Vol. 223, No. 2, 2006

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Existence of limit cycles for real quadratic differential systems with an invariant cubic

Javier Chavarriga and Isaac A. García

Vol. 223 (2006), No. 2, 201–218
Abstract

This work is part of a wider study of the significance of the existence of invariant algebraic curves for planar polynomial differential systems. The class of real quadratic systems having a cubic invariant algebraic curve is examined. Using affine canonical forms for the members of this class we show that no system of this type has limit cycles except for two cases. For these cases, concrete examples are given with a limit cycle. We also include a simple and short proof on the nonexistence of quadratic systems with an algebraic limit cycle of third degree.

Keywords
polynomial vector fields, limit cycle, Dulac function, invariant algebraic curves
Mathematical Subject Classification 2000
Primary: 34C05
Secondary: 34C23, 37G15
Milestones
Received: 25 May 2001
Revised: 15 November 2001
Accepted: 13 July 2005
Published: 1 February 2006
Authors
Javier Chavarriga
Departament de Matemàtica
Universitat de Lleida
Avda. Jaume II, 69
25001 Lleida
Spain
Isaac A. García
Departament de Matemàtica
Universitat de Lleida
Avda. Jaume II, 69
25001 Lleida
Spain