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Dedicated to the memory of Herbert Beckert

It is shown that there exists an asymptotic expansion of the ascent of a liq-
uid on a circular needle if the radius of the cross section tends to zero. In
particular, a formula derived formally by Derjaguin in 1945 is confirmed.

1. Introduction

We consider the following nonparametric capillary problem in the presence of
gravity (see [Finn 1986, Chapter 1]). We seek a function U = U (x), x = (x1, x2),
defined over the base domain � := R2

\ Ba(0), where Ba(0) is a disk with (small)
radius a and center at x = 0, and satisfying the nonlinear elliptic boundary value
problem

div T U = κ U in �,(1)

ν · T U = cos θ on ∂�,(2)

where

T U =
∇U√

1 + |∇U |2
,

κ and θ are constants with 0≤θ≤π , and ν is the exterior unit normal on ∂� (equiv-
alently, the interior normal on ∂Ba(0)). The graph of U describes the capillarity-
driven equilibrium interface in the exterior of a vertical cylinder (the needle) with
cross section Ba(0), in the presence of a constant gravity field directed downward;
θ is the constant contact angle between the capillary surface and the tube and κ is
the (positive) capillary constant, given by κ = ρg/σ , where ρ is the density change
across the interface, g is the acceleration of gravity, and σ is the surface tension.

No explicit solution of (1)–(2) is known. It was shown by Johnson and Perko
[1968] that there exists a radially symmetric solution. From a maximum principle
of Finn and Hwang [1989] for unbounded domains it follows that this symmetric
solution is the only one.

MSC2000: primary 76B45; secondary 41A60, 35J70.
Keywords: capillarity, ascent on a needle, circular tube, asymptotic expansion.

291



292 ERICH MIERSEMANN

Set

(3) u(r)= U (x), r =

√
x2

1 + x2
2 .

We will prove that there is an asymptotic expansion for the ascent u(a) of the liquid
in this problem. More precisely:

Theorem 1.1. Set B = κa2 and let γ = 0.5772 . . . be Euler’s constant. Then the
ascent u(a) of a liquid on a circular needle with radius a satisfies

u(a)
a

= − cos θ
( 1

2 ln B + γ − 2 ln 2 + ln(1 + sin θ)+ O(B1/5 ln2 B)
)

as B → 0, uniformly in θ ∈ [0, π].

Uniformly means that the remainder satisfies |O(B1/5 ln2 B)| ≤ cB1/5
|ln2 B|

for all 0 < B ≤ B0, if B0 is sufficiently small, where the constant c depends only
on B0 and not on the contact angle θ .

It is noteworthy that the special nonlinearity of the problem implies that the
expansion is uniform with respect to θ ∈ [0, π] although |Du| tends to infinity as
θ → 0 or θ → π and therefore the differential equation (1) will be singular on ∂�.
Moreover, as a further consequence of the strong nonlinearity of the problem, we
do not need any growth assumption at infinity.

In the case of complete wetting, that is, if θ = 0, the formula

u(a)∼ −a
( 1

2 ln B − 0.809 . . .
)

as a → 0 was derived formally by Derjaguin [1946] by expansion matching. We
recall that B = κa2. Higher-order approximations where obtained formally by
James [1974] and Lo [1983], also by matching arguments.

(Matching means that some free constants which occur in two asymptotic ex-
pansions with an overlapping domain of their definition will be determined in an
appropriate way; see [Van Dyke 1964; Fraenkel 1969], for example.)

Turkington [1980] proved that u(a) ∼ −
1
2 cos θ a ln B as a → 0 under an ad-

ditional growth assumption at infinity. This assumption is superfluous because of
the comparison principle of Finn and Hwang [1989].

The proof of the existence of the asymptotic expansion is based on a construction
of an upper and a lower C1-solution of (1)–(2) and on the maximum principle of
Finn and Hwang for unbounded domains. We obtain the lower and the upper
solution by gluing together a boundary layer expansion near the needle with a
second expansion far from the needle such that the resulting function is in C1.
This method of composing of functions on different annular domains was used in
[Miersemann 1996], where a numerical method for the circular tube was proposed.

Theorem 1.1 and the calculations of the appendix, together with those of [Lo
1983], suggest:
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Conjecture. For given N ∈ N ∪ {0} the ascent u(a) satisfies

u(a)
a

= − cos θ

(
N∑

k=0

M(k)∑
l=0

ckl(θ)Bk(ln B)l + o(B N )

)

as B → 0, uniformly in θ ∈ [0, π].

2. Expansion near the needle

Since U (x) is rotationally symmetric, the boundary value problem (1)–(2) reads,
with the notation (3),

1
r

(
ru′(r)√

1 + (u′(r))2

)′

= κu(r) in a < r <∞,

lim
r→a+0

u′(r)√
1 + (u′(r))2

= −cos θ.

Set

r = as, v(s)=
1
a

u(as), B = κa2.

Then the problem becomes

1
s

(
sv′(s)√

1 + (v′(s))2

)′

= Bv(s) in 1< s <∞,(4)

lim
s→1+0

v′(s)√
1 + (v′(s))2

= − cos θ.(5)

For a fixed q , 1< q <∞, b0 := −cos θ , θ ∈ [0, π] and b1 ∈ [−1, 1] let

v1(s)≡ v1(B, q, b0, b1; s)

be the solution of

1
s

(
sv′(s)√

1 + (v′(s))2

)′

= Bv(s) for 1< s < q,(6)

lim
s→1+0

v′(s)√
1 + (v′(s))2

= b0, lim
s→q−0

v′(s)√
1 + (v′(s))2

= b1.(7)

Set

div T v =
1
r

(
rv′√

1 + (v′)2

)′

.
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It was shown in [Miersemann 1993; 1994] that for fixed q there exists a complete
asymptotic expansion of v1 as B → 0, uniformly in b0, b1 ∈ [−1, 1]:

v1 =
C
B

+

m∑
k=0

ϕk(s)Bk
+ O(Bm+1),

here ϕk(s)≡ ϕk(q, b0, b1; s) and

C ≡ C(q, b0, b1)=
2(qb1 − b0)

q2 − 1
.

The function ϕ0 is a solution of a boundary value problem for a nonlinear second
order ordinary differential equation and the ϕk , for k ≥ 1, are solutions of linear
boundary value problems.

It turns out that we have to change q if B → 0. More precisely, q = B−τ , for
τ > 0 small, will be an appropriate choice. Therefore, we need some information
about how the functions, for example ϕk , depend on q .

Set

b1 :=
b0

q
(1 + ε), 0 ≤ |ε|< ε0 < 1,

φk(s)≡ φk(q, b0, ε; s) := ϕk

(
q, b0,

a0
q
(1 + ε); s

)
and for m ≥ 0

(8) v1,m(s)≡ v1,m(B, q, b0, ε; s) :=
2εb0

B(q2 − 1)
+

m∑
k=0

φk(s)Bk .

Assume that
λ := Bq2 ln q ≤ λ0

for a sufficiently small positive λ0, independent of B and q . We will choose q =

B−τ for τ ∈
(
0, 1

2

)
.

