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CRAIG HUNEKE AND ADELA VRACIU

We introduce classes of rings that are close to being Gorenstein and prove
they arise naturally as specializations of rings of countable CM type. We
study these rings in detail and, inter alia, generalize an old result of Teter
characterizing Artinian rings that are Gorenstein rings modulo their socle.

Introduction

This paper began with a desire to better understand Cohen–Macaulay rings of
countable or finite representation type. Let (R, m) be a (commutative Noetherian)
local ring of dimension d. Recall that a nonzero R-module M is called maximal
Cohen–Macaulay (MCM) provided it is finitely generated and there exists an M-
regular sequence {x1, . . . , xd} in the maximal ideal m.

Definition. A Cohen–Macaulay local ring (R, m) is said to have finite (respec-
tively, countable) Cohen–Macaulay type if it has only finitely (countably) many
isomorphism classes of indecomposable maximal Cohen–Macaulay modules.

A particular question we were interested in answering was the following: what
are the possible Hilbert functions of R/I , where R is a Cohen–Macaulay ring of
at most countable CM type, and I is generated by a general system of parameters?
While we have not answered this question, what we found instead was that such
quotients behave much like Gorenstein rings in a very precise sense. This changed
the direction of our inquiry to understanding these ‘almost’ Gorenstein rings. Sec-
tion 1 presents the basic formulation of the properties of such rings. Section 3 is
devoted to proving that Cohen–Macaulay rings having at most countable CM type
are almost Gorenstein in the sense of having some of these properties.

Let R be a local Cohen–Macaulay ring with canonical module ω. An example
of one of the properties we are considering is that ω∗(ω), the set of all elements
of the form f (x) where x ∈ ω and f : ω → R is an R-linear map, contains the
maximal ideal of R. If R is Gorenstein, then of course ω is free and ω∗(ω) is the
whole ring.

MSC2000: 13H10.
Keywords: Gorenstein rings, countable Cohen–Macaulay type, canonical module.
Both authors were partially supported by NSF grant DMS-0098654.

85

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2006.225-1
http://www.ams.org/msnmain?fn=705&pg1=CODE&op1=OR&s1=13H10


86 CRAIG HUNEKE AND ADELA VRACIU

After introducing these rings, it is natural to look for examples. It turns out that
Artinian Gorenstein rings modulo their socle are always examples, and this led us
to [Teter 1974], which gave an intrinsic characterization of such rings. We are able
to improve his result when 2 is a unit, by removing a seemingly important technical
assumption of Teter’s. This work is in Section 2. We further improve the result
when 2 is a unit in the graded case, giving necessary and sufficient conditions for a
standard graded Artinian ring to be the homomorphic image of a standard graded
Gorenstein ring by its socle element.

The properties that characterize the rings in which we are interested are all
closely related and perhaps are all equivalent: we have been unable to decide
whether they are equivalent, except in special cases. In Section 4, we prove that all
the conditions introduced in the Section 1 are equivalent for Artinian local rings of
type 2.

Finally, Section 5 classifies the m-primary monomial ideals of type three which
are ‘almost’ Gorenstein. An analysis of this classification shows that the conditions
under consideration are equivalent in this case.

1. Almost Gorenstein rings

We introduce rings that are almost Gorenstein in a sense identified by the first
proposition below. We begin by identifying several Gorenstein-like properties that
a ring may have. If M is a module over a ring R, we denote HomR(M, R) by M∗.
By M∗(M) we mean the ideal consisting of all f (x) where x ∈ M and f ∈ M∗.

Proposition 1.1. Let (R, m, k) be a Noetherian Cohen–Macaulay local ring with
infinite residue field k and a canonical module ω. Consider the conditions:

(A) m ⊆ ω∗(ω).

(B) For all ideals K generated by a system of parameters and for all ideals I ⊇ K ,
we have K : (K : I ) ⊆ I : m.

(C) For all ideals K generated by a system of parameters that are not contained
in a given finite (or countable, if R is complete or k is uncountable) set of
primes not equal to the maximal ideal, and for all ideals I ⊇ K , we have
K : (K : I ) ⊆ I : m.

Then (A) ⇒ (B) ⇒ (C).

Note. In case R is Artinian, the assumption on K from condition (C) is void, and
thus in this case conditions (B) and (C) are automatically the same.

Proof. Obviously (B) ⇒ (C), so we need only argue that (A) ⇒ (B). We prove the
more precise statement that a ∈ ω∗(ω) implies 0 : (0: I ) ⊆ I : a.

