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We classify all finite-order invariants of immersions of a closed orientable
surface into R3, with values in any abelian group. We show that they are all
functions of an order one invariant.

1. Introduction

Finite-order invariants of stable immersions of a closed orientable surface into R3

were defined in [Nowik 2004], and all order-1 invariants were classified there.
Explicit formulae for most order-1 invariants were given in [Nowik ≥ 2006]; the
same article and [Nowik 2001a] gave explicit formulae for the values of the remain-
ing order-1 invariants on all embeddings. Earlier work on existence and explicit
formulae for small subclasses of invariants includes [Max and Banchoff 1981;
Goryunov 1997; Nowik 2000; 2001b]. Here we classify all finite-order invariants
of order n>1, and show that they are all functions of the universal order-1 invariant
constructed in [Nowik 2004].

The structure of the paper is as follows. In Section 2 we summarize the necessary
background, defining finite-order invariants of immersions of a closed orientable
surface into R3. Given a surface F , a regular homotopy class A of immersions of
F into R3, and an abelian group G, we define Vn to be the group of all invariants
on A of order at most n with values in G. We present a group 1n =1n(G) and an
injectionµn :Vn/Vn−1→1n . The question of classifying all finite-order invariants
then becomes the question of finding the image of µn . In Section 3 we state our
classification. We specify a subgroup En ⊆1n which we claim to be the image of
µn . In Section 4 we show that µn(Vn)⊇ En by explicit construction. In Section 5
we show that µn(Vn)⊆ En .
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2. Background

For additional details on this section’s material, see [Nowik 2004]. Given a closed
oriented surface F , let Imm(F,R3) denote the space of all immersions of F into
R3, with the C1 topology. A CE point of an immersion i : F → R3 is a point
of self-intersection of i for which the local stratum in Imm(F,R3) corresponding
to the self-intersection has codimension one. We distinguish four basic types of
CEs named E, H, T, Q. (See Figure 1.) The four basic CE types are then fur-
ther divided into twelve types, according to the orientations of the various sheets
involved, which we name E0, E1, E2, H 1, H 2, T 0, T 1, T 2, T 3, Q2, Q3, Q4.

A coörientation for a CE is a choice of one of the two sides of the local stratum
corresponding to the CE. All but two of the above CE types are nonsymmetric in
the sense that the two sides of the local stratum may be distinguished via the local
configuration of the CE, and for those ten CE types, permanent coorientations for
the corresponding strata are chosen once and for all. The two exceptions are H 1

and Q2 which are completely symmetric.
We fix a closed oriented surface F and a regular homotopy class A of immer-

sions of F into R3 (that is, A is a connected component of Imm(F,R3)). We
denote by In ⊆ A (n ≥ 0) the space of all immersions in A which have precisely
n CE points (the self-intersection being stable elsewhere). In particular, I0 is the
space of all stable immersions in A. For an immersion i : F → R3 having a CE

E H

T Q

Figure 1. A slight lowering of the topmost sheet in each diagram
will produce the corresponding CE.
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located at p ∈ R3, the degree dp(i) ∈ Z of i at p is defined as follows: Push each
sheet of F that passes through p a bit into its preferred side determined by the
orientation of F , obtaining a new immersion ı̂ that misses p, and we define dp(i)
to be the degree of the map ı̂ : F → R3

− {p}. We then define C p(i) to be the
expression Ra

m where Ra is the symbol describing the configuration of the CE of
i at p (one of the twelve symbols above) and m = dp(i). Cn denotes the set of
all unordered n-tuples of expressions Ra

m with Ra one of our twelve symbols and
m ∈ Z. A map C : In→ Cn is defined by C(i)= [C p1(i), . . . ,C pn (i)] ∈ Cn where
p1, . . . , pn are the n CE points of i . The map C : In→ Cn is surjective.

Given an immersion i ∈ In , a temporary coorientation for i is a choice of coorien-
tation at each of the n CE points p1, . . . , pn of i . Given a temporary coorientation
T for i and a subset A ⊆ {p1, . . . , pn}, we define iT,A ∈ I0 to be the immersion
obtained from i by resolving all CEs of i at points of A into the positive side with
respect to T, and all CEs not in A into the negative side. Now let G be any abelian
group and let f : I0 → G be an invariant, that is, a function constant on each
connected component of I0. Given i ∈ In and a temporary coorientation T for i ,
f T(i) is defined as follows:

f T(i)=
∑

A⊆{p1,...,pn}

(−1)n−|A| f (iT,A)

where |A| is the number of elements in A. If T,T′ are temporary coorientations
for the same immersion i then f T(i) = ± f T′(i), so the condition f T(i) = 0 is
independent of the temporary coorientation T. An invariant f : I0→ G is called
of finite order if there is n such that f T(i)= 0 for all i ∈ In+1. The minimal such
n is called the order of f . The group of all invariants on I0 of order at most n is
denoted Vn .