Proposition 2.1. Suppose q ≥ 3. For a given m ∈ N ∪ {0} there exist functions
ϕk(s)≡ ϕk(q, b0, b1; s) for k = 0, 1, . . . ,m, analytic in 1< s < q and continuous
in 1 ≤ s ≤ q , as well as functions φk(s) ≡ φk(q, b0, ε; s), continuous in |ε| < 1

4 ,
such that for |ε| ≤

1
4 and s ∈ (1, q) we have

φk(s)=

N∑
l=0

φk,l(q, b0; s)εl
+ RN+1ε

N+1,

where

|φk,l(q, b0; s)| ≤ c |b0|(ln q)k+1q2k, |RN+1| ≤ c |b0|(ln q)k+1q2k
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and

(9) |div T v1,m − Bv1,m | ≤ c |b0|(ln q)m+1q2m Bm+1
;

here v1,m is the sum (8). The constants c depend only on λ0 and on k, N , m, and
not on b0 ∈ [−1, 1].

In particular,

φ0,0(q, b0; 1)= −b0

(
ln q + ln 2 −

1
2 − ln

(
1 +

√
1 − b2

0

)
+ O(q−2 ln q)

)
as q → ∞.

The proof is given in Section A.1 of the Appendix.

3. Expansion far from the needle

Let v2(s)≡ v2(B, q, b1; s) be the solution of

1
s

(
sv′(s)√

1 + (v′(s))2

)′

= Bv(s) in q < s <∞,(10)

lim
s→q+0

v′(s)√
1 + v′(s)2

= b1.(11)

In contrast to the earlier expansion with respect to B near the needle, we expand
v2 with respect to b1 for fixed Bond number 0< B < 1.

For small |b1| we have

v′(q)=
b1√

1 − b2
1

= b1

∞∑
k=0

(
−

1
2
k

) (
−b2

1
)k
.

We make the following ansatz for a solution of the differential equation (10), where
n ∈ N ∪ {0}, ρ ∈ R, |ρ| small:

(12) v2,n(s)≡ v2,n(B, q, ρ; s) :=

n∑
k=0

ψk(B, q; s) ρ2k+1

with unknown functions ψk(s) :≡ ψk(B, q; s) such that

(13) ψ ′

k(q)= (−1)k
(

−
1
2
k

)
.

Since

v′

2,n(q)= ρ

n∑
k

(
−

1
2
k

) (
−ρ2)k

,
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it follows that v2,n satisfies the boundary condition (11) at s = q if

(14)
n∑

k=0

(−1)k
(

−
1
2
k

)
ρ2k+1

=
b1√

1 − b2
1

.

Thus, since b1 = b0(1 + ε)/q ,

ρ = b1 + O(b2n+3
1 )=

b0

q
+ ε

b0

q
+ O

((b0
q

)2n+3
)

as b0/q → 0.

Definition 3.1. We write w(δ)= P(δ, ln δ), where 0< δ < δ0, if for given N ∈ N

we have

w(δ)=

N∑
α=1

M(α)∑
β=0

cαβδα(ln δ)β + RN (δ),

where cαβ ∈ R, RN (δ) is continuous in 0 ≤ δ < δ0, limN→∞ RN (δ)= 0 for fixed δ
and RN (δ)= o(δN ) as δ → 0.

Proposition 3.2. Assume that 0 < B < 1, q = B−τ , τ ∈ (0, τ1], 0 < τ1 <
1
2 and

|ρ| < ρ0, for ρ0 sufficiently small. For a given n ∈ N ∪ {0} there exist functions
ψk(s)≡ ψk(B, q; s), k = 0, . . . , n, analytic on q ≤ s <∞, such that the sum v2,n

of (12) satisfies

(15) |div T v2,n − Bv2,n| ≤ c |ρ|
2n+3

on s ∈ [q,∞), where the constant c depends only on τ1, ρ0 and n. Further, for
δ :=

√
Bq there are functions wk(δ)= P(δ, ln δ) such that

(16) ψk(B, q; q)=
1

√
B
wk(δ).

In particular,

ψ0(B, q; q)=
1

√
B

K0(δ)

K ′

0(δ)
,

where K0(δ) is a modified Bessel function of second kind and of order zero.

The proof is given in Section A.2 of the Appendix.
Siegel [1980] observed that the function ψ0 := cK0(

√
Bs), where c is a positive

constant, defines for a fixed q > 1 a supersolution of the differential equation (10)
on (q,∞). We will show that there is a positive constant A such that v2,n ± A
defines a supersolution and a subsolution, respectively, on (q,∞) if q := B−τ for
appropriate τ satisfying 0< τ ≤ τ1 <

1
2 and if ρ is defined by (14). In particular,

v2,0 =
K0(

√
Bs)

√
BK ′

0(
√

Bq)
ρ.
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4. Composing of the inner and outer solutions

By the inner solution we mean the expansion v1,m near the needle and the outer
solution is v2,n , the expansion far from the needle.

We glue together these two expansions at s = q in such a way that the composite
function is in C1(1,∞).

Set

vc,m,n(s) :=

{
v1,m(B, q, b0, ε; s) for 1 ≤ s ≤ q,

v2,n(B, q, ρ; s) for q < s <∞.

This composite function is in C1(1,∞) if and only if ρ satisfies (14) and v1,m, v2,n

coincide at s = q , that is, if

(17) v1,m(B, q, b0, ε; q)= v2,n(B, q, ρ; q),

where ρ = ρ(b0, q, ε) is defined by (14). Now set

δ :=
√

Bq.

We choose q = B−τ for a fixed τ ∈
(
0, 1

2

)
; then δ → 0 if B → 0.

Proposition 4.1. Assume that q = B−τ for a fixed τ ∈
(
0, 1

2

)
. Then there is a

solution ε of equation (17). In particular, we have

ε =
1
2δ

2 ln δ+
1
2

(
γ − ln 2 −

1
2

)
δ2

+ R(b0, B, B−τ )δ2

with
R(b0, B, B−τ )= O(B2τ (ln B)l+1)+ O(B1−2τ ln2 B)

uniformly in b0 ∈ [−1, 1] as B → 0, where l ∈ N ∪ {0} and

γ := lim
m→∞

( m∑
k=1

1
k

− ln m
)

= 0.5772 . . .

is Euler’s constant.

The proof is given in Section A.3 of the Appendix.
Assume that q := B−τ for 0< τ ≤ τ1 <

1
2 . Then, since

b1 =
b0

q

(
1 + O(B1−2τ ln B)

)
,

it follows from the three propositions above that the C1(1,∞) function vc,m,n sat-
isfies, for 0< B ≤ B0 < 1 with B0 sufficiently small,

|div T vc,m,n − Bvc,m,n| ≤

{
c |b0|(− ln B)m+1 B(1−2τ)m+1 for 1 ≤ s ≤ q,

c |b0|B(2n+3)τ for q < s <∞.

The constant c depends only on m, n, B0 and τ1.
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5. Asymptotic expansion

Let A be a positive constant. Set

v+

c,m,n := vc,m,n + A.

This function v+
c,m,n is in C1(1,∞) and satisfies the boundary condition (5) at s =1.

From the above estimate it follows

divT v+

c,m,n − Bv+

c,m,n = div T vc,m,n − Bvc,m,n − AB

≤ B

{
c |b0|(− ln B)m+1 B(1−2τ)m

− A for 1 ≤ s ≤ q,

c |b0|B(2n+3)τ−1
− A for q < s <∞.

The constant c depends only on m, n, B0 and τ1.
For τ ∈

(
0, 1

2

)
and m, n ∈ N ∪ {0}, set

p(m, n; τ) := min{(1 − 2τ)m, (2n + 3)τ − 1}

and let τ0 ≡ τ0(m, n) be the solution of (1 − 2τ)m = (2n + 3)τ − 1, that is,

τ0 =
m + 1

2(m + 1)+ 2n + 1
.

Thus τ0 is the solution of
max

0<τ<1/2
p(m, n; τ).

