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EXISTENCE OF TIME-PERIODIC SOLUTIONS TO THE
NAVIER–STOKES EQUATIONS AROUND A MOVING BODY

GIOVANNI P. GALDI AND ANA L. SILVESTRE

We demonstrate the existence of time-periodic motions of an incompressible
Navier–Stokes fluid subject to a time-periodic body force, occupying the
region exterior to a body that performs a periodic rigid motion of same
period.

1. Introduction

Consider a rigid body B moving through an infinitely extended Navier–Stokes
liquid L, which is subject to an external force f . If � is the three-dimensional
region exterior to B, with boundary 6, the equations of motion of L with respect
to a frame attached to B and with the origin at the center of mass of B are

(1–1)



∂t u = ν1u−∇ p+ (V − u) · ∇u−ω× u+ f

∇ · u = 0

}
in �×R,

u = V on 6×R,

lim
|x |→∞

u(x, t)= 0 for t ∈ R;

see [Galdi 2002]. Here u = u(x, t) is the velocity field of the liquid, ν is the
kinematic viscosity coefficient of L, and p = p(x, t) is the pressure field divided
by the (constant) density of L, and ω is the angular velocity of B. The velocity
field associated with the rigid motion of B is

V (x, t)= ξ(t)+ω(t)× x,

where ξ is the velocity of the center of mass of B.
The question we address is the following. Assume that B moves periodically

with period T (that is, ξ and ω are periodic functions of time), and that f is also
periodic with the same period. Then, does the fluid execute a time-periodic motion
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of period T ? Though simple in its formulation and physically significant, this prob-
lem seemingly has been solved only when B is at rest [Maremonti 1991a; 1991b;
Kozono and Nakao 1996; Maremonti and Padula 1996; Salvi 1995; Yamazaki
2000; Galdi and Sohr 2004]. (See also [Morimoto 1971/72] and the references
therein for the case where � is a bounded domain.) The methods adopted in all
these papers do not extend directly to the case when B undergoes periodic motion;
they basically revolve around the properties of solutions of the linearized problem,
PL , obtained by disregarding the nonlinear term u · ∇u in equation (1–1)1. If the
body is at rest, PL involves only the Stokes operator, A = −P1 (where P is the
Helmholtz projection), and it reduces to the well-known Stokes problem. If B is
in motion, by contrast, PL involves the linear operator

A+ (ξ +ω× x) · ∇u−ω× u.

(In the appropriate function class, we have P
(
(ξ +ω× x) · ∇u −ω× u

)
= (ξ +

ω × x) · ∇u − ω × u.) Then, especially due to the presence of the unbounded
coefficient ω×x , the linearized problem is much more complicated than the Stokes
problem and its functional properties, to date, are not completely understood; see
[Hishida 1999; Galdi 2003; Farwig et al. 2004]. One must therefore resort to other
approaches. Note that exactly the same difficulty arises in the study of the initial-
boundary and boundary value problems associated to (1–1), for whose results and
corresponding methods we refer to [Hishida 1999; Galdi and Silvestre 2002; Galdi
2003; Silvestre 2004] and references therein.

To our knowledge, even for the simpler case when ω ≡ 0 and ξ 6≡ 0 no results
are available.

In this paper we show the existence of weak and strong periodic solutions to
problem (1–1) in the case when B moves by an arbitrary time-periodic motion
and f is time-periodic with the same period. We prove these results by means
of the classical Faedo–Galerkin approach suitably coupled with an “invading do-
mains” technique [Ladyzhenskaya 1969; Heywood 1980]. Specifically, in each
bounded domain �k of an increasing sequence of domains covering �, we show
the existence of a periodic solution (u(k), p(k)). This solution is “weak”, in the
sense of Leray and Hopf, for ξ , ω and f of arbitrary size in a suitable function
class, and for an arbitrary exterior domain �. Moreover, if � is of class C2 and
the size of ξ , ω and f is appropriately restricted, we prove the existence of more
regular solutions such that du(k)/dt, u(k),∇u(k), D2u(k) ∈ L2(�k × [0, T ]), and
p(k),∇ p(k) ∈ L2(�k × [0, T ]). Because the term (ξ + ω× x) · ∇u(k) − ω× u(k)

possesses nice functional properties on each bounded�k [Galdi and Silvestre 2002;
2005; Silvestre 2004], we are able to obtain estimates for u(k), uniformly in k, that
allow us to pass to the limit k →∞ and to prove that weak (Theorem 3.2) and
strong (Theorem 4.1) periodic solutions to (1–1) exist in the whole of �. In the
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special case ξ ≡ ω ≡ 0, our results improve those previously known, in that we
require no regularity on � (versus the C2-regularity needed in [Maremonti and
Padula 1996]) in the case of weak solutions, and only C2-regularity (versus the
C3-regularity needed in [Salvi 1995]) in the case of strong solutions.