Let f ∈ Vn . If i ∈ In has at least one CE of type H 1 or Q2 and T is a temporary
coorientation for i , then 2 f T(i)= 0, by [Nowik 2004, Proposition 3.5], and so in
this case f T(i) is independent of T. Using this fact, f ∈ Vn will induce a function
f̂ : In→ G as follows: For any i ∈ In we set f̂ (i)= f T(i), where if i includes at
least one CE of type H 1 or Q2 then T is arbitrary, and if all CEs of i are not of
type H 1 or Q2 then the permanent coorientation is used for all CEs of i . (If f ∈ Vn

then we are not inducing such function on Ik for 0< k < n). In order not to need
to distinguish between the above two cases, we will define for any i ∈ In , a proper
coorientation to be a choice of coorientation for each of the CEs of i , which is the
permanent coorientation for each CE which is not of type H 1 or Q2. In these terms
we may simply say that for any i ∈ In , f̂ (i) is defined as f T(i) with T a proper
coorientation for i . For f ∈ Vn and i, j ∈ In , if C(i) = C( j) then f̂ (i) = f̂ ( j)
[Nowik 2004, Proposition 3.8], so any f ∈ Vn induces a well defined function
µn( f ) : Cn→ G. The map f 7→ µn( f ) induces an injection µn : Vn/Vn−1→ C∗n
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where C∗n is the group of all functions from Cn to G. Finding the image of µn for
all n gives a classification of all finite order invariants, which is what we do in this
work (Theorem 3.2). For order-1 invariants this has been done in [Nowik 2004].

The proof that if C(i)= C( j) then f̂ (i)= f̂ ( j) uses the notion of AB equiva-
lence which we now recall. A regular homotopy between two immersions in In is
called an AB equivalence if it is alternatingly of type A and B, where

(1) Jt : F→ R3 (0≤ t ≤ 1) is of type A if it is of the form Jt =Ut ◦ i ◦Vt where
i : F→ R3 is an immersion and Ut : R

3
→ R3, Vt : F→ F are isotopies.

(2) Jt : F → R3 (0 ≤ t ≤ 1) is of type B if J0 ∈ In and there are little balls
B1, . . . , Bn ⊆ R3 centered at the n CE points of J0 such that Jt fixes U =
(J0)

−1(
⋃

k Bk) and moves F −U within R3
−
⋃

k Bk .

The subgroup 1n = 1n(G) ⊆ C∗n which is shown in [Nowik 2004] to contain
the image of µn , is defined as the set of functions in C∗n satisfying relations which
we write as relations on the symbols in C1; e.g., T 0

m = T 3
m will stand for the set of

all relations of the form g([T 0
m, Z2, . . . , Zn])= g([T 3

m, Z2, . . . , Zn]) with arbitrary
Z2, . . . , Zn ∈ C1. The relations defining 1n are:

• E2
m =−E0

m = H 2
m , E1

m = H 1
m .

• T 0
m = T 3

m , T 1
m = T 2

m .

• 2H 1
m = 0, H 1

m = H 1
m−1.

• 2Q2
m = 0, Q2

m = Q2
m−1.

• H 2
m − H 2

m−1 = T 3
m − T 2

m .

• Q4
m − Q3

m = T 3
m − T 3

m−1, Q3
m − Q2

m = T 2
m − T 2

m−1.

The above relations are easily solved, namely, there exists a subset X ⊆C1 such
that any g ∈11 may be defined by arbitrarily assigning values in G to each Z ∈ X ,
and assigning values in B={x ∈G : 2x = 0} to the two symbols H 1

0 , Q2
0. Once this

is done, the value of g on all other symbols is uniquely defined, as combinations,
with integer coefficients, of the values on the symbols in Y = X ∪ {H 1

0 , Q2
0}. In

[Nowik 2004] the set X is chosen as {T a
m}a=2,3,m∈Z ∪ {H 2

0 }. In [Nowik ≥ 2006]
there is an improved choice X = {T 2

m}m∈Z ∪ {H 2
m}m∈Z, for which the mentioned

integer coefficients attain simpler form. We define the group L1 by the abelian
group presentation

L1 = 〈{aZ }Z∈X ∪ {b, c} | 2b = 2c = 0〉.