Set p0 ≡ p0(m, n) := p(m, n; τ0); that is,

p0 =
2mn + m

2m + 2n + 3
.

Choose

(18) A := c |b0|(− ln B)m+1 B p0;

then the preceding inequality implies

div T v+

c,m,n − Bv+

c,m,n ≤ 0

for all B such that 0 < B ≤ B0 and for all s in (1, q] ∪ (q,∞). The maximum
principle of Finn and Hwang [1989] yields

v(s)≤ v+

c,m,n(s)

on (1,∞). By the same reasoning it follows that

v−

c,m,n := vc,m,n − A,

satisfies v(s)≥ v−
c,m,n(s) on (1,∞), where A is given by (18).
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Summarizing, we have shown that |v(s)− vc,m,n(s)| ≤ c |b0|(− ln B)m+1 B p0 .

We can choose p0 arbitrarily large provided m and n are large enough; see the
definition of p0 above.

In particular, the height rise at s = 1 satisfies

|v(1)− v1,m(1)| ≤ c |b0|(− ln B)m+1 B p0 .

Thus

v(1)=
C(q, b0, b1)

B
+

m∑
k=0

ϕk(q, b0, b1; 1)Bk
+ O(b0 B p0 lnm+1 B),

where b1 = b0(1 + ε)/q , q = B−τ0 and ε is the solution of (17); see Proposition
4.1.

Thus, we consider

v1,m(1) :=
C(q, b0, b1)

B
+

m∑
k=0

ϕk(q, b0, b1; 1)Bk

as an approximation of order p0 of the value v(1).
Then, since B = κa2 and u(a)= av(1), we have

(19)
u(a)

a
= v1,m(1)+ O(b0 B p0 lnm+1 B)

as B ≡ κa2
→ 0.

Proof of Theorem 1.1. Set m =1 and n =0. Then τ0 =
2
5 , p0 =

1
5 , q ≡ B−τ0 = B−2/5

and δ ≡
√

Bq = B1/10. We obtain from Proposition 4.1

ε =
1
2δ

2 ln δ+
1
2(γ − ln 2 −

1
2)δ

2
+ O(δ2 B1/5 ln2 B)

and Proposition 2.1 yields

φ0(1)= −b0

(
ln q + ln 2 −

1
2 − ln

(
1 +

√
1 − b2

0

))
+ O(b0 B1/5 ln2 B)

and φ1(1)B = O(b0 B1/5 ln2 B).
Thus

v1,1(1)=
2εb0

B(q2 − 1)
+φ0(1)+φ1(1)B + O(b0 B1/5 ln2 B)

= b0
(
ln δ− ln 2 −

1
2 + γ + O(B1/5 ln2 B)

) (
1 −

1
q2

)−1

− b0
(
ln q + ln 2 −

1
2 − ln(1 +

√
1 − b2

0)
)
+ O(b0 B1/5 ln2 B)

= b0
( 1

2 ln B − 2 ln 2 + γ + ln(1 +

√
1 − b2

0)
)
+ O(b0 B1/5 ln2 B).
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The theorem follows from formula (19) for u(a)/a. �

Appendix: Proof of the propositions

Here we prove the propositions of the previous sections. The argument concerns
mainly expansions of nonlinear expressions with respect to appropriate parameters.
In the expansion near the needle the special nonlinearity of the problem is exploited.
The expansion far from the needle ensues by linearization of the problem with
respect to the zero solution.

A.1. Expansion near the needle. Set for 0< B < B0

vm =
C
B

+

m∑
k=0

ϕk(s)Bk,

where C is a constant and ϕk are functions in C2(1, q), 1< q <∞.
The sum vm is said to be an approximate solution of (6)–(7) if vm satisfies the

boundary conditions (7) and if

|div T vm − Bvm | ≤ cBm+1

on (1, q), where c = c(m, q) and c is independent on b0, b1 ∈ [−1, 1].
In the following we will define C and ϕk so that vm is an approximate solution. It

turns out that C is given explicitely, ϕ0 is the solution of a nonlinear boundary value
problem for a second order differential equation and ϕk , for k ≥ 1, are solutions of
linear boundary value problems of second order, defined iteratively. The main idea
here is to preserve the properties of the special nonlinearity also in the expansions.

In

div T vm ≡
1
s

(
sv′

m√
1 + v′

m
2

)′

there appears the quotient v′
m/
√

1 + v′
m

2. We now derive some expansions in B
related to this quotient.

Definition of C and ϕk . Since

1+v′

m
2
= 1 +

( m∑
l=0

ϕ′

l Bl
)2

= (1+ϕ′

0
2)

(
1 + 2

ϕ′

0√
1+ϕ′

0
2

m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
+

( m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
)2
)
,
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it follows that

v′
m√

1 + v′
m

2

=
v′

m√
1+ϕ′

0
2

(
1 + 2

ϕ′

0√
1+ϕ′

0
2

m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
+

( m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
)2
)−1/2

.

Set, for l = 1, . . . ,m,

dl :=
ϕ′

l√
1+ϕ′

0
2

and assume that

(A–1) sup
s∈(1,q)

|dl | ≤ c(1)l (q) <∞.

Then for M ∈ N, provided 0< B ≤ B0(q) with B0 sufficiently small, we have

(A–2)
v′

m√
1 + v′

m
2

=
ϕ′

0√
1+ϕ′

0
2

+

M∑
k=1

fm,k(ϕ
′

0, . . . , ϕ
′

m)B
k
+ f̃m,M+1 B M+1,

where fm,k and f̃m,M+1 are defined as follows. Set gm(B) := v′
m/
√

1 + v′
m

2, then

fm,k = g(k)m (0)/k! and f̃m,k = g(k)m (t B)/k! for 0< t < 1.

From assumption (A–1) on ϕ′

k we obtain

| fm,k | ≤ cm,k(q) <∞ and | f̃m,M+1| ≤ c̃m,M+1(q) <∞.

We have, from (A–2), f0,k ≡ 0 and f̃0,k ≡ 0 for all k ∈ N.
This argument exploits the special nonlinearity of the problem. More precisely,

we have used that
|ϕ′

0|√
1+ϕ′

0
2

remains bounded even if |ϕ′

0(s)| → ∞ if s → 1 or s → q .
We obtain from (A–2) the expansion

(A–3) div T vm =
1
s

(
sϕ′

0√
1+ϕ′

0
2

)′

+

M∑
k=1

1
s
(
s fm,k

)′Bk
+

1
s
(
s f̃m,M+1

)′B M+1.

We next need some information on how the derivatives ( fm,k)
′ and ( f̃m,l)

′ de-
pend on b0, b1 and q .

Since v′
m =

∑m
l=0 ϕ

′

l Bl and

(A–4) div T v ≡
1
s
v′(1 + v′2)−1/2

+ v′′(1 + v′2)−3/2
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it follows under assumption (A–1) that for 0< B ≤ B0 ≡ B0(q), with B0 sufficiently
small,

div T vm

=
1
s

v′
m√

1+ϕ′

0
2

(
1 + 2

ϕ′

0√
1+ϕ′

0
2

m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
+

( m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
)2
)−1/2

+
v′′

m

(1+ϕ′

0
2)3/2

(
1 + 2

ϕ′

0√
1+ϕ′

0
2

m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
+

( m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
)2
)−3/2

.