It is well-known that a ∈ ω∗(ω) if and only if the map ma : ω → ω, given by
multiplication by a, factors through a free module F [Ding 1993, Lemmas 1.2



RINGS THAT ARE ALMOST GORENSTEIN 87

and 1.3]. Recall that by Matlis duality we have 0 :R (0 :ω I ) = I for any ideal I .
Consider the image of the submodule N = 0 :ω I ⊂ ω under ma . On one hand, it
is a(0 :ω I ). On the other hand, using the factorization, the image in F is contained
in (0 :R I )F and the image of this latter module in ω is contained in (0 :R I )ω.

Therefore we have
a(0 :ω I ) ⊂ (0 :R I )ω.

Taking duals in R, we get

0 :R a(0 :ω I ) ⊃ 0 :R (0 :R I )ω.

But 0 :R a(0 :ω I ) = I : a, and 0 :R (0 :R I )ω = 0 :R (0 :R I ), since ω is faithful. �

A basic question we are unable to answer (except in some cases) is:

Question. If (R, m) is an Artinian local ring satisfying (C), does ω∗(ω) contain
m? In other words, are the three properties in Proposition 1.1 equivalent?

Observation. We think of all these properties as describing rings which are almost
Gorenstein. Of course, if R is Gorenstein, then K : (K : I ) = I , and ω∗(ω) = R.
Ding [1993] studied rings that satisfy property (A); we shall use some of his ideas.

We now consider in some detail what condition (A) means. Let S be a Goren-
stein Artinian ring, and K = ( f1, . . . , fn) ⊆ S an ideal. We want to study the
ring R = S/(0: K ). There is no loss of generality in writing R in this way, since
every ideal in a Gorenstein Artinian ring is an annihilator ideal. The canonical
module for this ring can be identified with HomS(R, S) ∼= 0 :S (0 :S K ) = K , so
that ωR

∼= K .
To study the trace ideal ω∗(ω), consider an R-linear map φ : K → S/(0: K ). Let

ui = φ( fi ), and let vi denote a lifting of ui to S. We must have ui (0: fi ) = 0 in R,
thus vi (0: fi ) ⊆ 0 : K in S. Since S is Gorenstein, vi ∈ (0: K ) : (0: fi ) = ( fi ) : K .
Hence, the image of any R-linear map φ is contained in

( f1) :S K + · · · + ( fn) :S K
0 : K

.

Thus, a necessary condition for ω∗(ω) ⊇ m is that

(1–1) ( f1) :S K + · · · + ( fn) :S K ⊇ m,

for any choice of a system of generators f1, . . . , fn of K .
In particular, ω∗(ω) ⊇ m implies that

(1–2) there exists i ∈ {1, . . . , n} such that ( fi ): K 6⊆ m2.

This last property also holds under the weaker assumption that R satisfies prop-
erty (C) of Proposition 1.1:
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Proposition 1.2. Let S be a Gorenstein local Artinian ring. If R = S/(0: K ) is an
Artinian local ring satisfying (C) in Proposition 1.1, and if f1, . . . , fn is a minimal
set of generators for K , there exists i ∈ {1, . . . , n} such that ( fi ): K 6⊆ m2.

Proof. Assume R satisfies (C), but fi : K lies in m2 for all i . We may assume that
mK 6= 0. For, if not, K is either 0 or has exactly one generator, a representative of
the socle of S. In either case, the result is trivial. Property (C) states that for every
ideal I ⊃ 0: K , we have

(0: K ) :
(
(0: K ): I

)
⊆ I : m

(all colons are taken in S), or equivalently I K : K ⊆ I :m. The equivalence follows
because

(0: K ) :
(
(0: K ): I

)
=

(
0 : ((0: K ) : I )

)
: K = I

(
0:(0: K )

)
: K = I K : K .

Take Ii = 0: fi . Since fi ∈ K , we have Ii ⊃ 0 : K . Then K (0 : fi ) : K ⊆ 0 :m fi

for all i = 1, . . . , n, and therefore⋂(
K (0 : fi )

)
: K ⊆

⋂
(0 :m fi ) = 0 : mK ,

or, equivalently (by duality),

mK ⊆ 0 :
(⋂(

K (0 : fi )
)
: K

)
= K

(
0 :

⋂(
K (0 : fi )

))
= K

(∑(
0 : K (0 : fi )

))
= K

(∑
( fi ) : K

)
.

