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This paper follows previous work by Huff and McCuan, who provided for
0 < γ < π a geometric construction of minimal capillary graphs over a
square with constant contact angles on the edges alternating between γ and
π − γ . Here the result is extended to regular 2n-gons. Regularity results
are obtained for these graphs, and explicit, conformal parametrizations are
given for the Jenkins–Serrin graphs corresponding to γ ∈ {0, π}.

Introduction

In this paper, we prove the following theorem, where the uniqueness statement
follows from [Finn and Lu 1998, Theorem 3.1].

Theorem 1. Let Qn be a regular 2n-gon and 0 ≤ γ ≤ π . There is a unique (up
to vertical translation) minimal graph over Qn with constant contact angles on the
edges alternating between γ and π − γ . If

0< γ <
(n − 1)π

2n
or

(n + 1)π
2n

< γ < π,

then there is a finite jump discontinuity over each vertex. If γ ∈ {0, π}, then the
corresponding graph is a Jenkins–Serrin graph.

The case n = 2 and 0<γ <π has previously been studied in [Huff and McCuan
2006], and by Concus, Finn, and McCuan in [Concus et al. 2001]. Existence was
proved in the latter paper, while regularity and existence of the jump discontinuity
was shown in the former. To prove existence here, we assume symmetries and
then determine the image under the Gauss map, which is conformal on a min-
imal surface, of our fundamental piece. Next, we determine the image of the
conformal map developing the (square root of) the complexified second funda-
mental form on the graph. As a result, we obtain conformal parametrizations of
the graphs, and those corresponding to γ ∈ {0, π} (Jenkins–Serrin graphs [1966])
and (n−1)π/(2n)≤γ ≤ (n+1)π/(2n) can be made explicit. Another consequence
of the construction is that Sobolev embedding theorems can be used to compute
appropriate regularity properties of the graphs.

MSC2000: primary 76B45; secondary 53A10.
Keywords: capillarity, contact angle, minimal surface, Weierstrass representation.
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1. Background

The Weierstrass representation. Given a domain�⊂ C, the Weierstrass represen-
tation theorem says that any orientation-preserving conformal minimal immersion

X = (X1, X2, X3) :�→ R3

can be expressed, up to translation, in terms of a meromorphic function g and a
holomorphic one-form dh by the formula

(1) X (z)= Re
∫ z

.

( 1
2
(g−1

− g) dh, i
2
(g−1

+ g) dh, dh
)
,

where g is the stereographic projection of the Gauss map and

dh =

(
∂X3

∂x
− i

∂X3

∂y

)
dz

is called the complex height differential (note that Re dh = d X3). Conversely, the
theorem states that if g is a meromorphic function and dh a holomorphic one-form
on � such that dh has a zero of order n at z if and only if g has a zero or pole of
order n at z, then (1) gives an orientation-preserving conformal minimal immersion
on � that is well-defined, provided that

Re
∫

c

( 1
2
(g−1

− g) dh, i
2
(g−1

+ g) dh, dh
)

= 0

for every simple closed curve c ⊂�; this condition is satisfied automatically if �
is simply connected.

Determining dh via the second fundamental form. For a minimal surface given
by Weierstrass data g and dh, we have, for tangent vectors v and w,

dg(v) dh(w)
g

= II (v,w)− i II (v, iw),

where II is the second fundamental form on the surface (for details, see [Hoffman
and Karcher 1997]). It follows that

(2) c is a principal curve ⇐⇒
dg(ċ) dh(ċ)

g
∈ R

and

(3) c is an asymptotic curve ⇐⇒
dg(ċ) dh(ċ)

g
∈ iR.
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We see from these two equivalences that the function ζ given by

(4) ζ(z)=

∫ z

.

√
dg dh

g

maps principal curves into vertical or horizontal lines and asymptotic curves into
lines in one of the directions e±iπ/4.

The map ζ is called the developing map of the one-form
√

dg dh/g. It is a local
isometry between the minimal surface equipped with the conformal cone metric
|dg dh/g| and R2 equipped with the Euclidean metric.

Each surface considered in this paper will have boundary consisting of principal
and asymptotic curves, which will allow us to determine the function ζ . Once this
is done, we can use (4) to conclude that

(5) dh =
g(dζ )2

dg
.

