Xr (n, d).

(ii) Xr (n, d) normalizes W ′
r (n).

(iii) For any w ∈ Xr (n, d) we have Xr (n, d) = wW ′
r (n) = W ′

r (n) w.
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(iv) For each i ∈ {0, 1, 2, . . . , r − 1} write i = s(i)n + t (i) where s(i), t (i) ∈ Z

and 0 ≤ t (i)≤ n−1. Let d = cn+d ′, where c, d ′
∈ Z, 1 ≤ d ′

≤ n−1 ( ≤ r −1)

(d ′
6= 0 since n -d). Define w(n,d) ∈ W ′

r by

w(n,d)(i) =

{
i + (n − d ′) if t (i) ≤ d ′

− 1,

i − d ′ if t (i) ≥ d ′.

Then w(n,d) ∈ Xr (n, d) and (−1)w(n,d) = (−1)(r/n) (n−d ′)d ′

= (−1)(r/n) (n−d)d .

9.4. As before, let 5 = L(([ρ, νd−1ρ], [νρ, νdρ], . . . , [νr−1ρ, νr−1+d−1ρ])).
Recall that we assume in this section that r ≤d and sρ′ =n -d. To get a nontrivial

LJ(5), we have seen that one needs to consider only the case sρ′ = n |rd. The
lemma in §9.2 gives further reduction to the case sρ′ = n |r (see the calculation
bellow). This is the reason why we shall assume it in the sequel.

Now we compute in this case

LJ(5) = LJ
(
L(([ρ, νd−1ρ], [νρ, νdρ], . . . , [νr−1ρ, νr−1+d−1ρ]))

)
=

∑
w∈W ′

r

(−1)w
r−1∏
i=0

LJ
(
δ([νiρ, νw(i)+(d−1)ρ])

)
=

∑
w∈Xr (n,d)

(−1)w
r−1∏
i=0

LJ
(
δ([νiρ, νw(i)+(d−1)ρ])

)
=

∑
w∈w(n,d)W ′

r (n)

(−1)w
r−1∏
i=0

LJ
(
δ([νiρ, νw(i)+(d−1)ρ])

)
= (−1)w(n,d)

∑
w∈W ′

r (n)

(−1)w
r−1∏
i=0

LJ
(
δ([νiρ, νw(n,d)w(i)+(d−1)ρ])

)
= (−1)a(n−d)d

∑
w∈W ′

r (n)

(−1)w
n−1∏
`=0

a−1∏
j=0

LJ
(
δ([ν`+njρ, νw(n,d)w(`+nj)+(d−1)ρ])

)
.

Thus

(−1)a(n−d)dLJ(5)

=

∑
w′

0∈W ′
r (n;0),...,

w′

n−1∈W ′
r (n;n−1)

n−1∏
`=0

(−1)w
′

`

a−1∏
j=0

LJ
(
δ([ν`+njρ, νw(n,d)w

′

`(`+nj)+(d−1)ρ])
)

=

∑
w0,...,wn−1∈W ′

a

n−1∏
`=0

(−1)w`

a−1∏
j=0

LJ
(
δ([ν`+njρ, νw(n,d)(`+nw`( j))+(d−1)ρ])

)
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=

∑
w0,...,wn−1∈W ′

a

d ′
−1∏

`=0

(−1)w`

a−1∏
j=0

LJ
(
δ([ν`+njρ, νw(n,d)(`+nw`( j))+(d−1)ρ])

)
×

n−1∏
`=d ′

(−1)w`

a−1∏
j=0

LJ
(
δ([ν`+njρ, νw(n,d)(`+nw`( j))+(d−1)ρ])

)
=

∑
w0,...,wn−1∈W ′

a

d ′
−1∏

`=0

(−1)w`

a−1∏
j=0

LJ
(
δ([ν`+njρ, ν`+nw`( j)+(n−d ′)+(d−1)ρ])

)
×

n−1∏
`=d ′

(−1)w`

a−1∏
j=0

LJ
(
δ([ν`+njρ, ν`+nw`( j)−d ′

+(d−1)ρ])
)

=

d ′
−1∏

`=0

∑
w`∈W ′

a

(−1)w`

a−1∏
j=0

LJ
(
δ([ν`+njρ, ν`+nw`( j)+(n−d ′)+(d−1)ρ])

)
×

n−1∏
`=d ′

∑
w`∈W ′

a

(−1)w`

a−1∏
j=0

LJ
(
δ([ν`+njρ, ν`+nw`( j)−d ′

+(d−1)ρ])
)
.