Thus

(A–5) div T vm =
1
s

(
sϕ′

0√
1+ϕ′

0
2

)′

+

M∑
k=1

Fm,k Bk
+ F̃m,M+1 B M+1,

where Fm,k and F̃m,M+1 are defined as follows. Set

hm(B) :=
1
s

v′
m√

1 + v′
m

2
+ v′′

m
(
1 + v′

m
2)−3/2

.

Then Fm,k = h(k)m (0)/k! and F̃m,k = h(k)m (t B)/k! for 0 < t < 1. We have F0,k ≡ 0
and F̃0,k ≡ 0 for all k ∈ N.

Set for l = 1, . . . ,m

el :=
ϕ′′

l

(1+ϕ′

0
2)3/2

and assume

(A–6) sup
s∈(1,q)

|el | ≤ c(2)(q) <∞.

Then the functions Fm,k and F̃m,M+1 are bounded.
Since

1
s
(s fm,k)

′
≡ Fm,k,

1
s
(s f̃m,k)

′
≡ F̃m,k,

it follows, under assumptions (A–1) and (A–6), that the derivatives ( fm,k)
′, ( f̃m,k)

′

are bounded.
In the following considerations we derive boundary value problems which de-

fine the functions ϕ0, ϕ1, . . . , ϕm . Then we prove that these functions ϕl satisfy
inequalities (A–1) and (A–6) uniformly in q ≥ 3 and in b0 ∈ [−1, 1], where
b1 = b0(1 + ε)/q , with |ε| ≤

1
4 .

The following lemma is useful in order to iteratively find the appropriate bound-
ary value problem which defines ϕm+1 for given ϕ0, . . . , ϕm .
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Lemma A.1.1. Let assumption (A–1) on ϕl , for l = 1, . . . ,m + 1, be satisfied.
Then

v′

m+1√
1 + v′

m+1
2

=
v′

m√
1+v′

m
2

+
ϕ′

m+1

(1 +ϕ′

0
2)3/2

Bm+1
+ R,

where |R| ≤ c(q)Bm+2, 0< B ≤ B0(q), B0 sufficiently small.

Proof.

v′

m+1√
1 + v′

m+1
2

=
(
v′

m +ϕ′

m+1 Bm+1)(1 + v′

m
2
+ 2v′

mϕ
′

m+1 Bm+1
+ϕ′

m+1
2 B2m+2)−1/2

=
(
v′

m +ϕ′

m+1 Bm+1) (1 + v′

m
2)−1/2

·

(
1 + 2

v′
m√

1+v′
m

2

ϕ′

m+1√
1+v′

m
2

Bm+1
+
(ϕ′

m+1)
2

1 + v′
m

2 B2m+2
)−1/2

=

(
v′

m√
1+v′

m
2

+
ϕ′

m+1√
1+v′

m
2

Bm+1
)(

1 −
v′

mϕ
′

m+1

1 + v′
m

2 Bm+1
+ R1

)

=
v′

m√
1+v′

m
2

+

(
−

v′
m

2ϕ′

m+1

(1 + v′
m

2)3/2
+

ϕ′

m+1√
1+v′

m
2

Bm+1
)

+ R2

=
v′

m√
1 + v′

m
2

+
ϕ′

m+1

(1 + v′
m

2)3/2
Bm+1

+ R2.

The remainders above satisfy |R1|, |R2| ≤ c(q)B2m+2. Since

ϕ′

m+1

(1 + v′
m

2)3/2

=
ϕ′

m+1

(1+ϕ′

0
2)3/2

(
1 + 2

ϕ′

0√
1+ϕ′

0
2

m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
+

( m∑
l=1

ϕ′

l√
1+ϕ′

0
2

Bl
)2
)−3/2

=
ϕ′

m+1

(1+ϕ′

0
2)3/2

+ R3,

where |R3| ≤ c(q)B, the expansion of the lemma is shown. �

Lemma A.1.2. Suppose assumptions (A–1) and (A–6) are satisfied. Then

div T vm+1 = div T vm +
1
s

(
sϕ′

m+1

(1+ϕ′

0
2)3/2

)′

Bm+1
+ O(Bm+2)

as B → 0, uniformly in s ∈ (1, q).
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Proof. We conclude from (A–4) and Lemma A.1.1 that

div T vm+1 ≡
1
s

v′

m+1√
1 + v′

m
2

+
v′′

m+1

(1 + v′
m

2)3/2

=
1
s

v′
m√

1 + v′
m

2
+

1
s

ϕ′

m+1

(1+ϕ′

0
2)3/2

Bm+1
+

v′′

m+1

(1 + v′

m+1
2)3/2

+ O(Bm+2).

Since

v′′

m+1

(1 + v′

m+1
2)3/2

=
v′′

m

(1 + v′
m

2)3/2
+

(
ϕ′′

m+1

(1 +ϕ′

0
2)3/2

−
3ϕ′

0ϕ
′′

0ϕ
′

m+1

(1 +ϕ′

0
2)5/2

)
Bm+1

+O(Bm+2),

which follows by similar calculations as in the proof of Lemma A.1.1, we obtain

div T vm+1 =
1
s

v′
m√

1 + v′
m

2
+

v′′
m

(1 + v′
m

2)3/2
+

1
s

(
sϕ′

m+1

(1+ϕ′

0
2)3/2

)′

Bm+1
+ O(Bm+2).

�

Lemma A.1.2 implies

div T vm+1 − Bvm+1

= div T vm +
1
s

(
sϕ′

m+1

(1+ϕ′

0
2)3/2

)′

Bm+1
− (C + Bϕ0 + · · · + Bm+1ϕm)+ O(Bm+2).

Then from expansion (A–3) for div T vm , with M := m +1, and from the condition

div T vm+1 − Bvm+1 = O(Bm+2) as B → 0,

there follows for m ≥ 0 the differential equation

(A–7) 1
s

(
sϕ′

m+1

(1+ϕ′

0
2)3/2

)′

+
1
s
(s fm,m+1)

′
= ϕm

on 1 < s < q . We recall that fm,m+1 = g(m+1)
m (0)/(m + 1)! , where gm(B) =

v′
m/
√

1 + v′
m

2.
We conclude from div T v0 − Bv0 = O(B) that

(A–8) div Tϕ0 ≡
1
s

(
sϕ′

0√
1+ϕ′

0
2

)′

= C

on 1< s < q.
From the assumptions

lim
s→1+0

v′
m√

1 + v′
m

2
= b0, lim

s→q−0

v′
m√

1 + v′
m

2
= b1
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for fixed q and 0< B ≤ B0(q), and from the expansion (A–2), we get

(A–9) lim
s→1+0

ϕ′

0√
1+ϕ′

0
2

= b0, lim
s→q−0

ϕ′

0√
1+ϕ′

0
2

= b1.

Further, we obtain from Lemma A.1.1 that for m ≥ 1

(A–10) lim
s→1+0

ϕ′

m+1

(1+ϕ′

0
2)3/2

= 0, lim
s→q−0

ϕ′

m+1

(1+ϕ′

0
2)3/2

= 0,

and (A–2) implies the boundary conditions

(A–11) lim
s→1+0

fm,k(ϕ
′

0, . . . , ϕ
′

m)= 0, lim
s→q−0

fm,k(ϕ
′

0, . . . , ϕ
′

m)= 0

for k ≥ 1 and m ≥ 0.
After integration of the differential equation from 1 to q it follows from the

boundary conditions (A–11) and (A–12) that, for m ≥ 0,

(A–12)
∫ q

1
sϕm(s) ds = 0.

Applying the differential equation (A–8) for ϕ0 and the boundary conditions (A–9),
we find

(A–13) C =
2(qb1 − b0)

q2 − 1
.