Extremal length. To prove the existence of an appropriate ζ , we will need to show
the existence of a biholomorphic, edge-preserving map between two curvilinear
polygons (polygons whose edges are arcs of circles or Euclidean line segments).
To do this, we will need some properties of the conformal invariant extremal length.
We will restrict our attention to curvilinear polygons, although in general extremal
length is defined on arbitrary domains.

Given a curvilinear polygon1, a Borel measurable function ρ > 0 on1 defines
a conformal metric ρ(dx2

+ dy2). The length of a curve γ ⊂ 1 with respect to
ρ is denoted `ρ(γ ) (with |γ | denoting Euclidean length), and the ρ-area of 1 is
denoted by Aρ . With this notation, we define the extremal length between edges
A and B by

Ext1(A, B)= sup
ρ

infγ `2
ρ(γ )

Aρ
,

where the infimum is taken over all curves γ : [0, 1]→1 such that γ (0)∈ A, γ (1)∈
B, and γ (t)⊂ 1̊ for t ∈ (0, 1). Extremal length is invariant under biholomorphisms
and has the following properties, which we record here (see [Ahlfors 1973] for
details).

Proposition. (i) If A and B are adjacent, then Ext1(A, B)= 0.

(ii) If B is degenerate (a point) and dist(A, B) > 0, then Ext1(A, B)= ∞.

(iii) If 11 ⊂ 12 are such that edges Ak, Bk ⊂ 1k , k = 1, 2, satisfy A1 ⊂ A2 and
B1 ⊂ B2, then

Ext12(A2, B2)≤ Ext11(A1, B1),

where the inequality is strict if A1 6= A2 or B1 6= B2.
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2. Construction

Determining the image of the Gauss map. Given 0 ≤ γ ≤ π and a regular 2n-
gon Qn centered at the origin, let’s assume the existence of a minimal graph Mγ,n

over Qn with constant contact angles on the edges alternating between γ and π −

γ . Such a graph, should it exist, is unique up to vertical translation, and so we
normalize so that 0 ∈ Mγ,n .

By the symmetry of the contact angle condition, it is sufficient to consider only
0 ≤ γ < π/2 (Note that Mπ/2,n = Qn), and we can simplify the problem further if
we assume the following additional symmetries:

(S1) Mγ,n is symmetric with respect to reflection through any vertical plane con-
taining a bisector of two opposite edges of Qn .

(S2) Mγ,n is symmetric with respect to 180 degree rotation around any line con-
necting two opposite vertices of Qn .

If we take the quotient by the symmetries (S1) and (S2), we are left with a
fundamental piece M̂γ,n that is a graph over a triangle Tn (see Figure 1) which
is the quotient of Qn by its symmetry group. For computational purposes, we
rotate Qn if necessary so that the edge s1 of Tn connecting the center of Qn to the
midpoint of one of its edges lies on the positive x1-axis (again, see Figure 1).

x1

x2

v

s3
Tn

s2

s1

θn

Figure 1. The fundamental triangle Tn .

We now wish to determine the image of the (downward pointing) Gauss map N
on ∂ M̂γ,n under the stereographic projection σ that takes the south pole (0, 0,−1)
of S2 to 0 ∈ C, the north pole to ∞, and the equator to the unit circle. Beginning
with s1, we assume the corresponding curve of ∂ M̂γ,n given by f (x1) is such that
f ′′ > 0. Then it follows from the symmetries (S1) that the image of σ ◦ N along
this curve is contained in the positive x-axis. Continuing, from the symmetries
(S2) we have

s2 ⊂ ∂ M̂γ,n,

and hence it follows that σ ◦ N (s2) is contained in the line

Ln = Reiθn ,
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where

θn =
(n − 1)π

2n
.

For s3, we have from the contact angle condition that σ ◦ N is contained in the
circle

Cγ = ∂B(sec γ, tan γ ),

where B(sec γ, tan γ ) is the disk centered at sec γ with radius tan γ . Note that if
γ = 0, then Cγ is just a point. In this case, as we will see below, the (Jenkins–
Serrin) graph M0,n is infinite over the edges of Qn .