(This is the group GU appearing in [Nowik 2004], with generators relabeled.) Let
gU

1 ∈11(L1) be the function in11(L1) uniquely defined by gU
1 (Z)=aZ for Z ∈ X ,

gU
1 (H

1
0 )= b, gU

1 (Q
2
0)= c. The main result of [Nowik 2004] is that for any closed

orientable surface F , regular homotopy class A of immersions of F into R3 and
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abelian group G, the injection µ1 : V1/V0 → 11 is surjective. This is shown by
proving the existence of an order-1 invariant f U

1 : I0→ L1 satisfying µ1( f U
1 )= gU

1 .

3. Statement of classification

Let X ⊆ Y ⊆ C1 be as above. If we denote the elements of Y by yi and those of
C1 by c j (note {yi } ⊆ {c j }), then as mentioned above there are integers ni

j (where
for each j , ni

j 6= 0 for only finitely many values of i) such that for any G, any
g ∈ 11(G), and any j , g(c j ) =

∑
i ni

j g(yi ). Since the same relations, applied to
each term of an n-tuple separately, define 1n , it follows that a function g ∈1n(G)

may be assigned arbitrary values in G for any unordered n-tuple of elements of X
and arbitrary values in B for all n-tuples of elements of Y which include H 1

0 or
Q2

0 at least once. Once this is done, the value of g on all other n-tuples in Cn is
uniquely determined by:

g([c j1, . . . , c jn ])=
∑

i1,...,in

ni1
j1ni2

j2 · · · n
in
jn g([yi1, . . . , yin ]).

Indeed the fact that we are dealing with unordered n-tuples poses no problem. For
the sake of the above calculation one may think of g as a symmetric function of
ordered n-tuples.

We will now define En ⊆ 1n by two additional restrictions on the functions
g ∈ 1n . Thanks to the discussion of the previous paragraph, we may state the
additional restrictions in terms of the values of g on n-tuples of elements of Y only.
Given an unordered n-tuple z of elements of Y , we define m H1

0
(z) and m Q2

0
(z) as

the number of times that H 1
0 and Q2

0 appear in z respectively. We define r(z), the
repetition of H 1

0 and Q2
0 in z, as

r(z)=max(0,m H1
0
(z)− 1)+max(0,m Q2

0
(z)− 1).

Definition 3.1. Given an abelian group G, En = En(G) ⊆1n(G) is the subgroup
consisting of all functions g ∈ 1n(G) that satisfy the following two additional
restrictions:

(1) When n ≥ 3, g must satisfy the relation H 1
0 H 1

0 Q2
0 = H 1

0 Q2
0 Q2

0. By this we
mean that g([H 1

0 , H 1
0 , Q2

0, Z4, . . . , Zn]) = g([H 1
0 , Q2

0, Q2
0, Z4, . . . , Zn]) for

any Z4, . . . , Zn ∈ Y .

(2) For any unordered n-tuple z of elements of Y , g(z) ∈ 2r(z)G; that is, there
exists an element a ∈ G such that g(z) = 2r(z)a. (Whenever r(z) > 0, in
particular H 1

0 or Q2
0 does appear in z, so in fact we have g(z) ∈ B∩ 2r(z)G.)

In this work we prove:
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Theorem 3.2. For any closed orientable surface F , regular homotopy class A

of immersions of F into R3 and abelian group G, the image of the injection µn :

Vn/Vn−1→1n is En .
Furthermore, for any f ∈Vn , there is a function (not homomorphism) s : L1→G

such that f = s ◦ f U
1 .

4. Proof that µn(Vn)⊇ En

We define algebraic structures K ⊆ L ⊆ M , where L is a commutative ring, K
is a subring of L , and M is a module over K . We define L as the ring of formal
power series with integer coefficients, with variables {ai }i∈X ∪ {b, c} and with the
following relations:

• 2b = 2c = 0.

• b2c = bc2.

We emphasize that though there is an infinite set of variables, any given power
series may include only finitely many monomials of any given degree n. Given a
monomial p, we define mb(p) as the multiplicity of b in p, and likewise for c. We
define r(p), (the repetition of b and c in p), as

r(p)=max(0,mb(p)− 1)+max(0,mc(p)− 1).

Then r(p) is preserved under the relations in L and so is well defined on equiv-
alence classes of monomials. Now K ⊆ L is defined to be the subring of power
series including only the variables {ai }i∈X . On the other hand we extend L to a
larger structure M which will be a module over K , as follows: For each monomial
p ∈ L with coefficient 1 (more precisely, an equivalence class of such monomials),
we adjoin a new element ζp satisfying the relation 2r(p)ζp = p. The new elements
ζp will be considered monomials of the same degree as the corresponding p, and
will appear as terms in our formal power series. (Indeed, one can think of ζp as
2−r(p) p.) Note that if r(p) = 0 then ζp = p, in particular, ζ1 = 1 and ζe = e
for each generating variable e. We note that the ring structure of L cannot be
extended to M , as we would get contradictions such as b3

