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SEMICLASSICAL DIFFERENTIAL STRUCTURES

EDWIN J. BEGGS AND SHAHN MAJID

We semiclassicalise the standard notion of differential calculus in noncom-
mutative geometry on algebras and quantum groups. We show in the sym-
plectic case that the infinitesimal data for a differential calculus is a sym-
plectic connection, and interpret its curvature as lowest order nonassocia-
tivity of the exterior algebra. Semiclassicalisation of the noncommutative
torus provides an example with zero curvature. In the Poisson–Lie group
case we study left-covariant infinitesimal data in terms of partially defined
preconnections. We show that the moduli space of bicovariant infinitesi-
mal data for quasitriangular Poisson–Lie groups has a canonical reference
point which is flat in the triangular case. Using a theorem of Kostant, we
completely determine the moduli space when the Lie algebra is simple: the
canonical preconnection is the unique point other than in the case of sln,
n > 2, when the moduli space is 1-dimensional. We relate the canonical
preconnection to Drinfeld twists and thereby quantise it to a super coquasi-
Hopf exterior algebra. We also discuss links with Fedosov quantisation.

1. Introduction

Usually the quantisation problem in physics consists of a commutative algebra of
functions equipped with a Poisson bracket and the search for a noncommutative al-
gebra with commutators reproducing this to lowest order in a deformation parame-
ter h̄. It is well known that actually the converse problem is more well posed: given
a noncommutative algebra which is a flat deformation one may semiclassicalise its
structure and recover the Poisson bracket of which it is a quantisation. Either
way Poisson brackets are the semiclassical data for associative noncommutative
algebras.

In this second point of view the starting point is the noncommutative algebra
itself. In the last two decades the ‘geometry’ of such algebras has been well de-
veloped in different approaches, such as from operator theory [Connes 1994] or
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Hopf algebras [Majid 1995], and in particular the notion of differential structures,
quantum bundles, Riemannian structures etc have been fairly well established from
an intrinsically noncommutative algebraic point of view. In this paper and its sequel
we will semiclassicalise these various notions from noncommutative geometry to
elucidate the classical infinitesimal data of which they are quantisations. In this
first part we limit ourselves to the differential calculus and differential forms. In
a sequel we will proceed to quantum bundles and Riemannian structures at the
semiclassical level.

Let A be an algebra. The by-now standard notion of differential calculus in
noncommutative geometry is to specify an A-A-bimodule �1 of ‘1-forms’ and a
linear map d : A →�1 obeying:

(1) Leibniz rule: d(ab)= a(db)+ (da)b for all a, b ∈ A.

(2) Surjectivity: {a db} span �1.

We do not demand that a db = (db)a, i.e., that 1-forms and functions commute,
just as we do not demand that A be commutative. The above is a first order cal-
culus and we will find that its semiclassical data is a compatible partially defined
‘preconnection’ (a symplectic torsion free connection in the symplectic case when
the symplectic form is central to lowest order), see Propositions 2.1 and 3.3.

We can ask further for an entire differential graded ‘algebra’ of forms of all
degree and d such that d2

= 0. Usually one demands an associative such exterior
algebra and this case corresponds to a flat symplectic connection or preconnection.
The formal analysis for both results is in Section 2 and the geometric meaning is in
Section 3. We find in particular three super-Jacobi identity obstructions J1, J2, J3.
The geometric meaning of the J1 obstruction turns out to be the curvature of the
preconnection. We give geometric conditions for the others also (involving now
the torsion). An example of a flat connection is provided by the noncommutative
torus at the semiclassical level.

Next, in Section 4, we specialise to the case where A is a Hopf algebra or ‘quan-
tum group’. These provide examples of noncommutative geometry which are well
controlled though the requirements of the ‘group’ structure. Their semiclassicali-
sation was worked out in the 1980s by V. G. Drinfeld as the notion of a Poisson–Lie
group. In this context it is natural to restrict to differential structures that are left,
right or bicovariant [Woronowicz 1989]. We analyse the left covariance restrictions
on a Poisson–Lie group G at the semiclassical level in Sections 4A and 4B and
give a formulation of the data in Lie algebraic terms of a map 4 : g → g ⊗ g.
We give an example on the group manifold SU2 in Section 4C. After that, Section
4D analyzes the stronger requirement of a bicovariant calculus at the semiclassical
level, where Proposition 4.16 together with Corollary 4.7 reduce the classification
to Ad-invariant symmetric maps 4̂ : g → Sym2(g) when the Poisson–Lie group is
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quasitriangular (this includes the standard q-deformation quantum groups at the
semiclassical level). We conclude in this case (Theorem 4.18 and Proposition
4.19) that there is a canonical choice and it has curvature given by the Schouten
bracket [[r−, r−]], where r− is the antisymmetric part of the quasitriangular struc-
ture r ∈ g ⊗ g. Thus the classical Yang–Baxter equation has a direct geometric
meaning as curvature. We show (Theorem 4.20) that for all simple g other than
the sln series, n > 2, it is the only choice for a first order bicovariant semiclassical
calculus (i.e., a compatible preconnection). Moreover, our results imply that this
extends associatively to lowest order if and only if g is triangular. This fits with the
‘quantum Lie functor’ for a canonical differential calculus on quasitriangular Hopf
algebras introduced in [Gomez and Majid 2003], which is known to typically give
trivial answers unless the quantum group is triangular. Our results prove indeed
that a strictly quasitriangular Poisson–Lie group has no bicovariant calculus that is
a deformation (with the same dimensions etc.) of the classical calculus in a high
degree of generality. This explains the typical experience in quantum group theory
where strictly quasitriangular quantum groups typically do not admit bicovariant
differential calculi of the usual classical dimension but require some form of cen-
tral or other extension. What is remarkable is that this obstruction identified in our
analysis is not at the semiclassical first order level where we find the perfectly good
canonical preconnection above; it enters at the semiclassical super-Jacobi identity
level concerning the associativity in the bimodule and exterior algebra structures.

This last point is taken up in Section 5, where we provide a different point of
view on the canonical preconnection for the standard quasitriangular Poisson–Lie
groups, now inspired by Drinfeld’s theory of quasi-Hopf algebras [1987]. Drin-
feld showed (effectively) that the standard quantum groups Ch̄(G) in a suitable
deformation setting are isomorphic to the twisting by a cochain of a coquasi-
Hopf algebra structure on the classical group function algebras. Even though the
cochain is not a cocycle it happens that the resulting algebra is associative. This
accident does not extend to the exterior algebra, i.e., when the classical exterior al-
gebra is similarly twisted as in [Majid and Oeckl 1999] it becomes nonassociative.
We semiclassicalise this construction and understand our canonical preconnection
in these terms as corresponding to a quasiassociative calculus (Proposition 5.3).
Conversely put, we quantise the canonical preconnection to a super coquasi-Hopf
exterior algebra �(Ch̄(G)) by these means.

Finally, we note that our main result that the data for a semiclassical calculus is a
pair consisting of a Poisson bracket and a compatible connection or preconnection
is, in the symplectic case, precisely the data used by Fedosov [1996] to solve the
quantisation problem. We make some remarks about this in Section 6. Our result
suggests that in the Fedosov construction there is also for free a noncommutative
differential calculus also constructed from the input data and with semiclassical
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limit the Fedosov symplectic connection. If so then whereas the problem of quan-
tising a symplectic structure to an algebra is not unique as one must chose the
connection, quantising the pair consisting of a symplectic structure and connection
to an algebra and differential calculus would be unique. Also, because of the role
played in Hamiltonian mechanics by symplectic structures, we expect a physical
role also of the symplectic connection and here its interpretation as controlling the
quantisation of the differential structure suggests a possible role.

In this paper we use the following conventions for the torsion and curvature
tensors. For vector fields U , V and W we have

T (U,V )k = T k
i j U i V j ,

R(U,V )(W )l = Rl
i jk W i U j V k,

T (U,V )= ∇U V −∇V U −[U,V ],

R(U,V )(W )= ∇U ∇V W −∇V ∇U W −∇[U,V ]W.

In terms of Christoffel symbols we have

(∇V W )l = V k (W l
,k +0l

ki W i ), T k
i j = 0k

i j −0k
ji ,

Rl
i jk =

∂0l
ki

∂x j −
∂0l

j i

∂xk +0m
ki 0

l
jm −0m

ji 0
l
km .

Note added in press: In fact the requirement of flatness in the usual associative
case has been found earlier in [Hawkins 2004], using a different notion of ‘con-
travariant connections’; this does not affect our main results, which are intended
to reach beyond the flat case. We thank E. Hawkins for bringing this work to our
attention and for helpful comments.

2. Deformation analysis of noncommutative differential structures

In this section we perform the required algebraic deformation analysis and prove
some basic lemmas. Their geometric meaning will then be explored in later sec-
tions.

As usual, we deform commutative multiplication on C∞(M) on a classical man-
ifold M to the associative multiplication x • y, where x • y = x y + O(h̄). If we
assume that the commutator can be written as [x, y]• = x • y − y • x = h̄ {x, y} +

O(h̄2), we see that {x, y} = −{y, x} and (by considering the two ways of writing
z•x •y−x •y•z to first order in h̄), {z, xy}= {z, x} y+x{z, y}, that is, { , } is a Pois-
son bracket. Formally speaking, the deformed algebra C∞

h̄ (M) can be formulated
as an algebra over C[[h̄]], topologically free with C∞

h̄ (M)/h̄C∞

h̄ (M) ∼= C∞(M).
However, for most of the paper we actually need only that structure maps depend
on an h̄ parameter permitting of power series expansion and comparison of lower
order terms as specified, which is therefore the line that we take. The same remark
applies for differential forms in what follows.
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2A. Deformation of the classical bimodule structure. In this section we begin
with assumptions on the associativity of the differential calculus, and see what this
means in terms of the supercommutators [ , ]•. We define a formal deformation of
the differential calculus on M to lowest order in h̄ to be the following:

As sets the functions C∞(M) and n-forms �n(M) take their classical values.
The symbol • is used for the deformed multiplication. �1(M) is a bimodule over
(C∞(M), • ) to order O(h̄2), i.e., for x, y ∈ C∞(M) and τ ∈�1(M)

(2–1)

(x • y) • τ − x • (y • τ)= O(h̄2),

τ • (x • y)− (τ • x) • y = O(h̄2),

(x • τ) • y − x • (τ • y)= O(h̄2).

We also suppose that x • τ = x τ + O(h̄) and τ • x = x τ + O(h̄), and hence
define γ by

(2–2) x • τ − τ • x = [x, τ ]• = h̄γ (x, τ )+ O(h̄2).

We make the assumption that the deformed exterior multiplication ∧• is asso-
ciative to O(h̄2). Note that where one of the forms is a zero-degree form, we just
use • instead of ∧•. We also assume that τ ∧• η = τ ∧ η+ O(h̄).

The deformed d operator d•
: �n(M)→ �n+1(M), is related to the usual d by

d•x = dx + O(h̄). Also d• is a graded derivation to order O(h̄2), i.e.,

(2–3) d•(ξ ∧• η)= d•ξ ∧• η+ (−1)degξ ξ ∧• d•η+ O(h̄2).

Proposition 2.1. The map γ (−, τ ) is a derivation on C∞(M) for all τ ∈ �1(M)
and obeys

(2–4) γ (x, τ y)= γ (x, τ ) y + τ {x, y}.

We call any map γ with these properties a preconnection. Moreover, γ is compat-
ible with the Poisson structure in the sense

(2–5) d{x, y} = γ (x, dy)− γ (y, dx).

Proof. From the approximate bimodule rules (2–1) we have, for x, y ∈ C∞(M)
and τ ∈�1(M).

[x • y, τ ]• = x • [y, τ ]• + [x, τ ]• • y + O(h̄2),

from which we deduce

γ (xy, τ )= x γ (y, τ ) + γ (x, τ ) y.(2–6)

The next formula is deduced from

[x, τ • y]• = [x, τ ]• • y + τ • [x, y]• + O(h̄2),
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and the last formula from the approximate derivation rule (2–3)

d•
[x, y]• = [d•x, y]• + [x, d•y]• + O(h̄2). �

The terminology for γ is justified in Section 3 below.

Proposition 2.2. The commutator of a function x with higher forms is given by the
following formula, which can also be viewed as the extension of γ to higher forms:

[x, τ ∧• η]• = h̄γ (x, τ ∧ η)+ O(h̄2)= h̄ (γ (x, τ )∧ η+ τ ∧ γ (x, η))+ O(h̄2).

Proof. This can be seen by rearranging the formula

[x, τ ∧• η]• = x • (τ ∧• η)− (τ ∧• η) • x + O(h̄2). �

2B. Supercommutator of forms and Jacobi terms. If the operation ∧• on �∗ is
associative (up to O(h̄2)) and supercommutative (up to O(h̄)), then the super-
Jacobi identities for the supercommutator [ , ]• hold up to O(h̄2). We now ask what
conditions would be necessary for the super-Jacobi identities to hold up to O(h̄3).

Definition 2.3. Define Ji : C∞(M)⊗3
→�i (M) by

[x, [y, dz]•]• + [dz, [x, y]•]• + [y, [dz, x]•]• = h̄2 J1(x, y, z)+ O(h̄3),

[x, [dy, dz]•]• − [dz, [x, dy]•]• + [dy, [dz, x]•]• = h̄2 J2(x, y, z)+ O(h̄3),

[dx, [dy, dz]•]• + [dz, [dx, dy]•]• + [dy, [dz, dx]•]• = h̄2 J3(x, y, z)+ O(h̄3).

Proposition 2.4. (1) If d J2 vanishes identically then so does J3.

(2) If d J1 vanishes identically then J2 is totally symmetric in its 3 arguments.

Proof. By applying d• we see that d J2(x, y, z) = J3(x, y, z)+ O(h̄), so the van-
ishing of d J2 implies the vanishing of J3. For the second statement, note that
dJ1(x, y, z) = J2(x, y, z)− J2(y, z, x)+ O(h̄), and by combining this with the
more obvious identity J2(x, z, y) = J2(x, y, z) we find that the vanishing of dJ1

implies that J2(x, y, z) is totally symmetric in x , y and z. �

Proposition 2.5. Suppose that the first super-Jacobi identity (for two functions and
a 1-form) holds to O(h̄2), that J2(x, x, x) = 0 for all x ∈ C∞(M), and that the
following conditions are satisfied for all x, y ∈ C∞(M), τ, η ∈�1 and π ∈�2:

[τ, x η]• = [τ, x]• ∧ η+ x [τ, η]• + O(h̄2),

[y, xπ ]• = [y, x]•π + x [y, π]• + O(h̄2),

[y, τ ∧ η]• = [y, τ ]• ∧ η+ τ ∧ [y, η]• + O(h̄2).

