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We study a mathematical model for a compressible liquid in a capillary
tube. We establish necessary and sufficient conditions for existence and for
uniqueness or near uniqueness of solutions, and we provide general height
estimates for solutions, depending on the geometrical structure of the def-
inition domain. We show that solutions exhibit discontinuous dependence
properties in domains with corners, analogous to those that are known for
the classical capillarity equation.

1. Introduction

The mathematical theory of capillary surfaces was founded by Young [1805], by
Laplace [1805–1806] and by Gauss [1830]. The profound investigations of these
authors led to the equation

(1) div T u = κu + λ, T u =
Du√

1 + |Du|2

for the rise height u(x, y) in a vertical cylindrical capillary tube of general section
�⊂ R2. Here κ = ρg/σ , with ρ the density change across the surface, g the grav-
itational acceleration, σ the interfacial tension, and λ a constant to be determined
by an eventual volume constraint. On the boundary 6 = ∂�, and with ν the outer
unit normal to 6, the condition

(2) ν · T u = cos γ

is imposed, which asserts that the free surface S meets the bounding cylinder sur-
face in the (prescribed) angle γ . These relations were established by Young and
by Laplace using force balance reasoning that was not clearly defined and in some
respects incorrect (see [Finn 2006]), then later obtained independently by Gauss
using Johann Bernoulli’s “principle of virtual work”, under the hypothesis that
position variations internal to the bulk fluid do not affect the mechanical energy of
the system. That was certainly reasonable to suppose at the time, but nevertheless
may now be appropriate to question.
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Figure 1. Profiles of static equilibrium surfaces in an “exotic container”.

The equations (1)+(2) have served for two centuries, though perhaps not as
well as might initially have been hoped, in view of their seemingly intractable
nonlinearities. During the initial century, some isolated particular solutions were
found by essentially numerical procedures [Bashforth and Adams 1883], and many
attempts were made to obtain general information via linearization procedures;
these latter attempts led to little information of substantive interest, and in fact to
some misconceptions as to the behavior of the solutions. (See also [Finn 1986;
1999] for an overview.)

During the past half century, the problems were attacked anew on the basis of
the full nonlinearity of the equations, yielding unexpected predictions of discontin-
uous behavior; some of these predictions were since verified by experiment; see,
for example, [Concus et al. 2000; 1999; Finn 1999, p. 773]. The first existence
proofs for (1)+(2) appeared in [Emmer 1973; Ural’tseva 1973; 1975], followed by
a number of others under varying conditions.

In this sense, the qualitative validity of (1)+(2) as descriptions of reality was
clearly established. Nevertheless, there remain significant questions as to their
correctness in quantitative detail. Figure 1 displays profile curves of seven of the
continuum of rotationally symmetric equilibrium surfaces in an “exotic container”
[Concus et al. 1999]; all of these surfaces bound the same volume of fluid below
them, all provide identical mechanical energies in the sense of Gauss, and all of
them meet the boundary walls in the same contact angle γ .

Neither the system (1)+(2) nor the variational procedure of Gauss can distin-
guish among these formal solutions. Nevertheless, there are significant distinctions
among the surfaces relative to the physical criteria that underlie those procedures.
According to a discovery of Young, there is a pressure jump across each surface
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S of magnitude δp = 2σH , where H is the scalar mean curvature of S. We may
assume vacuum (p = 0) above each surface in the family. Since H varies widely
among the surfaces, so will the fluid pressures, and one must expect corresponding
changes in the internal energy of the fluid.

Finn [2001] took an initial step to account for such energy changes, by assuming
a slightly compressible fluid, with a phenomenological pressure/density relation
ρ = ρ0 + χ(p − p0). By taking account of the thus induced effects of gravity on
density, he was led to the equation

(3) div T u =
ρ0g
σ

u −χg cosω+ λ,

where ω is the angle between the upward directed surface normal and the vertical,
and λ is a Lagrange parameter, depending on an eventual mass constraint. For
the problem of a prescribed mass M in a tube closed at the bottom, Finn found a
necessary condition

(4) M< ρ0|�|/χg

on M for existence of a solution, and he showed that for a circular tube (4) also
suffices for existence of a uniquely determined solution.

In the present work we study (3) for domains � of general shape in the absence
of a mass constraint, and we also consider the equation that arises on taking account
of the expansion energy in fluid elements, resulting from density changes. In both
cases, although mass is not prescribed, (4) will appear as a general bound for the
mass lifted above the rest level u ≡ 0; see the discussion in [Finn 2001], which
applies to all cases considered here.

The energy released in the expansion of a unit mass of compressible liquid on
being raised from the base level 0 to level h is

(5) δ1 Ee = −

∫ p(h)

p0

pd(1/ρ)=
p0

ρ0
−

p(h)
ρ(h)

+

∫ p(h)

p0

dp
ρ
.

We consider a thin tube of sectional area δ� extending from the base level to
the surface u(x). At the height h we focus attention on an element of the tube of
height δh. If this element is to be in equilibrium, the pressure change from the
bottom to the top must be

δp = −ρg δh,

and thus

(6)
∫ p(h)

p0

dp
ρ

= −gh.
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We assume a relation ρ = φ(p; p0) > 0. We can then solve (6) for p = P(h; p0).
From this we obtain ρ = φ(P(h; p0); p0) = 8(h; p0). Note that the expansion
energy doesn’t enter here.

Returning to (5) and using (6), we find that the energy released by the indicated
element of mass ρ δh δ� is

δEe = ρ δh δ� δ1Ee =

( p0
ρ0
8− P −8gh

)
δh δ�,

and thus

Ee =

∫
�

d�
∫ u

0

( p0
ρ0
8− P −8gh

)
dh.

We add this energy to those previously introduced in [Finn 2001]. From established
procedures of the calculus of variations, we obtain the equation

(7) div T u =
8u

8
cosω−

P
8

ρ0

σ
+ λ

ρ0

σ
+

p0

σ

in �, with the boundary condition (2) unchanged.
In the special case ρ= ρ0 +χ(p− p0), (6) yields ρ= ρ0e−χgu , and (7) becomes

(8) div T u =
ρ0 −χp0

χσ

(
eχgu

− 1
)
−χg cosω+ λ

ρ0

σ
.

We address here the classical problem of a cylindrical tube open at both ends,
dipped into an unbounded reservoir of liquid. In this case, λ= 0, and (8) becomes

(9) div T u =
ρ0 −χp0

χσ

(
eχgu

− 1
)
−χg cosω

in �. We seek conditions under which there will be a solution of (9) in � subject
to (2) on 6. In the interest of obtaining well behaved solutions, we are driven to
the further hypothesis

ρ0 −χp0 > 0.

In the limit as χ → 0, we obtain the classical Young–Laplace–Gauss equation
(1), as is to be expected. However, the limiting procedure is not uniform in the
height u. Note that despite the absence of mass constraint, (9) is not satisfied by
the function u ≡ 0 when γ = π/2. That is a consequence of the imposed variation
of density with height. The fluid rises in the tube as consequence of the decreasing
density, until the effect is compensated by the weight of the lifted fluid. The rest
level for this trivial solution is the constant height

(10) uc =
χσ

ρ0
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for (3) with λ= 0, or

(11) uc =
1
χg

ln
(

1 +
χ2σg
ρ0 −χp0

)
for (9). This reference value will appear in Theorem 2.8 as a universal upper bound
when π/2 ≤ γ ≤ π , and also implicitly in other contexts.