= b · b2
= b · 2 · ζb2 = 0

(since r(b2) = 1 and 2b = 0). We do however extend the action of K on L (as a
subring) to an action of K on M , turning M into a module over K , as follows: If
k ∈ K , p ∈ L are monomials then k · ζp = ζkp. This is extended in the natural way
to an action of power series in K on power series in M . For each n ≥ 0 we denote
by Kn ⊆ Ln ⊆ Mn the additive subgroups of K ⊆ L ⊆ M respectively, generated
by the monomials of degree n. (Recall that ζp ∈ M is considered a monomial of
the same degree as p.) We note that L1 coincides with our previous definition and
that L1 = M1. We have L1 = K1⊕ S where S ⊆ L1 is the four element subgroup
generated by b, c.
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We now obtain a function F : L1→M as follows. We first define F : K1→ K as
the group homomorphism from the additive group K1 to the multiplicative group
of invertible elements in K , which is given on generators by

F(ai )=

∞∑
n=0

an
i .

These are indeed invertible elements, giving

F(−ai )=

( ∞∑
n=0

an
i

)−1

= 1− ai .

We then define F : S→ M explicitly on the four elements of S:

(1) F(0)= 1.

(2) F(b)=
∑
∞

n=0 ζbn .

(3) F(c)=
∑
∞

n=0 ζcn .

(4) F(b+ c)= 1+ b+ c+
∑
∞

n=2(ζbn + ζcn + ζbcn−1).

Finally, F : L1→M is defined as follows: Any element in L1 is uniquely written
as k+ s with k ∈ K1, s ∈ S, and we define F(k+ s)=F(k)F(s) where the product
on the right is the action of K on M .

Lemma 4.1. For any k ∈ K1, l ∈ L1 we have F(k+ l)= F(k)F(l).

Proof. Let l = k ′+ s. Then

F(k+ l)= F(k+ k ′+ s)= F(k+ k ′)F(s)= F(k)F(k ′)F(s)= F(k)F(l). �

Lemma 4.2. For any l ∈ L1 we have F(l) = 1 + l + T2, where T2 stands for
the higher order terms of the given series, that is, some power series in M which
includes only monomials of degree at least 2.

Proof. For l = ±ai and for each l ∈ S, this follows by direct inspection of the
formulae above. It then follows for all l ∈ L1. �

Definition 4.3. For any (n+ 1)-tuple (l; l1, l2, . . . , ln) of elements of L1, define

F′(l; l1, . . . , ln)=
∑

A⊆{1,...,n}

(−1)n−|A|F
(

l +
∑
i∈A

li

)
.

We will repeatedly use the following splitting of the sum defining F′:

F′(l; l1, . . . , ln)=
∑

A⊆{2,...,n}

(−1)n−|A|−1
(

F

(
l + l1+

∑
i∈A

li

)
−F

(
l +

∑
i∈A

li

))
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Proposition 4.4. For any (n+ 1)-tuple (l; l1, . . . , ln) of elements of L1, we have

F′(l; l1, . . . , ln)= l1l2 · · · ln + Tn+1,

where l1l2 · · · ln is the product in L , thought of as an element in M , and Tn+1 stands
for higher order terms, that is, some power series in M including only monomials
of degree at least n+ 1.

Proof. From the splitting presented above of the sum defining F′ we see that
F′(l; 0, l2, . . . , ln) = 0, in which case the statement holds, and similarly if any
li = 0. So we assume from now on that all li are nonzero, and we proceed by
induction on the sum of lengths of l1, . . . , ln in terms of the generators of L1.

For total length 0 we have F′(l;∅)=F(l)= 1+ l+T2= 1+T1 by Lemma 4.2.
Defining an empty product to be 1, the statement holds in this case.

For total length greater than 0, if say l1 is not a generator and l1 = l ′1+ l ′′1 where
l ′1 and l ′′1 have shorter length than l1 in terms of the generators, then

F′(l; l1, . . . , ln)

=

∑
A⊆{2,...,n}

(−1)n−|A|−1
(

F

(
l + l1+

∑
i∈A

li

)
−F

(
l +

∑
i∈A

li

))

=

∑
A⊆{2,...,n}

(−1)n−|A|−1
(

F

(
l + l ′1+ l ′′1 +

∑
i∈A

li

)
−F

(
l + l ′1+

∑
i∈A

li

))

+

∑
A⊆{2,...,n}

(−1)n−|A|−1
(

F

(
l + l ′1+

∑
i∈A

li

)
−F

(
l +

∑
i∈A

li

))
= F′(l + l ′1; l ′′1 , l2, . . . , ln)+F′(l; l ′1, l2, . . . , ln)

= l ′′1 l2 · · · ln + Tn+1 + l ′1l2 · · · ln + Tn+1 = l1l2 · · · ln + Tn+1.