Then the second super-Jacobi identity (for a function and two 1-forms) holds to
O(h̄2).
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Proof. As the super-Jacobi identity for two functions and a 1-form holds to O(h̄2),
we see that J1 vanishes identically. By Proposition 2.4 J2 is completely symmetric,
and as J2(x, x, x) = 0 for all x ∈ C∞(M) we deduce that J2 is identically zero.
Now use the fact that linear combinations of the form x dy span �1. �

Proposition 2.6. Suppose that the conditions for Proposition 2.5 hold, and that the
following conditions hold for all x ∈ C∞(M), τ, η, ξ ∈�1 and π ∈�2:

[τ, ξ ∧ η]• = [τ, ξ ]• ∧ η− ξ ∧ [τ, η]• + O(h̄2),

[τ, xπ ]• = [τ, x]• ∧π + τ ∧ [y, π]• + O(h̄2),

[x τ, π]• = [x, π]• ∧ τ + x [τ, π]• + O(h̄2).

Then the third super-Jacobi identity (for three 1-forms) holds to O(h̄2).

Proof. Use the fact that linear combinations of the form x dy are dense in �1. �

3. Geometric interpretation of the semiclassical data

Here we look at the geometric meaning of the map γ in the semiclassical data. The
full picture emerges in the symplectic case as a symplectic connection, but first
some remarks about the general case. For general Poisson bracket we have only
a preconnection or ‘partially defined connection’ which we denote ∇̂x . It should
be thought of and sometimes is a usual covariant derivative ∇x̂ along Hamiltonian
vector fields x̂ = {x,−} associated to x ∈ C∞(M), and is defined by

∇̂xτ = γ (x, τ ) for all τ ∈�1(M).

Indeed, the derivation property of a connection on Hamiltonian vector fields is
∇̂x(yτ) = y∇̂xτ + x̂(y)τ , which is (2–4) in Proposition 2.1. Meanwhile, writing
{xy, z} = y{x, z} + x{y, z} for all z as x̂ y = yx̂ + x ŷ, the derivation property of
γ (−, τ ) plays the role of the usual tensoriality of a connection with respect to the
vector field direction of differentiation.

Similarly, we define the curvature of a preconnection in the usual way but only,
morally speaking, on such vector fields, where

(3–1) R(x, y)= ∇̂x ∇̂y − ∇̂y∇̂x − ∇̂{x,y}

given that the Jacobi identity for the Poisson bracket means that [x̂, ŷ] = {̂x, y}.
Its deformation-theoretic meaning is:

Proposition 3.1. For a semiclassical differential calculus,

[x, [y, τ ]•]• + [τ, [x, y]•]• + [y, [τ, x]•]• = h̄2 R(x, y)(τ )+ O(h̄3);

that is, the obstruction to the first super-Jacobi identity is J1(x, y, z)= R(x, y)(dz).
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Proof. First we calculate

[x, [y, τ ]•]• = [x, h̄ ∇̂yτ + O(h̄2)]• = h̄2
∇̂x ∇̂yτ + O(h̄3).

Applying this into the first super-Jacobi identity with two functions x, y and a 1-
form τ and the definition of γ gives the result. �

In the same way, we define the torsion tensor again as usual but partially, by

(3–2) T (x, y)= ∇̂x ŷ − ∇̂y x̂ − {̂x, y}

where ∇̂x on vector fields is defined as usual via

<< ∇̂xv, τ >> = x̂( <<v, τ >> )− <<v, ∇̂xτ >>

for any vector field v and all 1-forms τ .

Proposition 3.2. For a compatible preconnection in the sense of (2–4)-(2–5), the
torsion obeys

T (x, y)(dz)+ cyclic = 0 for all x, y, z ∈ C∞(M).

Proof. From the definitions, we have

(3–3) << T (x, y), dz>> = << x̂, ∇̂ydz>> − << ŷ, ∇̂x dz>>

for all x, y, z ∈ C∞(M), using the definition of torsion, converting to an operation
on forms and using the Jacobi identity for the Poisson bracket. We then take the
cyclic sum x → y → z → x , use (2–5) three times, and the Jacobi identity again. �

This completes our general comments. For further explicit computations, we
will suppose that M is finite-dimensional with coordinate patch with coordinate
functions (x1, . . . , xn). We use the summation convention for repeated indices.
Suppose that the Poisson structure is given by

{y, z} = ωi j ∂y
∂x i

∂z
∂x j ,

where ωi j
= −ω j i and y, z are functions. The Jacobi identity for { , } gives

(3–4) ωis ∂ω
jk

∂x s +ω js ∂ω
ki

∂x s +ωks ∂ω
i j

∂x s = 0.

From (2–6) we can write

γ (y, dx i )= c ik
n

∂y
∂xk dxn,

or alternatively γ (xk, dx i )= c ik
n dxn . Then from (2–4) we get

γ (y, ai dx i )=

(
ωkq ∂an

∂xq + c ik
n ai

) ∂y
∂xk dxn.
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From (2–5) we get

(3–5)
∂ωi j

∂xn = c j i
n − c i j

n .

Given a function y the associated Hamiltonian vector field ŷ is of course defined
by

ŷ = ωkq ∂y
∂xk

∂

∂xq .

3A. The symplectic case. To simplify the computations we now specialise to the
nondegenerate case, where the matrix ωi j is invertible. We write its inverse as ωi j ,
so that ωi j ω jk = δi

k . Then equation (3–4) shows that the 2-form ωi j dx i
∧ dx j is

closed, and so is a symplectic form. We now use material from [Gelfand et al.
1998]. We can rewrite the formula for γ as

γ (y, τ )= ωkq ∂y
∂xk ∇q(τ ),

where ∇ is now a fully defined covariant connection,

∇q(an dxn)=

( ∂an

∂xq +ωqs c is
n ai

)
dxn

=

( ∂an

∂xq −0i
qn ai

)
dxn.

The formula for the Christoffel symbols is

0i
qn = −ωqs c is

n or c ik
n = −ωkq0i

qn.

From (3–5) we see that

(3–6)
∂ωi j

∂xn +ωiq0 j
qn +ωq j 0i

qn = 0,

which can be rewritten using the torsion tensor T j
qn = 0

j
qn −0

j
nq as

(3–7) ∇nω
i j

+ωiq T j
qn +ωq j T i

qn = 0.

Proposition 3.3. The 2-form ω commutes in the • product with all functions to
O(h̄2) if and only if the connection preserves ω and is torsion free.

Proof. We use Darboux coordinates where ωi j is constant. If the 2-form ω is
central, then we see that the connection preserves ω, i.e.,

ωiq0 j
nq +ωq j 0i

nq = 0

From (3–6) we see that
ωiq0 j

qn +ωq j 0i
qn = 0,

As in [Gelfand et al. 1998] we set 0ik j = ωil0
l
k j , and then the last two equations

give 0snr = 0rns and 0srn = 0rsn , so 0snr is totally symmetric and the torsion
vanishes. �
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3B. The second Jacobi identity in the symplectic case.
Lemma 3.4. For a 1-form τ and a vector field Y ,

d(∇Y τ)− ∇Y dτ = ((T n
jl Y j

+ Y n
;l)τi;n − N k

jil τk Y j ) dx l
∧ dx i ,

where
N k

jil = T k
ji;l +

1
2 Rk

jli + T n
jl T k

in +
1
2 T n

li T k
jn.

Proof.

d(∇Y τ)− ∇Y dτ =
(
(0n

jl τi,n −0k
ji,l τk)Y j

+ (τi, j −0k
ji τk)Y

j
,l

)
dx l

∧ dx i

=
(
(0n

jl τi,n − T k
ji,l τk −0k

i j,l τk)Y j
+ τi; j Y j

,l

)
dx l

∧ dx i .

Now we use

Rk
jli dx l

∧ dx i
= (0k

i j,l −0k
l j,i +0m

i j 0
k
lm −0m

l j 0
k
im)dx l

∧ dx i

= 2(0k
i j,l +0m

i j 0
k
lm) dx l

∧ dx i

to get

d(∇Y τ)−∇Y dτ

=
(
(0n

jl τi,n −T k
ji,l τk −

1
2 Rk

jli τk +0n
i j 0

k
ln τk)Y j

+τi; j Y j
,l

)
dx l

∧ dx i

=
(
(0n

jl τi,n −T k
ji,l τk −

1
2 Rk

jli τk +0n
i j 0

k
ln τk −0n

l j (∇nτi ))Y j

+(∇ jτi )(∇lY j )
)

dx l
∧ dx i

=
(
(T n

jl τi;n −T k
ji,l τk −

1
2 Rk

jli τk +0n
i j 0

k
ln τk +0n

jl0
k
ni τk)Y j

+(∇ jτi )(∇lY j )
)

dx l
∧ dx i

=
(
(T n

jl τi;n −T k
ji;l τk −

1
2 Rk

jli τk +0n
ji 0

k
ln τk +0n

jl0
k
ni τk

−0n
l j T k

ni τk −0n
li T k

jn τk)Y j
+(∇ jτi )(∇lY j )

)
dx l

∧ dx i

=
(
(T n

jl τi;n −T k
ji;l τk −

1
2 Rk

jli τk −T n
jl T k

in τk −
1
2 T n

li T k
jn τk)Y j

+(∇ jτi )(∇lY j )
)

dx l
∧ dx i

=
(
(T n

jl Y j
+Y n

;l)τi;n −N k
jil τk Y j ) dx l

∧ dx i . �

Proposition 3.5. The supercommutator between two 1- forms τ and ξ is

[ξ, τ ]• = h̄ω jn
∇ jξ ∧ ∇nτ + h̄ω jn N k

jil ξn τk dx l
∧ dx i

+ O(h̄2).

By the symmetry of [ξ, τ ]• we must have ω jn N k
jil −ω jn N k

jli symmetric in nk.

Proof. It is enough to consider ξ = a db. Begin with

[db, τ ]• = d[b, τ ]• − [b, dτ ]• + O(h̄2)

= h̄ (d∇b̂ − ∇b̂ d)τ + O(h̄2)

= h̄ ((T n
jl b̂ j

+ b̂n
;l)τi;n − N k

jil τk b̂ j ) dx l
∧ dx i

+ O(h̄2).
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Now we use b̂n
= ωin b,i to get

[db, τ ]• = h̄ ((T n
jlω

mj b,m +ωmn
;l b,m +ωmn (b,m);l)τi;n

− N k
jil τkω

mj b,m ) dx l
∧ dx i

+ O(h̄2).

Using equation (3–7) for the covariant derivative of ω,

[db, τ ]• = h̄
(
(T m

jl ω
nj b,m +ωmn (b,m);l)τi;n − N k

jil τkω
mj b,m

)
dx l

∧ dx i
+ O(h̄2)

= h̄
(
(T m

jl ω
nj b,m +ω jn (b, j );l)τi;n − N k

jil τkω
nj b,n

)
dx l

∧ dx i
+ O(h̄2)

= h̄ωnj ((T m
jl b,m − (b, j );l)τi;n − N k

jil τk b,n
)

dx l
∧ dx i

+ O(h̄2)

= h̄ωnj (
−(b,l); j τi;n − N k

jil τk b,n
)

dx l
∧ dx i

+ O(h̄2).

Now using the next equation gives the answer;

[a db, τ ]• = a [db, τ ]• + db ∧ [a, τ ]• + O(h̄2). �

Proposition 3.6. If the curvature vanishes and Enk
li ≡ ω jn N k

jil is covariantly
constant, then the obstruction J2 to the second super-Jacobi identity vanishes.

Proof. First consider the case E = 0. In Darboux coordinates where ω is constant,

[a, [ξ, τ ]•]• − [τ, [a, ξ ]•]• + [ξ, [τ, a]•]•

= h̄
(
[a, ω jn

∇ jξ ∧ ∇nτ ]• − [τ,∇âξ ]• − [ξ,∇âτ ]•
)
+ O(h̄3)

= h̄2 (
ω jn

[∇â,∇ j ]ξ ∧ ∇nτ +ω jn
∇ jξ ∧ [∇â,∇n]τ

)
+ O(h̄3).

If the curvature is zero this becomes

h̄2 (
ω jn

∇{â, j}ξ ∧ ∇nτ +ω jn
∇ jξ ∧ ∇{â,n}τ

)
+ O(h̄3)

= h̄2 (
ωmn

∇{â,m}ξ ∧ ∇nτ +ω jm
∇ jξ ∧ ∇{â,m}τ

)
+ O(h̄3)

= h̄2 (ωmn
{â, ∂m}

j
+ω jm

{â, ∂m}
n )∇ jξ ∧ ∇nτ + O(h̄3).

Now we calculate

ωmn
{â, ∂m}

j
= −ωmn (â j ),m = ωnmωi j a,im = ωnmωi j a,mi

= ωni ωmj a,im = −ω jmωni a,im = −ω jm
{â, ∂m}

n.

Now we consider the general case, where

[a, [ξ, τ ]•]• − [τ, [a, ξ ]•]• + [ξ, [τ, a]•]•

= h̄ [a, Enk
liξnτk dx l

∧ dx i
]• − Enk

liτn(∇âξ)k dx l
∧ dx i

− Enk
liξn(∇âτ)k dx l

∧ dx i
+ O(h̄3),

which leads to ∇â Enk
li = 0. �
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3C. The third Jacobi identity in the symplectic case. We already know from Sec-
tion 2 that if J1 = J2 = 0, then the third part J3 of the super-Jacobi identity, for
three 1-forms, vanishes. In view of the above, this is the case when the curvature
and torsion both vanish. Here we give, as a check, a direct proof of this fact. We
consider the super-Jacobi identity with three 1-forms, φ, τ and η:

[φ, [τ, η]•]• = [φ, h̄ωkq
∇kτ ∧∇qη+ O(h̄2)]•

= h̄ [φ, ωkq
∇kτ ∧∇qη]• + O(h̄3)

= h̄ωkq (
[φ,∇kτ ]• ∧∇qη−∇kτ ∧[φ,∇qη]•

)
+ O(h̄3)

= h̄2ωkqωnm (∇nφ∧∇m∇kτ ∧∇qη−∇kτ ∧∇nφ∧∇m∇qη)+ O(h̄3)

= h̄2ωkqωnm (∇nφ∧∇m∇kτ ∧∇qη+∇kτ ∧∇m∇qη∧∇nφ)+ O(h̄3).

To show that the cyclic sum vanishes to O(h̄2) we need the following 3-form to
be zero:

ωkqωnm (∇nφ∧∇m∇kτ∧∇qη+∇kτ∧∇m∇qη∧∇nφ+∇nτ∧∇m∇kη∧∇qφ

+∇kη∧∇m∇qφ∧∇nτ+∇nη∧∇m∇kφ∧∇qτ+∇kφ∧∇m∇qτ∧∇nη)

= (ωkqωnm
+ωnkωqm)∇nφ∧∇m∇kτ∧∇qη

+(ωkqωnm
+ωqnωkm)∇kτ∧∇m∇qη∧∇nφ

+(ωkqωnm
+ωqnωkm)∇kη∧∇m∇qφ∧∇nτ

= (ωkqωnm
+ωnmωqk)∇nφ∧∇m∇kτ∧∇qη

+(ωkqωnm
+ωmnωkq)∇kτ∧∇m∇qη∧∇nφ

+(ωkqωnm
+ωmnωkq)∇kη∧∇m∇qφ∧∇nτ

= 0.