We will establish varying existence and uniqueness properties, for solutions of
(3)+(2) or of (8)+(2), in domains of general shape; additionally we will establish
a priori bounds on solutions of (3) or (8), irrespective of boundary conditions.
Some of these bounds are idiosyncratic to the particular kinds of nonlinearities
considered, and have no counterparts in classical theory of elliptic equations. In
configurations for which uniqueness cannot be established by methods at our dis-
posal, we obtain instead comparison theorems, estimating a priori the difference
between possible solutions. We will establish growth and comparison properties
and discontinuous behavior of solutions in particular domains, depending on in-
equalities for boundary data. The remainder of the paper is organized as follows:

In Section 2 we present a priori estimates on solution heights, in a somewhat
more general context than the particular cases (3) and (8).

In Section 3 we give the gradient estimates up to the boundary for C2,µ domains
�, adapting a procedure introduced by Ural’tseva [1973; 1975].

In Section 4 we provide the existence and uniqueness assertions, for C2,µ do-
mains.

In Section 5 we adapt a procedure used in [Finn and Gerhardt 1977] to prove
the existence of “variational solutions” in piecewise smooth domains. Limited
knowledge of boundary behavior at corner points is available for such solutions;
however, boundedness or growth properties can be established, depending on local
geometry, and “near-uniqueness” properties are obtained.

Finally, we note that the height estimates obtained by comparison to hemispheres
trivially extend to hold for domains in any dimension,�⊂ Rn . We prove the gradi-
ent estimates in n dimensions. Our results for domains with corners are formulated
for n = 2.

2. A priori height estimates

We consider generally solutions u(x) of

(12) div T u = −
a2√

1 + |Du|2
+F(u), T u =

Du√
1 + |Du|2

,

in a bounded, piecewise smooth domain �. It is assumed that F(u) is monotone
increasing, with F(0)= 0, and that a is a constant.
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For the following definition, let us note that every f ∈ H 1,1(�) has a trace
f t

∈ L1(∂�), which we will denote by f . We call u(x) a variational solution of
(12) in �, corresponding to a boundary contact angle γ , if u ∈ C2(�), if F(u) is
integrable over �, and if

(13)
∫
�

[Dη · T u + ηF(u)] dx =

∫
�

η
a2√

1 + |Du|2
dx +

∫
∂�

η cos γ ds,

for every η ∈ Q(�) := L∞
∩ H 1,1(�). We note in (13) that even though the

nominal boundary condition involves derivatives of u, neither the derivatives nor
the function itself occurs in the boundary integral. We assume γ to be piecewise
continuous on ∂�, with 0 ≤ γ ≤ π .

The following lemma extends slightly Lemma 3 in [Finn and Gerhardt 1977].

Lemma 2.1. Let F(u) be nondecreasing. Let � be a piecewise smooth domain
exhausted by smooth domains � j

⊂�. Let u, v be functions in H 1,1
loc (�), such that

(14) lim sup
j→∞

∫
� j

(
Dη · (T v− T u)+ η (F(v)−F(u))

)
dx ≥ 0

for every η ∈Qloc(�) := L∞
∩ H 1,1

loc (�) with η ≥ 0. If F(u) is strictly increasing,
there follows v ≥ u almost everywhere in �. Otherwise either v ≥ u in � or else
v ≡ u + c, c constant, throughout �. If strict inequality holds in (14), then the
inequalities v ≥ u can be replaced by v > u.

We will apply this lemma in varying contexts to the particular cases

F(u)=
ρ0g
σ

u, a2
= χg,(15)

F(u)=
ρ0 −χp0

χσ
(eχgu

−1), a2
= χg, 0< χ <

ρ0

p0
.(16)

The first case corresponds to the situation studied in [Finn 2001], with uncon-
strained total mass, with κ = ρ0g/σ , and with a2

= χg; the case of prescribed
mass, subject to the (necessary) condition χgM < ρ0|�|, is retrieved by adding a
constant to u, see the discussion in [Finn 2001, p. 147]. The second case yields
the more exact equation introduced in this paper, again with unconstrained mass.
The same necessary condition applies; however a prescribed mass can no longer
be achieved by a rigid vertical translation of the surface.

In view of the first term on the right in (12), it is not immediately clear whether
the solutions are unique or satisfy a maximum principle. We do obtain that the
difference of two solutions satisfies an elliptic equation for which a maximum
principle holds, and we can use that information for the following result:
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Theorem 2.2. Suppose that � is a C1 domain, satisfying an internal sphere con-
dition, and that u, v are C2 solutions of (12) in �, both C1 on �. If T u ·ν ≤ T v ·ν

on 6 = ∂�, then either u < v in �, or else u ≡ v in �.

By an internal sphere condition (ISC) we mean that every boundary point can
be contacted from within � by a disk contained in �.

Proof. Let w= u −v denote the difference of the two solutions, and assume w has
a maximum M at a point p ∈�. If p ∈6, then at p the tangential derivative along
6 vanishes, ws = 0. Thus the exterior normal derivative wν = ∂w/∂ν satisfies
wν ≥ 0. In view of the internal sphere condition, we may apply the boundary
point lemma, obtaining that either w ≡ M or else wν > 0. In the former case we
conclude M = 0 since F(u) is strictly increasing; the latter case conflicts with the
hypothesis, and we may thus assume that p ∈�.

We can exclude an interior positive maximum for w by using the maximum
principle as noted; however, we present here a geometric argument.

Since w attains a maximum at p, we remark that the values of the angle ω are
equal for both surfaces at the point. Were u(p)>v(p), we would have div T u(p)>
div T v(p) by (12). Since these expressions are twice the mean curvature of the
respective surfaces, we conclude that at least one of the principal curvatures of the
surface Su = graph u would exceed that for the surface Sv = graph v, contradicting
that w has a maximum at p. �

If less smoothness is known for � or for the solution, one nevertheless has:

Theorem 2.3. Let u1, u2 be variational solutions in a piecewise smooth � of
(12)+(15), corresponding to data β1

= cos γ 1
≤ β2

= cos γ 2 on 6 = ∂�. Then

u1 < u2
+
χσ

ρ0
.

If instead u1, u2 are variational solutions of (12)+(16), for which u1, u2 > −A >
−∞, then

u1 < u2
+

χσ

ρ0 −χp0
eχg A.