We assume in the sequel that δ([ρ, νn−1ρ]) corresponds to ρ ′ under the Jacquet–
Langlands correspondence as in §6.2. Then the previous expression becomes

=

d ′
−1∏

`=0

∑
w`∈W ′

a

(−1)w`

a−1∏
j=0

δ([ν`+njρ ′, ν`+njν
w`( j)− j+c
ρ′ ρ ′

])

×

n−1∏
`=d ′

∑
w`∈W ′

a

(−1)w`

a−1∏
j=0

δ([ν`+njρ ′, ν`+njν
w`( j)− j+c−1
ρ′ ρ ′

])

=

d ′
−1∏

`=0

ν
`/n
ρ′

∑
w`∈W ′

a

(−1)w`

a−1∏
j=0

δ([ν
j
ρ′ρ

′, ν
w`( j)+c
ρ′ ρ ′

])

×

n−1∏
`=d ′

ν
`/n
ρ′

∑
w`∈W ′

a

(−1)w`

a−1∏
j=0

δ([ν
j
ρ′ρ

′, ν
w`( j)+c−1
ρ′ ρ ′

])

=

d ′
−1∏

`=0

ν
`/n
ρ′ L(([ρ ′, νc

ρ′ρ
′
], . . . , [νa−1

ρ′ ρ ′, νa−1+c
ρ′ ρ ′

]))

×

n−1∏
`=d ′

ν
`/n
ρ′ L(([ρ ′, νc−1

ρ′ ρ ′
], . . . , [νa−1

ρ′ ρ ′, νa−1+c−1
ρ′ ρ ′

]))

since a ≤ c, and then clearly a < c + 1. (Note that we assume r ≤ d , hence
an ≤ cn + d ′, hence an < cn, hence a < c; in particular, a ≤ c.)
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We have proved

LJ(5) = LJ
(
L(([ρ, νd−1ρ], . . . , [νr−1ρ, νr−1+d−1ρ]))

)
= (−1)a(n−d)d

d ′
−1∏

`=0

ν
`/n
ρ′ L(([ρ ′, νc

ρ′ρ
′
], . . . , [νa−1

ρ′ ρ ′, νa−1+c
ρ′ ρ ′

]))

×

n−1∏
`=d ′

ν
`/n
ρ′ L(([ρ ′, νc−1

ρ′ ρ ′
], . . . , [νa−1

ρ′ ρ ′, νa−1+c−1
ρ′ ρ ′

])).

9.5. Now suppose that ρ is unitary and that ρ ′′ corresponds to δ(ρ, sρ′) = δ(ρ, n)

under the Jacquet–Langlands correspondence (as at the beginning of §7.3). Then
ρ ′′ is unitary and

ρ ′′
= LJ(δ(ρ, n)) = LJ(ν−(n−1)/2δ([ρ, νn−1ρ])) = ν

−(n−1)/(2n)

ρ′ ρ ′,

that is,

ρ ′′
= ν

−(n−1)/(2n)

ρ′ ρ ′, ρ ′
= ν

(n−1)/(2n)

ρ′ ρ ′′, νρ′ = νρ′′ .

Now (for n -d)

LJ(L(〈r, d〉
ρ))

= LJ(ν−
r+d

2 +1L(([ρ, νd−1ρ], . . . , [νr−1ρ, νr−1+d−1ρ])))

= (−1)a(n−d)dν
−

r+d
2 +1

d ′
−1∏

`=0

ν
`
n
ρ′ L(([ρ ′, νc

ρ′ρ
′
], . . . , [νa−1

ρ′ ρ ′, νa−1+c
ρ′ ρ ′

]))

×

n−1∏
`=d ′

ν
`
n
ρ′ L(([ρ ′, νc−1

ρ′ ρ ′
], . . . , [νa−1

ρ′ ρ ′, νa−1+c−1
ρ′ ρ ′

]))

= (−1)a(n−d)dν
−

a+c+d ′/n
2 +

1
n

ρ′

d ′
−1∏

`=0

ν
`
n
ρ′ ν

a+c+1
2 −1

ρ′ L(〈a, c + 1〉
ρ′

)

×

n−1∏
`=d ′

ν
`
n
ρ′ ν

a+c
2 −1

ρ′ L(〈a, c〉ρ
′

)

= (−1)a(n−d)d
d ′

−1∏
`=0

ν
2`−n−d ′

+2
2n

ρ′ L(〈a, c + 1〉
ρ′

)

n−1∏
`=d ′

ν
2`−2n−d ′

+2
2n

ρ′ L(〈a, c〉ρ
′

)

=(−1)a(n−d)d
d ′

−1∏
`=0

ν
2`−n−d ′

+2
2n

ρ′ L(〈a, c+1〉
ν

n−1
2n

ρ′ ρ′′

)

n−1∏
`=d ′

ν
2`−2n−d ′

+2
2n

ρ′ L(〈a, c〉ν
n−1
2n

ρ′ ρ′′

)

= (−1)a(n−d)d
d ′

−1∏
`=0

ν
2`−d ′

+1
2n

ρ′′ L(〈a, c + 1〉
ρ′′

)

n−1∏
`=d ′

ν
2`−n−d ′

+1
2n

ρ′′ L(〈a, c〉ρ
′′

)
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= (−1)a(n−d)d

d ′
−1
2∏

`=−
d ′

−1
2

ν
`
n
ρ′′ L(〈a, c + 1〉

ρ′′

)

n−1∏
`=d ′

ν
(−n−d ′

+1)/2+`
n

ρ′′ L(〈a, c〉ρ
′′

).