3D. The generalised braiding associated to ∇. If A is an algebra equipped with
a calculus and a left covariant derivative ∇ : �1

→ �1
⊗A �

1 on it (meaning
∇(a • τ)= da ⊗A τ + a • ∇(τ ) for all a ∈ A, τ ∈�1) it may be possible to define
a ‘generalised braiding’ [Madore 1999]:

σ̄ :�1
⊗A �

1
→�1

⊗A �
1, σ (τ ⊗ da)= ∇(τ • a)− ∇(τ ) • a,

where σ is given on exact forms in the second argument and assumes that ker d is
spanned by 1. It is already a left module map and in well-behaved cases it extends
also as a right module map to �1

⊗�1, in which case it follows using the Leibniz
rule that it descends to an operator σ̄ on �1

⊗A �
1.

In our case • is the deformed module structure on�1(M), and we suppose a con-
nection coinciding at lowest order with a given connection (such as the symplectic
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one above).

σ(τ ⊗ dx)= dx ⊗ τ − ∇([x, τ ]•)+ [x,∇τ ]• = dx ⊗ τ + h̄ρ(dx ⊗ τ)+ O(h̄2),

where we further suppose an expansion as shown. We write ⊗ for the tensor
product over C∞(M).

Proposition 3.7. A left module map σ defining a generalised braiding corresponds
at the semiclassical level to ρ obeying

η⊗ γ (x, τ )+ ρ(xη⊗ τ)= xρ(η⊗ τ)= ρ(η⊗ τ x)− γ (x, η)⊗ τ

for all x ∈C∞(M) and τ, η∈�1(M). Moreover, when ∇ is given by our symplectic
connection in Section 3A, we have

ρ(η⊗ τ)= ω jqωis η j τi Rsmkq dxk
⊗ dxm

−ωsq
∇sη⊗ ∇qτ

in a coordinate chart where ∇ = dxk
⊗ ∇k .

Proof. We suppose similarly that σ(η⊗ τ) = τ ⊗ η+ h̄ρ(τ ⊗ η)+ O(h̄). That σ
is a left module map translates to

τ ⊗ a • η+ h̄ρ(τ ⊗ a • η)+ O(h̄2)= a • τ ⊗ η+ h̄a • ρ(τ ⊗ η)+ O(h̄2).

Since [a, τ ]• = h̄γ (a, τ )+ O(h̄2) and a passes through ⊗, and since everything
commutes at lowest order, we obtain the first equality. Similarly, that σ is a right
module map implies the second equality. That σ descends to ⊗ gives nothing new,
appearing as equality of the first and last expressions.

Moreover, we compute

ρ(dx j
⊗ τ)= −dxk

⊗ ∇kγ (x j , τ )+ γ (x j , dxk
⊗ ∇k(τ ))

= −dxk
⊗

(
∇kγ (x j , τ )− γ (x j ,∇k(τ ))

)
+ γ (x j , dxk)⊗ ∇k(τ ).

Now set X = ω jq∂q , and then

ρ(dx j
⊗ τ)= −dxk

⊗ (∇k∇X − ∇X∇k)(τ )+ ∇X (dxk)⊗ ∇k(τ ).

In Darboux coordinates [∂k, X ] = 0, and

ρ(dx j
⊗ τ)= −dxk

⊗ R(∂k, X)(dx i )+ ∇X (dxk)⊗ ∇k(τ ).

Now we calculate the terms as

dxk
⊗ R(∂k, X)(τ )= ω jq dxk

⊗ R(∂k, ∂q)(τ )= −ω jq τi dxk
⊗ Ri

mkq dxm,

∇X (dxk)⊗ ∇k(τ )= ω jq
∇q(dxk)⊗ ∇k(τ ).

Using these, from (3–6) we have

ρ(dx j
⊗ τ)= ω jq τi Ri

mkq dxk
⊗ dxm

−ωsq
∇s(dx j )⊗ ∇qτ.
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Finally, we deduce the general form of ρ from its properties above as

ρ(η j dx j
⊗τ)=ω jq τi η j Ri

mkq dxk
⊗dxm

−ωsq η j ∇s(dx j )⊗∇qτ−dx j
⊗γ (η j , τ ).

Putting η = η j dx j and assuming that ∇ is the symplectic connection defined by
γ in Section 3A gives the result stated. We use the notations from [Gelfand et al.
1998]. �

It is also instructive to look at the braid relations, which justifies the term ‘gen-
eralised braiding’. Writing σ̄12 for σ̄ acting in the first and second tensor factors,
and so on, the expression

(σ̄12σ̄23σ̄12 − σ̄23σ̄12σ̄23)(ξ ⊗ η⊗ τ)

can be calculated to leading order in h̄ as the quotient in (�1)⊗3 of

(ρ̃12 ρ̃23 + ρ̃13 ρ̃23 + ρ̃12 ρ̃13 − ρ̃13 ρ̃12 − ρ̃23 ρ̃12 − ρ̃23 ρ̃13)(τ ⊗ η⊗ ξ),

where ρ̃ :�1
⊗�1

→�1
⊗�1 is any lift of the output of ρ. The left-hand side is

the ‘classical Yang–Baxter expression’. In our case the natural lift determined by
our coordinate system of the ρ in Proposition 3.7 is

ρ̃(τ ⊗ η) = ω jqωis τ j ηi Rsmkq dxk
⊗ dxm

−ωsq
∇sτ ⊗ ∇qη.

On substituting this into the classical Yang–Baxter expression, the part coming
from the ωsq

∇sη⊗ ∇qξ term is

ωsqωi j (
∇s ⊗ [∇q ,∇i ] ⊗∇ j + ∇s ⊗ ∇i ⊗ [∇q ,∇ j ] + [∇s,∇i ] ⊗∇q ⊗ ∇ j

)
applied to ζ ⊗ η⊗ ξ . We deduce that if the curvature vanishes, then the classical
Yang–Baxter equation holds for ρ̃ (even before we quotient), and hence σ̄ satisfies
the braid relation to O(h̄3). We can also calculate

(ρ̃+ ρ̃21)(τ ⊗ η)= ω jqωis Rsmkq(τ j ηi dxk
⊗ dxm

+ η j τi dxm
⊗ dxk)

−ωsq(∇sτ ⊗ ∇qη+ ∇qτ ⊗ ∇sη)

= ω jqωis (Rsmkq + Rqkms)τ j ηi dxk
⊗ dxm,

so if the curvature vanishes, then ρ̃ is antisymmetric, and σ̄ 2 is the identity to
O(h̄2).

3E. Example: the noncommutative torus. Here we give an elementary example
of the above, namely the noncommutative torus in an algebraic form generated
by invertible u, v with vu = quv. The natural noncommutative calculus here is
generated by

τ 1
= u−1du, τ 2

= v−1dv
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with relations

[x, τ i
] = 0, τ 1

∧ τ 2
+ τ 2

∧ τ 1
= 0, τ i

∧ τ i
= 0

for all functions x (this is not as trivial as it seems, it implies v du = q(du)v, etc.)
For our purposes we take q = e−h̄ as a formal expansion parameter, which we

stress is only the ‘trivial’ part of the theory from the usual point of view (where one
would have h̄ = 2π ıθ with θ ∈ [0, 1] and complete to a C∗-algebra). Next, in the
classical limit we identify u = eıθ1

and v= eıθ2
in terms of local angle coordinates

on S1
×S1. Along with their inverses they generate a subalgebra inside C∞(S1

×S2)

and induce a formal deformation of the whole algebra via a Moyal-type product.
For our purposes all structures can be extracted just from the subalgebra with the
above generators. Note that τ i

= ıdθ i .
We start with the Poisson structure which is clearly

{u, v} = 1 = −{v, u}, {u, u} = {v, v} = 0

which means (ωi j )=
( 0

−1
1
0

)
in the τ i basis. To see this, note that

dx = (∂i x)τ i
; ∂1 = u

∂

∂u
, ∂2 = v

∂

∂v
.

Then {u, y} = ∂2 y and {v, y} = −∂1 y for all y since û and v̂ extend as derivations.
Then since each ŷ is a derivation, we similarly deduce

{x, y} = ωi j (∂i x)(∂ j y)

with ωi j as above. The symplectic form is τ 1
∧ τ 2 up to normalisation.

Finally, since τ i are central, we know that γ (x, τ i ) = 0 for i = 1, 2 and all
functions x . Hence

(3–8) ∇x̂(ηiτ
i )= γ (x, ηiτ

i )= {x, ηi }τ
i

by the connection property. This is our symplectic connection. Compatibility in
the sense of (2–5) holds as it must, reducing to

∂i {x, y} = {∂i x, y} + {x, ∂i y}

which holds because ωi j are constant. We may also compute its curvature:

R(x̂, ŷ)aiτ
i
= ∇x̂{y, ai }τ

i
− ∇ŷ{x, ai }τ

i
− ∇

{̂x,y}
aiτ

i

= {x, {y, ai }}τ
i
− {y, {x, ai }}τ

i
− {{x, y}, ai }τ

i
= 0

as it must since the above quantum differential calculus is associative to all orders.
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Moreover,

<< T (x̂, ŷ), du>> = << x̂,∇ŷdu>> − << ŷ,∇x̂ du>>

= << x̂, {y, ∂i u}τ i
>> − << ŷ, {x, ∂i u}τ i

>>

= {y, u} << x̂, τ 1
>> − {x, u} << ŷ, τ 1

>>

= {y, u}u−1
{x, u} − {x, u}u−1

{y, u} = 0,

since << x̂, u−1du>> = u−1 x̂(u)= u−1
{x, u}. Similarly << T (x̂, ŷ), dv>> = 0, and hence

T (x̂, ŷ)= 0. Hence the torsion vanishes as it must by Proposition 3.3. So we have
a flat torsion free (and symplectic) connection on the standard torus induced by
noncommutative geometry.

Finally, the semiclassical braiding in Proposition 3.7 for this connection, using
the fact that the curvature is zero, and (3–8), comes out to be ρ(τ i

⊗ τ j ) = 0 so
that

ρ(ηiτ
i
⊗ ξ jτ

j )= −{ηi , ξ j }τ
i
⊗ τ j

on general 1-forms with coefficients ηi , ξ j in the left-invariant basis. Note also
that σ̄ (τi ⊗ τ j ) = τ j ⊗ τi + O(h̄2) agrees with the quantum case [Beggs 2003]
where it was found that the unique braiding on the noncommutative torus which
is compatible with interior products for the given differential structure is the usual
flip on the τ i .

4. Application to Poisson–Lie groups

In this section we are going to analyse the meaning of the deformation results of
Section 2 in a different geometrical setting, namely that of Poisson–Lie groups.
This is at the other extreme from the previous section in that these are never sym-
plectic (the Poisson bracket being degenerate at the group identity). On the other
hand one can impose the group symmetry and reduce expressions to the Lie algebra
level which has its own interest.

Poisson–Lie groups are the semiclassical data for Hopf algebras or quantum
groups. At the Lie level they correspond to a Lie bialgebra (g, δ)where δ :g→g⊗g

is a Lie cobracket making g∗ a Lie algebra and forming a cocycle in Z1
ad(g, g⊗g).

This is like an infinitesimal quantum group. Exponentiating the Lie algebra to a
group G and δ to D ∈ Z1

Ad(G, g⊗g) and extending the latter to an invariant bivector
defines a Poisson bracket. Working backwards one has axioms of a Poisson–Lie
group and its tangent space at the identity is a Lie bialgebra. The notions are due
to Drinfeld. An introduction can be found in [Majid 1995].

Now, for a Hopf algebra H we have the following notions of covariance of a
differential structure, which we shall aim to semiclassicalise. Note that a Hopf
algebra acts and coacts on itself from both sides via the product and coproduct
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respectively. Here the coproduct is a map 1 : H → H ⊗ H . We will often use the
Sweedler notation 1a = a(1) ⊗ a(2), (id ⊗1)1a = a(1) ⊗ a(2) ⊗ a(3), etc., for it.

Definition 4.1. A differential calculus (�1, d) on a Hopf algebra H is called left
covariant if

(1) �1 is a left comodule for H with coaction 1L :�1
→ H ⊗�1.

(2) 1L :�1
→ H ⊗�1 is a bimodule map (with the tensor bimodule structure on

H ⊗�1).

(3) The map d : H →�1 is a comodule map.

Similarly for a right-covariant calculus with structure map 1R :�1
→�1

⊗ H .
A calculus is called bicovariant if it is both left and right covariant and

(4) The left and right coactions on �1 commute (a bicomodule).

Condition (3) fully determines the left coaction (similarly the right) if they exist,
since every element of �1 is a linear combination of ones of the form a db, so the
coations are induced canonically from the ‘group translation’ or coproduct in the
invariant case.

4A. Semiclassical left covariance condition. The functions on a Poisson Lie group
G typically deform to a noncommutative Hopf algebra H , with the commutator of
two functions being given by the Poisson bracket to first order in h̄. We suppose
that the differential calculus on H is a deformation of the standard (commutative)
differential calculus in the sense that we have discussed earlier. We now ask what
left, right (and later bi) covariance of the differential calculus means in terms of
the connection γ . To this end we use the following lemma for left (similarly right)
covariant calculi on a Hopf algebra H :

Lemma 4.2. Write 1L(τ ) = τ (1) ⊗ τ (∞) and 1R(τ ) = τ (0) ⊗ τ (1). Then for a ∈ H
and τ ∈�1,(

(id ⊗ [ , ]) ◦1L −1L ◦ [ , ]
)
(a ⊗ τ)= −[a(1), τ (1)] ⊗ τ (∞)a(2) ∈ H ⊗�1,(

([ , ] ⊗ id) ◦1R −1R ◦ [ , ]
)
(a ⊗ τ)= τ (0)a(1) ⊗ [τ (1), a(2)] ∈ �1

⊗ H.

Proof. These results follow from the equations

1L [a, τ ] =1L(aτ − τa)= a(1)τ (1) ⊗ a(2)τ (∞) − τ (1)a(1) ⊗ τ (∞)a(2),

(id ⊗ [ , ])1L(a ⊗ τ)= (id ⊗ [ , ])(a(1)τ (1) ⊗ a(2) ⊗ τ (∞))

= a(1)τ (1) ⊗ (a(2)τ (∞) − τ (∞)a(2)),

1R[a, τ ] =1R(aτ − τa)= a(1)τ (0) ⊗ a(2)τ (1) − τ (0)a(1) ⊗ τ (1)a(2),

([ , ] ⊗ id)1R(a ⊗ τ)= ([ , ] ⊗ id)(a(1) ⊗ τ (0) ⊗ a(2)τ (1))

= (a(1)τ (0) − τ (0)a(1))⊗ a(2)τ (1). �
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For a Lie group G, there is a left G-action on functions on G given by

(g F a)(h)= a(g−1h).