The uniqueness problem is left open, even for strong solutions. As shown in
[Galdi and Sohr 2004] for the simpler instance ξ ≡ω≡ 0, uniqueness is not related
to the local regularity of solutions but, rather, to their asymptotic behavior in space.
The determination of this latter for the case at hand appears to be a challenging
question that will be treated elsewhere.

The paper is organized as follows. After recalling in Section 2 some notation and
preparatory results, in Section 3 we show the existence of weak periodic solution,
while Section 4 is dedicated to the existence of strong periodic solutions.

2. Notation and preparatory results

Let A be a domain of R3. We denote by δ(A) the diameter of A and, for R>δ(A),
we set AR =A∩ BR and AR

=A \AR , where BR = {x ∈ R3
: |x |< R}, and the

bar denotes closure.
An exterior domain is the complement of the closure of a bounded domain in

R3.
We shall use standard notation for function spaces [Adams 1975]. For instance,

Lq(A), H m(A) :=W m,2(A), H m
0 (A) :=W m,q

0 (A), etc., denote the usual Lebesgue
and Sobolev spaces on the domain A, with norms ‖ · ‖q,A and ‖ · ‖m,2,A, respec-
tively.

If G, H are second-order tensor fields and g, h are vector fields on A, we set

(G, H)A =
∫

A
Gi j Hi j , (g, h)A =

∫
A

gi hi ,

whenever the integrals make sense. If there is no danger of confusion, we shall
omit the subscript A.

The trace space on ∂A for functions from H m(A) is denoted by H m−1/2(∂A)

and its norm by ‖ · ‖m−1/2,∂A. Classical properties and results related to these
spaces can be found in [Adams 1975; Galdi 1994a]. The following spaces of
solenoidal functions will be needed:

D(A)= {φ ∈ C∞0 (A) : ∇ ·φ = 0},

H(A)= completion of D(A) in the norm ‖ · ‖2,

V (A)= completion of D(A) in the norm ‖∇( · )‖2.

The dual space of V (A) will be denoted by V ′(A) with norm ‖ · ‖−1,A and the
duality 〈F, u〉A will indicate the value of F ∈ V ′(A) at u ∈ V (A). If A is locally
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Lipschitzian with outward unit normal N , we have

H(A)= {8 ∈ L2(A) : ∇ ·8= 0 and 8|∂A · N = 0},

V (A)= {8 ∈ H 1
loc(A) : ∇8 ∈ L2(A), ∇ ·8= 0 and 8|∂A = 0};

see [Temam 1984; Galdi 1994a]. The orthogonal complement of H(A) in L2(A) is

G(A)=
{
∇π ∈ L2(A) : π ∈ H 1

loc(A)
}
.

The orthogonal projection of L2(A) onto H(A) is denoted by P .
If X is a Banach space, we denote by Lq(0, T ; X) the space of all measurable

functions from [0, T ] to X , such that
∫ T

0 ‖u(t)‖
p
X dt <∞, and by C([0, T ]; X)

the space of continuous function from [0, T ] to X .

Lemma 2.1. Let X0, X1, X be Hilbert spaces such that the injection of X0 into X
is compact and the injection of X into X1 is continuous. Then the injection of the
space

{v ∈ L2(0, T ; X0) :
dv
dt
∈ L1(0, T ; X1)}.

into L2(0, T ; X) is compact.

Proof. See [Temam 1984]. �

The boundary velocity u(x, t)= ξ(t)+ω(t)× x has a solenoidal extension:

Lemma 2.2. Let � be an exterior domain of R3, and let ξ, ω ∈ H 1(0, T ). Given
ε>0, there exists a solenoidal function ũ∈H 1(0, T ;W m,q(�)), m∈N, q ∈[1,∞],
such that

‖ũ‖H1(0,T ;W m,q (�)) ≤ C(6,m, q)(‖ξ‖H1(0,T )+‖ω‖H1(0,T )),

‖ũ(t)‖m,q ≤ C(6, T,m, q)(‖ξ‖H1(0,T )+‖ω‖H1(0,T )) for all t ∈ [0, T ].

Moreover, ∣∣∣∣∫
�R

v(x, t) · ∇ũ(x, t) · v(x, t)dx
∣∣∣∣< ε‖∇v(t)‖22,

for all v ∈ C([0, T ]; V (�R)), t ∈ [0, T ], R > δ(B), and ũ is T -periodic if ξ and ω
are T -periodic.

Proof. Using Lemma [Galdi 1994a, III.6.2], we consider a function ηα ∈ C∞0 (�)
such that 0≤ ηα ≤ 1, ηα = 1 if dist(x, 6)< e−1/α/2, ηα = 0 if dist(x, 6)≥ 2e−1/α,
and |∇ηα(x)| ≤ αdist(x, 6), for all x ∈�, with α > 0. The extension is defined by

ũ(x, t)=−∇ ×
(
ηα(x)(ξi (t)x(i+1) mod 3ei +

1
2 |x |

2ω(t))
)
.