We are thus left with the case where all the li are generators or minus generators
of L1; that is, they are of the form ±e where e ∈ {ai }i∈X ∪ {b, c}. If one of the li

is in K1, say l1 = k ∈ K1, then

F′(l; k, l2, . . . , ln)=
∑

A⊆{2,...,n}

(−1)n−|A|−1
(

F

(
l + k+

∑
i∈A

li

)
−F

(
l +

∑
i∈A

li

))

= (F(k)− 1)
∑

A⊆{2,...,n}

(−1)n−1−|A|F

(
l +

∑
i∈A

li

)
= (F(k)− 1)F′(l; l2, . . . , ln)

= (k+ T2)(l2 · · · ln + Tn)= kl2 · · · ln + Tn+1.
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The second equality follows from Lemma 4.1. The first term in the fourth equality
follows from Lemma 4.2 (and the T2 is in K ). If n = 1 the product l2 · · · ln is an
empty product, equaling 1, as defined above.

So assume now that all l1, . . . , ln are b and c. Assume k of them are b and n−k
of them are c. We first deal with the case k = n, so that l1, . . . , ln all equal b (the
case k = 0 is identical). Since 2b= 0 (and since there are 2n−1 odd sized and 2n−1

even sized subsets of {1, . . . , n}), we get

F′(l; b, b, . . . , b)=
∑

A⊆{1,...,n}

(−1)n−|A|F(l + |A|b)=±2n−1(F(l + b)−F(l)
)
.

Now letting l = k+ s with k ∈ K1, s ∈ S, we get:

±2n−1(F(k+ s+ b)−F(k+ s))=±F(k)2n−1(F(s+ b)−F(s))

=±(1+ T1)2n−1(F(s+ b)−F(s)).

Since multiplication by 1+ T1 ∈ K leaves the lowest order term unchanged, we
may assume that we have only ±2n−1(F(s+ b)−F(s)). If s = 0 or b then

±2n−1(F(s+ b)−F(s))=±2n−1
∞∑

m=1

ζbm = bn
+ Tn+1

since r(bm)=m−1 and so 2n−1ζbm = 0 for m < n and 2n−1ζbn = bn . (The ± was
dropped since 2bn

= 0.) If s = c or c+ b then we get

±2n−1(F(s+ b)−F(s))=±2n−1
(

b+
∞∑

m=2

(ζbm + ζbcm−1)

)
= bn
+ Tn+1

since again r(bm)=m−1, but furthermore r(bcm−1)=m−2 and so 2n−1ζbcm−1 =0
for m ≤ n.

We are left with the case of b appearing k times and c appearing n − k times,
with 0< k < n. Since 2b = 2c = 0, we get

F′(l; b, . . . , b, c, . . . , c)=
∑

B⊆{1,...,k}
C⊆{k+1,...,n}

(−1)n−|B|−|C |F
(
l + |B|b+ |C |c

)
=±2n−2(F(l + b+ c)−F(l + b)−F(l + c)+F(l)

)
.

As before, by writing l = k+ s and factoring out F(k), we may assume l = s ∈ S.
For each of the four elements s ∈ S we get

±2n−2(F(s+b+c)−F(s+b)−F(s+c)+F(s)
)
=±2n−2

∞∑
m=2

ζbcm−1

= bcn−1
+Tn+1 = bkcn−k

+Tn+1,
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since r(bcm−1)=m−2 and so 2n−2ζbcm−1 = 0 for m < n, and 2n−2ζbcn−1 = bcn−1.
�

Extending the definition of gU
1 from Section 2, let gU

n be the unique function in
1n(Mn) defined on unordered n-tuples yi1, . . . , yin of elements of Y by

gU
n ([yi1, · · · , yin ])= gU

1 (yi1)g
U
1 (yi2) · · · g

U
1 (yin ) ∈ Ln ⊆ Mn

(the product being that in L). By the construction of Mn , in fact, gU
n lies in En(Mn).

The equality with which we have defined gU
n on n-tuples of elements of Y is true

for all unordered n-tuples [ci1, . . . , cin ] ∈ Cn . Indeed,

gU
n ([c j1, . . . , c jn ])=

∑
i1,...,in

ni1
j1 · · · n

in
jn gU

n ([yi1, . . . , yin ])

=

∑
i1,...,in

ni1
j1 · · · n

in
jn gU

1 (yi1) · · · g
U
1 (yin )

=

(∑
i1

ni1
j1 gU

1 (yi1)

)
· · ·

(∑
in

nin
jn gU

1 (yin )

)
= gU

1 (c j1) · · · g
U
1 (c jn ).