The left multiplication map Lg : G → G has a derivative Lg∗ : ThG → TghG
at all h ∈ G, and the dual of this map is L∗

g : T ∗

ghG → T ∗

h G. There is a left
action on τ ∈ T ∗G given by (g F τ)(h) = L∗

g−1(τ (g−1h)) for all h. In terms of
the algebra of functions on G, we have (in an appropriate setting) a left coac-
tion (1La)(g, h) = a(gh) = (g−1

F a)(h), and a left coaction on the 1-forms
(1Lτ)(g, h)= L∗

g(τ (gh))= (g−1
F τ)(h). In our case we work with C∞(G) rather

than algebraically, hence we work directly with actions and group multiplication
rather than such coactions and coproduct. When working abstractly on the group
(or any other) manifold we employ the notations

v(a)(g)= D(g;v(g))a = a′(g; v(g))=
d
dt

∣∣∣
0

a(g(t))

for the action of a vector field v, where g(t) is a curve with g(0)= g and tangent
v(g) there. Also, if v ∈ g = TeG we write the associated left invariant vector field
L∗v with values Lg∗v ∈ TgG, or simply gv in a shorthand. We similarly have right
multiplication Rg : G → G, etc., and right invariant vector field R∗v generated by
v ∈ g.

To interpret the left invariance formula in Lemma 4.2 for a Poisson Lie group G,
we remember that, up to O(h̄), we have the same coaction formulae as in the Lie
group case. We also need to trivialise the cotangent bundle by a map T ∗G → G×g∗

defined by (g; ξ) 7→ (g, L∗
gξ) for ξ ∈ T ∗

g G. Given a section τ of T ∗G we define a
section τ̃ of the trivial g∗ bundle (a function on G with values in g∗) by

(4–1) τ̃ (g)= L∗

g(τ (g))= (g−1
F τ)(e)

where e is the group identity.

Lemma 4.3. The semiclassicalisation γ of a left-invariant calculus on G obeys

γ̃ (a, τ̃ )(gh)− γ̃ (g−1
F a, g̃−1

F τ)(h)= a′(gh;ω[1](g)h)τ̃ ′(gh;ω[2](g)h)

as the lowest order part of the condition in Lemma 4.2.

Proof. To calculate [a(1), τ (1)] ⊗ τ (∞)a(2) we use the Poisson bracket with bivector
ω = ω[1]

⊗ ω[2] whereby {a, b} = D(g;ω[1](g))(a)D(g;ω[2](g))(b) for functions a, b.
Then

([a(1), τ (1)] ⊗ τ (∞)a(2))(g, h)= h̄ (D(g;ω[1](g))a(gh))(D(g;ω[2](g))L
∗

g(τ (gh)))+O(h̄2)

1L [a, τ ](g, h)= h̄ L∗

g(γ (a, τ )(gh))+ O(h̄2),

(id ⊗ [ , ])1L(a ⊗ τ)(g, h)= h̄γ (g−1
F a, g−1

F τ)(h)+ O(h̄2).
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Now we can evaluate the first half of Lemma 4.2 at (g, h) to order h̄ and apply L∗

h
to both sides to get

L∗

gh(γ (a, τ )(gh))− L∗

h(γ (g
−1

F a, g−1
F τ)(h))

= (D(g;ω[1](g))a(gh))(D(g;ω[2](g))L
∗

gh(τ (gh))).

This is

((gh)−1
F γ (a, τ ))(e)− (h−1

F γ (g−1
F a, g−1

F τ))(e)

= (D(g;ω[1](g))a(gh))(D(g;ω[2](g))((gh)−1
F τ)(e))),

which is the equation stated. Note that by definition γ̃ (a, τ̃ ) = γ̃ (a, τ ), so that
everything in the ˜ notation is referred to functions on G. �

Conversely, if we have only a preconnection as semiclassical datum for a cal-
culus, we say that it is left-invariant if the condition in the lemma holds. We now
give a different characterisation.

Definition 4.4. On the trivial bundle G × g∗
→ G we define the bilinear-valued

function 4 : G × g∗
× g∗

→ g∗ by

γ̃ (a, s)(g)= a′(g;ω[1](g))s ′(g;ω[2](g))+4(g; L̂a(g), s(g))

= {a, s}(g)+4(g, L̂a(g), s(g)),

where a ∈ C∞(G), s ∈ C∞(G, g∗) and L̂a : G → g∗ is the left invariant derivative
L̂a(g)(v)= a′(g; gv).

In the second expression we have extended the notation for the Poisson bracket
to include g∗-valued functions, and also note that L̂a = d̃a.

Proposition 4.5. A preconnection γ is left invariant if and only if4 : G×g∗
×g∗

→

g∗ is independent of the G variable.

Proof. To apply the condition in Lemma 4.3, we need to note that (g̃−1
F τ)(h)=

τ̃ (gh), and then

a′(gh;ω[1](gh))τ̃ ′(gh;ω[2](gh))+4(gh, L̂a(gh), τ̃ (gh))

− a′(gh; gω[1](h))τ̃ ′(gh; gω[2](h))−4(h, L̂g−1 F a(h), τ̃ (gh))

= a′(gh;ω[1](g)h)τ̃ ′(gh;ω[2](g)h).

In T G ⊗ T G we have ω(gh)− gω(h)−ω(g)h = 0, so the last equation reduces
to

4(gh, L̂a(gh), τ̃ (gh))=4(h, L̂g−1 F a(h), τ̃ (gh)).

A bit of calculation shows that L̂g−1 F a(h)= L̂a(gh), so we are left with

4(gh, φ, ψ)=4(h, φ, ψ) for all φ, ψ ∈ g∗ and all g, h ∈ G.
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We deduce that 4(h, φ, ψ) is independent of h ∈ G. �

Proposition 4.6. A left invariant preconnection γ̃ corresponding to4 :g∗
⊗g∗

→g∗

is compatible in the sense of (2–5) if and only if

4(φ,ψ)−4(ψ, φ)= [φ,ψ]g∗ .

Proof. The left invariant trivialisation of T ∗G gives the following form of (2–5):

γ̃ (x, L̂ y)− γ̃ (y, L̂ x)= L̂{x,y}.

This can be rearranged to give

4(L̂ x , L̂ y)−4(L̂ y, L̂ x)= L̂{x,y} − {x, L̂ y} + {y, L̂ x}.(4–2)

We only have to evaluate this equation at the identity e ∈ G. All Poisson brackets
evaluated at the identity vanish as ω(e)= 0, so to find the right-hand side of (4–2)
we only need

L̂{x,y}(g)(v)= D(g;gv) {x, y},

L̂{x,y}(e)(v)= x ′(e;ω[1]′(e; v)) y′(e;ω[2](e))+ x ′(e;ω[1](e)) y′(e;ω[2]′(e; v)).

Setting φ(v)= x ′(e; v) and ψ(v)= y′(e; v), we see that evaluating (4–2) at e gives

4(φ,ψ)(v)−4(ψ, φ)(v)= (φ⊗ψ)(ω′(e; v))= (φ⊗ψ)(δ(v))=[φ,ψ]g∗(v). �

4B. Left covariance in the quasitriangular case. The quasitriangular case is the
most important one, because the standard q-deformation quantum groups quantise
Poisson–Lie groups of this type. In this case there are some useful simplifications
which will be needed in the next section. We recall that a Lie bialgebra g is called
quasitriangular if the Lie cobracket δ is of the form δv= adv(r) for all v ∈ g, where
r = r [1]

⊗ r [2]
∈ g⊗ g obeys the Classical Yang–Baxter equations

[[r, r ]] ≡ [r12, r13] + [r12, r23] + [r13, r23] = 0.

The expression here is the Schouten bracket and the numbers refer to the position
in g ⊗ g ⊗ g. In this case ω(g) = gr − r g for all g ∈ G. Set r± = (r ± r21)/2,
where r21 = r [2]

⊗ r [1]. Then r+ is necessarily ad-invariant, as is the element

n ≡ [[r−, r−]] = −[[r+, r+]] = [r+12, r+23].

A quasitriangular Lie bialgebra is called triangular if r+ = 0.

Corollary 4.7. If g is quasitriangular, a left invariant preconnection γ̃ is compat-
ible if and only if the map 4̂ : g∗

⊗ g∗
→ g∗ defined by

4̂(φ, ψ)=4(φ,ψ)−φ(r−
[1])ad∗

r−
[2]ψ

is symmetric. Here ad∗

vψ(w)= ψ([w, v]).
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Proof. Because r+ is ad-invariant, the result of Proposition 4.6 can be written as

4(φ,ψ)(v)−4(ψ, φ)(v)= (φ⊗ψ)([v, r−
[1]

] ⊗ r−
[2]

+ r−
[1]

⊗ [v, r−
[2]

]).

Then we have the following, which is zero by the antisymmetry of r−:

4̂(φ, ψ)(v)− 4̂(ψ, φ)(v)= φ([v, r−
[1]

])ψ(r−
[2])+φ(r−

[1])ψ([v, r−
[2]

])

−φ(r−
[1])ψ([v, r−

[2]
])+ψ(r−

[1])φ([v, r−
[2]

]). �

Proposition 4.8. In the quasitriangular case, the first super-Jacobi identity is
equivalent to the following equation for all φ,ψ, ζ ∈ g∗:

4(φ,4(ψ, ζ ))−4(ψ,4(φ, ζ ))=φ(r−
[1])4(ad∗

r−
[2]ψ, ζ )+ψ(r−

[2])4(ad∗

r−
[1]φ, ζ ).

Proof. The first super-Jacobi identity reduces to showing that

(4–3) γ̃ (x, γ̃ (y, s))− γ̃ (y, γ̃ (x, s))= γ̃ ({x, y}, s).

If we use the Poisson bracket notation, we can write

γ̃ (x, γ̃ (y, s))(g)= {x, {y, s}}(g) + {x, 4(L̂ y(g), s(g))}

+4(L̂ x(g), {y, s}(g))+4(L̂ x(g),4(L̂ y(g), s(g))).

Then the Jacobi identity for the Poisson bracket shows that all the double Poisson
bracket terms in (4–3) cancel, so we get

4(L̂{x,y}(g), s(g))

= {x, 4(L̂ y(g), s(g))} +4(L̂ x(g), {y, s}(g))+4(L̂ x(g),4(L̂ y(g), s(g)))

− {y, 4(L̂ x(g), s(g))} −4(L̂ y(g), {x, s}(g))−4(L̂ y(g),4(L̂ x(g), s(g))).

Using the equation

{x, 4(L̂ y(g), s(g))} =4({x, L̂ y}(g), s(g))+4(L̂ y(g), {x, s}(g)),

we find

4(L̂{x,y}(g), s(g))=4({x, L̂ y}(g), s(g))+4(L̂ x(g),4(L̂ y(g), s(g)))

−4({y, L̂ x}(g), s(g))−4(L̂ y(g),4(L̂ x(g), s(g))).
Now calculate

L̂{x,y}(g)(v)= D(g;gv)
(

x ′(g;ω[1](g)) y′(g;ω[2](g))
)
,

{x, L̂ y}(g)(v)= x ′(g;ω[1](g))D(g;ω[2](g)) y′(g; gv),

so using the antisymmetry of ω and the Lie bracket of vector fields,

L̂{x,y}(g)(v)− {x, L̂ y}(g)(v)+ {y, L̂ x}(g)(v)

= x ′(g;ω[1](g)) y′(g; [gv, ω[2](g)])+ x ′(g; [gv, ω[1](g)]) y′(g;ω[2](g)).
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Using the Ad-invariance of r+ we write ω= gr−−r−g, which gives the answer. �

We end with some lemmas to be used later.

Lemma 4.9. In terms of 4̂, the first super-Jacobi identity is equivalent to the
vanishing of the following expression for all φ,ψ, ζ ∈ g∗, where n = [[r−, r−]]:

4̂(φ, 4̂(ψ, ζ ))− 4̂(ψ, 4̂(φ, ζ ))+φ(n[1])ψ(n[2])ad∗

n[3] ζ

+φ(r−
[1])(ad∗

r−
[2] 4̂(ψ, ζ )− 4̂(ψ, ad∗

r−
[2] ζ )− 4̂(ad∗

r−
[2]ψ, ζ ))

−ψ(r−
[1])(ad∗

r−
[2] 4̂(φ, ζ )− 4̂(φ, ad∗

r−
[2] ζ )− 4̂(ad∗

r−
[2]φ, ζ )).

Proof. Let t be an independent copy of r . By the definition of 4̂,

4(φ,4(ψ, ζ ))= 4̂(φ, 4̂(ψ, ζ ))+ψ(r−
[1])4̂(φ, ad∗

r−
[2] ζ )

+φ(r−
[1])ad∗

r−
[2]4̂(ψ, ζ )+φ(r−

[1])ψ(t−[1])ad∗

r−
[2] ad∗

t−[2] ζ,

φ(r−
[1])4(ad∗

r−
[2]ψ, ζ )= φ(r−

[1])4̂(ad∗

r−
[2]ψ, ζ )+φ(r−

[1])(ad∗

r−
[2]ψ)(t−[1])ad∗

t−[2]ζ.

By Proposition 4.8, we get the vanishing of

4̂(φ, 4̂(ψ, ζ ))− 4̂(ψ, 4̂(φ, ζ ))+ψ(r−
[1])4̂(φ, ad∗

r−
[2] ζ )

−φ(r−
[1])4̂(ψ, ad∗

r−
[2] ζ )+φ(r−

[1])ad∗

r−
[2] 4̂(ψ, ζ )−ψ(r−

[1])ad∗

r−
[2] 4̂(φ, ζ )

−φ(r−
[1])4̂(ad∗

r−
[2]ψ, ζ )+ψ(r−

[1])4̂(ad∗

r−
[2]φ, ζ )+φ(n[1])ψ(n[2])ad∗

n[3] ζ,

and this can be rearranged to give the answer. �

Lemma 4.10. Given 4̂, we recover γ by

γ (x, dy)(g)= x ′(g;ω[1](g)) dy′(g;ω[2](g))+ L∗

g−14̂(L̂ x(g), L̂ y(g)).

Proof. Evaluating Definition 4.4 against v ∈ g we have

γ̃ (x, L̂ y)(g)(v)= {x, L̂ y}(g)(v)+4(L̂ x(g), L̂ y(g))(v)

= x ′(g;ω[1](g))D(g;gv)y′(g;ω[2](g))+x ′(g;gr−
[1]) y′(g;g[r−

[2],v])

+4(L̂ x(g), L̂ y(g))(v)

= x ′(g;ω[1](g))D(g;gv) y′(g;ω[2](g))+ 4̂(L x(g), L y(g))(v).