Taking into account the properties of the function ηα [Galdi 1994b, Chapter IX], it
is possible to choose α such that ũ satisfies the desired properties for a given ε. �
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We end this section with some fundamental estimates of suitable three-linear
forms.

Lemma 2.3. Let � be an exterior domain of R3, and let v ∈ V (�R) ∩ H 2(�R),
ω ∈ H 1(0, T ). Then, for any ε > 0 there is C = C(�, ε) > 0 such that

(i) (v · ∇v, P1v)�R ≤ C
(
‖∇v‖42,�R

+‖∇v‖62,�R

)
+ ε ‖P1v‖22,�R

and

(ii)
(
(ω× v−ω× x · ∇v), P1v

)
�R
≤ C

(
‖ω‖H1(0,T )+‖ω‖

2
H1(0,T )

)
‖∇v‖22,�R

+

ε ‖P1v‖22,�R
.

Proof. The inequality in (i) is well known; see [Heywood 1980], for example. The
proof of (ii) is given in [Galdi and Silvestre 2005]. �

3. Existence of periodic weak solutions

Denote by DT,p the class of functions 8 that are infinitely differentiable in �×
[0, T ], of compact support in �, and satisfying div8(x, t) = 0 in �× [0, T ] and
8(x, 0)=8(x, T ) in �. If we formally multiply through both sides of (1–1)1 by
8 ∈ DT,p and integrate by parts over �×[0, T ], we obtain(
u(T )− u(0),8(0)

)
=

∫ T

0

(
(u,8t)− ν(∇u,∇8)+ ((V − u) · ∇u,8)− (ω× u,8)+〈 f,8〉

)
.

Thus, if u is time-periodic of period T , the right-hand side of this equation vanishes.
Conversely, if u is a sufficiently regular field (in space and time) for which the right-
hand side of the relation above vanishes for all 8 ∈ DT,P , it follows by standard
arguments that u satisfies (1–1)1,2 for some pressure field p and that u(0)= u(T ).
We are thus led to:

Definition 3.1. A vector field u is a periodic weak solution to (1–1) if

(i) u− ũ ∈ L2(0, T ; V (�)), where ũ is the extension given in Lemma 2.2;

(ii) for all 8 ∈ DT,p,

(3–1)
∫ T

0

(
(u,8t)−ν(∇u,∇8)+((V −u) ·∇u,8)−(ω×u,8)+〈 f,8〉

)
= 0.

Remark. It is easy to show that, if f ∈ L1(0, T ; V ′(�)) and ξ, ω ∈ H 1(0, T ),
every periodic weak solution satisfies

du
dt
∈ L1(0, T ; V ′(�R)) for all R > δ(B),

and so, in particular,

u ∈ C([0, T ]; V ′(�R)) for all R > δ(B).
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In fact, set 8= ϕψ in (3–1), where ϕ ∈ D(�) and ψ ∈ C∞0 (0, T ). We obtain∫ T

0
(u(t), ϕ)ψ ′(t)=−

∫ T

0
Gϕ(t)ψ(t) for all ψ ∈ C∞0 (0, T ),

where

Gϕ(t)=−ν(∇u,∇ϕ)+ ((V − u) · ∇u, ϕ)− (ω× u, ϕ)+〈 f, ϕ〉.

Using the inequality

‖u‖2,�R ≤ C(�R)
(
‖∇u‖2+‖ũ‖1,2

)
,

along with the assumption on f , we obtain for a.a. t ∈ [0, T ]

|Gϕ(t)| ≤ C(�R, ν)

×
(
(1+‖ξ‖H1(0,T )+‖ω‖H1(0,T ))‖∇u‖2,�R+‖∇u2‖

2
2+‖ũ‖

2
1,2+‖ f ‖−1

)
‖ϕ‖1,2,�R .

Thus, with the help of Definition 3.1(ii), we find Gϕ(t) = 〈g(t), ϕ〉 with g ∈
L1(0, T ; V ′(�R)) and

d
dt
(u, ϕ)= 〈g, ϕ〉

in the sense of distributions on [0, T ]. The desired property is then proved.

The objective of this section is to show:

Theorem 3.2. Let � be an exterior domain of R3. Let ξ, ω ∈ H 1(0, T ) with
ξ(0) = ξ(T ), ω(0) = ω(T ), and let f ∈ L2(0, T ; V ′(�)) be periodic in time of
period T . Then there exists at least one periodic weak solution to (1–1).