This contradicts the assumption that ( fi ): K ⊆ m2 for all i . �

2. Teter’s rings

[Teter 1974] characterized the Artinian local rings R that are of the form S/(δ),
where S is a Gorenstein local Artinian ring and δ generates its socle. We shall
prove such rings satisfy condition (A). Teter’s main theorem gives necessary and
sufficient conditions for R to be of this form. His theorem states:

Theorem 2.1. Suppose that (R, m, k) is local Artinian, and let E be an injective
hull of k. R is a factor of a local Artinian Gorenstein ring by its socle if and only
if there exists an isomorphism φ : m → m∨ satisfying φ(x)(y) = φ(y)(x) for all
x, y ∈ m, where ( )∨ denotes HomR( , E).

An immediate corollary of this theorem is:

Corollary 2.2. If (R, m, k) is local Artinian and is the factor of a local Artinian
Gorenstein ring by its socle, then R satisfies all the conditions of Proposition 1.1.

Proof. Taking the Matlis duals of the injection of m into R gives a surjective map
from E onto m∨. Composing this surjection with the inverse of the isomorphism
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φ in Teter’s theorem gives a homomorphism f : E → m which is onto. As E is
isomorphic to the canonical module of R, this proves that ω∗(ω) contains m. �

Our purpose in this section is to show that the condition that φ satisfy φ(x)(y)=

φ(y)(x) for all x, y ∈ m is basically unnecessary if 2 is a unit. To do so, we first
need to prove some preliminary remarks concerning an involution on ω∗.

For every f ∈ ω∗, we can define another linear map f̃ ∈ ω∗ as follows: Let
x ∈ ω and consider the map φf,x : ω → ω defined by φf,x(y) = f (y)x . Since
HomR(ω, ω) ∼= R, there exists a unique rf,x ∈ R such that φf,x is multiplication by
rf,x , that is, f (y)x = rf,x y for all x, y ∈ ω and f ∈ ω∗.

Definition. Let f̃ : ω → R be defined by f̃ (x) = rf,x .

It is not hard to check that f̃ is a linear map. Moreover, the mapping 8 : ω∗
→ ω∗

with 8( f ) = ( f̃ ) is linear.
The basic property of f̃ is that, for all x, y ∈ ω,

(2–1) f (x) y = f̃ (y)x,

which follows because by definition f̃ (y)x = rf,y x = f (x) y.
We summarize some of the properties of f̃ :

Proposition 2.3. Let (R, m, k) be a local Artinian ring. Define 8 : ω∗
→ ω∗ as

above. For f ∈ ω∗, set If = f (ω) and Jf = f̃ (ω).

(1) 8 is an isomorphism.

(2) 82 is the identity map on ω∗.

(3) ω∗(ω) =
∑

If =
∑

Jf .

(4) ker f = 0 :ω Jf .

(5) HomR(If , ω) ∼= Jf , that is, Jf is a Matlis dual to If .

Proof. We claim that 8 is injective. Indeed, if f̃ = g̃, then f (y)x = rf,x y = rg,x y =

g(y)x for all x, y ∈ω. Since ω is faithful, this shows that f = g. It follows that 8 is
an isomorphism since ω∗ has finite length and any injective map is also surjective.

Part (2) follows at once from (2–1), which identifies r f̃ ,x y = f̃ (y)x = f (x) y.
Hence, r f̃ ,x = f (x), which means that 82 is the identity map on ω∗.

Part (3) is clear from the definition.

For (4), consider

0 :ω Jf =
{

y ∈ ω
∣∣ rf,x y = 0 for all x ∈ ω

}
=

{
y ∈ ω

∣∣ f (y)x = 0 for all x ∈ ω
}

= ker( f )

(this last equality is because ω is faithful).
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Thus,
If = f (ω) ∼=

ω

ker( f )
=

ω

0 :ω Jf

Finally, we prove (5):

HomR

( ω

0 :ω Jf
, ω

)
∼=

{
φ : ω → ω

∣∣ φ(0 :ω Jf ) = 0
}

∼= 0 :R (0 :ω Jf ) = Jf �

Observation. 0 : (0 : I )
/

I is the kernel of the canonical map R/I → (R/I )∗∗.

Thus, property (C) in Proposition 1.1 is satisfied if and only if the kernel of this
canonical map is contained in the socle of R/I , for every ideal I . On the other
hand, ω∗(ω) = m if and only if the kernel of the canonical map ω → (ω)∗∗ is
contained in the socle of ω.

Proof. To see the first claim, note that (R/I )∗ = 0 : I , and consider the short exact
sequence

0 −→ 0 : I −→ R −→
R

0 : I
−→ 0.