We then convert back from γ̃ to γ via (4–1). �

For the remaining lemmas, as well as elsewhere, it is convenient to switch to an
alternative notation for the bilinear functions 4 and 4̂ from g∗

⊗g∗ to g∗. We can
consider them as linear functions from g to g⊗ g with notation

4(φ,ψ)(v)= (φ⊗ψ)(4(v)), 4̂(φ, ψ)(v)= (φ⊗ψ)(4̂(v))
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where 4(v) = 4[1](v)⊗4[2](v) and 4̂(v) = 4̂[1](v)⊗ 4̂[2](v). Then we see that
4̂(v)=4(v)+ r−

[1]
⊗ [r−

[2], v].

Lemma 4.11. The commutator between a 2-form τ̃ (expressed in the left triviali-
sation) and a function y is given by

γ̃ (y, τ̃ )(g)(v,w)

= y′(g;ω[1](g))τ̃ ′(g;ω[2](g))+ (L̂ y(g)⊗ τ̃ (g))(4(v)⊗w−4(w)⊗ v).

Proof. Setting τ = ξ ∧ η for two 1-forms ξ and η,

γ̃ (y, τ )= γ̃ (y, ξ)∧ η+ ξ ∧ γ̃ (y, η)

γ̃ (y, τ )(g)= y′(g;ω[1](g))
(
ξ ′(g;ω[2](g))∧ η(g)+ ξ(g)∧ η′(g;ω[2](g))

)
+4(L̂ y(g), ξ(g))∧ η(g)+ ξ(g)∧4(L̂ y(g), η(g)).

Applying this to (v,w) gives

γ̃ (y,τ )(g)(v,w)= y′(g;ω[1](g))τ ′(g;ω[2](g))(v,w)

+ L̂ y(g)(4[1](v))ξ(g)(4[2](v))η(g)(w)− L̂ y(g)(4[1](w))ξ(g)(4[2](w))η(g)(v)

+ξ(g)(v) L̂ y(g)(4[1](w))η(g)(4[2](w))−ξ(g)(w) L̂ y(g)(4[1](v))η(g)(4[2](v)),

which can be rearranged to give the answer. �

Lemma 4.12. For a 1-form ξ expressed in the left trivialisation, the d operation is
given by

d̃ξ(g)(v,w)= D(g;gv)ξ̃ (g)(w)− D(g;gw)ξ̃ (g)(v)+ ξ̃ (g)([w, v]).

Also we have

d D(g;X) ξ̃ (v, w)− D(g;X) dξ̃ (v, w)

= ξ̃ ′(g; D(g;gv) X (g)− Xv)(w)− ξ̃ ′(g; D(g;gw) X (g)− Xw)(v).

Proof. By definition, dξ(g)(gv, gw)= ξ ′(g; gv)(gw)− ξ ′(g; gw)(gv). However,

D(g;gv)ξ̃ (g)(w)= D(g;gv)(ξ(g)(gw)) = ξ ′(g; gv)(gw)+ ξ(g)(gvw). �

Lemma 4.13. The commutator between a 2-form d̃ξ (expressed in the left triviali-
sation) and a function y is given by

γ̃ (x, dξ̃ )(v, w)= x ′(g;ω[1](g)) d D(g;ω[2](g)) ξ̃ (v, w)

+ L̂ x(r−
[1]) d(ad∗

r−
[2](ξ̃ ))(g)(v,w)+ (L̂ x ⊗ d ξ̃ )(4̂(v)⊗w− 4̂(w)⊗ v).
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Proof.

γ̃ (x, dξ̃ )(v, w)

= x ′(g;ω[1](g))D(g;ω[2](g)) d ξ̃ (v, w)+ (L̂ x ⊗ d ξ̃ )(4(v)⊗w−4(w)⊗ v)

= x ′(g;ω[1](g)) d D(g;ω[2](g)) ξ̃ (v, w)− x ′(g;ω[1](g))ξ̃ ′(g; D(g;gv)ω
[2](g)

−ω[2](g)v)(w)+ x ′(g;ω[1](g))ξ̃ ′(g; D(g;gw)ω
[2](g)−ω[2](g)w)(v)

+ (L̂ x ⊗ d ξ̃ )(4(v)⊗w−4(w)⊗ v)

= x ′(g;ω[1](g)) d D(g;ω[2](g)) ξ̃ (v, w)− L̂ x(r−
[1])ξ̃ ′(g; g[v, r−

[2]
])(w)

+ L̂ x(r−
[1])ξ̃ ′(g; g[w, r−

[2]
])(v)+ (L̂ x ⊗ d ξ̃ )(4(v)⊗w−4(w)⊗ v)

= x ′(g;ω[1](g)) d D(g;ω[2](g)) ξ̃ (v, w)− L̂ x(r−
[1])ξ̃ ′(g; g[v, r−

[2]
])(w)

+ L̂ x(r−
[1])ξ̃ ′(g; g[w, r−

[2]
])(v)+ (L̂ x ⊗ d ξ̃ )(4̂(v)⊗w− 4̂(w)⊗ v)

+ L̂ x(r−
[1])dξ̃ ([v, r−

[2]
], w)− L̂ x(r−

[1])dξ̃ ([w, r−
[2]

], v)

= x ′(g;ω[1](g)) d D(g;ω[2](g)) ξ̃ (v, w)− L̂ x(r−
[1])ξ̃ ′(g; gw)([v, r−

[2]
])

+ L̂ x(r−
[1])ξ̃ ′(g; gv)([w, r−

[2]
])+ (L̂ x ⊗ d ξ̃ )(4̂(v)⊗w− 4̂(w)⊗ v)

− L̂ x(r−
[1])ξ̃ (g)([[v, r−

[2]
], w] − [[w, r−

[2]
], v])

= x ′(g;ω[1](g)) d D(g;ω[2](g)) ξ̃ (v, w)+ L̂ x(r−
[1]) d(ad∗

r−
[2](ξ̃ ))(g)(v,w)

+ (L̂ x ⊗ d ξ̃ )(4̂(v)⊗w− 4̂(w)⊗ v). �

4C. Example: quantum SU2 with its left-covariant calculus. Here we pause to
compute a quantum group example, namely the 3-dimensional calculus on Ch̄(SU2)

found in [Woronowicz 1989]. As with our previous example, we do not need the
full C∗ theory but just a subalgebra generated by a matrix of generators

(a
c

b
d

)
,

which in the classical limit become the matrix element coordinate functions on
SU2. We use the standard relations

ba = qab, ca = qac, db = qbd, dc = qcd, cb = bc,

ad = 1 + q−1bc, da = 1 + qbc.

For our purposes q = e
h̄
2 rather than q real as needed for completion to a C∗

algebra. For the rest of the Hopf algebra structure we refer to any textbook on
quantum groups. The 3-d calculus has a basis of left-invariant 1-forms

τ+
= d db − qb dd, τ−

= qa dc − c da, τ 3
= d da − qb dc

with commutation relations

τ±

(
a b
c d

)
=

(
qa q−1b
qc q−1d

)
τ±, τ 3

(
a b
c d

)
=

(
q2a q−2b
q2c q−2d

)
τ 3.
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One has
da = aτ 3

+ q−1bτ−,

dc = cτ 3
+ q−1dτ−,

db = aτ+
− q−2bτ 3,

dd = cτ+
− q−2dτ 3.

The Poisson bracket can be read off from the algebra relations as generated by
the nonzero values

{a, b}=−
1
2ab, {a, c}=−

1
2ac, {a, d}=−bc, {b, d}=−

1
2 bd, {c, d}=−

1
2 cd.

Classically the τ±, τ 3 are dual to the left invariant vector fields ∂±, ∂3 generated
by the Lie algebra su2 and

dx = (∂i x)τ i ,(4–4)

where the sum is over i = ±, 3. Explicitly here,

∂+

(
a b
c d

)
=

(
0 a
0 c

)
, ∂−

(
a b
c d

)
=

(
b 0
d 0

)
, ∂3

(
a b
c d

)
=

(
a −b
c −d

)
computed by right multiplication in the usual representation of the Chevalley basis
of su2. Meanwhile, from the bimodule commutation relations we read off

γ

((
a b
c d

)
, τ i

)
=

1
2λi

(
a −b
c −d

)
τ i , λ± = −1, λ3 = −2

and since γ (, τ i ) acts as derivation, comparing values on these generators, one
finds

(4–5) γ (x, τ i )=
1
2λi (∂3x)τ i

for all functions x . Hence for all η = ηiτ
i ,

∇̂x(η)= γ (x, η)= {x, ηi }τ
i
+

1
2λi (∂3x)ηiτ

i .(4–6)

From this and the compatibility condition (2–5) one may verify that the curvature
R(x, y)(τ i )=0 and hence R(x, y)=0 as it must since�1 for the quantum calculus
is a bimodule. We are not in the symplectic case so the torsion need not vanish.

We can understand this example using our above results as follows. The standard
quasitriangular structure is

r = e+ ⊗ e− +
1
4 e3 ⊗ e3

in the Chevalley basis (so that [e3, e±] = ±2e± and [e+, e−] = e3) and one may
check that this reproduces the above Poisson-bracket with ω= gr −rg. This is the
usual picture for SU2 with its standard Drinfeld–Sklyanin Poisson bracket.

Next, the Lie cobracket is

δei =
1
2(ei ⊗ e3 − e3 ⊗ ei ),
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so
4(ei )=

1
2λi e3 ⊗ ei , λ± = −1.

We will solve the condition in Proposition 4.6 for any λ3, giving a compatible
preconnection. In the left trivialisation, suppose (as above) that τ̃ i

∈g∗ are constant
and dual to the basis ei . Then

γ̃ (a, τ̃ i )=4(L̂a(g), τ̃ i )= τ̃ j a′(g; g4[1](e j )) <<4
[2](e j ), τ̃

i
>> =

1
2λi (∂3a)τ̃ i .

Since τ i are the left invariant extensions of τ̃ i (the Maurer–Cartan form) we have
exactly (4–5) except that for us λ3 is arbitrary. For this form of connection the
compatibility condition reduces to ∂i {x, y} = {∂i x, y} + {x, ∂i y} which holds as it
must. The curvature R then vanishes by this equation, for all λ3. There is a similar
natural form for4 for all simple g with their standard Poisson–Lie group structures
according to the form of δ.

The Poisson tensor is

cb(∂− ⊗ ∂+ − ∂+ ⊗ ∂−)+
bd
2
(∂+ ⊗ ∂3 − ∂3 ⊗ ∂+)+

ca
2
(∂− ⊗ ∂3 − ∂3 ⊗ ∂−).

Now (summing over repeated indices), (4–4) and (4–6) give

∇̂x(dz)= {x, ∂i z}τ i
+

1
2 λi (∂3x)(∂i z)τ i ,

so we get

<< ŷ, ∇̂x(dz)>> = ω j i (∂ j y)
(
{x, ∂i z} +

1
2 λi (∂3x)(∂i z)

)
= ω j i ωnm(∂ j y)(∂nx)(∂m∂i z)+ 1

2 λi ω
j i (∂ j y)(∂3x)(∂i z).

Then from (3–3) we can write the torsion as

<<dz, T (x, y)>> =
1
2 λi ω

j i (∂ j y)(∂3x)(∂i z)− 1
2 λi ω

j i (∂ j x)(∂3 y)(∂i z),

which is nonzero.

4D. Bicovariant calculi on Poisson–Lie groups. We now assume that the differ-
ential calculus is bicovariant, resulting in important simplifications and our main
results.

Theorem 4.14. A left invariant preconnection γ̃ given by 4 is bicovariant if , for
all g ∈ G and φ,ψ ∈ g∗,

4(φ,ψ)− Ad∗

g−14(Ad∗

gφ,Ad∗

gψ)= φ(g−1ω[1](g))ad∗

g−1ω[2](g)ψ.

Proof. The section t of the trivial g∗ bundle given by trivialising T ∗G by the right
action is related to the section s of the left trivialisation by t (g)= (Adg−1)∗s(g), and
the corresponding right invariant connection would be, for some 9 : g∗

⊗g∗
→ g∗,

(Adg−1)∗γ̃ (y, s)(g)= {y, t} +9(R̂y(g), t (g)).(4–7)
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Here we have R̂y(g)= (Adg−1)∗(L̂ y(g)), as can be seen from

R̂y(g)(v)= y′(g; vg)= y′(g; gAdg−1v).

From now we will use the coadjoint action, Ad∗

g = (Adg−1)∗. Then

t ′(g; v)= Ad∗

g(ad∗

g−1v
s(g)+ s ′(g; v)),

so (4–7) becomes

γ̃ (y, s)(g)= y′(g;ω[1](g))(ad∗

g−1ω[2](g) s(g)+ s ′(g;ω[2](g)))

+ Ad∗

g−19(Ad∗

g L̂ y(g),Ad∗

gs(g)).

Substituting Definition 4.4 into this gives

4(L̂ y(g), s(g))− Ad∗

g−19(Ad∗

g L̂ y(g),Ad∗

gs(g))= y′(g;ω[1](g))ad∗

g−1ω[2](g) s(g).

We can use the definition of L̂ y(g) to rewrite this as

4(L̂ y(g), s(g))− Ad∗

g−19(Ad∗

g L̂ y(g),Ad∗

gs(g))

= L̂ y(g)(g−1ω[1](g))ad∗

g−1ω[2](g) s(g).

Now we set φ = L̂ y(g) ∈ g∗ and ψ = s(g) ∈ g∗,

4(φ,ψ)− Ad∗

g−19(Ad∗

gφ,Ad∗

gψ)= φ(g−1ω[1](g))ad∗

g−1ω[2](g)ψ.

Setting g = e now tells us that 4=9. �

Proposition 4.15. In the case of g quasitriangular, a left-invariant preconnection
γ̃ given by 4̂ is bicovariant if and only if 4̂ is Ad-invariant. The infinitesimal form
of this is

4̂([v,w])= [4̂[1](v), w] ⊗ 4̂[2](v)+ 4̂[1](v)⊗ [4̂[2](v), w].

Proof. Use Theorem 4.14 and ω(g)= gr− − r−g. Ad-invariance means of course
4̂(φ, ψ)= Ad∗

g−1 4̂(Ad∗

gφ,Ad∗

gψ) for all g ∈ G, which we then write as stated. �

Proposition 4.16. In the quasitriangular bicovariant case, the first super-Jacobi
identity corresponds to the vanishing of

(id ⊗ 4̂)4̂(v)− (τ ⊗ id)(id ⊗ 4̂)4̂(v)+ n[1]
⊗ n[2]

⊗ [v, n[3]
]

where n = [[r−, r−]] and τ is the usual flip map.

Proof. We use the result of Lemma 4.9 and 4̂ now ad-invariant. �

In other words, this expression corresponds to the curvature of the preconnection
in the geometric picture of Section 3. The second Jacobi identity is much more
painful but turn out to also be controlled by this element n:



28 EDWIN J. BEGGS AND SHAHN MAJID

Proposition 4.17. In the quasitriangular bicovariant case if the first super-Jacobi
identity holds, the second super-Jacobi identity corresponds to the vanishing of

2 D(g;gw)
(
L̂ x(e[1](v))

)
L̂ x(e[2](v)) L̂ x(e[3](v))

−2 D(g;gv)
(
L̂ x(e[1](w))

)
L̂ x(e[2](w)) L̂ x(e[3](w))

+L̂ x([e[1](v),w]) L̂ x(e[2](v)) L̂ x(e[3](v))− L̂ x([e[1](w),v]) L̂ x(e[2](w)) L̂ x(e[3](w))

for all x and v,w ∈ g, where e(v) = −n[1]
⊗ n[2]

⊗ [v, n[3]
].