Proof. To prove the first assertion, we observe that in view of (13) we have, for
positive η,∫
� j

(
Dη · (T u2

− T u1)+ η
ρ0g
σ
(u2

− u1)
)

dx

> χg
∫
�

η

(
1√

1 + |Du2|2
−

1√
1 + |Du1|2

)
dx

>−χg
∫
�

η dx .
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Writing u1
= w1

+χσ/ρ0, we find∫
�

(
Dη · (T u2

− Tw1)+ η
ρ0g
σ
(u2

−w1)
)

dx > 0,

for all η ∈Qloc(�), η ≥ 0. By Lemma 2.1 we have u2 >w1
= u1

−χσ/ρ0, which
completes the proof of the initial assertion. The second assertion follows similarly,
using the estimate

eχgw1
+c

− eχgw1
= χg

∫ w1
+c

w1
eχgt dt > χgeχgw1

c if c > 0. �

We may apply a variant of the method to obtain universal bounds, above and
below, on solutions of (12)+(15) interior to a given domain �; with regard to
(12)+(16) we find a universal bound above, and a universal bound below for solu-
tions over a sufficiently large disk:

Theorem 2.4. Let u be a variational solution of (12)+(15) interior to a ball Bδ.
Then

(17) −
2σ
ρ0gδ

− δ < u <
χσ

ρ0
+

2σ
ρ0gδ

+ δ

throughout Bδ. If u is a variational solution of (12)+(16) in Bδ, then

(18) u < δ+
1
χg

ln
(

1 +
χσ

ρ0 −χp0

(
χg +

2
δ

))
throughout Bδ. In this case, if in addition δ > 2χσ/(ρ0 −χp0), then

(19) u >
1
χg

ln
(

1 −
2χσ

(ρ0−χp0)δ

)
− δ.

Proof. We compare the given solution u of (12) with a lower hemisphere v(x) of
radius δ and projecting into Bδ. This function has constant mean curvature 1/δ and
thus satisfies the auxiliary equation

div T v = 2/δ

over Bδ. We verify the relation

(20)
∫

Bδ

(
Dη · (T v− T u)+ η (F(v)−F(u))

)
dx

=

∫
∂Bδ
η(1 − cos γδ) ds +

∫
Bδ
η

(
F(v)−

χg√
1 + |Du|2

−
2
δ

)
dx .

Here cos γδ = ν · T u evaluated on ∂Bδ, and we have used that ν · T v = 1 on ∂Bδ,
since the hemisphere is vertical on that arc.
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We position the hemisphere so that F(v) = χg + 2/δ at its lowest point. By
the monotonicity of F , the right side of (20) will then be positive for any positive
η ∈ Qloc(Bδ). Thus, the left side will also be positive, and we conclude from
Lemma 2.1 that u < v in Bδ. Since the total height change of v from the center to
the edge of Bδ is δ, this inequality establishes (18) and the right-hand side of (17).

The left side of (17) and also (19) follow similarly, using an upper hemisphere
as comparison surface. The restriction δ > 2χσ/(ρ0 − χp0) must be imposed, as
the inverse function for F(u) in (16) is not defined for F <−(ρ0 −χp0)/σχ . �

This result can be sharpened significantly in the particular case where Bδ is the
definition domain �, with a constant contact angle γδ achieved in the variational
sense on ∂Bδ. Then we may choose v to be a spherical cap meeting the cylinder
wall r = δ in the angle γδ. The boundary integral in (20) then vanishes, and we find

(21)
∫

Bδ

(
Dη · (T v− T u)+ η (F(v)−F(u))

)
dx =∫

Bδ
η

(
F(v)−

χg√
1 + |Du|2

−
2
δ

cos γδ

)
dx .

We distinguish four cases, according to whether γδ < π/2 or γδ > π/2, and
whether we seek upper or lower bounds. If γδ <π/2 and we seek an upper bound,
we position the cap so that F(v) = χg + 2(cos γδ)/δ at the point of symmetry.
Then both sides of (21) will be positive for all positive η, and we conclude u < v.
If we seek a lower bound, we position the cap so that F(v) = 2(cos γδ)/δ at the
point r = δ. Then both sides of (21) will be negative for positive η, from which
follows u > v. Analogous reasoning applies when γδ > π/2. We are led to:

Corollary 2.5. Suppose �= Bδ and 0 ≤ γ ≤ π .

(a) If u(x) is a variational solution of (12)+(15) in �, there holds

(22)
2σ
ρ0g

cos γ
δ

−

∣∣∣∣1 − sin γ
cos γ

∣∣∣∣δ < u <
2σ
ρ0g

cos γ
δ

+
χσ

ρ0
+

∣∣∣∣1 − sin γ
cos γ

∣∣∣∣ δ.
(b) If u(x) is a variational solution of (12)+(16) in � then

(23)
1
χg

ln
(

1 +
2χσ

(ρ0 −χp0)

cos γ
δ

)
−

∣∣∣∣1 − sin γ
cos γ

∣∣∣∣ δ
< u <

1
χg

ln
(

1 +
χσ

(ρ0 −χp0)

(2 cos γ
δ

+χg
))

+

∣∣∣∣1 − sin γ
cos γ

∣∣∣∣ δ.
In these last relations, the logarithmic terms must be replaced by −∞ if the

arguments are nonpositive. This is not an accident of the method; we return to
this point below, where we will show that if the argument on the right side is
nonpositive, then no solution of (12)+(16) can exist in the disk. (See also the
remark on nonexistence on page 221.)
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These bounds can be improved in some respects by relaxing the boundary con-
dition for v; compare the proof of Theorem 2.8.

The hypotheses of Theorem 2.4 clearly apply to configurations in which u(x)
is defined as a solution in a domain � containing Bδ; more generally if Bδ does
not lie entirely interior to � but if u assumes (in a variational sense) data γ on
Bδ∩6, it suffices to focus attention on a component of Bδ∩� for which the hemi-
spheres introduced in the proof meet the vertical walls of 6 in angles majorizing
γ . Specifically, we obtain:

Theorem 2.6. Let u be a variational solution of (12)+(15) or of (12)+(16) interior
to a component Zδ of Bδ ∩�. If on Zδ ∩6 the lower hemisphere under Bδ meets
the vertical walls under 6 in angles γ δ ≤ γ , then the right side of (22) holds in Zδ
for the system (12)+(15) and the right side of (23) holds for (12)+(16). If γ δ ≥ γ ,
then the remaining inequalities apply in the respective cases.

Further, using the definition for an internal sphere condition ISCδ,γ δ as given in
[Finn and Gerhardt 1977, pp. 15–16], we may state:

Corollary 2.7. If � can be covered by disks of radius δ for some fixed δ > 0, then
(17) and (18) hold throughout �. If that can be done with δ > 2χσ/(ρ0 − χp0),
then (19) also holds throughout�. More generally, if� satisfies an internal sphere
condition ISCδ,γ δ , with γ δ ≤ γ , then the right sides of (22) and (23) hold in the
respective cases. If a condition ISCδ,π−γ δ holds, with π − γ δ ≥ π − γ , then the
remaining statements of Corollary 2.5 apply.

In general, if some a priori information is known on boundary behavior of the
solution u, then the bounds in (17) and (18) can to some extent be sharpened.
Assume first that γ < γ0 < π/2. We take as comparison surface v a lower hemi-
sphere whose center projects to a point of �, and of radius R large enough that the
projection covers � and such that the contact angle γ v ≥ γ0. We obtain now the
relation∫
�

(
Dη · (T u − T v)+ η (F(u)−F(v))

)
dx

=

∫
∂�

η(cos γ − cos γ v) ds +

∫
�

η

(
2
R

+
χg√

1 + |Du|2
−F(v)

)
dx,

and it thus suffices to choose v such that F(v) < 2/R. R will in general not be
known explicitly, however a universal choice, suitable both for (15) and for (16),
is provided by the function v = 0; that yields F(v)= 0 in both cases, from which
u > 0 follows by Lemma 2.1. In the other direction, we introduce for v an upper
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hemisphere, and are led to the relation∫
�

(
Dη · (T v− T u)+ η (F(v)−F(u))

)
dx

=

∫
∂�

η(cos γ v − cos γ ) ds +

∫
�

η

(
2
R

−
χg√

1 + |Du|2
+F(v)

)
dx,

and we see that it suffices in general to haveF(v)>χg. Again we may let R →∞,
leading to the choice

v ≡
χσ

ρ0
for (15) and v ≡ const =

1
χg

ln
(

1 +
χ2σg
ρ0 −χp0

)
for (16).