For the proof we use the “invading domains” procedure (see [Heywood 1980],
for instance), in two steps. In the first, using the method of [Prouse 1963], we
show the existence of a periodic weak solution um on bounded domains �Rm ,
Rm > δ(B), m ∈ N, and establish suitable a priori estimates. In the second step,
we let Rm →∞ and show that um converges, in a suitable sense, to a periodic
weak solution to (1–1).

Step 1: Construction of approximating periodic weak solutions in �Rm . Let S=

{Rm : m ∈ N} be an increasing and unbounded sequence of positive numbers with
R1>δ(B) and let {�R : R ∈S} with

⋃
R∈S�R =� be the corresponding sequence

of bounded domains covering �.
In each �R , R ∈ S, we shall look for a T -periodic solution u R in the form

u R = vR + ũ, with ũ given by Lemma 2.2, and vR (in the appropriate functional
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class) satisfying the identity

(3–2)
d
dt
(vR, ϕ)�R =−ν(∇vR,∇ϕ)�R+((V −vR) ·∇vR, ϕ)�R−(vR ·∇ũ, ϕ)�R

− (ũ · ∇vR, ϕ)�R − (ω× vR, ϕ)�R +〈 f̃ , ϕ〉�R

for all ϕ ∈ D(�R), and a.a. t ∈ ]0, T [, where

(3–3) f̃ = f + ν1ũ− ∂t ũ− ũ · ∇ũ+ V · ∇ũ−ω× ũ.

Under the hypotheses of Theorem 3.2 and with the help of Lemma 2.2, we deduce
that f̃ is periodic of period T , f̃ ∈ L2(0, T ; V ′(�)), and that

(3–4) ‖ f̃ ‖L2(0,T ;V ′(�R)) ≤ ‖ f̃ ‖L2(0,T ;V ′(�))

≤ C(6)(‖ξ‖H1(0,T )+‖ω‖H1(0,T ))+‖ f ‖L2(0,T ;V ′(�)).

For each R ∈S, we consider a base {wRi }i∈N of V (�R) orthonormal in H(�R).
We let

vRk(x, t)=
k∑

i=1

cRki (t)wRi (x),

where the coefficients cRk = {cRk1, . . . , cRkk} are required to solve the system of
ordinary differential equations

(3–5)
dcRk j

dt
=

k∑
i=1

Ai j (t)cRki +

k∑
i,l=1

Bil j cRki cRkl +C j (t), j = 1, . . . , k,

where

Ai j =−ν(∇wRi ,∇wR j )�R − (ω×wRi , wR j )�R + (V · ∇wRi , wR j )�R

−(wRi · ∇ũ, wR j )�R − (ũ · ∇wRi , wR j )�R ,
Bil j =−(wRi · ∇wRl, wR j )�R ,

C j = 〈 f̃ , wR j 〉�R .

Following [Prouse 1963], we begin to show the existence of a T -periodic solu-
tion to the system (3–5).

Lemma 3.1. System (3–5) has a solution cRk ∈ H 1(0, T ), such that cRk(0) =
cRk(T ).

Proof. For each R ∈ S and each k ∈ N, we choose an initial velocity v0Rk ∈

span{wR1, . . . , wRk} and set cRk j (0) = c0Rk j := (wR j , v0Rk)�R . Since ξ, ω ∈
H 1(0, T ) and f ∈ L2(0, T, V ′(�)), the system (3–5) has a unique solution cRk ∈

H 1(0, TRk) for some TRk ≤ T . Multiplying (3–5) by cRk j , summing over j , inte-
grating by parts, and recalling that

(3–6) ((VRk − vRk) · ∇vRk, vRk)= (ω× vRk, vRk)= (ũ · ∇vRk, vRk)= 0,
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(where we have omit the subscript �R for simplicity), we see that vRk satisfies the
equation

(3–7)
1
2

d
dt
‖vRk‖

2
2+ ν‖∇vRk‖

2
2 = 〈 f̃ , vRk〉− (vRk · ∇ũ, vRk).

Using Lemma 2.2 with ε = 1
4ν, we get

−(vRk · ∇ũ, vRk)≤
1
4ν‖∇vRk‖

2
2

and since

〈 f̃ , vRk〉�R ≤ ‖ f̃ ‖−1‖∇vRk‖2 ≤
1
4ν‖∇vRk‖

2
2+C(ν)‖ f̃ ‖2

−1,

we obtain

(3–8)
d
dt
‖vRk‖

2
2+ ν‖∇vRk‖

2
2 ≤ C(ν)‖ f̃ ‖2

−1.

Using the Poincaré inequality

(3–9) ‖∇w‖2 ≥
C
R
‖w‖2, w ∈ H 1

0 (�R),

with C a positive, absolute constant, we get

d
dt
‖vRk‖

2
2+

νC1

R2 ‖vRk‖
2
2 ≤ C2(ν)‖ f̃ ‖2

−1.