Proof. For brevity we write Lemma 4.10 as

[y, dx]• = h̄ (p1
y d p2

x + h yx)+ O(h̄2),

[dy, dx]• = h̄ (d p1
y ∧ d p2

x + dh yx)+ O(h̄2),

where p1
y(g)= y′(g;ω[1](g)), p2

x(g)= x ′(g;ω[2](g)),

h yx(g; gv)= 4̂(L̂ y(g), L̂ x(g))(v),

and the second commutator result is just the differential of the first. Then

[z, [dy, dx]•]• = h̄([z, dp1
y]• ∧ dp2

x + dp1
y ∧ [z, dp2

x ]• + [z, dh yx ]•)+ O(h̄3)

= h̄([z, dp1
y]• ∧ dp2

x + [z, dp1
x ]• ∧ dp2

y + [z, dh yx ]•)+ O(h̄3),

[dx, [z, dy]•]• = h̄([dx, p1
z dp2

y + hzy]•)+ O(h̄3)

= h̄(−[p1
z , dx]• ∧ dp2

y + p1
z [dx, dp2

y]• + [dx, hzy]•)+ O(h̄3).

Now we can calculate

h̄ J2(x, x, x)+ O(h̄2)

= h̄−1([x, [dx, dx]•]• − [dx, [x, dx]•]• − [dx, [x, dx]•]•)

= 2([x, dp1
x ]• + [p1

x , dx]•)∧ dp2
x − 2 p1

x [dx, dp2
x ]• − 2[dx, hxx ]• + [x, dhxx ]•.

Now we can use an independent copy q of p to obtain

[p1
x , dx]• = h̄(q1

p1
x

dq2
x + h p1

x x)+ O(h̄2),

[x, dp1
x ]• = h̄(q1

x dq2
p1

x
+ h p1

x x)+ O(h̄2),

[dq2
x , dx]• = h̄(d p1

q2
x
∧ d p2

x + dhq2
x x)+ O(h̄2).

From this we get

J2(x, x, x)= 2(q1
p1

x
dq2

x + 2h p1
x x + q1

x dq2
p1

x
− q1

x d p1
q2

x
)∧ dp2

x

− 2 p1
x dh p2

x x − 2[dx, hxx ]•/h̄ + [x, dhxx ]•/h̄ + O(h̄).
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Suppose that p corresponds to ω and q to π , another copy of ω. Then

q2
p1

x
− p1

q2
x
= x ′(g; D(g;π2(g))ω

[1](g)− D(g;ω[1](g))π
2(g)),

q1
p1

x
dq2

x ∧ dp2
x = p1

q1
x

d p2
x ∧ dq2

x = −p1
q1

x
dq2

x ∧ dp2
x ,

2q1
p1

x
dq2

x ∧ dp2
x = (q1

p1
x
− p1

q1
x
) dq2

x ∧ dp2
x

= x ′(g; D(g;π1(g))ω
[1](g)− D(g;ω[1](g))π

1(g)) dq2
x ∧ d p2

x .

For t an independent copy of r , we have

2q1
p1

x
dq2

x ∧ dp2
x = x ′(g; g[t−[1], r−

[1]
]) dx ′(g; gt−[2])∧ dx ′(g; gr−

[2])

− x ′(g; [t−[1], r−
[1]

]g) dx ′(g; t−[2]g)∧ dx ′(g; r−
[2]g)

and

q1
x d(q2

p1
x
− p1

q2
x
)∧ dp2

x = x ′(g; gt−[1]) dx ′(g; g[t−[2], r−
[1]

])∧ dx ′(g; gr−
[2])

− x ′(g; t−[1]g) dx ′(g; [t−[2], r−
[1]

]g)∧ dx ′(g; r−
[2]g)

= −x ′(g; gt−[1]) dx ′(g; gr−
[2])∧ dx ′(g; g[t−[2], r−

[1]
])

+ x ′(g; t−[1]g) dx ′(g; r−
[2]g)∧ dx ′(g; [t−[2], r−

[1]
]g)

= +x ′(g; gt−[1]) dx ′(g; gr−
[1])∧ dx ′(g; g[t−[2], r−

[2]
])

− x ′(g; t−[1]g) dx ′(g; r−
[1]g)∧ dx ′(g; [t−[2], r−

[2]
]g).

Using this,

2(q1
p1

x
dq2

x +q1
x dq2

p1
x
−q1

x d p1
q2

x
)∧dp2

x =+ x ′(g; gn[1])dx ′(g; gn[2])∧dx ′(g; gn[3])

− x ′(g;n[1]g)dx ′(g;n[2]g)∧dx ′(g;n[3]g),

where n = [[r−, r−]]. As n is Ad-invariant, we have shown that

J2(x, x, x)= 4h p1
x x∧ dp2

x − 2 p1
x dh p2

x x − 2[dx, hxx ]•/h̄ + [x, dhxx ]•/h̄ + O(h̄)

= 4h p1
x x∧ dp2

x + 2 p2
x dh p1

x x − 2 d[x, hxx ]•/h̄ + 3[x, dhxx ]•/h̄ + O(h̄).

Next, using the equation

D(g;ω[2](g)) L̂ x(v)− L̂ p2
x
(v)= x ′(g;ω[2](g)v− D(g;gv)ω

[2](g)),

we can write

h′

xx(g;ω[2](g))= 24̂(D(g;ω[2](g)) L̂ x , L̂ x)

= 2h p2
x x + 24̂(v 7→ x ′(g;ω[2](g)v− D(g;gv)ω

[2](g)), L̂ x)
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and

p1
y(g)h

′

xx(g;ω[2](g))

= 2 p1
y(g)h p2

x x(g)+ 2 y′(g; gr−
[1])4̂(v 7→ x ′(g; g[r−

[2], v]), L̂ x)

= 2 p1
y(g)h p2

x x(g)− 2 L̂ y(g)(r−
[1])4̂(ad∗

r−
[2] L̂ x , L̂ x).

Then, using the ad-invariance of 4̂,

[y, hxx ]•/h̄ = x ′(g;ω[1](g))h′

xx(g;ω[2](g))+4(L̂ x , hxx)+ O(h̄)

= 2 p1
y(g)h p2

x x(g)+ 4̂(L̂ y, hxx)

+ L̂ y(g)(r−
[1])

(
ad∗

r−
[2]4̂(L̂ x , L̂ x)− 24̂(ad∗

r−
[2] L̂ x , L̂ x)

)
+ O(h̄)

= 2 p1
y(g)h p2

x x(g)+ 4̂(L̂ y, hxx)+ O(h̄).

This gives

J2(x, x, x)= 4h p1
x x ∧ dp2

x + 2 p2
x dh p1

x x − 2 d
(
2 p1

x(g)h p2
x x(g)+ 4̂(L̂ x , hxx)

)
+ 3[x, dhxx ]•/h̄ + O(h̄)

= 4h p1
x x ∧ dp2

x + 2 p2
x dh p1

x x + 4 d(p2
x(g)h p1

x x(g))

− 2 d4̂(L̂ x , hxx)+ 3[x, dhxx ]•/h̄ + O(h̄)

= 6 p2
x dh p1

x x − 2 d4̂(L̂ x , hxx)+ 3[x, dhxx ]•/h̄ + O(h̄).

Next, setting

E = L̂ x(g)(r−
[1])4̂(ad∗

r−
[2] L̂ x , L̂ x),

we find

p1
x(g)h

′

xx(g;ω[2](g))= 2 p1
x(g)h p2

x x(g)− 2 E

and

p1
x dD(g;ω[2](g))hxx

= d( p1
x D(g;ω[2](g))hxx )− d p1

x ∧ D(g;ω[2](g))hxx

= 2 d( p1
x(g)h p2

x x(g))− 2 dE − d p1
x ∧ D(g;ω[2](g))hxx

= d p1
x(g)∧ (2h p2

x x(g)− D(g;ω[2](g))hxx)+ 2 p1
x(g) dh p2

x x(g)− 2 dE

= 2 d(L̂ x(g)(r−
[1]))∧ 4̂(ad∗

r−
[2] L̂ x , L̂ x)+ 2 p1

x(g) dh p2
x x(g)− 2 dE

= 2 p1
x(g) dh p2

x x(g)− 2 L̂ x(g)(r−
[1])d4̂(ad∗

r−
[2] L̂ x , L̂ x).
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Using this with Lemma 4.13 and the ad-invariance of 4̂ again,

[x, dhxx ]•(v,w)/h̄

= 2 p1
x(g) dh p2

x x(g)(v,w)+ (L̂ x ⊗ dhxx)(4̂(v)⊗w− 4̂(w)⊗ v)

+ L̂ x(r−
[1]) d(ad∗

r−
[2](hxx)− 24̂(ad∗

r−
[2] L̂ x , L̂ x))(g)(v,w)+ O(h̄)

= 2 p1
x(g) dh p2

x x(g)(v,w)+ G(v,w)+ O(h̄),

where G(v,w)= (L̂ x ⊗ dhxx)(4̂(v)⊗w− 4̂(w)⊗ v). This results in

J2(x, x, x)= 3G − 2 d4̂(L̂ x , hxx).

Remember that hxx(g)(v)= x ′(g; g4̂[1](v))x ′(g; g4̂[2](v)), so using Lemma 4.12,

dhxx(g)(w, v)= 2x ′′(g; g4̂[1](v), gw)x ′(g; g4̂[2](v))

+ 2x ′(g; gw4̂[1](v))x ′(g; g4̂[2](v))− 2x ′′(g; g4̂[1](w), gv)x ′(g; g4̂[2](w))

− 2x ′(g; gv4̂[1](w))x ′(g; g4̂[2](w))− x ′(g; g4̂[1]([w, v]))x ′(g; g4̂[2]([w, v])).

Then, using the symmetry of 4̂ and an independent copy 4̂′,

G(v,w)= L̂ x(4̂
[1](v)) dhxx(4̂

[2](v), w)− L̂ x(4̂
[1](w)) dhxx(4̂

[2](w), v)

= + 2x ′′(g; g4̂′[1](4̂[2](w)), gv) L̂ x(4̂
′[2](4̂[2](w))) L̂ x(4̂

[1](w))

− 2x ′′(g; g4̂′[1](4̂[2](v)), gw) L̂ x(4̂
′[2](4̂[2](v))) L̂ x(4̂

[1](v))

+ 2 L̂ x(4̂
[2](v)4̂′[1](w)) L̂ x(4̂

′[2](w)) L̂ x(4̂
[1](v))

− 2 L̂ x(w4̂
′[1](4̂[2](v))) L̂ x(4̂

′[2](4̂[2](v))) L̂ x(4̂
[1](v))

− 2 L̂ x(4̂
[2](w)4̂′[1](v)) L̂ x(4̂

′[2](v)) L̂ x(4̂
[1](w))

+ 2 L̂ x(v 4̂
′[1](4̂[2](w))) L̂ x(4̂

′[2](4̂[2](w))) L̂ x(4̂
[1](w))

− L̂ x(4̂
′[1]([4̂[2](v), w])) L̂ x(4̂

′[2]([4̂[2](v), w])) L̂ x(4̂
[1](v))

+ L̂ x(4̂
′[1]([4̂[2](w), v])) L̂ x(4̂

′[2]([4̂[2](w), v])) L̂ x(4̂
[1](w))

= + 2 D(g;gv)
(
L̂ x(4̂

′[1](4̂[2](w)))
)

L̂ x(4̂
′[2](4̂[2](w))) L̂ x(4̂

[1](w))

− 2 D(g;gw)
(
L̂ x(4̂

′[1](4̂[2](v)))
)

L̂ x(4̂
′[2](4̂[2](v))) L̂ x(4̂

[1](v))

+ 2 L̂ x([4̂
[2](v), 4̂′[1](w)]) L̂ x(4̂

′[2](w)) L̂ x(4̂
[1](v))

− L̂ x(4̂
′[1]([4̂[2](v), w])) L̂ x(4̂

′[2]([4̂[2](v), w])) L̂ x(4̂
[1](v))

+ L̂ x(4̂
′[1]([4̂[2](w), v])) L̂ x(4̂

′[2]([4̂[2](w), v])) L̂ x(4̂
[1](w)).

Using Lemma 4.12, we obtain

d4̂(L̂ x , hxx)(v,w)= D(g;gv)(L̂ x(4̂
[1](w))hxx(4̂

[2](w)))

−D(g;gw)(L̂ x(4̂
[1](v))hxx(4̂

[2](v)))− L̂ x(4̂
[1]([v,w]))hxx(4̂

[2]([v,w])),
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so

L̂ x(4̂
[1](w))hxx(4̂

[2](w))= L̂ x(4̂
′[1]4̂[2](w)) L̂ x(4̂

′[2]4̂[2](w)) L̂ x(4̂
[1](w))

and

D(g;gv)(L̂ x(4̂
[1](w))hxx(4̂

[2](w)))

= 2 D(g;gv)(L̂ x(4̂
′[1]4̂[2](w))) L̂ x(4̂

′[2]4̂[2](w)) L̂ x(4̂
[1](w))

+L̂ x(4̂
′[1]4̂[2](w)) L̂ x(4̂

′[2]4̂[2](w))D(g;gv)(L̂ x(4̂
[1](w))).

Now we get

J2(x, x, x)(v,w)= + 2 D(g;gv)
(
L̂ x(4̂

′[1](4̂[2](w)))
)

L̂ x(4̂
′[2](4̂[2](w))) L̂ x(4̂

[1](w))

− 2 D(g;gw)
(
L̂ x(4̂

′[1](4̂[2](v)))
)

L̂ x(4̂
′[2](4̂[2](v))) L̂ x(4̂

[1](v))

+ 6 L̂ x([4̂
[2](v), 4̂′[1](w)]) L̂ x(4̂

′[2](w)) L̂ x(4̂
[1](v))

− 3 L̂ x(4̂
′[1]([4̂[2](v), w])) L̂ x(4̂

′[2]([4̂[2](v), w])) L̂ x(4̂
[1](v))

+ 3 L̂ x(4̂
′[1]([4̂[2](w), v])) L̂ x(4̂

′[2]([4̂[2](w), v])) L̂ x(4̂
[1](w))

− 2 L̂ x(4̂
′[1]4̂[2](w)) L̂ x(4̂

′[2]4̂[2](w))D(g;gv)(L̂ x(4̂
[1](w)))

+ 2 L̂ x(4̂
′[1]4̂[2](v)) L̂ x(4̂

′[2]4̂[2](v))D(g;gw)(L̂ x(4̂
[1](v)))

+ 2 L̂ x(4̂
[1]([v,w]))hxx(4̂

[2]([v,w])).