We have proved:

Theorem 2.8. Let u be a variational solution of either (12)+(15) or (12)+(16) in a
piecewise smooth domain �. If 0 ≤ γ < π/2, there holds u > 0 in � in both cases
(15) and (16). If π/2< γ ≤ π , there holds in �

u <
χσ

ρ0
in case (15) and u <

1
χg

ln
(

1 +
χ2σg
ρ0 −χp0

)
in case (16).

The material above provides global estimates for solutions over a prescribed
domain �. We turn our attention now to behavior near corner points of �. For
simplicity, we assume that the boundary consists locally at the corner P of two
line segments, intersecting in an angle 2α <π , measured interior to�. We assume
that |γ −π/2|>α – and thus that |cos γ |> sinα – in a neighborhood of P on ∂�.
(If |γ − π/2| ≤ α in such a neighborhood, the bounds indicated in Theorem 2.6
apply.) We assume first that 0 ≤ γ < π/2, and observe that then any point p ∈ �

of (sufficiently small) distance r from P lies in a disk of radius r sinα/cos γ that
meets the boundary segments 6 at an angle γ , as in the figure:

r

P
α

γ kr

Figure 2. Construction for bounding solution below, in a wedge domain.
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The lower hemisphere v(x) with 6 as equatorial circle meets the vertical walls
through 6 in that same angle γ . By Theorem 2.6, we find in the case of (12)+(15),
setting k = sinα/cos γ ,

(24) u(x) <
2σ
ρ0g

1
kr

+
χσ

ρ0
+ kr

and in the case (12)+(16)

(25) u(x) <
1
χg

ln
(

1 +
2χσ

ρ0 −χp0

1
kr

+
χ2σg
ρ0 −χp0

)
+ kr.

To obtain appropriate lower bounds, we adapt a procedure introduced by Ko-
revaar [1980], and use the upper inner side of a torus as a comparison surface.
Corresponding to points at distance not exceeding r from the vertex, we consider
the torus v(x), x = (x, y, z) defined in terms of parameters φ, ψ relative to the
vertex as coordinate origin by

x = (A − a cosψ) cosφ, y = a sinψ, z = (A − a cosψ) sinφ,

with a = r sinα /(cos γ − sinα). Here A > a, and the parameters satisfy −ψ0 <

ψ <ψ0, 0<φ<φ0, with φ0, ψ0<π/2 fixed but arbitrary. The general appearance
is that of a Japanese footbridge, drawn here in perspective:

A − a

Figure 3. Construction for bounding solution above at a corner point.

The crucial observation is that ν · T v = −1 on the curve C = {φ = 0}, ν being
the exterior unit normal, and thus the boundary condition on that curve minorizes
that of any solution u in a common domain of definition.

For small a, the torus cuts off a small piece of the corner, as indicated in the
figure, with the curve C meeting the bounding segments at an angle γ . We observe
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that v satisfies

div T v = 2H(x) >
1
a

−
1

A − a
=

1 − k
k

(
1
r

−
k

(1 − k)A − kr

)
.

If r is small enough, this expression will be positive. Since the unit normal to the
torus is continuous and is directed horizontally toward the vertex at the symmetry
point of C, there will hold for small enough r that ν · T v < sinα+ ε on both the
segments cut off at the corner, with sinα+ ε < cos γ on these segments.

Following the procedure of Theorem 2.6, we find for the case (12)+(15) that
u > v in the domain cut off at the vertex, provided that v can be chosen so that

ρ0g
σ
v < χg +

1 − k
k

(
1
r

−
k

(1 − k)A − kr

)
.

We may translate v vertically so that this inequality holds at a particular point of
the domain; we then find on the basis of the construction that

ρ0g
σ
v > χg +

1 − k
k

(
1
r

−
k

(1 − k)A − kr

)
−ω(ε)

with limε→0 ω(ε)= 0.

We now wish to let r → 0. A convenient way to do that is by a similarity
transformation, which leaves all boundary angles and the geometric configuration
unchanged. We obtain the result that for sufficiently small r , there holds at all
points (x, y) of distance r from the vertex the inequality

(26) u(x, y) >
σ

ρ0g
1 − k

kr
+ C,

for a fixed constant C independent of r . Together with (24), this result implies that
every solution of (12)+(15) in a wedge domain with α+γ < π/2 is unbounded at
the corner, with a growth rate O(1/r).

In the case (12)+(16) an analogous reasoning yields, observing that the choice
of A > a is arbitrary,

(27) u(x, y) >
1
χg

ln
(

1 +
χσ

ρ0 −χp0

1 − k
k

1 − ε

r
− C(ε)

)
asymptotically as r → 0, for any ε > 0 and fixed C(ε) independent of r .

We turn our attention now to the case π/2< γ ≤ π . A procedure analogous to
that yielding (24) (and resuming the notation x ∈ �) leads now, for solutions of
(12)+(15), to

(28) u(x) >−
2σ
ρ0g

1
kr

− kr
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and a procedure analogous to that yielding (26) now yields

(29) u(x) <−
σ

ρ0g
1 − k

kr
+ C

in the case (12)+(15).
With regard to solutions of (12)+(16) the situation is now simpler. We investigate

(12) over a wedge triangle:

Figure 4. Wedge domain.

In view of the boundary condition, we obtain

2|6| cos γ +

∫
0

ν · T u ds =

∫
�

(
−

χg√
1 + |Du|2

+
ρ0 −χp0

χσ
(e2χu

− 1)
)

dx,

from which, since |ν · T u|< 1, we conclude that

2|6| cos γ + |0|>−

(
χg +

ρ0 −χp0

χσ

)
|�|.

Thus, since γ > π/2 and |γ −π/2|> α so that |cos γ |> sinα, we find

(30) 0< 2(|cos γ | − sinα) <
(
χg +

ρ0 −χp0

χσ

)
|6| cosα sinα,

and we obtain a contradiction by letting 0 move in parallel translation toward the
vertex.

Gathering the material above, we have proved:

Theorem 2.9. Suppose that γ is constant in a neighborhood of a corner point of
opening 2α. If |γ−π/2|≤α then the estimates of Theorem 2.6 apply. If α+γ <π/2
then the estimates (24) and (26) hold for the case (12)+(15), and the estimates (25)
and (27) hold for the case (12)+(16). If γ > α+π/2 then (28) and (29) apply for
the case (12)+(15); however for the case of (12)+(16) no solution can exist in such
a wedge.

If the boundary of � is not rectilinear at the corner point, we still obtain the
same results as above, but under the stronger condition |γ −π/2|< α.