Set

(A–14) f (s)≡ f (q, b0, b1; s) := b0 f0 + b1 f1,

where

f0 :=
q2

− 1 − (s2
− 1)

s(q2 − 1)
, f1 :=

q(s2
− 1)

s(q2 − 1)
.

Then it follows from (A–8) and the formula (A–13) for C that

(A–15)
ϕ′

0(s)√
1 + (ϕ′

0(s))
2

= f (s)

or, equivalently,

(A–16) ϕ′

0(s)=
f (s)√

1 − f 2(s)
.

Set for 1 ≤ s ≤ q

(A–17) ϕ̃0(s) :=

∫ s

1

f (τ )√
1 − f 2(τ )

dτ,
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then ϕ0(s) = ϕ̃0(s) + K , where the constant K will be determined by the side
condition (A–12). That is, ϕ0(s)≡ ϕ0(q, b0, b1; s) is given by

(A–18) ϕ0(s)= ϕ̃0(s)−
2

q2 − 1

∫ q

1
τ ϕ̃0(τ ) dτ.

Then we obtain ϕl(s) ≡ ϕl(q, b0, b1; s) for l ≥ 1, by the iterative application of
(A–7), (A–9), (A–10) and (A–11). That is,

(A–19) ϕl+1(s)= ϕ̃l+1(s)−
2

q2 − 1

∫ q

1
τ ϕ̃l+1(τ ) dτ,

where

(A–20) ϕ̃l+1(s) :=

∫ s

1
ϕ′

l+1(τ ) dτ

and

(A–21) ϕ′

l+1(s) := (1+ϕ′

0
2)3/2

(
− fl,l+1 +

1
s

∫ s

1
τϕl(τ ) dτ

)
.

Set for the unknown b1

(A–22) b1 :=
b0

q
(1 + ε),

where

(A–23) |ε| ≤
1
4 and q ≥ 3.

We will determine ε in Section A.3 by gluing together two expansions at s = q ,
where q = B−τ for τ > 0 small.

Expansions with respect to ε. In this section we expand related functions with
respect to ε.

Definition. Let h ≡ h(q, b0, ε; s), where 1 ≤ s ≤ q , q ≥ 3, |ε| ≤ 1
4 and b0 ∈ [−1, 1].

We will write h = O(ε; K ) if for any fixed M ∈ N ∪ {0}

h =

M∑
l=0

hlε
l
+ h̃M+1ε

M+1,

where hl ≡ hl(q, b0; s), h̃M+1 ≡ h̃M+1(q, b0, ε; s), and |hl |, |h̃M+1| ≤ cM |K |. The
constant cM is independent on q , b0, s, ε and K , it can depend on q, b0 and s but
not on ε.

From formula (A–14) for f and from (A–22) it follows that on 1< s ≤ q

(A–24) f =
b0

s

(
1 + ε

s2
− 1

q2 − 1

)
.
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Then

(A–25) 1 − f 2
=

(
1 −

(b0
s

)2
)
(1 + C1ε+ C2ε

2),

where

C1 ≡ C1(q, b0; s)= −2b2
0

1
q2 − 1

s2
− 1

s2 − b2
0

,

C2 ≡ C2(q, b0; s)= −b2
0

1
q2 − 1

(s2
− 1)2

s2 − b2
0

.

Using (A–23), it follows that |C1ε+ C2ε
2
| ≤

1
2 .

Set

φk(s)≡ φk(q, b0, ε; s) := ϕk

(
q, b0,

b0
q
(1 + ε); s

)
.

Then we obtain from formula (A–16) for ϕ′

0

(A–26) φ′

0 =
b0

s

(
1 + ε

s2
−1

q2−1

)(
1 −

(b0
s

)2
)−1/2

(1 + C1ε+ C2ε
2)−1/2

=
b0√

s2 − b2
0

(
1 + εO(ε; 1)

)
.

Formula (A–17) implies

φ̃0(s)= φ̃0,0(s)+ εO(ε; b0 ln s),

where

φ̃0,0(s)= b0

(
ln
(
s +

√
s2 − b2

0

)
− ln

(
1 +

√
1 − b2

0

))
.

Finally, it follows from (A–18) that

φ0(s)= φ0,0(s)+ εO(ε; b0 ln q),

where

φ0,0(s)= b0

(
ln
(
s +

√
s2 − b2

0

)
− ln

(
1 +

√
1 − b2

0

))
+

b0

q2−1

(
q
2

√
q2

−b2
0 +

b2
0

2
ln
(
q +

√
q2

−b2
0

)
−

1
2

√
1−b2

0 −
b2

0

2
ln
(
1+

√
1−b2

0

))
.
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Using (A–24), (A–25) and (A–26), we immediately obtain

1 +φ′

0
2
≡ (1 − f 2)−1

=
s2

s2 − b2 (1 + εO(ε; 1)) ,(A–27)

φ′

0√
1 +φ′

0
2

≡ f =
b0

s

(
1 + ε

s2
− 1

q2 − 1

)
,(A–28)

φ′′

0

(1 +φ′

0
2)3/2

≡ f ′
= −

b0

s2

(
1 − ε

s2
+ 1

q2 − 1

)
.(A–29)

Lemma A.1.3. The functions φl , l ≥ 1 are continuous in ε, |ε| ≤
1
4 , and satisfy

φl(s)= O
(
ε; b0(ln q)lq2l) ,(A–30)

dl ≡
φ′

l√
1 +φ′

0
2

= O
(
ε; b0(ln q)lq2l−1) ,(A–31)

el ≡
φ′′

l

(1 +φ′

0
2)3/2

= O
(
ε; b0(ln q)lq2l−2) .(A–32)

We will prove this lemma by induction based on formulas (A–15)–(A–17) and
on the next lemma.

Lemma A.1.4. Assume that equations (A–30)–(A–32) hold for 1 ≤ l ≤ m. Then

Fm,m+1 = O
(
ε; b0(ln q)m+1q2m)

and, if λ := Bq2 ln q ≤ λ0, for λ0 > 0 sufficiently small, then

|F̃m,m+1| ≤ cm |b0|(ln q)m+1q2m,

where cm = cm(λ0) is independent on b0 and q.

Proof. Set

hm(B)=
1
s
(d0 + P)F(d0, P)+ (e0 + Q)G(c0, P),

where F = (1 + 2d0 P + P2)−1/2, G = (1 + 2d0 P + P2)−3/2, P =
∑m

l=1 dl Bl ,
Q =

∑m
l=1 el Bl .

From assumption (A–1) on dl it follows |2d0 P + P2
| ≤

1
2 , provided λ0 is suffi-

ciently small. Since

Fm,m+1 =
h(m+1)

m (0)
(m + 1)!

and F̃m,m+1 =
h(m+1)

m (t B)
(m + 1)!

, for 0< t < 1,

the lemma is a consequence of the Leibniz rule and the chain rule. We find from
these rules for α = (α1, . . . , αm), αl ∈ N and t = (t1, . . . , tm), tl ∈ N ∪ {0} and
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0 ≤ k ≤ m that

(A–33) h(m+1)
m (B)=

∑
∑m

l=1 αl tl=m+1

1
s

Cm,α,t(P (α1))t1 . . . (P (αm))tm

+

∑
k+
∑m

l=1 αl tl=m+1

Dm,k,α,t Q(k)(P (α1))t1 . . . (P (αm))tm ,

where
Cm,α,t = Cm,α,t(d0, e0, P), Dm,k,α,t = Dk,α,t(d0, P)

and

Ĉm,α,t := Cm,α,t(s, d0, e0, 0)= O(ε; 1), D̂m,α,t := Dm,k,α,t(d0, 0)= O(ε; 1).