By the ad-invariance of 4̂′, we have

4̂′([w, 4̂[2](v)])= [4̂′[1](w), 4̂[2](v)] ⊗ 4̂′[2](w)+ 4̂′[1](w)⊗ [4̂′[2](w), 4̂[2](v)]

and

L̂ x(4̂
[1]([v,w]))hxx(4̂

[2]([v,w]))

= L̂ x([4̂
[1](v), w]) L̂ x(4̂

′[1]4̂[2](v)) L̂ x(4̂
′[2]4̂[2](v))

+ 2 L̂ x(4̂
[1](v)) L̂ x([4̂

[2](v), 4̂′[1](w)]) L̂ x(4̂
′[2](w)),

so we rewrite

J2(x, x, x)(v,w)=2 D(g;gv)
(
L̂ x(4̂

′[1](4̂[2](w)))
)

L̂ x(4̂
′[2](4̂[2](w))) L̂ x(4̂

[1](w))

− 2 D(g;gw)
(
L̂ x(4̂

′[1](4̂[2](v)))
)

L̂ x(4̂
′[2](4̂[2](v))) L̂ x(4̂

[1](v))

− 2 L̂ x([4̂
[2](v), 4̂′[1](w)]) L̂ x(4̂

′[2](w)) L̂ x(4̂
[1](v))

− 2 L̂ x(4̂
′[1]4̂[2](w)) L̂ x(4̂

′[2]4̂[2](w))D(g;gv)(L̂ x(4̂
[1](w)))

+ 2 L̂ x(4̂
′[1]4̂[2](v)) L̂ x(4̂

′[2]4̂[2](v))D(g;gw)(L̂ x(4̂
[1](v)))

+ L̂ x([4̂
[1](v), w]) L̂ x(4̂

′[1]4̂[2](v)) L̂ x(4̂
′[2]4̂[2](v))

− L̂ x([4̂
[1](w), v]) L̂ x(4̂

′[1]4̂[2](w)) L̂ x(4̂
′[2]4̂[2](w)).
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Setting

e(v)= 4̂[1](v)⊗ 4̂′[1]4̂[2](v)⊗ 4̂′[2]4̂[2](v)− 4̂′[1]4̂[2](v)⊗ 4̂[1](v)⊗ 4̂′[2]4̂[2](v),

this becomes

J2(x, x, x)(v,w)= + 2 D(g;gw)
(
L̂ x(e[1](v))

)
L x(e[2](v))L x(e[3](v))

− 2 D(g;gv)
(
L̂ x(e[1](w))

)
L x(e[2](w))L x(e[3](w))

− 2 L̂ x([4̂
[2](v), 4̂′[1](w)]) L̂ x(4̂

′[2](w)) L̂ x(4̂
[1](v))

+ L̂ x([e[1](v), w]) L̂ x(e[2](v)) L̂ x(e[3](v))

− L̂ x([e[1](w), v]) L̂ x(e[2](w)) L̂ x(e[3](w))

+ L̂ x([4̂
′[1]4̂[2](v), w]) L̂ x(4̂

[1](v)) L̂ x(4̂
′[2]4̂[2](v))

− L̂ x([4̂
′[1]4̂[2](w), v]) L̂ x(4̂

[1](w)) L̂ x(4̂
′[2]4̂[2](w)).

Now, using symmetry and ad-invariance,

2 L̂ x([4̂
′[1]4̂[2](v), w]) L̂ x(4̂

′[2]4̂[2](v))

= L̂ x([4̂
′[1]4̂[2](v), w]) L̂ x(4̂

′[2]4̂[2](v))+ L̂ x(4̂
′[1]4̂[2](v)) L̂ x([4̂

′[2]4̂[2](v), w])

= L̂ x(p[1]) L̂ x(p[2]),

where

p[1]
⊗ p[2]

= 4̂′([4̂[2](v), w])

= [4̂[2](v), 4̂′[1](w)] ⊗ 4̂′[2](w)+ 4̂′[1](w)⊗ [4̂[2](v), 4̂′[2](w)].

It follows that

L̂ x([4̂
′[1]4̂[2](v), w]) L̂ x(4̂

′[2]4̂[2](v))= L̂ x([4̂
[2](v), 4̂′[1](w)]) L̂ x(4̂

′[2](w)),

and so

J2(x, x, x)(v,w)= + 2 D(g;gw)
(
L̂ x(e[1](v))

)
L̂ x(e[2](v)) L̂ x(e[3](v))

− 2 D(g;gv)
(
L̂ x(e[1](w))

)
L̂ x(e[2](w)) L̂ x(e[3](w))

+ L̂ x([e[1](v), w]) L̂ x(e[2](v)) L̂ x(e[3](v))

− L̂ x([e[1](w), v]) L̂ x(e[2](w)) L̂ x(e[3](w)).

Use of the first super-Jacobi result yields e(v) = −n[1]
⊗n[2]

⊗[v, n[3]
], as stated. �

From Section 2 we know that if J1, J2 vanish then the third super-Jacobi identity
also holds. Putting together several of the results above we find as a special case:
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Theorem 4.18. Every quastriangular Poisson–Lie group has a compatible bico-
variant preconnection given by 4̂= 0. The corresponding γ̃ is given by

γ̃ (a, s)(g)= {a, s}(g)+ a′(g; gr−
[1])ad∗

r−
[2](s(g))

for a ∈ C∞(G) and s ∈ C∞(G, g∗). If g is semisimple then the curvature vanishes
if and only if the Lie bialgebra is triangular, and in this case all super-Jacobi
identities Ji = 0 hold.

Proof. Clearly 4̂ = 0 is symmetric and ad∗-invariant, hence by Corollary 4.7 and
Proposition 4.15 defines a bicovariant preconnection. To work out what it looks like
we have only to work backwards from the definitions of 4̂,4 and Definition 4.4 to
find the result stated. If 4̂ 6= 0 we would need an additional term 4̂(L̂ x(g), s(g)).
For the second part, the Lie bialgebra is triangular precisely when n = [[r−, r−]] =

[r+12, r+23] vanishes, which is if and only if r+ = 0 since this is either zero or
nondegenerate in the semisimple case. Also in this case e(v) = 0 for all v if
and only if n = 0, which is the case for the curvature obstruction to J1 to vanish
according to Proposition 4.16 and the interpretation in Section 2. In this case J2

also vanishes by the preceding proposition and hence J3 by Proposition 2.6. �

Proposition 4.19. The above canonical choice of compatible preconnection γ on
a quasitriangular Poisson–Lie group is given explicitly by

γ (a, τ )= (a G r−
[1])(τ G r−

[2])− (r−
[1]

F a)(r−
[2]

F τ)

where G is the right action on functions or 1-forms corresponding to 1,1R re-
spectively. Its curvature and torsion are

R(x, y)τ = (n[1]
F x)(n[2]

F y)(n[3]
F τ)− (x G n[1])(y G n[2])(τ G n[3]),

T (x, y)(dz)= (m [1]
F x)(m [2]

F y)(m [3]
F z)− (x G m [1])(y G m [2])(z G m [3]),

where n = [[r−, r−]] and m = [r−13, r−23].

Proof. Here the right actions are defined in the same way as we did for F at
the start of Section 4A, so (a G g)(h) = a(hg−1) on functions and (τ G g)(h) =

R∗

g−1(τ (hg−1)) on forms, and we use the infinitesimal versions. Unwinding our
definition of γ̃ , we have

γ (a, τ )(g)

= L∗

g−1(γ̃ (a, τ̃ )(g))

= L∗

g−1

(
a′(g; gr−

[1])(τ̃ ′(g; gr−
[2])+ad∗

r−
[2](τ̃ (g)))−a′(g; r−

[1]g)τ̃ ′(g; r−
[2]g)

)
= a′(g; r−

[1]g)(r−
[2]

F τ)(g)− a′(g; gr−
[1])(τ G r−

[2])(g),

as stated. Here
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a′(g; gv)= (L∗va)(g)= −(a G v)(g), a′(g; vg)= (R∗va)(g)= −(v F a)(g)

for v ∈ g. On forms, we similarly have

L∗

g−1(τ̃
′(g; vg))= L∗

g−1

d
dt

∣∣∣
0
τ̃ (etvg)=

d
dt

∣∣∣
0

L∗

etv (τ (etvg))

=
d
dt

∣∣∣
0
(e−tv

F τ)(g)= −(v F τ)(g),

L∗

g−1(τ̃
′(g; gv)+ ad∗

v(τ̃ (g)))= L∗

g−1

d
dt

∣∣∣
0

Ad∗

etv (τ̃ (getv))=
d
dt

∣∣∣
0

R∗

etv (τ (getv))

=
d
dt

∣∣∣
0
(τ G e−tv)(g)= −(τ G v)(g).

This is equivalent to the computation in Lemma 4.10 for exact forms. Next, it is
a useful check to compute the curvature directly form the definition (3–1), with
result in line with Proposition 4.16. We use the canonical γ and its connection
property (2–4) to write

R(x, y)τ = γ (x, γ (y, τ ))− γ (y, γ (x, τ ))− γ ({x, y}, τ )

= γ (x, (y G r−
[1])(τ G r−

[2])− (r−
[1]

F y)(r−
[2]

F τ))

− (x ↔ y)− ({x, y} G r−
[1])(τ G r−

[2])+ (r−
[1]

F {x, y})(r−
[2]

F τ).

We then insert the formulae for γ and { , } (as discussed below) and expand F , G

as derivations to obtain 24 terms. Cancelling 12 and using that F , G are mutually
commuting actions of g, together with the antisymmetry of r−, we obtain the result.
Finally, using the expression for torsion as in Proposition 3.2 we have

<<dz, T (x, y)>> = << x̂, γ (y, dz)>> − << ŷ, γ (x, dz)>>

= << x̂, (y G r−
[1]) d(z G r−

[2])− (r−
[1]

F y) d(r−
[2]

F z)>> − (x ↔ y)

= (y G r−
[1]){x, z G r−

[2]
} − (r−

[1]
F y){x, r−

[2]
F z} − (x ↔ y),

where we used γ on exact forms as discussed below. We then expand out the Pois-
son bracket and cancel terms. One may similarly compute T (x, y)(τ ) in general.

�

Since d commutes with the actions, or by Lemma 4.10, we have in particular

γ (a, db)= (a G r−
[1]) d(b G r−

[2])− (r−
[1]

F a) d(r−
[2]

F b),

while, in the same notation,

(4–8) {a, b} = (a G r−
[1])(b G r−

[2])− (r−
[1]

F a)(r−
[2]

F b)

coincides with the usual formula on a quasitriangular Poisson–Lie group (because
one could equally well put r here since r+ is ad-invariant). Then the antisymmetry
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of r− and the Leibniz rule confirm that the canonical connection is compatible in
the sense of (2–5). Also, the torsion is consistent with Proposition 3.2 since on
cyclic summation, [r−13, r−23] becomes replaced by [[r−, r−]] and this now gives
zero as the statement that (4–8) obeys the Jacobi identity (usually this is done via
[[r, r ]] = 0). By contrast, the action of [[r−, r−]] in the curvature, even on exact
forms, is not trivial. We note also that the same formula as for the canonical
connection but with r in place of r− is what one obtains by semiclassicalising the
‘quantum Lie functor’ construction in [Gomez and Majid 2003] for a canonical
bicovariant quantum differential calculus on any coquasitriangular Hopf algebra.
There the coquasitriangular structure R or ‘universal R-matrix’ plays the role of r .
Unfortunately, that functor only gives nontrivial answers in the triangular case and
now we can see why: only in this case is r = r−, so that it coincides with our result
above. Moreover, only this case corresponds to J1 = 0 and hence to a bimodule on
quantization.

Finally, we use Corollary 4.7 and Proposition 4.17 to study the entire moduli
space of bicovariant semiclassical calculi. These results tell us that the moduli
space is an affine space with the above canonical preconnection as reference and
others given by the vector space of Ad-invariant symmetric maps 4̂ :g→ Sym2(g).
Such maps may be classified for g reductive using Kostant’s results on harmonic
functions in [Kostant 1963]. In particular:

Theorem 4.20. If g is simple and not sln , n > 2, the moduli space is a point, i.e.,
the canonical preconnection 4̂= 0 is the unique bicovariant one. If g = sln , n> 2,
the moduli space is a 1-parameter family given by 4̂ a multiple of the split cubic
Casimir in g⊗ g⊗ g.

Proof. Since g is simple 4̂ is zero or an inclusion, so we need the multiplicity of
g in the symmetric tensor square Sym2(g). We freely use the Ad-invariant Killing
form to identify g and g∗ for our purposes, so this is equivalent to the multiplicity
of g in the symmetric polynomials S2(g) of degree 2 on g. From [Kostant 1963],
S(g) = J ⊗ Harm as a vector space, where J denotes the invariant polynomials
and Harm the harmonic ones. Hence S2(g) = J 2

⊕ (J 1
⊗ Harm1)⊕ Harm2. J

is well-known to be generated by functions {ui } of degrees mi + 1 where mi are
the ‘exponents’ of the Lie algebra. Clearly J 2 is 1-dimensional (spanned by the
Killing form) and J 1

= 0, so we need only to classify embeddings of g in Harm2.
From [Kostant 1963, Theorem 0.11] the component of Harm transforming as a
given highest weight representation λ consists of lλ copies with certain degrees
mi (λ). In the case of the adjoint representation these reduce to the usual rank l and
exponents mi . Finally, we turn to tables and find that only sln , n>2 has an exponent
with value 2 (a cubic Casimir). Other simple Lie algebras have nothing in Harm
of degree 2 and hence have 4̂= 0. In the case of sln , n > 2 there is one exponent
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with value 2 (namely m2) so there is a single copy of g in the decomposition
of S2(g). It is necessarily given by the corresponding unique totally symmetric
invariant element u2 ∈ J 3, viewed as a map g → S2(g). From another point of
view this corresponds to the cubic Casimir in the enveloping algebra, or the unique
totally symmetric ‘cubic split Casimir’ in Sym3(g). Thus up to normalisation, 4̂ is
necessarily this element viewed as g∗

→ Sym2(g) by evaluation in one input and
converted to g → Sym2(g) with the help of the Killing form. �

We see that for all but the sln series, the corresponding Poisson–Lie group
with any fixed strictly quasitriangular structure (such as the standard one) admits a
unique semiclassical bicovariant calculus, and its preconnection has nonzero cur-
vature. Therefore it cannot be quantised even at a bimodule level; that is, there
can be no first order bicovariant different calculus on the standard quantum groups
of the same dimension as the classical one. This agrees with what is known from
quantum group theory by other means [Majid 1998a]. The 1-parameter family for
sln , n > 2 at least generically also has curvature from Proposition 4.17, and hence
the same problem.