Consequently,

(3–10) eνC1t/R2
‖vRk(t)‖22 ≤ ‖v0Rk‖

2
2+C2(ν)

∫ TRk

0
eνC1τ/R2

‖ f̃ (τ )‖2
−1dτ

for all t ∈ [0, TRk]. From this inequality it follows that

(3–11) ‖vRk(t)‖22 ≤ ‖v0Rk‖
2
2+C2(ν)

∫ T

0
eνC1τ/R2

‖ f (τ )‖2
−1dτ

for all t ∈ [0, TRk]. Using the orthogonality properties of {wR1, . . . , wRk} we have
|cRk(t)| = ‖vRk(t)‖2, from which we conclude that TRk = T .

Let % be such that

(3–12) %2
≥

C2(ν)
∫ T

0 eνC1τ/R2
‖ f̃ (τ )‖2

−1dτ

1− e−νC1T/R2

and let Bk
% be the ball of radius % in Rk . In view of (3–10) and (3–12), if |cRk(0)| =

‖v0Rk‖2 ≤ % then
|cRk(T )| = ‖vRk(T )‖2 ≤ %,

and thus the map T :Bk
%→Bk

% such that T(c0Rk)= cRk(T ) is well defined. By the
same procedure used in [Prouse 1963], we can show that the map T is continuous,
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and therefore has a fixed point; that is, there exists a solution to (3–5) such that
cRk(0)= cRk(T ). �

Here are some useful estimates for the approximating solution in �R .

Lemma 3.2. There exists a positive constant C = C(ν,6) such that

(3–13)
∫ T

0
‖∇vRk(τ )‖

2
2dτ ≤ C

(
‖ f ‖2L2(0,T ;V ′(�))+‖ξ‖

2
H1(0,T )+‖ω‖

2
H1(0,T )

)
.

Moreover, there exists a positive constant C independent of k ∈ N such that

(3–14) ‖vRk(t)‖2 ≤ C for all t ∈ [0, T ] and all k ∈ N.

Proof. Since, by Lemma 3.1, vRk is T -periodic, integrating (3–8) over [0, T ] we
find

(3–15)
∫ T

0
‖∇vRk(τ )‖

2
2 dτ ≤ C(ν)

∫ T

0
‖ f̃ (τ )‖2

−1 dτ

and then we use (3–4). This proves (3–13).
Equation (3–14) is an immediate consequence of (3–11). �

We can now easily show the existence of a periodic weak solution on each �R ,
for R ∈ S. Actually, using Lemma 3.2 and well-known procedures (see [Galdi
2000], for example), we prove the existence of a field vR and of a subsequence,
again denoted by {vRk}k∈N, such that

(3–16)

vR ∈ L2(0, T ; V (�R))∩ L∞(0, T ; H(�R)),

vRk→ vR weakly in L2(0, T ; V (�R)),

vRk→ vR strongly in L2(0, T ; H(�R)),

vRk(t)→ vR(t) weakly in L2(�R), for all t ∈ [0, T ].

Recalling that vRk(0)= vRk(T ), for k ∈N, the last condition in (3–16) implies that
vR(0) = vR(T ), namely, that vR is T -periodic. Moreover, in view of (3–16)2 and
of (3–13), we find

(3–17)
∫ T

0
‖∇vR(τ )‖

2
2,�R

dτ ≤ C(‖ f ‖2L2(0,T ;V ′(�))+‖ξ‖
2
H1(0,T )+‖ω‖

2
H1(0,T )),

with C = C(ν,�) > 0. Finally, coupling (3–16) with classical arguments, we can
prove that, for all R ∈ S, vR satisfies condition (3–2). Using (3–16)1 along with
a standard procedure (see [Temam 1984], for instance), we can also show that the
right-hand side of (3–2), with v ≡ vR , defines a continuous (linear) functional on
V (�R), and that

d
dt
(vR, ϕ)�R =

〈dvR

dt
, ϕ
〉
�R

for all ϕ ∈ V (�R) and a.a. t ∈ ]0, T [,
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where
dvR

dt
∈ L4/3(0, T ; V ′(�R)).

Consequently, from (3–2) we deduce that

(3–18)
〈dvR

dt
, ϕ
〉
�R
=−ν(∇vR,∇ϕ)�R+((V−vR)·∇vR, ϕ)�R−(vR ·∇ũ, ϕ)�R

− (ũ · ∇vR, ϕ)�R − (ω× vR ·ϕ)�R +〈 f̃ , ϕ〉�R ,

for all ϕ ∈ V (�R) and a.a. t ∈ ]0, T [.

Step 2: Convergence of the sequence {vR + ũ}R∈S to a periodic weak solution to
(1–1). We extend vR by zero outside �R , for R ∈ S, and continue to denote the
extension by vR . Clearly, the extended fields satisfy (3–17) and (3–18). We shall
next prove some appropriate estimates for them.