Therefore, we have proved:

Proposition. Suppose that (U0) holds. Assume n -d, n |r , and r ≤ d. Write d =

cn + d ′, with c, d ∈ Z and 1 ≤ d ′
≤ n − 1. Then

LJ(L(〈r, d〉
ρ))

= (−1)a(n−d)d strνρ′′ (d ′, n, L(〈r/n, c + 1〉
ρ′′

)) strνρ′′ (n − d ′, n, L(〈r/n, c〉ρ
′′

))

= (−1)a(n−d)d str(d ′, L(〈r/n, c + 1〉
ρ′′

)) str(n − d ′, L(〈r/n, c〉ρ
′′

)). �

This expression can be also written as

(−1)a(n−d)d str(d − [d/n]n, L(〈r/n, [d/n] + 1〉
ρ′′

))

× str(([d/n] + 1)n − d, L(〈r/n, [d/n]〉
ρ′′

)).

10. Unitarity of Jacquet–Langlands correspondence of irreducible unitary
representations, II

Under the assumptions of the previous section, we first show in this section that
LJ(L(〈r, d〉

ρ)) is unitary (we assume ρ to be unitary). Then we show that

LJ
(
νβ(L(〈r, d〉

ρ)) × ν−β(L(〈r, d〉
ρ))

)
is unitary for 0 < β < 1

2 (under the same assumptions).
For the unitarity of LJ(L(〈r, d〉

ρ)), it is enough to show that

0 ≤
d ′

−1
2n

<
1
2

and 0 ≤
n−d ′

−1
2n

<
1
2
.

Both obviously hold (recall 1 ≤ d ′
≤ n − 1).

For the complementary series, we need to see that

0 ≤
d ′

−1
2n

+
β

n
<

1
2

and 0 ≤
n−d ′

−1
2n

+
β

n
<

1
2

for 0 < β < 1
2 (see Section 9). This holds since 1 ≤ d ′

≤ n − 1 and β < 1
2 .

11. Jacquet–Langlands correspondence in the unitary case:
the remaining cases

It remains to compute LJ(L(〈d, r〉
ρ)) in the case d ≥ r . Since LJ and t commute

up to a sign (see [Badulescu 2002, Theorem 3.17]), we have

LJ(L(〈d, r〉
ρ)) = LJ(L(〈r, d〉

ρ)t) = ±LJ(L(〈r, d〉
ρ))t .
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Therefore, we can apply our previous calculations. We have two cases.

• If r ≤ d, n |d, r = an + b, a, b ∈ Z, 0 ≤ b ≤ n − 1, 1 ≤ n, then

LJ(L(〈d, r〉
ρ)) = ±LJ(L(〈r, d〉

ρ))t

= ± str(b, L(〈d/n, a + 1〉
ρ′′

)) str(min(n, r) − b, L(〈d/n, a〉
ρ′′

)).

• If n -d, n |r, r ≤ d, d = cn + d ′, c, d ∈ Z, 1 ≤ d ′
≤ n − 1, then

LJ(L(〈d, r〉
ρ)) = ±LJ(L(〈r, d〉

ρ))t

= ±(−1)a(n−d)d str(d ′, L(〈c+1, r/n〉
ρ′′

)) str(n−d ′, L(〈c, r/n〉
ρ′′

)).

Here too unitarity is preserved, by the results in Sections 8 and 10, since the
involution preserves unitarity. (We assume as before that (U0) holds.)

One can compute the sign in the two preceding formulas using [Badulescu 2002,
Theorem 3.17]. (Our involutions differ by a sign from the ones used there.)
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Université Paris 7 – Denis Diderot. We are thankful to both institutions for their
hospitality. We are also thankful to the referee and to A. I. Badulescu for a number
of suggestions that helped improve the paper.

References

[Aubert 1995] A.-M. Aubert, “Dualité dans le groupe de Grothendieck de la catégorie des représen-
tations lisses de longueur finie d’un groupe réductif p-adique”, Trans. Amer. Math. Soc. 347:6
(1995), 2179–2189. Erratum in 348:11 (1996), 4687-4690. MR 95i:22025 Zbl 0827.22005

[Badulescu 2002] A. I. Badulescu, “Correspondance de Jacquet–Langlands étendue à toutes les
représentations”, preprint, 2002. math.GR/0201117

[Badulescu and Renard 2004] A. I. Badulescu and D. A. Renard, “Sur une conjecture de Tadić”,
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[Tadić 1995] M. Tadić,“On characters of irreducible unitary representations of general linear groups”,
Abh. Math. Sem. Univ. Hamburg 65 (1995), 341–363. MR 96m:22039 Zbl 0856.22026
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