4E. Example: canonical connection on SU2.We take the same Poisson–Lie group
as in Section 4C and the notations there. This time there is no known quantum
calculus to semiclassicalise but rather we use our results above. In this case one
can see directly that sl2 is not to be found in the symmetric part of sl2 ⊗sl2 (which
is the 1 ⊕ 5 dimensional representation under ad), hence the only bicovariant pre-
connection by Proposition 4.15 is 4̂= 0, as per Theorem 4.20.

In this case Theorem 4.18 says that γ̃ (x, τ̃ i ) = (L∗r−
[1] x)ad∗

r−
[2] τ̃

i since the τ̃ i

are constant. Also for this reason, we have the same formula without all the tildes,
with the τ i transforming in the same way under ad∗ as the τ̃ i . Putting in the form
of r− in our case, we have

γ (x, τ i )=
1
2((∂+x)ad∗

e−
(τ i )− (∂−x)ad∗

e+
(τ i )).

Computing ad∗

ei
we find

γ (x, τ+)=−(∂−x)τ 3, γ (x, τ−)=−(∂+x)τ 3, γ (x, τ 3)= 1
2((∂+x)τ+

+(∂−x)τ−).

As we expect from the Proposition 4.19, this compatible preconnection has both
curvature and torsion. Hence by Sections 2 and 3 it cannot be quantized to an
honest bimodule first order quantum calculus let alone higher forms.

5. Quasiassociative exterior algebras

Here we give a setting for the quantisation of Poisson–Lie groups where the precon-
nection has nonzero curvature, such as the canonical one in Theorem 4.18 for the
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strictly quasitriangular case. This case includes the standard Drinfeld–Sklyanin
Poisson–Lie groups as demonstrated for SU2 in Section 4E. In such a case of
curvature we know that the quantisation must be nonassociative. We show now
that this can be controlled nicely in the setting of coquasi-Hopf algebras, where
there is a Drinfeld associator 8. We first work out the relevant noncommutative
differential geometry first and then semiclassicalise it. As a result, we succeed to
quantise the canonical connection for such quasitriangular Poisson Lie groups.

For general constructions we work over a field k, which can also (with care)
be replaced by commutative ring such as C[[h̄]] for the formal deformation theory.
Our starting point is a class of natural examples obtained by twisting as follows. If
H is a Hopf algebra and F : H ⊗ H → k is a 2-cochain in the sense of convolution
invertible in the form F(a(1) ⊗ b(1))F−1(a(2) ⊗ b(2)) = ε(a)ε(b) (and similarly on
the other side) and obeying F(1⊗a)= ε(a) then one may define a new object HF

with modified product

a • b = F(a(1) ⊗ b(1))a(2)b(2)F−1(a(3) ⊗ b(3)) for all a, b ∈ H.

This is not necessarily associative but rather we have

(5–1) a • (b • c)=8(a(1) ⊗ b(1) ⊗ c(1))(a(2) • b(2)) • c(2)8−1(a(3) ⊗ b(3) ⊗ c(3)),

where

8(a ⊗ b ⊗ c)= F(b(1) ⊗ c(1))F(a(1) ⊗ b(2)c(2))F−1(a(2)b(3) ⊗ c(3))F−1(a(3) ⊗ b(4))

is the coboundary of F in some kind of nonabelian cohomology [Majid 1995]. This
makes HF into an example of a coquasi-Hopf algebra. By definition the latter is
defined to be a coalgebra which has a product obeying (5–1) with respect to some
3-cocycle 8 (not necessarily of the coboundary form). There should also be an
antipode S obeying certain axioms. The axioms in a nondual form are due to Drin-
feld [1989], who showed what would in our setting be the following assertion: the
standard coquasitriangular quantum groups Ch̄(G) are (nontrivially) isomorphic to
twists of the classical functions C(G) (in some form) by a formal cochain F = Fh̄ .
Although the F needed here is not a cocycle so that 8 is not trivial, 8 turns out in
this example to be cocentral and hence disappears from (5–1) with the result that
Ch̄(G) is an ordinary Hopf algebra. We do not need the fully precise formulation
but only the idea and formulae to lowest order, which we will provide.

The second idea is the Majid–Oeckl theorem for twisting of bicovariant differen-
tial calculi on Hopf algebras. It is known [Brzeziński 1993] that in the bicovariant
case the Woronowicz exterior algebra �(H) as a whole forms a super-Hopf al-
gebra. It is just H in degree 0 and in higher degree the coproduct is generated
by

1=1L +1R
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in degree 1. We will use the notation

(5–2) (1L ⊗ id)1Rτ = (id ⊗1R)1Lτ = τ (1) ⊗ τ (2) ⊗ τ (3) ∈ H ⊗�1
⊗ H

for any 1-form τ . The theorem of [Majid and Oeckl 1999] states that if F is a
2-cocycle (so that HF is again a Hopf algebra) then HF has a natural bicovariant
differential calculus given by �(HF )=�(H)F , where we twist �(H) as a super-
Hopf algebra with F extended by zero on higher degrees. The twisted module and
wedge product are

(5–3)

a • τ = F(a(1) ⊗ τ (1))a(2)τ (2)F−1(a(3) ⊗ τ (3))

τ • a = F(τ (1) ⊗ a(1))τ (2)a(2)F−1(τ (3) ⊗ a(3))

τ ∧• η = F(τ (1) ⊗ η(1))τ (2) ∧ η(2)F−1(η(3) ⊗ η(3))

for a ∈ H and 1-forms τ, η. Note that (1⊗ id)1τ contains three terms, but only
the middle one (5–2) enters in the above expressions since F pairs only in degree
zero. The same applies in formulae below.

We can ask what kind of object does one get if F is not a cocycle. According to
the above, then�(HF ) given by twisting will now be a super coquasi-Hopf algebra.
Looking at such an example we have the following definition and proposition:

Definition 5.1. If (H,8) is a coquasi-Hopf algebra, we define its first order quasi
differential calculus�1(H) to be (�1, d) where�1 is a quasibimodule in the sense

a • (b • τ)=8(a(1) ⊗ b(1) ⊗ τ (1))(a(2) • b(2)) • τ (2)8
−1(a(3) ⊗ b(3) ⊗ τ (3))

τ • (b • c)=8(τ (1) ⊗ b(1) ⊗ c(1))(τ (2) • b(2)) • c(2)8−1(τ (3) ⊗ b(3) ⊗ c(3))

a • (τ • c)=8(a(1) ⊗ τ (1) ⊗ c(1))(a(2) • τ (2)) • c(2)8−1(a(3) ⊗ τ (3) ⊗ c(3))

and the rest as usual (so d is a derivation with respect to the product •, etc and the
calculus is bicovariant if coactions 1L ,1R commute with • and intertwine d).

Proposition 5.2. If H is an ordinary Hopf algebra and F a 2-cochain then�1(HF )

defined by (5–3) and the same d is a first order quasidifferential calculus on HF .

Proof. This is more or less by construction. We define �(HF ) namely as a super
coquasi-Hopf algebra given by �(H)F . As such it obeys the conditions in Defi-
nition 5.1 as these are just the lowest order part of the assertion that �(HF ) is a
super coquasi-Hopf algebra. One may check that d remains a derivation, the proof
being the same as in [Majid and Oeckl 1999]. �

We do not go through all the steps of the Woronowicz construction for the ex-
terior algebra �(H) in detail but this may surely be done and is straightforward in
view of the category of quasicrossed modules being known [Majid 1998b]. Then
the entire �(HF ) will be an example of such a general construction.
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In particular, by the remarks above, all the standard coquasitriangular quantum
groups Ch̄(G) have such bicovariant quasidifferential calculi �1(Ch̄(G)) and in-
deed an entire super coquasi-Hopf exterior algebra. We now make a semiclassical
analysis to lowest order of this example. What we need from Drinfeld’s theory is
that

Fh̄ = 1 ⊗ 1 + h̄ f + O(h̄2) ∈ U (g)⊗ U (g),

where g is the Lie algebra of G. Since it is given by twisting from its symmetric
part, the quasitriangular structure is

r = f21 − f + r+,

where r+ is the split Casimir or inverse Killing form in a suitable normalisation.
The antisymmetric part is r− = f21 − f . Moreover,

8= 1 ⊗ 1 ⊗ 1 −
1
6 h̄2

[[r−, r−]] + O(h̄3).

The following applies to these standard Poisson–Lie groups and any others where
the quasitriangular Poisson–Lie group can be quantized to a coquasitriangular Hopf
algebra by a cochain twist, with the induced twisted quantum differential calculus.

Proposition 5.3. The preconnection obtained by semiclassicalizing the quantum
differential calculi obtained by cochain-twisting is the canonical one 4̂ = 0 in
Proposition 4.19.

Proof. In the twisted bicovariant calculus we have

a • τ = aτ + h̄( << f, a(1) ⊗ τ (1)>> a(2)τ (∞) − a(1)τ (0) << f, a(2) ⊗ τ (1)>> )+ O(h̄2)

τ • a = τa + h̄( << f, τ (1) ⊗ a(1)>> τ (∞)a(2) − τ (0)a(1) << f, τ (1) ⊗ a(2)>> )+ O(h̄2)

[a, τ ]• = h̄( << f − f21, a(1) ⊗ τ (1)>> a(2)τ (∞) − a(1)τ (0) << f − f21, a(2) ⊗ τ (1)>> )+ O(h̄2)

= h̄
(
(a G r−

[1])(τ G r−
[2])− (r−

[1]
F a)(r−

[2]
F τ)

)
+ O(h̄2),

as follows. First, when we expand F, F−1, the 1 ⊗ 1 of one or other of these
evaluates against (1⊗ id)1τ to yield 1τ = 1Lτ +1Rτ and of these two terms
only will contribute as F pairs only in degree zero. We recognize −r− appearing
here. Finally, we note that if v ∈ g then

<<v, a(1)>> a(2) = −v F a = R∗v(a)

and <<v, τ (1)>> τ (∞) = −v F τ in the conventions of Section 4A, and similarly on the
other side. Comparing, we have exactly the formula in Proposition 4.19, which
corresponds to 4̂= 0. �

In view of Proposition 4.19 we also see the nonassociativity of the exterior
algebra reflected in the curvature of the associated preconnection. Also, there is
nothing stopping one doing the above with a cochain where 8 is not central in the
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sense above. Then one obtains a quasidifferential calculus on a quasi-Hopf algebra
HF . In this case the infinitesimal data even for the function algebra is not a Poisson
bracket but something weaker as in [Kosmann-Schwarzbach 1992].

6. The Fedosov point of view

The reader may wonder where the Fedosov [1996] method of deformation quantisa-
tion fits into this picture of deforming differential calculus that we have developed.
Since the initial data in [Fedosov 1996] is a symplectic structure and a symplectic
connection, it seems that its correct formulation could be as not only quantising
functions but functions and differentials. We first point out that there are indeed flat
sections of the bundle of Weyl differential forms, and the wedge product of such
sections is flat. All multiplications are associative, and the forms are a left and
right module over the functions on the manifold. The reader is reminded that the
functions on the manifold are replaced in the Fedosov theory by the flat sections
of the 0-form Weyl bundle, WD in the notation of [Fedosov 1996]. Since these
flat sections are in a natural 1-1 correspondence with the ordinary functions on
the manifold, it seems that we have deformed the product on C∞(M) itself. The
problem with the q-forms for q ≥ 1 is that there are far too many flat sections of
the q-form Weyl bundle, as we now see:

Proposition 6.1. For q ≥ 1 there is a 1-1 correspondence

δδ−1
:
{
τ ∈ C∞(W ⊗3q) : Dτ = 0

}
−→ {η ∈ C∞(W ⊗3q) : δη = 0

}
.

The inverse map sends η to τ , the unique solution of the equation

(6–1) τ = δ−1(D + δ)τ + η.

Proof. That (6–1) has a solution can be seen by an iterative method. Set τ0 = η,
and continue with

τn+1 = δ−1(D + δ)τn + η.

Then we have
τn+2 − τn+1 = δ−1(D + δ)(τn+1 − τn),

and use the fact that the operation δ−1(D + δ) increases degree to see that this
iterative solution converges as n → ∞ in each degree. To show that (6–1) has a
unique solution, take another solution τ̃ and subtract to get

τ̃ − τ = δ−1(D + δ)(τ̃ − τ).

By counting degrees again, we see that τ̃ = τ . Next we have to show that if τ is a
solution of (6–1), then Dτ = 0. As δ−1δ−1

= 0, applying δ−1 to (6–1) gives

δ−1τ = δ−1η.
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Then we have, as δδ−1
+ δ−1δ is the identity on C∞(W ⊗3q),

δ−1 Dτ = δ−1(D + δ)τ − δ−1δτ = τ − η− δ−1δτ

= δδ−1τ − η = δδ−1η− η = −δ−1δη = 0.

Then, remembering that D(Dτ)= 0,

Dτ = (δ−1δ+ δδ−1)Dτ = δ−1δDτ = δ−1(D + δ)Dτ.

By the previous degree argument, this implies that Dτ = 0, and concludes showing
that the back map is well defined.

To show that the composition one way round is the identity, apply δδ−1 to (6–1):

δδ−1τ = δδ−1η = (δ−1δ+ δδ−1)η = η.

Finally we show that the composition of the maps the other way round is also
the identity. Begin with τ satisfying Dτ = 0. Then, as required

τ = (δ−1δ+ δδ−1)τ = δ−1(D + δ)τ + δδ−1τ. �

Now the classical q-forms do give rise to flat Weyl q-forms, as C∞(M)⊗3q is
contained in the kernel of δ, so we can use (6–1) to find a corresponding flat section.
However the kernel of δ in C∞(W ⊗3q) is much larger than the classical q-forms.
If we take the wedge product of two flat sections coming from classical q-forms,
we get a flat section, but not necessarily one coming from a classical q-form.

We are then faced with a choice: either to stick with the associative framework
given by flat Weyl forms and sacrifice correspondence with the classical forms,
or to try to maintain the correspondence but accept that associativity will only be
approximately true.

Remember that a function f ∈ C∞(M) has a corresponding quantisation begin-
ning f + yk

∇k f +
1
2 yk y j

∇k∇ j f + · · · , so if we had a 1-form also expanded in
the form η+ y jη[ j] + · · · , we would get

[ f + yi
∇i f + · · · , η+ yiη[i] + · · · ] = −i h̄ωk j η[ j]∇k f + · · · ,

so (using −i h̄ instead of h̄ to fit the usual notation of the Fedosov theory), we would
have to have the quantisation of the 1-form beginning η+ yk

∇kη+ · · · . However
a calculation of the leading order expansion of the flat 1-form whose lowest order
part is η gives ηn +

1
2 yk(ηn;k −ηk;n)+· · · . We conclude that taking flat 1-forms is

really not the right thing to do. Also note that the supercommutator of two 1-forms
is, to leading order,

[η+ y j
∇ jη+ · · · , ξ + yk

∇kξ + · · · ] = −i h̄ω jk
∇ jη∧ ∇kξ,

also as previously described.
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