Lemma 3.3. Let R0 > δ(B). There exists a positive constant C depending only on
the data and R0 such that∫ T

0
‖vR(t)‖22,�R0

dt +
∫ T

0

∥∥∥∥dvR

dt
(t)
∥∥∥∥

V ′(�R0 )

dt ≤ C,

for all R > R0, R ∈ S.

Proof. The estimate on vR is an obvious consequence of (3–9) and of (3–17). Let
ϕ be any function in D(�R0). From Hölder’s inequality, Lemma 2.2, (3–9) and the
Sobolev inequalities

‖w‖6 ≤ C‖∇w‖2, ‖w‖3 ≤ C R ‖∇w‖2, w ∈ V (�R)

with C a positive, absolute constant, we find

−(∇vR,∇ϕ)≤ ‖∇vR‖2‖∇ϕ‖2,

(V · ∇vR, ϕ)≤ ‖V ‖3,�R0
‖∇vR‖2‖ϕ‖6

≤ C(6, T )(R0‖ξ‖H1(0,T )+ R2
0‖ω‖H1(0,T ))‖∇vR‖2‖∇ϕ‖2,

−(vR · ∇vR,∇ϕ)≤ ‖vR‖6‖∇vR‖2‖ϕ‖3 ≤ C R0‖∇vR‖
2
2‖∇ϕ‖2,

−(vR · ∇ũ, ϕ)≤ ‖∇ũ‖3/2‖vR‖6‖ϕ‖6

≤ C (6, T )(‖ξ‖H1(0,T )+‖ω‖H1(0,T ))‖∇vR‖2‖∇ϕ‖2,

−(ũ · ∇vR, ϕ)≤ ‖ũ‖3‖∇vR‖2‖ϕ‖6

≤ C (6, T )(‖ξ‖H1(0,T )+‖ω‖H1(0,T ))‖∇vR‖2‖∇ϕ‖2,

−(ω× vRk, ϕ)≤ |ω| ‖v‖2‖ϕ‖2 ≤ C(6, T ) R2
0‖ω‖H1(0,T )‖∇vR‖2‖∇ϕ‖2.

The lemma follows from these inequalities and from (3–18), (3–17) and (3–4). �
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Lemma 3.4. There exists a field v and a sequence {vρ : ρ ∈ S′ ⊂ S} such that, for
all R0 > δ(B),

(3–19)

v ∈ L2(0, T ; V (�))∩ L2(0, T ; L2(�R0))

vρ→ v weakly in L2(0, T ; V (�)),

vρ→ v strongly in L2(0, T ; L2(�R0)).

Proof. From the bound (3–17), we deduce that there is a subsequence of {vR},
again denoted by {vR}, and a field v ∈ L2(0, T ; V (�)) for which (3–19)2 holds.
Fix R0 > δ(B) and apply Lemma 2.1 with X0 = H 1(�R0), X = L2(�R0) and
X1 = V ′(�R0). There follows the existence of a subsequence, still denoted by
{vR}, satisfying conditions (3–19)3. This latter subsequence may depend on R0.
However, covering �, with an increasing sequence of bounded domains and using
Cantor diagonalization method, we may select a subsequence {vρ} for which the
property (3–19)3 holds for all R0. The lemma is therefore proved. �

In conclusion to this section, we shall prove that u ≡ v+ ũ is a periodic weak
solution to (1–1). In view of Lemmas 2.2 and 3.4, we have only to show that u
satisfies (3–1). To this end, set uρ = vρ − ũ in (3–2), where {vρ} is the sequence
of Lemma 3.4. Multiplying both sides of the resulting equation by an arbitrary
ψ ∈ C1

[0, T ] such that ψ(0) = ψ(T ), integrating in time between 0 and T and
recalling that uρ(0)= uρ(T ), we obtain
(3–20)∫ T

0

{
(uρ, φt)− ν(∇uρ,∇φ)+ ((V − u) · ∇uρ, φ)− (ω× uρ, φ)+〈 f, φ〉

}
,

with φ = ψϕ, for any fixed ϕ ∈ D(�) and all sufficiently large ρ. We then pass
to the limit ρ →∞ in this relation and use the convergence properties stated in
(3–19). It is routine to show (see [Galdi 2000], for example) that u satisfies (3–1),
with 8 = φ. However, any 8 ∈ DT,p can be approximated, together with its first
derivatives, uniformly pointwise by suitable linear combinations of such a φ [Galdi
2000], and so the proof of Theorem 3.2 is completed.

4. Existence of Periodic Strong Solutions

We now show that if � and the data are more regular and if these latter are suffi-
ciently small, then a periodic strong solution exists.