We now look at the invariant F ◦ f U
1 : I0 → M . Take i ∈ In , with CEs at

{p1, . . . , pn}, and let T be a proper coorientation for i . By Proposition 4.4 and
since µ1( f U

1 )= gU
1 ,

(F ◦ f U
1 )

T(i)=
∑

A⊆{p1,...,pn}

(−1)n−|A|F ◦ f U
1 (iT,A)

=

∑
A⊆{p1,...,pn}

(−1)n−|A|
(

F

(
f U
1 (iT,∅)+

∑
p j∈A

gU
1 (C p j (i))

))
= F′

(
f U
1 (iT,∅); gU

1 (C p1(i)), . . . , gU
1 (C pn (i))

)
= gU

1 (C p1(i))g
U
1 (C p2(i)) · · · g

U
1 (C pn (i))+ Tn+1

= gU
n (C(i))+ Tn+1.

Now let πn : M → Mn be the projection, and define f U
n : I0 → Mn to be the

invariant given by f U
n = πn ◦F ◦ f U

1 . Then by the formula we obtained for (F ◦
f U
1 )

T(i) we get that for any i ∈ In+1, and proper coorientation T for i , ( f U
n )

T(i)=
πn((F◦ f U

1 )
T(i))=πn(gU

n+1(C(i))+Tn+2)= 0, and for any i ∈ In and proper T for
i , ( f U

n )
T(i)= gU

n (C(i)). That is, f U
n is an invariant of order n with µn( f U

n )= gU
n .

Now for an arbitrary abelian group G, if g ∈ En(G) there exists ϕ ∈ Hom(Mn,G)

such that g = ϕ ◦ gU
n . Then ϕ ◦ f U

n is an invariant of order n with µn(ϕ ◦ f U
n ) =

g. This proves that µn(Vn) ⊇ En for any G. In the next section we show that
µn(Vn)⊆ En .
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5. Proof that µn(Vn)⊆ En

For x, y, n ≥ 0 we define I x,y
n to be the space of immersions in Ix+y+n with x

designated CEs of type H 1
0 with choice of ordering on them, y designated CEs of

type Q2
0 with choice of ordering on them, and a choice of coorientation for these

x + y CEs. The remaining n CEs may be of any type and they are neither ordered
nor cooriented. So the same underlying immersion appears 2x+y x ! y! times in I x,y

n

with different choices of ordering and coorientations. Also note that I 0,0
n = In .

We define an (x, y)-invariant to be a function f : I x,y
0 →G which is constant on

the connected components of I x,y
0 . Now let i ∈ I x,y

n and assume the n nondesignated
CEs of i are at p1, . . . , pn . Given a temporary coorientation T for p1, . . . , pn and
a subset A ⊆ {p1, . . . , pn}, we define iT,A ∈ I x,y

0 as before, resolving only the
nondesignated CEs and keeping the order and coorientation of the designated CEs.
We may then define f T(i) and invariants of order n as before, and define V x,y

n to
be the group of all (x, y)-invariants of order at most n. By the same rule as before,
each f ∈V x,y

n will induce a function f̂ on I x,y
n , using a proper coorientation for the

nondesignated CEs. We define C : I x,y
n →Cn as before, using the n nondesignated

CEs. Again C is surjective and induces an injection µn : V
x,y

n /V x,y
n−1→1n . Indeed

all arguments (appearing in [Nowik 2004]) showing that µn may be defined on Vn

and that µn(Vn) ⊆ 1n , are applicable in just the same way to show that the same
is true for V x,y

n . (As a first step note that, by [Nowik 2004, Proposition 3.4, proof
of Proposition 3.5, Remark 3.7], for any i, j ∈ I x,y

n , C(i) = C( j) if and only if
there is an AB equivalence between the underlying immersions which preserves
all additional structure, i.e., brings each designated CE of i to its counterpart in j ,
and with the right coorientation.) We will show that in fact µn(V

x,y
n )⊆ En for any

x, y. In particular we will have µn(Vn)= µn(V 0,0
n )⊆ En , which is the aim of this

section. The purpose of defining V x,y
n is an inductive process which will reduce n

but will increase x and y.

Definition 5.1. If i ∈ I x,y
0 , we denote by i ′ the immersion in I0 obtained from i by

resolving all x+y designated CEs into the positive side determined by their chosen
coorientation.

Lemma 5.2. Given n, assume it is known that for any k < n (and any x, y),
µk(V

x,y
k )⊆ Ek . Then for any k < n and any f ∈ V x,y

k there exists F ∈ Vk such that
f (i)= F(i ′) for any i ∈ I x,y

0 .