To conclude our analysis of N on ∂ M̂γ,n , we consider the behavior of the graph
at the vertex v labeled in Figure 1. This behavior, which depends on the relation of
the contact angle γ to the wedge angle 2θn , falls into one of the three cases below,
as illustrated by Figure 2. (In the first two cases, we denote both the vertex and the
jump discontinuity over the vertex by v.)

(C1) γ = 0: We assume there is an infinite jump discontinuity at v. That is, the
vertical line in R3 passing through v is contained in ∂M0,n . Since σ ◦ N
along a vertical line is contained in the unit circle S1, we conclude �0,n is the
curvilinear triangle shown in Figure 2 bounded by a segment of the positive
real axis, a segment of Ln , and an arc of S1.

(C2) 0 < γ < θn: We assume there is a finite jump discontinuity at v. That is, a
vertical line segment passing through v is contained in ∂Mγ,n . Here �γ,n is a
curvilinear quadrilateral, as shown in Figure 2, bounded by a segment of the
positive real axis, a segment of Ln , an arc of Cγ , and an arc of S1.

(C3) θn ≤ γ < π/2: In this case, Concus and Finn [Concus and Finn 1996] have
shown uγ,n must be continuous at v if γ 6= θn , where Graph(uγ,n) = Mγ,n ,
and we assume continuity for the case γ = θn . Thus, we conclude �γ,n is a
curvilinear triangle as shown in Figure 2 bounded by a segment of the positive
real axis, a segment of Ln , and an arc of Cγ .

Determining the developed image of
√

dg dh/g. We wish to parametrize M̂γ,n

on �γ,n by finding the appropriate Weierstrass data g and dh. Since �γ,n is the
image of M̂γ,n under stereographic projection of the Gauss map, we take

g(z)= z

for our first piece of data. For the second piece of data, we determine the conformal
map ζ = ζγ,n on�γ,n given by (4). Then we solve for dh in terms of ζγ,n and obtain
equation (5).

To determine ζγ,n , we first note that each curve in ∂ M̂γ,n is either an asymptotic
curve or a principal curve. Indeed, since s2 and v are straight lines or straight
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s3 = C0,n

x

y

s1

s2

θn

v

�0,n

(C1)

s3

Cγ,n

x

y

s1

s2

θn

v

�γ,n

(C2)

x

y

Cγ,n

s3

s1

s2

θn
�γ,n

(C3)

Figure 2. The image �γ,n corresponding to cases (C1)–(C3).

segments, it follows immediately that they are asymptotic. For s1 and s3, we have
that each is a planar curve along which the surface meets the plane of the curve
at a constant angle. By Joachimstahl’s theorem, such curves are principal. Thus,
by (3), the curves s2 and v are mapped by ζ into lines in one of the directions
e±iπ/4, while s1 and s3 are mapped into horizontal or vertical lines. Based on this
information, we conclude the image of ζ is a Euclidean polygon Pγ,n with edges
oriented and labeled as in Figure 3, where the number of edges and the labeling of
the edges depend on the cases (C1), (C2), and (C3). Now, scaling Pγ,n by a real
number λ> 0 results in scaling dh, and thus M̂γ,n , by λ2. Therefore, we can select
one graph from each homothety class by normalizing Pγ,n so that |s1| = 1. Note
that with this normalization, there is only one Pγ,n corresponding to case (C1) and
only one Pγ,n corresponding to case (C3). In case (C2), the space {Pγ,n} is one-
dimensional. This space can be parametrized by the length of the edge s3, where
0< |s3|< 1.
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Pγ,n

(C3)
s1

s3
s2

Pγ,n

(C2)
s1

s3

s2

v

Pγ,n

(C1)
s1

s2v

Figure 3. The developed image of ζ corresponding to cases (C1)–(C3).

Therefore, the map ζγ,n is an edge-preserving biholomorphism between �γ,n
and some Pγ,n . Since each of the two domains is simply connected and bounded
by a simple closed curve, it follows that there exists a biholomorphism between
them. Furthermore, we are allowed to specify the images of three points on the
boundary. Thus, if in cases (C1) and (C3) we specify that the vertices of �γ,n are
mapped to the corresponding vertices of Pγ,n , then the edge-preserving property
follows immediately.