Applying HomR( , R) yields the exact sequence

0 −→ HomR

( R
0 : I

, R
)

−→ R −→ HomR
(
0 : I, R

)
.

Since the module on the left is 0 : (0 : I ) and the module on the right is (R/I )∗∗,
we obtain an exact sequence

0 −→ 0 : (0 : I ) −→ R −→ (R/I )∗∗,

which proves the claim.
To see the second claim, notice that the kernel of the map ω → (ω)∗∗ is⋂

f ∈ω∗

ker( f ) =
⋂

f ∈ω∗

(
0 :ω I f̃

)
= 0 :ω

( ∑
f ∈ω∗

If
)

= 0 :ω ω∗(ω) �

We now give our improvement of Teter’s theorem. The use of the map f̃ makes it
possible to avoid the awkward hypothesis that the isomorphism φ satisfy φ(x)(y)=

φ(y)(x).

Theorem 2.4. Let (R, m, k) be an Artinian ring with canonical module ω. Assume
that 2 is a unit in R and Soc(R)⊆m2. Then R is the quotient of a zero-dimensional
Gorenstein ring by its socle if and only if there exists a surjective map f : ω → m.

Proof. First assume that R is the quotient of a zero-dimensional Gorenstein ring
by its socle. The result then follows from Teter’s theorem, but the proof is so
direct that we give it here for the reader’s convenience. Let R = S/(δ), where S is
Gorenstein and δ generates the socle of S. The exact sequence

0 → k → S → R → 0
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gives, upon dualizing into the injective hull of the residue field of S, the exact
sequence,

0 → E → S → k → 0,

which proves that the injective hull E of the residue field of R is isomorphic to
the maximal ideal of S (which is an R-module), and thus clearly maps surjectively
onto the maximal ideal of R.

To prove the harder direction, we need only argue that, given f as in the state-
ment of the theorem, there exists an isomorphism g : m → m∨ such that g(x)(y) =

g(y)(x) for all x, y ∈ m.
Set h = ( f + f̃ ), which is a homomorphism from ω → R. We claim that the

kernel of this map is the socle of ω. Suppose that h(x) = 0. Then ( f + f̃ )(x) = 0.
By the definition of f̃ (see (2–1)), it follows that, for all y ∈ ω, we have f (y)x =

f̃ (x) y = − f (x) y. Hence
x f (y) + y f (x) = 0.

Since f maps ω onto m, the kernel of f must be the socle of ω (which is one-
dimensional). As f

(
f (x)y− f (y)x

)
= f (x) f (y)− f (y) f (x) = 0 for all x, y ∈ ω,

it follows that m
(

f (x)y− f (y)x
)
= 0.

Suppose that x ∈ mω. Write x =
∑

ri xi with ri ∈ m. Then

x f (y) + y f (x) =

∑
ri

(
xi f (y) + y f (xi )

)
,

but as ri ∈ m, this sum is just
∑

ri xi f (y) = 2x f (y). Hence x f (y) = 0. Since
f (ω) = m, it follows that, as y varies, x is in the socle of ω. In order to finish the
proof of the claim, we need to show that ker(h) ⊆ mω. Let x ∈ ker(h). It follows
that mx ⊆ ker(h) ∩ mω ⊆ Soc(ω), and thus x ∈ 0 :ωm2. The assumption that
Soc(R) ⊆ m2 is equivalent, by Matlis duality, to 0 :ωm2

⊆ mω.
Since the kernel of h is 1-dimensional, the length of the image of h is exactly

one less than the length of R. It follows that h maps ω onto m.
Next, we prove that, if x, y ∈ω, then h(x)y =h(y)x . For h(x)y = ( f + f̃ )(x)y =(

f (x)y + f̃ (x)y
)

=
(

f (x)y + f (y)x
)
. Since this is symmetric with respect to x

and y, the claim follows.
Taking Matlis duals, we get a map h∨

: m∨
→ R that is injective, and so h∨

is an isomorphism between m∨ and m. Set g equal to the inverse map of h∨.
Then g is an isomorphism of m and m∨. We claim that, for all x, y ∈ m, we
have g(x)(y) = g(y)(x). We can then apply Teter’s theorem to finish the proof.
The homomorphism g is the dual of the inverse of h, where we think of h as an
isomorphism of ω/(δ) with m. If u, v ∈ m, write u = h(x) and v = h(y). Then
h−1(u)v = xv = xh(y) = h(x)y = uh−1(v), proving that h−1 satisfies the same
symmetry condition. Taking Matlis duals preserves this condition, proving the
theorem. �
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In the case when R is graded, we can do better. In particular, the assumption
that the socle of R be contained in m2 can be removed, in the sense that, if it is
not true, then the structure of R is fixed. Recall that a Noetherian graded ring R is
standard graded if R0 = k is a field and R = k[R1].