Finally, we remark an immediate consequence of Theorem 2.4:
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Theorem 2.10. Any solution of (12)+(15) is bounded at any isolated singular
point. Any solution of (12)+(16) is bounded above at an isolated singular point.

In [Finn 1963] it is proved that the “classical” capillary equation

div T u =
ρg
σ

u

admits only removable isolated singularities. We do not know to what extent that
theorem extends to the more general configurations considered in this paper.

3. Gradient estimates

We study the case of equation (8). We derive the gradient estimate following tech-
niques introduced by Ural’tseva [1973; 1975] and used in [Gerhardt 1976; Huisken
1985].

We follow closely the procedure in [Huisken 1985]. For the convenience of the
reader we state here the results of that paper which we use.

We consider the equation

(31)
div

Du√
1 + |Du|2

= F(u)−
a2√

1 + |Du|2
in �,

T u · ν = β on 6,

with a2
= χσ/ρ0 and the function F(u) defined either as in (15) or as in (16). The

main assumption on F needed for the gradient estimate is that F ′ > 0. For the
present considerations we assume β ∈ C0,1(6) to satisfy

(32) |β| ≤ 1 − α̃, α̃ > 0.

As above, we denote by T the operator defined by

T u =
Du√

1 + |Du|2
.

We also introduce the notations

ai (p)=
pi√

1 + |p|2
, ai j

=
∂ai

∂p j
,

for p ∈ Rn , and denote by H(x, u, Du) the right-hand side of (31):

(33) H(x, u, Du)= F(u)−
a2√

1 + |Du|2
.

Given 6 ∈ C2,µ, we can extend β and ν to the interior of �, in such a way that
β ∈ C0,1(�) still satisfies (32) and ν is uniformly Lipschitz continuous in �, with
|ν|< 1.
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We denote by S = graph u the liquid-air interface and by ∇
S f the tangential

gradient on S of a function f ∈ C1(�):

∇
S f = D f − (D f · νS) νS,

with νS the unit normal to the interface S.
The main idea is to work with the function

v =

√
1 + |Du|2 + β (Du · ν)≡ W + β (Du · ν)

as in [Ural’tseva 1973; Gerhardt 1976], and to prove that v is uniformly bounded
in �. This in turn gives the gradient estimate, since

|Du| ≤

√
1 + |Du|2 = W ≤

1
α̃
v.

We will bound the function
w = log v

instead of v; we can follow all the steps as in [Huisken 1985, (2.12)–(2.30)], with
the first real difference being the derivative Dk H needed in (2.25) of that paper,
which is computed in (2.31). In our case, we find

(34)
∫
�

ai j (D jv− D j (βν
k) Dku

)
Diη+

1
2n

|H |
2 η dx

≤ −

∫
�

Dk H (ak
+βνk) η dx + cε

∫
�

(
1 +

∇
Sv

W

)
η dx + c3

∫
6

η dHn−1.

Inequality (34) is almost identical with [Huisken 1985, (2.32)], except that we
want to explicitly calculate the first term on the right-hand side, since our problem
only differs in the form of the prescribed mean curvature function H . In view of
(33) we have

(35) −

∫
�

Dk H(ak
+βνk) η dx

= −

∫
�

(
F ′(u)Dku +

µ

W 3 Dlu Dk Dlu
)
(ak

+βνk) η dx .

The first term on the right-hand side of (35) is negative, since F ′(u) > 0 and

Dku (ak
+βνk)= v− W −1 > 0.

Therefore it can be ignored. For the second term on the right in (35), we can use
the equality

Dlu
(
Dk Dlu (ak

+βνk)
)
= Dlu

(
Dlv− Dl(βν

k) Dku
)
,
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which follows from [Huisken 1985, (2.26)]. In view of this equality, (35) becomes

−

∫
�

Dk H (ak
+βνk) η dx

≤ −a2
∫
�

1
W 3 Dlu Dlv η dx + a2

∫
�

1
W 3 Dl(βν

k) Dlu Dku η dx .

Denote the integrals on the right-hand side by I1 and I2. They can be estimated by

I2 ≤ a2 c4

∫
�

|Du|
2

W 3 η dx ≤ µ c4

∫
�

η dx,(36)

I1 ≤
1
2ε̃

a4
∫
�

|Du|
2

W 3 η dx +
ε̃

2

∫
�

|Dv|2

W 3 η dx(37)

≤
1
2ε̃

a4
∫
�

η dx +
ε̃

2

∫
�

|∇
Sv|2

W
η dx .

Here c4 depends on the Lipschitz constant of βν and we have used the inequalities
|Du|

2/W 2
≤ 1 and |Dv|2/W 2

≤ |∇
Sv|2, the latter being proved as follows:

|Dv|2 ≤ |∇
n+1

|
2
= |∇

S
|
2
+ |(∇n+1

· νS) νS|
2

= |∇
Sv|2 +

∣∣∣∣(Dv, 0) · (−Du, 1)
W

∣∣∣∣2 |νS|
2
= |∇

Sv|2 +
|Dv|2 |Du|

2

W 2 .

Both the first term on the right-hand side of (37) and the estimate (36) for I2 are
of the same form and can be incorporated into the second term on the right-hand
side of (34) with a new constant c5 = cε + µc4 + a4/ε̃ replacing cε. Using the
above considerations, we conclude that (34) gives

(38)
∫
�

ai j (D jv− D j (βν
k) Dku

)
Diη+

1
2n

|H |
2 η dx

≤
ε̃

2

∫
�

|∇
Sv|2

W
η dx + c5

∫
�

(
1 +

∇
Sv

W

)
η dx + c3

∫
6

η dHn−1.

As a test function η we choose

η = v max(w− k, 0) ≡ v z

for positive k, and define

A(k)=
{

p = (x, u(x)) ∈ S : w(x) > k
}
, |A(k)| =Hn(A(k)).

For the first term on the right-hand side of (38) we note that ηW −1
≤ 2z, since

v ≤ 2W and we have

(39)
ε̃

2

∫
�

|∇
Sv|2

W
η dx ≤ ε̃

∫
�

|∇
Sv|2 z dx .
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This term will then be taken to the left-hand side of the inequality (38).
We next show that (38) is equivalent to

(40)
∫

A(k)
|∇

Sv|2 dHn
+

1
n

∫
A(k)

|H |
2 z dHn

≤ c |A(k)| + c
∫

A(k)
z dHn,

where c = c
(
α̃, n, |Dν|�, |Dβ|�

)
. For this, we estimate each term separately,

starting with the first term on the left; we use [Huisken 1985, (2.27)–(2.30)] and
the equalities w = log v, Diη = (z + 1) Div. Setting �η =� ∩ supp η, we get∫
�η

ai j(D jv− D j (βν
k) Dku

)
Diη dx

≥

∫
�η

(
ai j D jv Div−

∣∣ai j (D j (βν
k) Dku) Div

∣∣) (z + 1) dx

≥

∫
�η

W −1
|∇

Sv|2 (z + 1) dx

−

∫
�η

∣∣∣∣ 1
2ε

ai j (D j (βν
k)Dku)(Di (βν

k)Dku)+
ε

2
ai j DivD jv

∣∣∣∣ (z+1) dx

≥

(
1−

ε

2

) ∫
�η

W −1
|∇

Sv|2 (z +1) dx −
1
2ε

∫
�η

W −1
|∇

S(βν)|2|Du|
2(z +1) dx

≥

(
1 −

ε

2

) ∫
�η

W −1 v2
|∇

Sz|2 dx −
1
2ε

|D(βν)|2�

∫
�η

(z + 1)W dx

≥ α̃2
(

1 −
ε

2

) ∫
A(k)

|∇
Sz|2 dHn

−
1
2ε

|D(βν)|2�

∫
A(k)

(z + 1) dHn.