For case (C2), the two domains are quadrilaterals, and so the result is not im-
mediate. Here we normalize by specifying the images of three vertices of �γ,n so
that the edges s1 and s2 are preserved. What remains is a one-parameter family of
biholomorphisms, and we aim to show there exists a map within this family that
preserves all four edges. To prove this, we consider the quantity

ExtPγ,n (s2, s3).

First of all, it follows from part (i) of the Proposition (page 265) that

ExtPγ,n (s2, s3)→ 0 as |s3| → 1.

Then, by part (ii), it follows that

ExtPγ,n (s2, s3)→ ∞ as |s3| → 0.

Hence, it follows by continuity that there is some intermediate |ŝ3| and correspond-
ing P̂γ,n such that

Ext�γ,n (s2, s3)= ExtP̂γ,n
(s2, s3).

Using part (iii) of the Proposition and the conformal invariance of extremal length,
we see that the fourth vertex v ∩ s3 must also be preserved. Thus, the normalized
conformal biholomorphism

ζγ,n :�γ,n → P̂γ,n

is the desired edge-preserving map.
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3. Verification of parametrizations

Let Xγ,n on �γ,n have the form (1), where

g(z)= z and dh =
g(dζγ,n)2

dz
.

Here we choose the base point of integration to be 0 = s1 ∩ s2 so that

Xγ,n(0)= 0.

We seek to verify that the image of Xγ,n gives a surface in R3 that can be extended
by symmetry to the desired capillary graph over a regular 2n-gon Qn . By con-
struction, we know Xγ,n is a minimal immersion. What remains is to verify its
image is also a graph over Tn that has the desired properties. To accomplish this,
we investigate Xγ,n along ∂�γ,n , and we separate this investigation into the three
cases (C1)–(C3).

Case (C3). The first observation is that

(6) Xγ,n is continuous on �γ,n.

To see this, let φ j denote the angle between any two adjacent edges e1 and e2 on
�γ,n , and let ψ j denote the angle between the corresponding edges on Pγ,n . Then
we have

ζγ,n(z)= ζγ,n(e1∩e2)+ (z − e1∩e2)
ψ j/φ j ζ0(z)

in an�γ,n-neighborhood of e1∩e2, where ζ0 is holomorphic and nonzero at e1∩e2.
Hence, it follows that

ζ ′

γ,n(z)
2
= (z − e1 ∩ e2)

2(ψ j/φ j −1)ζ̃0(z),

where ζ̃0 is holomorphic and nonzero at e1 ∩ e2. Clearly, from the geometry of
�γ,n and P̂γ,n we have ψ j/φ j >

1
2 , so

2
(
ψ j

φ j
− 1

)
>−1.

Thus, it follows that

dh =
g(dζγ,n)2

dg
= zζ ′(z)2 dz

is integrable on �γ,n , proving (6).
Beginning our analysis on ∂�γ,n , we parametrize s1 from 0 to sec γ− tan γ by

z1(t)= t, 0< t < sec γ − tan γ.

Then
dz(ż1)= 1,
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and from the geometry of ζγ,n it follows that

dζγ,n(ż1)
2 > 0.

Using this information, we compute

(7)

d
(
Xγ,n

)
1 (ż1)= Re

( 1
2(1 − t2) dζγ,n(ż1)

2)> 0,

d
(
Xγ,n

)
2 (ż1)= Re

( i
2(1 + t2) dζγ,n(ż1)

2)
= 0,

d
(
Xγ,n

)
3 (ż1)= Re(tdζγ,n(ż1)

2) > 0.

Thus, the computations above show that

(8) Xγ,n(s1)⊂ {x2 = 0} is a curve of mirror symmetry,

where the statement about mirror symmetry follows from the fact that g(z) = z.
Moreover, the equations (7) yield(

Xγ,n
)

1 and
(
Xγ,n

)
3 increase as t increases,

so that

(9) Xγ,n(s1) is a graph over it projection into the x1x2-plane.

Continuing, we parametrize s2 from 0 to eiθn by

z2(t)= teiθn , 0< t < ρ, where ρ < 1.