Theorem 4.1. Let � be an exterior domain of R3 of class C2. Let ξ, ω ∈ H 1(0, T )
with ξ(0) = ξ(T ), ω(0) = ω(T ), and f ∈ L2(0, T ; L2(�) ∩ V ′(�)). There is a
positive constant C0 = C0(�, ν) such that if
(4–1)
Dα ≡ α ‖ f ‖L2(0,T ;V ′(�))+‖ f ‖L2(0,T ;L2(�))+α (‖ξ‖H1(0,T )+‖ω‖H1(0,T ))≤ C0,
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where α = max{1, 1/T }, then there exists (u, p) satisfying conditions (i) and (ii)
of Definition 3.1 and the following properties for all R > δ(B):

(4–2)

u ∈ C([0, T ]; L2(�R)),
du
dt
∈ L2(0, T ; L2(�R))

∇u ∈ L2(0, T ; H 1(�))∩ L∞(0, T ; L2(�)),

∇ p ∈ L2(0, T ; L2(�)).

If , in particular, ω(t)≡ 0, we have, in addition,

du
dt
∈ L2(0, T ; L2(�)).

In any case, u(0)= u(T ) and (u, p) satisfies (1–1)1 a.e. in �×[0, T ].

In order to construct such a solution we choose the basis functions wR j in (3–5)
as the eigenfunctions of the Stokes problem:

(4–3) P1wR j =−λR jwR j wR j ∈ V (�R)∩ H 2(�R).

Clearly, by the same argument of Step 1 of Section 3, we show the existence of a
periodic approximating solution vRk to (3–5) that satisfies the estimates of Lemma
3.2. Under the assumptions (4–1), we shall now establish further suitable estimates
on the first and second spatial derivatives of the approximating solutions.

Lemma 4.1. Let condition (4–1) hold. Then

(4–4) ‖∇vRk(t)‖2,�R +

∫ T

0
‖D2vRk(τ )‖

2
L2(�R)

dτ ≤ C,

with C depending only upon the data.

Proof. Multiplying both sides of (3–5) by λRk j cRk j , summing over j and taking
into account (4–3), we deduce

(4–5)
1
2

d
dt
‖∇vRk‖

2
2+‖P1vRk‖

2
2

=−(ξ · ∇vRk, P1vRk)+ (ũ · ∇vRk, P1vRk)+ (vRk · ∇ũ, P1vRk)

−( f̃ , P1vRk)+(vRk ·∇vRk, P1vRk)+((ω×vRk−ω×x ·∇vRk), P1vRk),

where all integrals are taken over �R . Using the Schwarz inequality along with
Lemmas 2.2 and 2.3, we easily obtain from (4–5)

(4–6)
d
dt
‖∇vRk‖

2
2+ ν‖P1vRk‖

2
2

≤ C(�, ν)
(
(γ + γ 2)‖∇vRk‖

2
2+‖∇vRk‖

4
2+‖∇vRk‖

6
2
)
+C(ν)‖ f̃ ‖22,
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where γ = ‖ξ‖H1(0,T ) +‖ω‖H1(0,T ). In order to obtain the desired estimate from
this differential inequality, we need an upper bound for the quantity ‖∇vRk(0)‖2.
It is clear that

(4–7) ‖∇vRk(0)‖2 = ‖∇vRk(T )‖2.

From (3–15) and the mean value theorem for continuous functions, we deduce the
existence of t̄ ∈ [0, T ] such that

‖∇vRk(t̄)‖22 =
1
T

∫ T

0
‖∇vRk(τ )‖

2
2 dτ ≤

C(ν)
T

∫ T

0
‖ f̃ (τ )‖2

−1 dτ.

Hence, from (4–6), we deduce that there exists a positive constant C ′ = C ′(�, ν)
such that Dα ≤ C ′ implies ‖∇vRk(t)‖2 ≤ C(ν,�, Dα) for all t ∈ [t̄, T ]. Taking
into account (4–7), we then get

‖∇vRk(0)‖2 ≤ C(ν,�, Dα)

and again, making suitable assumptions about the smallness of Dα, we conclude

(4–8) ‖∇vRk(t)‖2 ≤ C(ν,�, Dα) for all t ∈ [0, T ].

Having established this, we go back to (4–6) and obtain the uniform estimate

(4–9)
∫ T

0
‖P1vRk(τ )‖

2
2,�R

dτ ≤ C(ν,�, Dα),

and since ‖D2vRk‖2,�R ≤C
(
‖P1vRk‖2,�R +‖∇vRk‖2,�R

)
(see [Heywood 1980],

for example), with C independent of k and R, from (4–9) we infer (4–4)2. �

We next provide an estimate for the time derivative of vRk .

Lemma 4.2. Suppose the assumptions of the Lemma 4.1 hold. There exists a
positive constant C depending on the data and on R such that

(4–10)
∫ T

0
‖∂τvRk(τ )‖

2
2,�R

dτ ≤ C.