Theorem 2.5. Let R be an Artinian standard graded ring over a field k, not hav-
ing characteristic 2, with graded canonical module ω. Set m equal to the ideal
generated by all elements of positive degree. The following are equivalent:

(1) Either R ∼= k[X1, . . . , Xn]/(X1, . . . , Xn)
2, or Soc(R) ⊆ m2 and there exists a

degree 0 graded surjective homomorphism f : ω(t) → m for some t .

(2) R is the quotient of an Artinian standard graded Gorenstein ring by its socle.

Proof. First assume (2). If Soc(R) is not contained in m2, there must be a socle
element of degree 1, say `. Lifting back to S it follows that mS ` ⊆ Soc(S), so
the socle of S must live in degree 2. It follows that the Hilbert function of S is
1, n, 1 for some n. Hence the Hilbert function of R is 1, n, implying that R ∼=

k[X1, . . . , Xn]/(X1, . . . , Xn)
2.

Suppose now that Soc(R) ⊆ m2. The graded canonical module of S is S(t)
for some t , and then the graded canonical module of R is HomS

(
R, S(t)

)
=

HomS(R, S)(−t) = mS(−t). Hence, there is a graded surjective map onto mR
after twisting by t .

Conversely, assuming (1) we construct S explicitly. First, if R is isomorphic to
k[X1, . . . , Xn]/(X1, . . . , Xn)

2, we may take

S = k[X1, . . . , Xn]
/
(X i X j , X2

i − X2
j ),

where the indices range over all 1 ≤ i < j ≤ n.
Otherwise, assume that Soc(R) ⊆ m2 and that there exists a degree 0 graded

surjective homomorphism f : ω(t) → m for some t . Define a ring structure on
S = k ⊕ ω(t) with multiplication

(α1, x1)(α2, x2) =
(
α1α2, α1x2 + α2x1 +

1
2

(
x1 f (x2) + x2 f (x1)

))
.

This multiplication is obviously commutative and gives S a graded structure. More-
over, S is standard graded; by counting lengths, the surjection of ω(t) → m must
have a kernel of length 1. Hence, the kernel is exactly the socle of ω, and the socle
is never a minimal generator of ω unless ω = R = k. Thus, the minimal generators
of ω(t) correspond to the minimal generators of m, and all have degree 1. In order
to check associativity, observe that the kernel of f must be Soc(ω), since it is an
R-submodule of ω of length one. This implies that ux f (y)= uy f (x) for any u ∈m

and x, y ∈ ω.
S is a graded ring with homogeneous maximal ideal 0 ⊕ ω (note that (0, x)n

=(
0, xn f (x)

)
, and (0, x) is nilpotent in S since x is nilpotent in R).
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We compute the socle of S. If (α, x) ∈ Soc(S), we must have α = 0. Thus,

Soc(S) =
{
(0, x)

∣∣ x ∈ ω and x f (y) + y f (x) = 0 for all y ∈ ω
}

= 0 ⊕ Soc(R),

as seen in the proof of the theorem.
Note that R is indeed a quotient of S by its socle, since we have a surjective

map S 7→ R given by (α, u) → α + f (u). It is not hard to check that this is a ring
homomorphism; surjectivity is obvious, and by dimension counting it follows that
the kernel of the this map is the socle of S. �

This proof works also in the nongraded case, providing a very different approach
than Teter’s paper.

3. Rings of finite or countable Cohen–Macaulay type

Let (R, m) be a Cohen–Macaulay ring of countable Cohen–Macaulay type, that is,
there are only countably-many isomorphism classes of indecomposable maximal
Cohen–Macaulay modules (MCMs). Let d denote the dimension of R.

Let {Mi }i be a complete list of all the nonisomorphic indecomposable MCMs
(up to isomorphism). Consider the set 3 consisting of all the annihilators of mod-
ules of the type Exti

R(Mj , Mk), for i ≥ 1.
Assume that the residue field is uncountable. Vector field arguments show that

m is not contained in any countable union of proper subideals, in particular it is not
contained in the union of all ideals in 3 other than m itself. Consider an element
x ∈ R not in the union of the ideals in 3 other than possibly m. We will call the
elements x ∈ R satisfying this condition general elements. By a general system
of parameters x we mean a system of parameters such that (x) contains a general
element. If a general x annihilates any one of the modules listed above, it follows
that m annihilates that module.