Hence, it follows that
dz(ż2)= eiθn ,

and since
1
i

dζγ,n(ż2)
2 > 0,

we have

d
(
Xγ,n

)
1 (ż2)= Re

(
1
2
(1−t2ei2θn )

dζγ,n(ż2)
2

eiθn

)
=

dζγ,n(ż2)
2

2i
Re(i(e−iθn−t2eiθn ))=

dζγ,n(ż2)
2

2i
(1+t2) sin θn > 0,

d
(
Xγ,n

)
2 (ż2)= Re

(
i
2
(1+t2ei2θn )

dζγ,n(ż2)
2

eiθn

)
=

dζγ,n(ż2)
2

2i
Re(−(e−iθn+t2eiθn ))= −

dζγ,n(ż2)
2

2i
(1+t2) cos θn < 0,

d
(
Xγ,n

)
3 (ż2)= Re(tdζγ,n(ż2)

2)= 0.
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It follows that
d(Xγ,n)2(ż2)

d(Xγ,n)1(ż2)
= − cot θn,

and since d
(
Xγ,n

)
3 (ż2)= 0,

(10) Xγ,n maps s2 monotonically onto a straight segment contained
in the ray Rθn = {(x1, x2, 0) | x1 > 0 and x2 = −(cot θn)x1}.

Finally, we parametrize the contact curve s3 from s2 ∩ s3 to s1 ∩ s3 by

z3(t)= sec γ + tan γ ei t , Tγ,n < t < π.

Now, the value Tγ,n is greatest in the borderline case γ = θn . Here the circle Cγ
intersects the line Ln tangentially at z = eiθn , and a simple calculation yields

Tθn,n =
π

2
− γ.

Thus, we have

Tγ,n ≤
π

2
− γ, θn ≤ γ <

π

2
,

so that

(11) cos Tγ,n ≤ − sin γ, θn ≤ γ <
π

2
.

Continuing, we have dz(ż3)= i tan γ ei t and dζγ,n(ż3)
2 < 0, so that

(12)

d
(
Xγ,n

)
1 (ż3)= Re

(
1
2
(1 − sec2 γ − 2 sec γ tan γ ei t

− tan2 γ ei2t)
dζγ,n(ż3)

2

i tan γ ei t

)
=

1
2 dζγ,n(ż3)

2 Re(ie−i t(tan γ + 2 sec γ ei t
+ tan γ ei2t))= 0,

d
(
Xγ,n

)
2 (ż3)= Re

(
i
2
(1 + sec2 γ + 2 sec γ tan γ ei t

+ tan2 γ ei2t)
dζγ,n(ż3)

2

i tan γ ei t

)
=

dζγ,n(ż3)
2

2 tan γ
Re

(
e−i t(1 + sec2 γ + 2 sec γ tan γ ei t

+ tan2 γ ei2t)
)

=
dζγ,n(ż3)

2

sin γ cos γ
(cos t + sin γ ) > 0

— the inequality being due to (11) — and

d
(
Xγ,n

)
3 (ż3)= Re

(
(sec γ + tan γ ei t)

dζγ,n(ż3)
2

i tan γ ei t

)
= −

dζγ,n(ż3)
2

tan γ
Re(ie−i t(sec γ+ tan γ ei t))= −

dζγ,n(ż3)
2

sin γ
sin t > 0.
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Therefore, from our computations on s3 and the fact that g(z) = z, we conclude
that

(13) Xγ,n maps s3 onto a contact curve of angle γ
contained in a plane parallel to the x2x3-plane.

Moreover, from (12) we get that

(14) Xγ,n(s3) is a graph over its projection into the x1x2-plane.

So, from (6), (8), (9), (10), (13) and (14) it follows that Xγ,n(�γ,n) is com-
pact and Xγ,n(∂�γ,n) projects into the x1x2-plane in a one-to-one fashion onto
the boundary of Tn . Using a theorem of Radó, it then follows that X (�γ,n) is a
projection over Tn .

Case (C2). This case differs from case (C3) by the addition of the edge v into
�γ,n and P̂γ,n . Clearly, statements (6), (8), (9), (10) and (13) still hold. To show
(14) is also true, we write

Tγ,n =
π

2
− γ, 0< γ < θn.

Thus, inequality (11) holds, and this implies (14). So, it remains to check Xγ,n
along v.

Parameterizing v from s3 ∩ v to s2 ∩ v by

zv = ei t , γ < t < θn,

we have
dz(żv)= iei t

and
dζγ,n(żv)2

i
< 0.