We recall that d0 = O(ε; b0/s) and e0 = O(ε; b0/s2). From (A–33) it follows that

h(m+1)
m (0)=

∑
∑m

l=1 αl tl=m+1

1
s

Ĉm,α,t(dα1)
t1 . . . (dαm )

tm

+

∑
k+
∑m

l=1 αl tl=m+1

D̂m,k,α,t ek(dα1)
t1 . . . (dαm )

tm .

Using the assumptions on dl and el (Lemma A.1.3), we have

h(m+1)
m (0)

= O
(
ε; b0(ln q)

∑m
l αi ti q

∑m
l (2αl tl−1)

)
+ O

(
ε; b0(ln q)k+

∑m
l αi ti q2k−2

∑m
l (2αl tl−1)

)
,

where in the first term on the right we have
∑m

l=1 αl tl = m+1, and k +
∑m

l=1 αl tl =

m +1 in the second term. Hence, since in the first term
∑m

l=1 tl ≥ 2 holds because
of
∑m

l=1 αl tl ≥ 2, αl ≥ 1 and tl ≥ 0, it follows that

h(m+1)
m (0)= O(ε; b0(ln q)m+1q2m).

The estimate of h(m+1)
m (t B), 0< t < 1, is a consequence of (A–33) since

|P (l)| ≤ cl
(
|dl | + |dl+1|B + · · · + |dm−l |Bm−l) . �

We recall that λ := Bq2 ln q ≤ λ0.

Corollary A.1.5. fm,m+1 = O(ε; b0(ln q)m+1q(2m)(s − 1)).

Proof. Since Fl,k ≡ (1/s)(s fl,k)
′, it follows from the boundary condition fl,k(1)=0

(see (A–11)) that

(A–34) fm,m+1 =
1
s
∫ s

1 τ Fm,m+1(τ ) dτ. �
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Proof. Proof of Lemma A.1.3 Assume that the lemma holds for 1 ≤ l ≤ m. Then

(A–35) 1
s

∫ s

1
τφm(τ ) dτ = O

(
ε; (ln q)mq2m(s − 1)

)
.

Using formula (A–21) for ϕ′

m+1, Corollary A.1.5, (A–35) and the formula (A–27)
for 1 +φ′

0
2 we conclude that

φ′

m+1√
1 +φ′

0
2

= O(ε; b0(ln q)m+1q2m+1)

and

φ′

m+1 = O

(
ε; b0(ln q)m+1q2m+1 s3/2

(s − 1)1/2

)
.

Thus, it follows from (A–19) and (A–20) that

φm+1 = O(ε; b0(ln q)m+1q2m+2).

Formula (A–17) implies

φ′′

m+1

(1 +φ′

0
2)3/2

= 3φ′

0φ
′′

0

(
− fm,m+1 +

1
s

∫ s

1
τφm(τ ) dτ

)
− ( fm,m+1)

′
−

1
s2

∫ s

1
τφm(τ ) dτ +φm .

Since, by (A–34),

f ′

m,m+1 = Fm,m+1 −
1
s

fm,m+1,

it follows from formulas (A–27)–(A–29) for φ′

0 and φ′′

0 , Lemma A.1.4, Corollary
A.1.5, (A–35) and (A–30) that

φ′′

m+1

(1 +φ′

0
2)3/2

= O(ε; b0(ln q)m+1q2(m+1)−2).

It remains to show Lemma A.1.3 in the case l = 1. Since f0,1 ≡ 0, we find from
(A–21) that

φ′

1 = (1 +φ′

0
2)3/2

1
s

∫ s

1
τφ0(τ ) dτ.

This equation implies Lemma A.1.3 in the case l = 1 by using the properties of φ0,
see the formulas (A–27)–(A–29).

The continuity of φl in ε follows from formula (A–26) for φ′

0 iteratively from
(A–21), (A–20) and (A–19). �

Proof of Proposition 2.1. Because of Lemma A.1.3 it remains to show inequality
(9) of Proposition 2.1, where v1,m ≡ vm . From Lemma A.1.4, (A–30) and the
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differential equations (A–8) for ϕ0 and (A–7) for ϕl , where m := l − 1 in (A–7), it
follows that

div T vm − Bvm =
1
s

(
sφ′

0√
1 +φ′

0
2

)′

+

m∑
k=1

Fm,k Bk
+ F̃m,m+1 Bm+1

− B
(C

B
+φ0 + · · · +φm Bm

)
= (F̃m,m+1 −φm)Bm+1

=
(
O(b0(ln q)m+1q2m)+ O(b0(ln q)mq2m)

)
Bm+1

= O(b0(ln q)m+1q2m)Bm+1. �

A.2. Expansion far from the needle. Set, for 0< B < 1, q ≥ 3 and |ρ|< ρ0,

vn =

n∑
k=0

ψk(s)ρ2k+1,

where the ψk(s) ≡ ψk(B, q; s) are twice continuously differentiable functions in
q ≤ s <∞. Suppose that ψ ′

k(q) satisfies the condition (13) and that ρ is a solution
of (14) for a given b1. We will set b1 = b0(1 + ε)/q , where |ε| is small and q is
large. Thus, ρ will be small. Then vn satisfies the boundary condition (11).

The sum vn is said to be an approximate solution of (10)–(11) if vn satisfies the
boundary condition (11) and if

|div T vn − Bvn| ≤ c |ρ|
2n+3

on [q,∞), where the constant c = c(n, ρ0) is independent on B, ρ and s. We will
see that ψk satisfies a linear second order boundary value problem, provided vn is
an approximate solution. In particular, ψ0 is a solution of the linearized equation
to (10) about the zero solution.

Definition of ψk . Assume for k ∈ N ∪ {0} that

(A–36) sup
s∈(q,∞)

|ψ ′

k(s)|<∞,

uniformly in 0< B < 1 and q ≥ 3.
Then, for given N ∈ N and |ρ|< ρ0 with ρ0 sufficiently small, we have

v′
n√

1 + v′
n

2
≡

( n∑
k=0

ψ ′

kρ
2k+1

)(
1 +

( n∑
k=0

ψ ′

kρ
2k+1

)2 )−1/2

= ρψ ′

0 +

N∑
k=1

fn,k(ψ
′

0, . . . , ψ
′

n)ρ
2k+1

+ f̃n,N+1ρ
2N+3.
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Set gn(ρ) := v′
n/
√

1 + v′
n

2. Then

fn,k = g(2k+1)
n (0)/(2k + 1)! and f̃n,k = g(2k+1)

n (tρ)/(2k + 1)! for 0< t < 1.

From assumption (A–36) on ψ ′

k it follows that

| fn,k | ≤ cn,k(q) <∞ and | f̃n,N+1| ≤ c̃n,N+1(q) <∞.

Above we have used that vn(1 + (v′
n)

2)−1/2 is an odd function in ρ.
Thus

(A–37) div T vn =
1
s
(sψ ′

0)
′ρ+

1
s

N∑
k=1

(s fn,k)
′ρ2k+1

+
1
s
(s f̃n,N+1)

′ρ2N+3.