For the second term on the left-hand side of (38), we find using [Huisken 1985,
(2.29)] that

1
2n

∫
�η

|H |
2 η dx ≥

α̃

2n

∫
A(k)

|H |
2 z dHn.

For the second term on the right-hand side of (38), and again by [Huisken 1985,
(2.29)], we estimate∫
�η

(
1 +

|∇
Sv|

W

)
η dx ≤

∫
A(k)

vz W −1 dHn
+

∫
�η

|∇
Sv|

W
vz dx

≤ 2
∫

A(k)
z dHn

+

˜̃ε

2

∫
�η

|∇
Sv|2

W
z dx +

1

2 ˜̃ε

∫
�η

v2

W
z dx

≤ 2
∫

A(k)
z dHn

+

˜̃ε

2

∫
�η

|∇
Sv|2

W
z dx +

1

2 ˜̃ε

∫
A(k)

z dHn.
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For the third term on the right-hand side of (38), and in view of [Huisken 1985,
(2.20)], we have∫

6

η dHn−1
=

∫
6

vz dHn−1

≤

∫
A(k)

|∇
Sz| dHn

+

∫
A(k)

(|H | + |∇
Sν|) z dHn

≤
ε̃

2

∫
A(k)

|∇
Sz|2 dHn

+
1
2ε̃

∫
A(k)

dHn
+ c6

∫
A(k)

z dHn,

with c6 = c6(|H |�, |Dν|�).
Taking into consideration all the estimates following (40), we can easiliy obtain

(40) from (38).

Inequality (40) is exactly of the same form as [Huisken 1985, (2.34)], and the
subsequent procedure in that paper is independent of the choice of the function H
prescribing the mean curvature of the surface S. Therefore, we can conclude in the
same manner that

w = log v ≤ k0 + c |A(k0)|,

where k0 = k0(α̃, n) and c = c
(
n, α̃, �, |Dβ|�, |Dν|�

)
.

This concludes the gradient estimate in a neighborhood of the boundary6=∂�,
which we state in Theorem 3.1 below.

Definition. We call a domain admissible if it is open, bounded, simply connected,
and of class C2,µ.

This definition is such that we are able to obtain uniform height bounds as in
Section 2. The following theorem would still be true if we just assumed these
uniform bounds instead. (For the notation ISCδ,π−γ see [Finn and Gerhardt 1977,
pp. 15–16].)

Theorem 3.1. Let� be an admissible domain. Assume u to be a C2(�) solution of
(31), with the function F(u) defined either as in (15), or as in (16), in which case
we also require an internal sphere condition ISCδ,π−γ with δ > 2χσ/(ρ0 − χp0)

when γ > π/2 (for the uniform height estimates to hold). We denote by β, ν the
Lipschitz extensions into the interior of � of β and ν6 , and assume β to satisfy
(32); that is, |β| ≤ 1 − α̃ with α̃ > 0, and |ν| ≤ 1. Then there exists a constant
C = C

(
n, α̃, �, |Dβ|�, |Dν|�

)
such that

|Du| ≤ C

in a neighborhood of the boundary 6.
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The interior gradient estimate in admissible domains can be obtained by means
of the maximum principle:

Theorem 3.2. Assume � and u satisfy the assumptions of Theorem 3.1. Then

|Du| ≤ C

in �, with C the constant of Theorem 3.1.

Proof. We rearrange the equation (31), satisfied by u in �, to find

(41) ai j Di D j u −F(u)
√

1 + |Du|2 + a2
= 0,

where

ai j = δi j −
Di u D j u

1 + |Du|2
.

By general elliptic theory we can assume the local existence of derivatives of all
orders for u. We differentiate (41) with respect to xk , for any k ∈ {1, . . . , n}, and
set Dku = v to obtain

ai j Di D jv+ bi Div+ cv = 0

in �, with c = −F ′(u)
√

1 + |Du|2 ≤ 0. The equation satisfied by v is elliptic, and
we can apply the maximum or minimum principle to deduce the claimed interior
gradient bound. �

With Theorems 3.1 and 3.2, we have the main result of this section:

Theorem 3.3. Under the assumptions of Theorem 3.1, there is a constant M > 0,
such that for any solution u of (31) we have

|Du| ≤ M.

4. Existence in smooth domains, uniqueness of solutions
and nonexistence results

The following result is contained in Theorem 2.2.

Theorem 4.1 (Uniqueness). Suppose F ′ > 0, and let u(x), v(x) be solutions of
(12) in a domain � with boundary 6 = ∂� of class C1, which satisfies an internal
sphere condition. We suppose u, v ∈ C2(�)∩ C1(�). We suppose further that on
6 there holds ν · T u = ν · T v. Then u(x)≡ v(x) in �.

For the case of domains with corner points, we refer to Theorem 2.9 above.

The gradient estimates enable us now to prove existence in domains with C2,µ

boundary using a continuity method.
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Theorem 4.2. Assume � to be an admissible domain, and consider the problem
(31), with H defined as in (33), F given by either (15) or (16), 0 < γ < π and β
taken to be C1,µ in its arguments. If F is as in (16), and if γ > π/2, we assume in
addition an internal sphere condition ISCδ,π−γ with δ > 2χσ/(ρ0 −χp0).

Then the problem (31) has a unique solution u ∈ C2,µ(�), where the exponent
µ, 0< µ< 1 depends on the above quantities.

Remark. If 0 < γ < π/2 we have uniform height estimates from above and
below for both cases (15) and (16), as shown by Corollary 2.7 and Theorem 2.8.
For π/2 < γ < π and for F is as in (15), the height estimates also hold, but for
case (16) an additional internal sphere condition is needed in the statement of the
theorem in order for the uniform lower height estimate to hold. The condition on
δ is optimal as discussed in the remark on nonexistence following the proof.

The cases γ = 0 and γ = π are not considered due to assumption (32), which
is essential for the gradient estimate.

Proof of Theorem 4.2. The proof follows exactly the steps in [Gerhardt 1976, proof
of Theorem 2.1]; we only outline it here.

For τ ∈ R, 0< τ < 1, consider the problem

(42)
− div

Duτ√
1 + |Duτ |2

+ τH(x, uτ , Duτ )= 0 in �,

T uτ · ν = τβ on 6.