Computing, we obtain

d
(
Xγ,n

)
1 (żv)= Re

(
1
2
(1 − ei2t)

dζγ,n(żv)2

iei t

)
=

dζγ,n(żv)2

2i
Re(e−i t

− ei t)= 0,

d
(
Xγ,n

)
2 (żv)= Re

(
i
2
(1 + ei2t)

dζγ,n(żv)2

iei t

)
=

dζγ,n(żv)2

2i
Re(i(e−i t

+ ei t))= 0,

d
(
Xγ,n

)
3 (żv)= Re

(
ei t dζγ,n(żv)2

iei t

)
< 0.

Thus, it follows that Xγ,n maps v monotonically onto a vertical line segment.
Fortunately, the theorem of Radó used in case (C3) can be generalized to allow
for vertical line segments in the boundary. Hence, it follows that in case (C2)
Xγ,n(�γ,n) is also a graph over Tn .
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Case (C1). If γ = 0, we cannot use Radó’s theorem to show X0,n(�0,n) is a graph
over some Tn because X0,n(�0,n) may no longer be compact. In particular, we
can argue as above to show that X0,n is continuous on �0,n\{s1 ∩ v}, so that only
neighborhoods of s1 ∩ v may fail to be compact.

To show the surface X0,n(�0,n) is a graph over some Tn , we consider it as
a limit of graphs Xγ,n(�γ,n) corresponding to (C2). Indeed, in �γ,n it follows
immediately that

(15) s1 ∩ s3, s3 ∩ v → s1 ∩ v as γ → 0.

Furthermore, we have

Ext�γ,n (s2, s3)→ ∞ as γ → 0,

which implies

(16) |ŝ3| → 0 as γ → 0.

At this point, we consider the map 2Xγ,n obtained by extending the parametriza-
tion through reflection across s1. From (15) and (16) it follows that the domains
2�γ,n and 2P̂γ,n converge to 2�0,n and 2P0,n , respectively, as γ approaches 0.
Thus, we can use results from [Pommerenke 1992] to conclude that

(2ζγ,n) ◦ (2 fγ,n)→ 2ζ0,n as γ → 0,

where fγ,n maps �0,n conformally onto �γ,n in such a way that

fγ,n(0)= 0, fγ,n(s2 ∩ v)= s2 ∩ v and fγ,n(s1 ∩ v)= s1 ∩ s3.

Moreover, the convergence is uniform on compact subsets of

2�0,n\{s1 ∩ v},

and so we have that on this set (2Xγ,n) ◦ (2 fγ,n) converges to 2X0,n .
Because of the convergence we can compute

X0,n(s2 ∩ v)− X0,n(s̃2 ∩ ṽ)

|X0,n(s2 ∩ v)− X0,n(s̃2 ∩ ṽ)|
= lim
γ→0

Xγ,n(s2 ∩ v)− Xγ,n(s̃2 ∩ ṽ)

|Xγ,n(s2 ∩ v)− Xγ,n(s̃2 ∩ ṽ)|
= (0, 1, 0),

where, for example, the notation s̃2 refers to the image of s2 under reflection across
s1. Therefore, we know the projection of 2X0,n(2�0,n) into the x1x2-plane is con-
tained in some triangle 2Tn . To show that this surface is actually a graph over 2Tn ,
assume the contrary. That is, suppose there is a vertical line L x over some point
x ∈ 2Tn such that L x intersects 2X0,n(2�0,n) more than once or not at all. Then
there must be some point y ∈ 2Tn such that L y is tangent to the surface. At such
a point, the Gauss map must be horizontal, and this is a contradiction since no
interior points of 2�0,n lie in the unit circle S1.
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4. Explicit parametrizations and regularity

The parametrizations of the Jenkins–Serrin graphs of case (C1) can be made ex-
plicit. To see this, we first conformally change coordinates to the upper half-plane
H via the conformal map

8=8n : H →�γ,n,

normalized so that

8(−1)= 0, 8(0)= 1, 8(∞)= eiθn .

Then the Weierstrass data on H is given by

(17) g =8 dh =
8(d9)2

d8
,

where
9 : H → P̂γ,n

is the conformal map normalized so that

9(−1)= 0, 9(0)= 1, 9(∞)=
1

√
2

eiπ/4.

