Vol. 225, No. 1, 2006

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Characterization of Cheeger sets for convex subsets of the plane

Bernd Kawohl and Thomas Lachand-Robert

Vol. 225 (2006), No. 1, 103–118
Abstract

Given a planar convex domain Ω, its Cheeger set 𝒞Ω is defined as the unique minimizer of |∂X||X| among all nonempty open and simply connected subsets X of Ω. We prove an interesting geometric property of 𝒞Ω, characterize domains Ω which coincide with 𝒞Ω and provide a constructive algorithm for the determination of 𝒞Ω.

Keywords
Cheeger constant, Cheeger set, convexity, constructive algorithm, connection-like coycle
Mathematical Subject Classification 2000
Primary: 52A40, 49Q20, 28A75
Milestones
Received: 10 August 2004
Revised: 15 March 2005
Accepted: 24 March 2005
Published: 1 May 2006
Authors
Bernd Kawohl
Mathematisches Institut
Universität zu Köln
D 50923 Köln
Germany
http://www.mi.uni-koeln.de/~kawohl
†Thomas Lachand-Robert
Laboratoire de mathématiques
Université de Savoie
73376 Le Bourget-du-lac
France