As in the previous section we need estimates on the derivatives ( fn,k)
′ and

( f̃n,N+1)
′. Assume for k ∈ N ∪ {0} that

(A–38) sup
s∈(q,∞)

|ψ ′′

k (s)|<∞,

uniformly in 0< B < 1 and q ≥ 3.
Applying identity (A–4) and the assumptions (A–36) and (A–38) on ψ ′

k and ψ ′′

k ,
we get

div T vn =
1
s
(sψ ′

0)
′ρ+

N∑
k=1

Fn,kρ
2k+1

+ F̃n,N+1ρ
2N+3

and Fn,k , F̃n,N+1 are bounded on [q,∞). Set

hn(ρ) :=
1
s

v′
n√

1 + v′
n

2
+ v′′

n
(
1 + v′

n
2)−3/2

.

Then

Fn,k =
h(2k+1)

n (0)
(2k + 1)!

and F̃n,N+1 =
h(2N+3)

n (tρ)
(2N + 3)k!

for 0< t < 1.

Lemma A.2.6. Assume that ψ ′

l , l = 0, . . . , n + 1 satisfies (A–36). Then

v′

n+1√
1 + v′

n+1
2

=
v′

n√
1 + v′

n
2

+ψ ′

n+1ρ
2(n+1)+1

+ R,

where |R| ≤ c(q)ρ2(n+1)+3 and 0< ρ ≤ ρ0(q) for ρ0 sufficiently small.
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Proof.

v′

n+1√
1 + v′

n+1
2

= (v′

n +ψ ′

n+1ρ
2(n+1)+1)

(
1 + v′

n
2
+ 2v′

nψ
′

n+1ρ
2(n+1)+2

+ (ψ ′

n+1)
2ρ4(n+1)+2)−1/2

=
(
v′

n +ψ ′

n+1ρ
2(n+1)+1)(1 + v′

n
2)−1/2

·

(
1 + 2

v′
n√

1 + v′
n

2

ψ ′

n+1√
1 + v′

n
2
ρ2(n+1)+1

+
(ψ ′

n+1)
2

1 + v′
n

2 ρ
4(n+1)+2

)−1/2

=
v′

n√
1 + v′

n
2

+ (1 + v′

n
2)−3/2

(
(1 + v′

n
2)ψ ′

n+1 − v′

n
2ψ ′

n+1

)
ρ2(n+1)+1

+ O
(
ρ4(n+1)+2)

=
v′

n√
1 + v′

n
2

+
ψ ′

n+1

(1 + v′
n

2)3/2
ρ2(n+1)+1

+ O
(
ρ4(n+1)+2)

=
v′

n√
1 + v′

n
2

+ψ ′

n+1ρ
2(n+1)+1

+ O
(
ρ2(n+1)+3).

The last line follows since 1 + v′
n

2
= 1 + O(ρ). �

Lemma A.2.7. Suppose the assumptions (A–36) and (A–38) on ψ ′

k and ψ ′′

k are
satisfied. Then

div T vn+1 = div T vn +
1
s
(sψ ′

n+1)
′ρ2(n+1)+1

+ O
(
ρ2(n+1)+3)

as ρ → 0, uniformly in s ∈ [q,∞).

Proof. From (A–4) and Lemma A.2.6 it follows that

div T vn+1 ≡
1
s

v′

n+1√
1 + v′

n
2

+
v′′

n+1

(1 + v′
n

2)3/2

=
1
s

v′
n√

1 + v′
n

2
+

1
s
ψ ′

n+1ρ
2(n+1)+1

+
v′′

n+1

(1 + v′

n+1
2)3/2

+ O
(
ρ2(n+1)+3).

Since

v′′

n+1

(1 + v′

n+1
2)3/2

=
v′′

n

(1 + v′
n

2)3/2
+ψ ′′

n+1ρ
2(n+1)+1

+ O
(
ρ2(n+1)+3)
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(see the proof of Lemma A.2.6), we find that

div T vn+1 =
1
s

v′
n√

1 + v′
n

2
+

v′′
n

(1 + v′
n

2)3/2
+

1
s
(sψ ′

n+1)
′ρ2(n+1)+1

+ O
(
ρ2(n+1)+3)

= div T vn +
1
s
(sψ ′

n+1)
′ρ2(n+1)+1

+ O
(
ρ2(n+1)+3).

Lemma A.2.7 implies

div T vn+1 − Bvn+1

= div T vn +
1
s
(sψ ′

n+1)
′ρ2(n+1)+1

− B
(
vn +ψn+1ρ

2(n+1)+1)
+ O

(
ρ2(n+1)+3)

= div T vn − Bvn +

(1
s
(sψ ′

n+1)
′
− Bψn+1

)
ρ2(n+1)+1

+ O
(
ρ2(n+1)+3).

Then from the expansion (A–37) of div T vn , with N := n + 1, and the condition

div T vn+1 − Bvn+1 = O
(
ρ2(n+1)+3)

as ρ → 0, it follows on q < s <∞ that

(A–39) 1
s
(sψ ′

0)
′
− Bψ0 = 0

and for n ≥ 0
1
s
(sψ ′

n+1)
′
− Bψn+1 = −

1
s
(s fn,n+1)

′.

Thus (see Section 3) we defineψk , k ∈N, iteratively by the boundary value problem

1
s
(sψ ′

k)
′
− Bψk = −

1
s
(
s fk−1,k(ψ

′

0, . . . , ψ
′

k−1)
)′ on (q,∞),(A–40)

ψ ′

k(q)= (−1)k
(

−
1
2
k

)
, lim sup

s→∞

|ψk(s)|<∞. �(A–41)

Boundary value problem forψk . The solution of the homogeneous equation (A–39)
that satisfies the boundary conditions (A–41) is given by

ψ0(s)=
1

√
B

K0(
√

Bs)

K ′

0(
√

Bq)
.

We obtainψ1, ψ2, . . . iteratively from the boundary value problem (A–40)–(A–41).
The estimates (A–36), (A–38) on ψ ′

k, ψ
′′

k and formula (16) of ψk(B, q; q), see
Proposition 3.2, follow iteratively from a formula for the solution ψk by using the
properties of fk−1,k(ψ

′

0, . . . , ψ
′

k−1). Once we have shown (A–36) and (A–38), we
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arrive at the estimate (15) of Proposition 3.2, since

div T v2,n − Bv2,n =
1
s
(sψ ′

0)
′ρ+

1
s

n∑
k=1

(s fn,k)
′ρ2k+1

+ F̃n,n+1ρ
2n+3

− B(ψ0ρ+ · · · +ψnρ
2n+1)

= F̃n,n+1ρ
2n+3.

The proof of Theorem 1.1 requires Proposition 3.2 in the case n = 0 only. That
is, we have to confirm the estimates (A–36), (A–38) for ψ ′

0, ψ
′′

0 and the property
(16) of Proposition 3.2. Since

ψ0(B, q; s)=
1

√
B

K0(
√

Bs)
K ′

0(δ)
, δ =

√
Bq,

the expansion of w0(δ) (see Proposition 3.2) follows from the expansions of K0(δ)

and K ′

0(δ) as δ → 0. Since lims→∞ ψ ′

0(s) = 0, where B > 0 is fixed, and since
K ′′

0 (z) > 0 for, z > 0, it follows that |ψ ′

0(s)| ≤ 1 on [q,∞). From the differential
equation (A–39) we conclude that

|ψ ′′

0 (s)| ≤
1
q

+
√

B sup
s∈(q,∞)

K0(
√

B)
|K ′

0(δ)|
≤

1
q

+
√

B
K0(δ)

|K ′

0(δ)|
,

where we have used that K ′

0(z) < 0, where z > 0. Thus

sup
s∈(q,∞)

|ψ ′′

0 (s)| ≤
1
q

+
√

B O(δ ln δ) as δ → 0.