To determine8 explicitly, we map H to the first quadrant by the map
√

z, where
we assume here and in what follows that any map zq for q ∈ R is defined for
0 ≤ θ < 2π by

reiθ
7→ rqeiqθ .

Then we compose with the Möbius transformation

z →
−z + i
z + i

,

taking the first quadrant onto the upper hemisphere of the unit disk. Finally, we
map this upper hemisphere onto �γ,n via the map zθn/π = z(n−1)/(2n). Thus

(18) g(z)=8(z)=

(
−

√
z + i

√
z + i

)(n−1)/(2n)

.

For 9, we can use the Schwarz–Christoffel formula to conclude that

9(z)= C

∫ z

−1
(w+ 1)−3/4w−3/4dz,

where C is determined by the fact that 9(0)= 1. In particular, we have

C =
1∫ 0

−1(w+ 1)−3/4w−3/4dz
,
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and if we parametrize the interval (−1, 0) by w = t − 1, this expression takes the
form

C =
ei(3π/4)

3
,

where

3=

∫ 1

0

1
(t − t2)3/4

dt.

Thus

(d9)2 = C2(z + 1)−3/2z−3/2dz = −
i
32 (z + 1)−3/2z−3/2,

and from (18) we can compute

8

d8
= −

i2n
n − 1

(z + 1)
√

z.

Therefore, it follows from (17) that

dh = −

(
2n

32(n − 1)

)
1

z
√

z + 1
.

Similarly, one can find explicit parametrizations for the graphs of case (C3).
Here the map 9 is a Schwarz–Christoffel map to the triangle Pγ,n corresponding
to (C3), and the Gauss map 8 = 8γ,n is given in terms of hypergeometric func-
tions. The procedure for finding the parametrization is similar for each n, and the
interested reader is referred to [Huff and McCuan 2006] to see the result when
n = 2. Also, the reference [Carathéodory 1954] will prove useful in calculating the
constants appearing in the hypergeometric functions. For the case (C2), the map
9 =9γ,n is again a Schwarz–Christoffel map onto the quadrilateral P̂γ,n , and the
Gauss map 8γ,n is given in terms of hypergeometric functions. However, we can
not determine 9 explicitly as the exact locations of the vertices s3 ∩ v and s2 ∩ v

are unknown. Additionally, the fact that �γ,n is four-sided makes it difficult to
determine the coefficients of 8 explicitly.

We can investigate the regularity of the graphs in the cases (C2) and (C3). The
proofs are similar for each n; for the case n = 2, see [Huff and McCuan 2006]
(where the notation for our Q2 is�). To begin with, we have a statement about the
subcase of (C3) defined by θn <γ <π/2. The dependency of the Hölder exponent
on γ and n comes from the changing value of the angle between s2 and s3 of �γ,n
and the fact that ζγ,n always maps this angle to an angle of π/4 on P̂γ,n .

Theorem 2. For θn < γ < π/2, the graphing function uγ,n satisfies

uγ,n ∈ C1,β−ε(Qn)\C1,β+ε(Qn)

for small ε, where 0< β < 1 depends on γ and n.
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In the boundary case γ = θn , the unit normal is horizontal at v, and so uγ,n
cannot be C1. However, we can measure the continuity of uγ,n as recorded in the
following theorem. In the conformal category, this case is distinguished by the fact
that �γ,n has an outward pointing cusp at s2 ∩ s3. This means ζγ,n vanishes to all
orders at this vertex, and it is this property that determines the range of the Hölder
exponent.

Theorem 3. If γ = θn , then uγ,n ∈ C0,β(Qn) for any 0 ≤ β < 1.

Functions uγ,n corresponding to (C2) are discontinuous at the vertices of Qn ,
but we can investigate the regularity of the trace of uγ,n over an edge of Qn . The
crucial property from which the theorem below follows is that the function ζγ,n can
be expressed in a neighborhood U of the vertex v2 = v∩ s3 of �γ,n by the formula

ζγ,n(z)= ζγ,n(v2)+ (z − v2)
3/2ζ0(z),

where ζ0 is holomorphic and nonzero on U.

Theorem 4. If 0 < γ < θn , and fγ,n is the restriction of uγ,n to the interior of an
edge S of Qn , then

fγ,n ∈ C2/3(S̄) \ C2/3+ε(S̊).
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