Proof. Multiplying (3–5) by
dcRk j

dt
and summing over j we get

1
2

d
dt
‖∇vRk‖

2
2+ ν‖∂tvRk‖

2
2

=−(vRk · ∇vRk, ∂tvRk)�R + (ξ · ∇vRk, ∂tvRk)�R + (ω× x · ∇vRk, ∂tvRk)�R

−(ω×vRk, ∂tvRk)�R−(vRk ·∇ũ, ∂tvRk)�R−(ũ·∇vRk, ∂tvRk)�R+( f̃ , ∂tvRk)�R .



264 GIOVANNI P. GALDI AND ANA L. SILVESTRE

We have∣∣(ω× vRk, ∂tvRk)�R

∣∣+ ∣∣(ω× x · ∇vRk, ∂tvRk)�R

∣∣
≤ C(6, T )‖ω‖H1(0,T )R‖∂tvRk‖2‖∇vRk‖2,

and the remaining terms are estimated as in the previous lemma. �

Using the estimates of Lemmas 4.1 and 4.2, and proceeding as in Step 1 of
Section 3, we show the existence of a T -periodic field vR such that

(4–11)
vR ∈ L∞(0, T ; H 1(�R))∩ L2(0, T ; H 2(�R)),

dvR

dt
∈ L2(0, T ; L2(�R)),

and satisfying, in addition, the estimate

(4–12) ‖∇vR(t)‖2,�R +

∫ T

0
‖D2vR(τ )‖

2
L2(�R)

dτ ≤ C,

with C independent of R. Furthermore, vR satisfies the equation (3–2). Actu-
ally, by well known arguments, (3–2) and (4–11) imply the existence of a scalar
field pR ∈ L2(0, T ;W 1,2(�R)) such that the pair (vR, pR) satisfies the following
equations a.a. in �×[0, T ]:

(4–13)
∂vR

∂t
= ν1vR+(V−vR)·∇vR−vR ·∇ũ−ũ ·∇vR−ω×vR−∇ pR+ f̃ ,

∇·vR = 0.

From (4–13) we can now obtain an estimate on ∂vR/∂t , uniformly in R on any
fixed compact set, for sufficiently large R.

Lemma 4.3. Let the assumptions of Lemma 4.1 hold, and let R0 > δ(B). The
following estimates hold:

(4–14)

∫ T

0
‖∂tvR(t)‖22,�R0

dt ≤ C1 for all R > R0, R ∈ S,∫ T

0
‖∇ pR(t)‖22,�R

dt ≤ C2 for all R ∈ S,

where C1 depends only on the data and R0, while C2 depends only on the data. If ,
in particular, ω(t)≡ 0, we have the stronger estimate

(4–15)
∫ T

0
‖∂tvR(t)‖22,�R

dt ≤ C,

with C depending only on the data.
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Proof. By the Helmholtz decomposition, we may write

(4–16) f̃ = P f̃ +∇ p̃, p̃ ∈ L2(0, T ;G(�)).

Recalling that for all v ∈ V (�R)∩H 2(�R) we have, by [Galdi and Silvestre 2005,
Lemma 3(i)],

((ξ+ω×x)·∇v−ω×v) ∈ H(�R),

we find from (4–13) that PR ≡ pR− p̃ satisfies the following Neumann problem
(in the sense of distributions):

(4–17)
1PR =∇·F in �R,

∂PR

∂n
= F ·n at ∂�R,

where F =−vR ·∇vR−vR ·∇ũ−ũ ·∇vR+ν1vR . Formally multiplying both sides
of (4–17)1 by PR , integrating by parts over �R and using (4–17)2 we deduce

‖∇PR‖
2
2,�R
= (F,∇PR).

Thus, from the Schwarz inequality, from Lemma 4.1 and from the Sobolev-like
inequality

(4–18) ‖w‖∞,�R ≤ C (‖∇w‖2,�R+‖P1w‖2,�R ), w ∈ H 1
0 (�R)∩H 2(�R),

(for which see [Galdi 1994a]) with C = C(�), we deduce that∫ T

0
‖∇PR(t)‖22,�R

dt ≤ C,

where C depends only the data. Plugging this information back in (4–13)1 and
using again Lemma 4.1, (4–16) and (4–18) we show (4–14).

We next observe that the dependence of the constant C on R0 in (4–14) is due
to the presence of the term ω×x ·∇vR−ω×vR in (4–13)1. Therefore, if ω(t)= 0,
for all t ∈ [0, T ], the constant C becomes independent of R0 and we obtain the
stronger estimate (4–15). �

The proof of Theorem 4.1 is now achieved as follows. We multiply (4–13) by
8 ∈ DT,p and integrate over �×[0, T ]. We then let, in the resulting equation,
R→∞, along a suitable sequence, and take into account (4–12), Lemma 4.3, and
the embedding H 1(0, T ; L2(�R0))⊂ C([0, T ]; L2(�R0)), for all R0 > δ(B).
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