We will now prove iteratively the existence of ψk , the estimates (A–36) and
(A–38), and the formula (16) for ψk if k ≥ 1.

Let K0(z) and I0(z) be the modified Bessel functions of second kind of or-
der zero. Concerning properties of the Bessel functions K0(z) and I0(z), see
[Abramowitz and Stegun 1964] and the considerations in [Siegel 1980].

For k ∈ N, set

f := fk−1,k(ψ
′

0, . . . , ψ
′

k−1), F := −
1
s
(s f )′, η := (−1)k

(
−

1
2
k

)
.

Any solution of the differential equation (A–40) can be written as

(A–42) ψ(s)=

(
c1 −

∫ s

q
t I0(

√
Bt)F(t) dt

)
K0(

√
Bs)

+

(
c2 +

∫ s

q
t K0(

√
Bt)F(t) dt

)
I0(

√
Bs),
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where c1, c2 ∈ R. From the boundary conditions (A–41) it follows that

c2 = −

∫
∞

q
t K0(

√
Bt)F(t) dt,(A–43)

c1 =
1

√
BK ′

0(δ)

(
η+

√
B I ′

0(δ)

∫
∞

q
t K0(

√
Bt)F(t) dt

)
.(A–44)

Since

f0,1(ψ
′

0)=
1
2

(
ψ ′

0(t)
)3

=
1
2

(
K ′

0(δ)
)−3(K ′

0(
√

Bt)
)3
,

we expect that fk−1,k is a sum of such products too.

Definition. A function f (t) is said to be of type (SP) if

(i) there exists an M ∈ N such that f can be written as

f (t)=

M∑
l=1

Al(δ)Bl(
√

Bt),

where Al, Bl ∈ C∞(0,∞),

(ii) there is a kl ∈ N ∪{0} such that Al(δ)= δkl P(δ, ln δ), Bl(δ)= δ−kl P(δ, ln δ)
as δ → 0, where the expression P(δ, ln δ) is explained in Definition 3.1, and

(iii) Bl(u)= O(e−2u) as u → ∞.

Suppose f is of type (SP). Applying (A–42)–(A–44), we find

(A–45) ψ(s)=
1

√
B

(
F1(δ,

√
Bs)K0(

√
Bs)+ F2(δ,

√
Bs)I0(

√
Bs)

)
,

where

F1 :=
η

K ′

0(δ)
+

I ′

0(δ)

K ′

0(δ)

(∑
l

Al(δ)

∫
∞

δ

uK ′

0(u)Bl(u) du + δK0(δ)
∑

l

Al(δ)Bl(δ)

)

−

∑
l

Al(δ)

∫ √
Bs

δ

uI ′

0(u)Bl(u) du +
√

Bs I0(
√

Bs)
∑

l

Al(δ)Bl(
√

Bs)

− δ I0(δ)
∑

l

Al(δ)Bl(δ)

and

F2 := −

∑
l

Al(δ)

∫
∞

√
Bs

uK ′

0(u)Bl(u) du −
√

Bs K0(
√

Bs)
∑

l

Al(δ)Bl(
√

Bs).

The derivative ψ ′ is given by

(A–46) ψ ′(s)= F1(δ,
√

Bs)K ′

0(
√

Bs)+ F2(δ,
√

Bs)I ′

0(
√

Bs).
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We conclude from (A–46) that ψ ′

k is of type (SP), provided the function f :=

fk−1,k(ψ
′

0, . . . , ψ
′

k−1) is of type (SP). Property (i) of the definition follows imme-
diately from formula (A–46). We omit here the considerations that (ii) and (iii) are
also satisfied. Then fk,k+1(ψ

′

0, . . . ψ
′

k) is of type (SP) since

fk,k+1(ψ
′

0, . . . , ψ
′

k)=
1

(2k + 3)!
d2k+3gk

dρ2k+3 (0)

=

∑
∑k

l=0(2αl+1)tl=2k+3

rk,α,t(ψ
′

α0
)t0 . . . (ψ ′

αk
)tk ,

where α= (α0, . . . , αk), t = (t0, . . . , tk), αl, tl ∈ N∪{0} and rk,α,t ∈ R. We recall

that gk(ρ)= v′

k/

√
1 + (v′

k)
2 and v′

k =
∑k

l=0 ψ
′

lρ
2l+1.

Finally, we find iteratively from (A–45), (A–46) and the differential equation
(A–40) that the estimates (A–36), (A–38) for ψ ′

k , ψ ′′

k hold and that
√

Bψk(B, q; q)= P(δ, ln δ)

(see Proposition 3.2).

A.3. Composing of the inner and outer solutions. Set q := B−τ for some τ ∈

(0, 1
2). Then we will show that there is a solution ε ∈ (− 1

4 ,
1
4) of equation (17),

that is of G(ε)= 0, where

G(ε) :=
2εb0

B(q2 − 1)
+

m∑
k=0

φk(q, b, ε; q)Bk
−

1
√

B

n∑
k=0

wk(δ)ρ
2k+1.

Here is δ =
√

Bq , b1 = b0(1 + ε)/q and ρ = ρ(b0, q, ε) is given by (14). In
particular,

ρ = b1 + O(b2n+3
1 )=

b0(1 + ε)

q
+ O

(
b0

q2n+3

)
as q → ∞. The existence of a zero of the continuous function G(ε) follows from
the intermediate value theorem. Propositions 2.1 and 3.2 imply

G(ε)=
2εb0

B(q2 − 1)
+φ0(q, b0, ε; q)+ O(b0q2(ln q)2 B)

−
1

√
B

(
w0(δ)ρ+ O

(
b0

q3 δ(ln δ)
l
))

for some l ∈ N∪{0}. Since, by Proposition 2.1 and the formula for φ0,0 (page 307),
we have

φ0(q, b0, ε; q)= φ0,0(q, b0; q)+ O(b0ε ln q)

=
1
2 b0 + O

(
b0

ln q
q2

)
+ O(b0ε ln q)
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and

w0(δ)=
K0(δ)

K ′

0(δ)
= δ

(
ln δ+ γ − ln 2 + O(δ2(ln δ)2)

)
as δ → 0, it follows that

G(ε)=
2εb0

δ2 +
b0

2
−b0(ln δ+γ − ln 2)+ O

(
b0
ε

δ

1
q2

)
+ O

(
b0

ln q
q2

)
+ O(b0ε ln q)

+ O(b0q2(ln q)2 B)+ O(b0δ
2(ln δ)2)+ O(b0ε ln δ)+ O

(
b0(ln δ)l

1
q2

)
.

For R real, |R| ≤ 1, set

ε(R) :=
1
2δ

2 ln δ+
1
2(γ − ln 2 −

1
2)δ

2
+ Rδ2.

then |ε| < 1
4 if δ < δ0, for δ0 sufficiently small. We have G(ε(1)) > 0 and

G(ε(−1)) < 0 if 0< δ < δ0, for δ0 sufficiently small.
Finally, we obtain from G(ε(R))= 0 an estimate of R. Since

R = O
(

1
q2 ln δ

)
+ O

(
ln q
q2

)
+ O(δ2 ln δ ln q)+ O(δ2(ln δ)2)+ O

(
1
q2 (ln δ)

l
)
,

we find

R ≡ R(b0, B, B−τ )= O
(
(ln B)k+1 B2τ )

+ O
(
(ln B)2 B1−2τ )

uniformly in b0 ∈ [−1, 1]. Thus, Proposition 4.1 is shown.
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