Proposition 3.1. The following modules have annihilator in 3:

(1) Exti
R(M, N ) for i ≥ 1, where M is MCM, N is arbitrary ( finitely generated );

(2) Exti
R(N , M) for i ≥ d + 1, where M, N are arbitrary ( finitely generated );

(3) Exti
R̄

(
N , M/(x)M

)
for i ≥ 1, where M is MCM, N is arbitrary ( finitely

generated ), x is a system of parameters such that (x)N = 0, and R̄ = R/(x).

Proof. (1) Let N be an arbitrary module. Consider the Cohen–Macaulay approxi-
mation of N (see [Auslander and Buchweitz 1989]):

0 → C → T → N → 0,

where C has finite injective dimension and T is MCM. Applying HomR(M, )

and using the fact that Exti
R(M, C) = 0, we get Exti

R(M, N ) ∼= Exti
R(M, T ) for

i ≥ 1.



94 CRAIG HUNEKE AND ADELA VRACIU

(2) If i ≥ d + 1, we have Exti
R(N , M) ∼= Exti−d

R (syzd N , M), and the result
follows from (a) since syzd N is MCM.

(3) We have Exti
R̄

(
N , M/(x)M

)
∼= Exti+d

R (N , M). �

Proposition 3.2. If M is a MCM, (x) ⊆ a ⊆ I are ideals in R, and x is a general
system of parameters, then m annihilates

(x)M : (a: I )
(x)M + I (x M :a)

.

Proof. Let I = ( f1, . . . , fn). Consider the short exact sequence

0 −→
R

a: I
−→

⊕ R
a

−→ N −→ 0,

where the first map is ū 7→
(

f1u, . . . , fnu
)
. Apply Hom

R̄

(
, M/(x)M

)
. By

Proposition 3.1(3) we know that m annihilates Ext1
R̄

(
N , M/(x)M

)
, and therefore

it annihilates the cokernel of the induced map⊕
HomR̄

(
R
a

,
M

x M

)
−→ HomR̄

(
R

a: I
,

M
x M

)
,

which is equivalent to ⊕ x M : a

x M
−→

x M : (a: I )
x M

.

The above map is given by
(
ū1, . . . , ūn

)
7→ f1u1 + · · · + fnun , and therefore the

cokernel is ⊕
HomR̄

(
R
a

,
M

x M

)
−→ HomR̄

(
R

a: I
,

M
x M

)
,

which is equivalent to ⊕ x M : a

x M
−→

x M : (a: I )
x M

.

The map is given by
(
ū1, . . . , ūn

)
7→ f1u1 + · · · + fnun , and therefore has cokernel

x M : (a: I )
x M + I (x M :a)

. �

Corollary 3.3. If x is a general system of parameters, we have, for any ideal I ,

m
(
x : (x : I )

)
⊆ (x, I ).

Proof. Take M = R and a = (x) in Proposition 3.2. �

Corollary 3.3 shows that Cohen–Macaulay local rings of finite or countable CM
type satisfy property (C) of Proposition 1.1. We believe that they also satisfy the
first condition that m ⊆ ω∗(ω), but have been unable to prove it in this generality.
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4. Ideals of type 2

We prove that the conditions of Proposition 1.1 are equivalent for Artinian rings
of type 2. We begin with a general result concerning type n ideals. The following
notation will be used throughout the rest of the paper:

Notation. Let (S, m) be a local Gorenstein ring, and let R = S/I , where I is
an m-primary ideal of type n. We represent I as an irredundant intersection of n
irreducible ideals I = J1 ∩ J2 ∩ · · · ∩ Jn , and choose J ⊆ I to be an irreducible
ideal. Then for every i = 1, . . . , n there exists an fi ∈ S such that Ji = J : fi . Unless
otherwise specified, all colons are computed in S.

Since I = J1 ∩ · · · ∩ Jn , we have J : I =
∑

i J : Ji . To see this, it suffices
to prove equality after computing annihilators into J . But I = J : (J : I ), while
J :

(∑
i J : Ji

)
= J : (J : J1) ∩ · · · ∩ J : (J : Jn) = J1 ∩ · · · ∩ Jn = I. It follows

that the canonical module of S/I can be computed as:

(4–1) ωS/I
∼=

J : I
J

=

∑
i (J : Ji )

J
=

(J, f1, . . . , fn)

J
.