One then proves that the set

T = {τ : there exists a solution uτ ∈ C2(�)}

is open and closed.
The idea is to look at a uniformly elliptic operator that coincides with the given

one in (42) whenever |Duτ |� ≤ K for some constant K . This allows us to apply
[Ladyzhenskaya and Ural’tseva 1968, Chapter 10, Theorem 2.2]; the change from
the equation considered in [Gerhardt 1976], namely that the H term is different,
does not interfere. Everything else follows verbatim. �

Remark on nonexistence. If γ > π/2, then in the case (16) existence can fail if
δ < 2χσ/ρ0 −χp0 . To see that, we integrate (12) over �, obtaining∫

�

(
ρ0 −χp0

χσ
(eχgu

− 1)+χg(1 − cosω)
)

dx = 2π |6| cos γ

from which it follows that

ρ0 −χp0

χσ
|�|>−|6| cos γ,
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which leads to a contradiction if the domain is scaled to be small enough. For the
special case of a disk Bδ, we obtain

δ >−
2χσ

ρ0 −χp0
cos γ

providing a slight improvement over the criterion yielded by Theorem 2.3.
This last result applies to the “unconstrained” case of an open circular tube

dipped into an infinite reservoir of fluid. Physically, it signifies that if the tube is
too narrow, the fluid will disappear down the tube to negative infinity. Finn and
Luli [≥ 2007] studied the “constrained” case of a circular tube closed at the bottom
and filled with a prescribed mass of fluid. For that problem they were able to show
that for any γ with 0 ≤γ <π , and for any prescribed total massM, there is at least
one symmetric solution of the problem, and that the height for this solution will
lie over any prescribed level if M is sufficiently large. If γ ≤ π/2, the solution is
unique among symmetric solutions with the prescribed mass. From Theorem 2.2
then follows that the solution is unique among all solutions with the same Lagrange
parameter.

5. Existence of solutions in domains with corners

For this section we need Theorem 4 of [Ladyzhenskaya and Ural’tseva 1970],
which adapted to our situation yields:

Theorem 5.1. Let u be a classical solution of

div
Du√

1 + |Du|2
= F(u)−

a2√
1 + |Du|2

,

in a bounded domain �, with F as defined in (15) or (16). Assume sup� |u| ≤ M.
Then for any strictly interior subdomain �′ of � with d := dist(�′, ∂�),

max
�′

|Du(x)| ≤ C,

with C = C(n,M, d). (Compare also [Simon 1977, Theorem 2′′].)

For the existence result in this section, we assume the domain � to be open and
bounded, with piecewise C1,µ boundary 6 and to have a finite number of “well-
behaved” corners. By this we mean that if a corner is located at the point O , we
can parametrize the arcs on either side of O by smooth functions ci (s), 0< s < s0,
i = 1, 2, such that lim ci (s) = O , as s → 0, with an angle 0 < 2α < π formed by
lim c′

i (s) as s → 0.
� can be exhausted by an expanding sequence of admissible domains � j

⊂�,
whose boundaries 6 j converge uniformly in C1 in any neighborhood Ux0 of a
boundary point x0 ∈6, whose closure U x0 ∩6 lies in the smooth portion of 6.
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With similar arguments as in [Finn and Gerhardt 1977, Theorem 1], we can
prove the following existence result:

Theorem 5.2. Let � be as described above. Let γ be constant and 0 < γ < π .
In the case of F being given by (16) and if γ > π/2 we also require an internal
sphere condition ISCδ,π−γ with δ > 2χσ/(ρ0 −χp0) to hold for � j .

Then there exists a variational solution u of (13). If |γ−π/2|<α then u ∈Q(�).
If u, v are two variational solutions of (12)+(15), there holds

|u − v|<
χσ

ρ0
;

for variational solutions of (12)+(16) such that u, v >−A >−∞, there holds

|u − v|<
χσ

ρ0 −χp0
eχg A.

Proof. In view of the conditions on � j , we can obtain a solution u j
∈ C2,α(� j ) of

(43) div T u j
= F(u j )−

a2

W j

in each� j , with fixed boundary data γ on6 j , as in Theorem 4.2 above. They will
satisfy the corresponding weak form; i.e., they will be variational solutions, each
u j satisfying (13) in � j :

(44)
∫
6 j
η cos γ ds =

∫
� j

(
Dη · T u j

+ ηF(u j )− η
a2√

1 + |Du j |2

)
dx,

for every η ∈Q(� j ).
In view of the assumption on the contact angle γ and the additional ISCδ,π−γ

condition on � j in case (16), the height and gradient estimates (Theorems 2.6 and
3.3) and the existence results hold for u j in � j without any additional restrictions
being needed. As the height estimates depend on the distance of 6 j to a corner,
and the gradient estimates depend on the Lipschitz extension of the normal to the
boundary, these estimates are not uniform in j . To overcome this obstacle, for any
fixed j0 we consider a fixed j1, and solutions u j in� j , where j ≥ N ( j1)> j1> j0,
such that the distance from � j0 to ∂� j1 and from � j1 to ∂� j is strictly positive.
These u j will satisfy (43) in� j1 and� j0 . The height bounds in� j1 are uniform, as
shown in Theorems 2.6 and 2.9, and by Theorem 5.1 we obtain uniform gradient
bounds in � j0 . Therefore, in � j0 we have uniform height and gradient bounds.

Using general results on elliptic equations [Ladyzhenskaya and Ural’tseva 1968,
Chapter 10, Theorem 2.2], we can extend the uniform height and gradient estimates
to higher regularity of the solutions u j ( j ≥ N ( j0)) of (43) in � j0 , for every j0.
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Using the Arzelà–Ascoli theorem we can find a subsequence (not relabeled), con-
verging uniformly together with all its derivatives in any � j0 , to a solution u(x) of
(43).

We choose η ∈ Q(�), so that in particular η ∈ Q(� j ). We remark that η ∈

H 1,1(�) has a well-defined trace function in L1(∂�), which we denote again by η.
We also note that η∈ H 1,1(�) can be approximated in the H 1,1 norm by uniformly
continuous functions in �. Their boundary values approximate the trace of η on
∂� in the L1(∂�) norm; see [Giusti 1984, Theorem 2.11].

We consider (44). Regarding the convergence of the right-hand side of (44), we
again fix j0, and note that |T u j

|< 1 and a2/
√

1 + |Du j |2 ≤ a2 in �. We have∣∣∣∣∫
� j0

(
Dη · T u j

− η
a2√

1 + |Du j |2

)
dx
∣∣∣∣ ≤ c,

with c depending on |η|L1(�), |Dη|L1(�), and the size of �, but independent of j0.
Also, given the uniform convergence of u j and Du j in � j0 , we have

(45) lim
j→∞

∫
� j0

(
Dη · T u j

− η
a2√

1 + |Du j |2

)
dx

=

∫
� j0

(
Dη · T u − η

a2√
1 + |Du|2

)
dx .

Now we can let j0 vary, and conclude that the first and third terms on the right-
hand side of (44) converge to∫

�

(
Dη · T u − η

a2√
1 + |Du|2

)
dx .

To see this we consider∣∣∣∣∣
∫
� j

(
Dη·T u j

−η
a2√

1+|Du j |2

)
dx−

∫
�

(
Dη·T u−η

a2√
1+|Du|2

)
dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫
� j0

(
Dη·T u j

−η
a2√

1+|Du j |2

)
dx−

∫
� j0

(
Dη·T u−η

a2√
1+|Du|2

)
dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
� j −� j0

(
Dη·T u j

−η
a2√

1+|Du j |2

)
dx

∣∣∣∣∣
+

∣∣∣∣∣
∫
�−� j0

(
Dη · T u − η

a2√
1 + |Du|2

)
dx

∣∣∣∣∣ .
By (45) the first term on the right-hand side is less than ε/3 for j > J , for large

enough J . The second and third terms on the right-hand side can be estimated by
c
(
|η|L1(�), |Dη|L1(�)

)
|� j

−� j0 |<ε/3 and c
(
|η|L1(�), |Dη|L1(�)

)
|�−� j0 |<ε/3,



COMPRESSIBLE FLUIDS IN A CAPILLARY TUBE 225

respectively, due to the convergence of � j to �, for j > J and appropriately large
j0.