Proof. We work by induction on k (< n). By assumption, µk( f ) ∈ Ek . From
Section 4 we know that µk(Vk) contains Ek , so there exists G ∈ Vk with µk(G)=
µk( f ). Let h be the invariant on I x,y

0 defined by h(i) = f (i) − G(i ′). Then
µk(h)= 0, so h ∈ V x,y

k−1, so by the induction hypothesis there is H ∈ Vk−1 such that
h(i)= H(i ′) for all i ∈ I x,y

0 . F = H +G is the required invariant on I0. �
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Before stating the next lemma we introduce some terminology. During an AB
equivalence, the original CEs of the initial immersion are being dragged around.
But for generic motion, there may be some finite number of times during the AB
equivalence at each of which a single additional CE will be encountered, away from
the original ones. We will say that the AB equivalence passes these additional CEs.

Lemma 5.3. Given n, assume it is known that for any k < n (and any x, y),
µk(V

x,y
k ) ⊆ Ek . Take f ∈ V x,y

n and let i, j ∈ I x,y
0 be two immersions such that

there is an AB equivalence between them (respecting ordering and coorientations
of the designated CEs), which passes precisely two additional CEs, both of which
are of type H 1

0 . Then f (i)= f ( j).
The same is true for Q2

0.

Proof. Given f ∈ V x,y
n we define f H

∈ V x+1,y
n−1 and f Q

∈ V x,y+1
n−1 as follows: For

i ∈ I x+1,y
0 let f H (i) = f (i+)− f (i−) where i+ ∈ I x,y

0 is the immersion obtained
from i by resolving the (x+1)-th designated CE of type H 1

0 into the positive side
determined by the chosen coorientation, and the ordering and coorientation on
the remaining designated CEs remains as in i . Similarly i− is defined using the
negative side of the coorientation at the same CE. In the same way f Q is defined
on i ∈ I x,y+1

0 using the (y+1)-th designated CE of type Q2
0. Indeed, f H

∈ V x+1,y
n−1

and f Q
∈ V x,y+1

n−1 , as can be seen (for f H , say) as follows: If i ∈ I x+1,y
n , with CEs

at p1, . . . , pn , and T is a temporary coorientation for i , then∑
A⊆{p1,...,pn}

(−1)n−|A| f H (iT,A)=
∑

A⊆{p1,...,pn}

(−1)n−|A|( f (i+T,A)− f (i−T,A))

=

∑
A⊆{p1,...,pn+1}

(−1)n+1−|A| f (ĩT̃,A)= 0,

where ĩ ∈ I x,y
n+1 corresponds to the same underlying immersion as i , but with

the (x+1)-th designated CE of i now considered as nondesignated, and denoted
pn+1, and where T̃ is the temporary coorientation for ĩ which coincides with T on
p1, . . . , pn and which assigns to pn+1 the coorientation it had as a designated CE
of i . We continue discussing H 1

0 but clearly all will be true for Q2
0 as well. By

our assumption and Lemma 5.2 there exists G ∈ Vn−1 such that f H (i) = G(i ′)
for all i ∈ I x+1,y

0 . Now let Jt : F → R3 (0 ≤ t ≤ 1) be an AB equivalence
as in the assumption of the lemma, between i, j ∈ I x,y

0 , so J0 = i, J1 = j , and
assume the two additional CEs are passed at times 1

3 and 2
3 . We make J1/3 and

J2/3 into elements of I x+1,y
0 by announcing the additional CE that is occurring

as the (x+1)-th designated CE of type H 1
0 . For J1/3 we choose the coorientation

of this (x + 1)-th CE to be represented by the motion of Jt through J1/3 with
increasing time, whereas for J2/3 we use the motion of Jt with decreasing time.
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So J1/2 is on the positive side of both J1/3 and J2/3. The coorientation and order
on all other designated CEs of J1/3 and J2/3 are those of i which are continuously
carried along the regular homotopy Jt . Similarly J1/2 is made into an element of
I x,y
0 by continuously carrying the coorientation and order of the CEs of i along Jt .

We get

f (J1/2)− f (i)= f H (J1/3)= G(J ′1/3)= G(J ′2/3)= f H (J2/3)= f (J1/2)− f ( j).