Proposition 4.1. Adopt the notations above. A necessary condition for R = S/I to
satisfy condition (C) of Proposition 1.1 is that, for all 1 ≤ i ≤ n,∑

j 6=i (Ji : Jj ) + (J1 : Ji ) ∩ · · · ∩ (Jn : Ji ) ⊇ m.

Proof. Without loss of generality we prove the claim for i = 1. Set K = J2∩· · ·∩ Jn

and J1 = J . The asserted equality is equivalent to saying that K : J + J : K ⊇ m.
By passing to the quotient, we may assume that I = 0. Condition (C) tells us that
0 : (0 : J ) ⊆ J : m. We have

0 : (0: J ) = (K ∩ J ) :
(
(K ∩ J ) : J

)
= (K ∩ J ) : (K : J )

= K : (K : J ) ∩ J : (K : J ).

The ideal K : (K : J ) contains J , and so since J is Gorenstein, it can be written
in the form J : L for some ideal J ⊆ L . Moreover, since K : (K : J ) contains
K + J = J : (J : K ), it follows that L ⊆ J + K . Then

0 : (0: J ) = J : L ∩ J : (K : J ) = J :
(
L + (K : J )

)
.

The assumption that 0 : (0 : J ) ⊆ J : m then implies that J :
(
L + (K : J )

)
⊆ J : m

and so m = J : (J :m) ⊆ J :
(
J : (L + (K : J ))

)
= L + K : J . It follows that

J : K + K : J = m, which gives the required formula. �

Theorem 4.2. Let (R, m, k) be a local Artinian ring of type 2. Write R = S/I ,
where S is a regular local ring, and write I = J1 ∩ J2, where Ji are irreducible
ideals. The three conditions of Proposition 1.1 are equivalent. Furthermore, these
conditions are also equivalent to J1 : J2 + J2 : J1 ⊇ m.
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Proof. The fact that the weakest condition from Proposition 1.1, that is, that for
every ideal I of R one has 0 : (0: I ) ⊆ I : m, implies that J1 : J2 + J2 : J1 = m is
a particular case of Proposition 4.1.

Assume that J2 : J1 + J1 : J2 = m. We will prove that ω∗(ω) contains m. Using
the notation on page 95, let y ∈ J1 : J2 = (J, f2) : f1, and choose z such that
y f1 ≡ z f2 (mod J ).

Recall the description of ω given in (4–1) and define the R-linear map 8 :ω→
R
I

by 8( f1)= z and 8( f2)= y. To check that 8 is well-defined, consider any relation
a f1+b f2 ≡ 0 (mod J ). We need to check that az+by ∈ I = J : ( f1, f2). Indeed,
a f1z+b f1 y = a f1z+b f2z = (a f1+b f2)z ∈ J , and a f2z+b f2 y = a f1 y+b f2 y =

(a f1 + b f2)y ∈ J . We have thus shown that J1 : J2 ⊆ ω∗(ω). By symmetry, the
same holds for J2 : J1. It follows that m ⊆ ω∗(ω) and completes the proof the
theorem. �

The above proof shows that all of these conditions are equivalent to saying that
I : (I : J1) ⊆ J1 :m. It is remarkable that this condition implies the strongest condi-
tion, namely that ω∗(ω) contain m, especially since it is not obviously symmetric
in J1 and J2.

Example 4.3. We can analyze type-2 monomial ideals completely. Let S =

k[x1, . . . , xn] be a polynomial ring, and assume that I is generated by monomials.
It follows that I can be represented as an intersection of irreducible monomial
ideals. It is well-known that the only irreducible m-primary monomials ideals are
generated by powers of the variables. Hence we may assume that

J1 =
(
xc1

1 , . . . , xcn
n

)
, J2 =

(
xd1

1 , . . . , xdn
n

)
,

J1 : J2 =
(
xc1

1 , . . . , xcn
n , xc1−d1

1 · · · xcn−dn
n

)
,

J2 : J1 =
(
xd1

1 , . . . , xdn
n , xd1−c1

1 · · · xdn−cn
n

)
,

where by convention if a variable has negative or zero exponent we drop it from
the product. Only in the following cases does J1 : J2 + J2 : J1 contain m:

(1) For every i , either ci = 1 or di = 1. By relabeling the variables, we can assume
in this case that

J1 =
(
x1, . . . , xs, xcs+1

s+1 , . . . , xcn
n

)
,

J2 =
(
xd1

1 , . . . , xds
s , xs+1, . . . , xn

)
,

I =
(
xd1

1 , . . . , xds
s , xcs+1

s+1 , . . . , xcn
n , xi xj

∣∣ i ≤ s, s + 1 ≤ j
)
.