For the left-hand side of (44), we remark that |η cos γ | is bounded. Therefore

(46)
∫
6 j ∩Br (O)

η cos γ ds → 0 for r → 0, uniformly in j,

where Br (O) denotes a ball of small radius r centered at a corner O . We also have

(47)
∫
6∩Br (O)

η cos γ ds → 0 for r → 0.

In what follows it suffices to assume � to have only one corner, O .
In the following estimate we split integrals into their parts over Br (O) and its

complement, Bc
r (O).

(48)
∣∣∣∣∫
6 j ∩BR(O)

η cos γ ds −

∫
6∩BR(O)

η cos γ ds
∣∣∣∣

≤

∣∣∣∣∫
6 j ∩Br (O)

η cos γ ds
∣∣∣∣ +

∣∣∣∣∫
6∩Br (O)

η cos γ ds
∣∣∣∣

+

∣∣∣∣∫
6 j ∩Bc

r (O)
η cos γ ds −

∫
6∩Bc

r (O)
η cos γ ds

∣∣∣∣.
We choose r sufficiently small to ensure that the first and second summands on the
right are each less than ε/3, by (46) and (47) respectively.

By the assumptions on the convergence of 6 j in neighborhoods of 6 not con-
taining corners, the last summand

∣∣∫
6 j ∩Bc

r (O)
η cos γ ds −

∫
6∩Bc

r (O)
η cos γ ds

∣∣ is
also less than ε/3 for any j > J , with J large enough. We thus obtain from (48)∣∣∣∣∫

6 j ∩BR(O)
η cos γ ds −

∫
6∩BR(O)

η cos γ ds
∣∣∣∣< ε,

and the convergence of the boundary integral in (44) to
∫
6
η cos γ ds is proved.

Having shown the convergence of all terms of (44) except
∫
� j ηF(u j ) dx , we

conclude that this term converges too. We will show it converges to
∫
�
ηF(u) dx .

We know that u j satisfies (44) in � j , which we rewrite as∫
� j
ηF(u j ) dx =

∫
� j

[Dη · T u j
− η

a2√
1 + |Du j |2

] dx −

∫
6 j
η cos γ ds.

The right-hand side here converges; therefore∣∣∣∣∫
� j
ηF(u j ) dx

∣∣∣∣≤ c,

with a constant c depending on η, but independent of j .



226 MARIA ATHANASSENAS AND ROBERT FINN

We consider two cases:
(i) The angle γ satisfies |γ−π/2|<α. In view of Theorem 2.9 we have uniform

height bounds on u j , independent of j , since they are independent of the distance
of 6 j to the corner O , and the same bounds hold for the limit function u. We fix
j0 as before, and with the continuity of F , we have F(u j ) converging to F(u) in
any � j0 , and the corresponding uniform bounds for F(u). So

lim
j→∞

∫
� j0
ηF(u j ) dx =

∫
� j0
ηF(u) dx

and, using the uniform bounds on F(u) over all of �, we can let j0 → ∞ and
obtain the result as in the previous considerations.

(ii) The angle γ satisfies |γ − π/2| > α. In this case the height estimates will
depend on the distance of6 j to the corner, u j becoming unbounded as we approach
O . However the growth of |u j

| means that |F(u j )| is proportional to r−1, as proved
in Theorem 2.9.

Again, it suffices to assume � to have only one corner, O . We estimate, after
adding and subtracting the terms

∫
� j0 ηF(u j ) dx and

∫
� j0 ηF(u) dx ,

(49)
∣∣∣∣∫
� j
ηF(u j ) dx −

∫
�

ηF(u) dx
∣∣∣∣

≤

∣∣∣∣∫
� j −� j0

ηF(u j ) dx
∣∣∣∣+ ∣∣∣∣∫

�−� j0
ηF(u) dx

∣∣∣∣
+

∣∣∣∣∫
� j0

(
ηF(u j )− ηF(u)

)
dx
∣∣∣∣ .

The last summand on the right is less than ε/4 for all j> J , with J large enough;
to see this, use the continuity of F and the uniform bounds in � j0 .

The second summand on the right can be estimated by∫
�−� j0

|ηF(u)| dx

≤ sup |η|

∫
�−� j0

|F(u)| dx

≤ sup |η|

(∫
(�−� j0 )∩Br (O)

|F(u)| dx +

∫
(�−� j0 )∩Bc

r (O)
|F(u)| dx

)
,

where Bc
r (O) denotes the complement in R2 of the disk Br (O).

In (�−� j0)∩ Bc
r (O), we are at a positive distance from O , and have bounds

for F(u), so

sup |η|

∫
(�−� j0 )∩Bc

r (O)
|F(u)| dx < ε/4,
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due to the convergence of� j to�, for large j0, after possibly adjusting the previous
choice of J .

For the integral over (�−� j0)∩ Br (O) we introduce polar coordinates and can
show, using the inequality |F(u)|< Cr−1, that

sup |η|

∫
(�−� j0 )∩Br (O)

|F(u)| dx ≤ sup |η|

∫
Br (O)

|F(u)| dx

≤ sup |η|

∫ r

0

∫ 2π

0
C cos θ dθ dr ≤ ε/4,

after choosing r appropriately small.
The first summand on the right in (49) can be dealt with in a similar way, but

more easily, since � j
∩ Br (O)= ∅ for small r .

Returning to (49), we have shown that
∫
� j ηF(u j ) dx converges to

∫
�
ηF(u) dx

as j → ∞.

We had approximated η∈ H 1,1(�) and worked with uniformly continuous func-
tions. We have shown that u satisfies∫

�

(
Dη · T u + ηF(u)− η

a2√
1 + |Du|2

)
dx =

∫
6

η cos γ ds

for such η. Going over to η∈Q(�), we conclude in both cases that u is a variational
solution in �.

By Theorem 2.9, u is bounded if |γ −π/2|< α and therefore u ∈Q(�).
We also remark that if we have different limits u and v obtained by two different

subsequences, we still know that they are not “too far apart”, in the sense of the
estimate given in Theorem 2.3. We emphasize that this is true even though the
solution might become unbounded when approaching a corner. �

Remark 1. Theorem 5.2 is the best possible result one can obtain for this problem.
As observed in Section 4, existence fails in small domains in the case (16) and
γ > π/2. This is taken care of by the internal sphere condition ISCδ,π−γ with
δ > 2χσ/(ρ0 −χp0) for � j .

Remark 2. We obtain a variational solution for our problem in both cases (15) and
(16) after imposing the additional ISCδ,π−γ , for general 0 < γ < π , despite the
fact that the values for any solution become unbounded in a narrow corner, when
|γ −π/2|> α, as stated in Theorem 2.9.
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