The middle equality holds since G is defined on I0 and J ′1/3 and J ′2/3 are in the
same connected component of I0. And so we get f (i)= f ( j). �

We now prove that µn(V
x,y

n )⊆ En , by induction on n. Assume it is true for any
k < n (and any x, y), so the conclusion of Lemma 5.3 holds. Let i ∈ I x,y

n have
all its nondesignated CEs from the set Y and located at p1, . . . , pn and let T be a
proper coorientation for p1, . . . , pn . For U, V ⊆ {p1, . . . , pn} we will say U ∼ V
if U and V include precisely the same points in {p1, . . . , pn} which are not of type
H 1

0 or Q2
0, the same number mod 2 of points of type H 1

0 , and the same number
mod 2 of points of type Q2

0. It is easy to see that there are precisely 2r sets in each
∼-equivalence class, where r = r(C(i)). If U ∼ V then there is an AB equivalence
Jt from iT,U to iT,V which passes an even number of CEs of type H 1

0 and then
an even number of CEs of type Q2

0, which we now construct. Starting with iT,U ,
Jt passes each CE in U which is of type H 1

0 , one by one, from the positive side
determined by T, to the negative side, and then passes each CE in V of type H 1

0
from the negative side to the positive side. Jt then continues by doing the same for
the CEs in U and V of type Q2

0, finally arriving at iT,V . And so by Lemma 5.3,
for any f ∈ V x,y

n , f (iT,U )= f (iT,V ). Since also |U | = |V | mod 2, we have

(−1)n−|U | f (iT,U )= (−1)n−|V | f (iT,V ).

Representatives for the various ∼-equivalence classes may be obtained as follows:
Let R ⊆ {p1, . . . , pn} be a subset which includes all the points which are not of
type H 1

0 and Q2
0, and includes only one of the points of type H 1

0 if such exists,
and only one of the points of type Q2

0 if such exists. Then the set of subsets of
R includes precisely one representative from each ∼-equivalence class, and so we
get:

Lemma 5.4. Let i ∈ I x,y
n have all its nondesignated CEs from the set Y and located

at p1, . . . , pn and let r = r(C(i)). Let T be a proper coorientation for p1, . . . , pn

and let R ⊆ {p1, . . . , pn} be as above, then for any f ∈ V x,y
n :

f̂ (i)= f T(i)= 2r
∑
A⊆R

(−1)n−|A| f (iT,A).

This proves that µn( f ) satisfies property (2) of Definition 3.1.
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As for property (1) of Definition 3.1, for given symbols Z4, . . . , Zn in Y , take
i ∈ I x,y

n+1 having its nondesignated CEs located at {p1, . . . , pn+1} and having

C p1(i)= C p2(i)= H 1
0 ,

C pn(i)= C pn+1(i)= Q2
0,

C p j (i)= Z j+1 for j = 3, . . . , n− 1.

Given a proper coorientation T for i at p1, . . . , pn+1, let i0 ∈ I x,y
n be the immersion

obtained from i by resolving the CE at pn+1 into the negative side determined by
T, and let i1 ∈ I x,y

n be similarly defined using the point p1. So the CEs of i0

are {p1, . . . , pn} and those of i1 are {p2, . . . , pn+1}. Let T0,T1 be the proper
coorientations for i0, i1 respectively, which are the restrictions of T, then for any
A ⊆ {p2, . . . , pn}, (i0)T0,A = iT,A = (i1)T1,A. Let R ⊆ {p2, . . . , pn} be the set
including p2, pn and all points which are not of type H 1

0 or Q2
0. Then this R

may be used as the R appearing in Lemma 5.4, for both i0 and i1. Furthermore
r(C(i0))= r(C(i1)) which we denote r , so we get by Lemma 5.4:

f̂ (i0)= f T0(i0)= 2r
∑
A⊆R

(−1)n−|A| f (iT,A)= f T1(i1)= f̂ (i1).

Since C(i0) = [H 1
0 , H 1

0 , Q2
0, Z4, . . . , Zn] and C(i1) = [H 1

0 , Q2
0, Q2

0, Z4, . . . , Zn],
this shows µn( f ) satisfies property (1) of Definition 3.1. We have thus established
µn(Vn)⊆ En , and so together with Section 4 we have µn(Vn)= En .

To complete the proof of Theorem 3.2 it remains to show that given f ∈ Vn(G)

there is a function s : L1→ G such that f = s ◦ f U
1 . Since µn( f ) ∈ En(G), there

exists a homomorphism ϕ : Mn→ G such that ϕ ◦ gU
n = µn( f ), and so

µn(ϕ ◦ f U
n )= ϕ ◦µn( f U

n )= ϕ ◦ gU
n = µn( f ),

which is equivalent to f −ϕ◦ f U
n ∈ Vn−1(G). By induction on n there is s̃ : L1→G

with f −ϕ ◦ f U
n = s̃ ◦ f U

1 so f = ϕ ◦ f U
n + s̃ ◦ f U

1 = ϕ ◦πn ◦F◦ f U
1 + s̃ ◦ f U

1 and
we may take s = ϕ ◦πn ◦F+ s̃.
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