(2) One of the products xc1−d1
1 · · · xcn−dn

n or xd1−c1
1 · · · xdn−cn

n has all but one non-
positive exponent, while the remaining exponent (say, the exponent of xn) is equal
to one. Moreover, for all i = 1, . . . , n − 1, either ci = 1 or di = 1. Assume that



RINGS THAT ARE ALMOST GORENSTEIN 97

c1 ≤ d1, . . . , cn−1 ≤ dn−1 and cn = dn + 1. Then the second part of the condition
forces c1 = · · · = cn−1 = 1. In this case, the ideals are

J1 =
(
x1, . . . , xn−1, xc

n
)
,

J2 =
(
xd1

1 , . . . , xdn−1
n−1 , xc−1

n
)
,

I =
(
xd1

1 , . . . , xdn−1
n−1 , xc

n, xi xc−1
n

∣∣ i = 1, . . . , n − 1
)
.

(3) Both products xc1−d1
1 · · · xcn−dn

n and xd1−c1
1 · · · xdn−cn

n have all but one nonpositive
exponent, while the remaining exponent is equal to one. For instance, cn − dn = 1
and ci ≤ di for all i 6= n, dn−1 − cn−1 = 1, di ≤ ci for all i 6= n − 1. This means
that xn = xc1−d1

1 · · · xcn−dn
n and xn−1 = xd1−c1

1 · · · xdn−cn
n . The conditions stated

above imply that ci = di for all i < n − 1. In order for xi to be in J1 : J2 + J2 : J1

we need ci = di = 1, thus R is isomorphic to S0/I0, where S0 = k[x, y] and
I0 = (xc, yd , xc−1 yd−1) for some c, d (and thus R is a Teter ring).

5. Monomial ideals of type 3

In this section we classify the type-3 primary monomial ideals I in a polynomial
ring S = k[x1, . . . , xn] such that R = S/I is Artinian and satisfies one of the
conditions of Proposition 1.1. We also prove that in this case the three conditions
are equivalent.

The following notations will be used throughout this section: S = k[x1, . . . , xn]

and I = J1 ∩ J2 ∩ J3, where each Ji = (xai1
1 , . . . , xain

n ) is a monomial m-primary
Gorenstein ideal (it is well-known that all monomial m-primary Gorenstein ideals
are of this form). We use xai −aj to denote

∏
xaik−a jk

k , where the product runs over
the indices k ∈{1, 2, . . . , n} with aik ≥a jk . Note that we have Ji : Jj = Ji +(xai −aj ).

We begin by establishing a necessary condition for condition (4) (Lemma 5.1),
and a sufficient condition for condition (1) (Lemma 5.3).

Lemma 5.1. Let I = J1∩J2∩J3 be a monomial type-3 ideal. If x ∈ R is a monomial
such that x Ji ⊆ I : (I : Ji ) for all i ∈ {1, 2, 3}, then

x ∈ (I : J1) + (I : J2) + (I : J3).

Proof. Assume that x /∈ (I : J1) + (I : J2) + (I : J3), but that for all i = 1, 2, 3 we
have x Ji ⊆ I : (I : Ji ).

By Proposition 4.1, we have

x ∈ J1 : J2 + J1 : J3 + I : J1,

x ∈ J2 : J1 + J2 : J3 + I : J2,

x ∈ J3 : J1 + J3 : J2 + I : J3.



98 CRAIG HUNEKE AND ADELA VRACIU

Because x and all the ideals involved are monomial, we must in fact have:

x ∈ J1 : J2 + J1 : J3, x ∈ J2 : J1 + J2 : J3, x ∈ J3 : J1 + J3 : J2.

Since x /∈ I : J1, we may assume that either x /∈ J2 : J1 or x /∈ J3 : J1. Assume, for
instance, x /∈ J2 : J1. The second equation implies that x ∈ J2 : J3, and it follows
that x /∈ J1 : J3 (otherwise x would be in I : J3). Thus the first equation implies
x ∈ J1 : J2, so x /∈ J3 : J2 (otherwise x ∈ I : J2), and thus x ∈ J3 : J1.

Combining these results, we have

(5–1) x ∈ (J2 : J3) ∩ (J3 : J1) ∩ (J1 : J2).

We cannot have x ∈ J1+ J2+ J3, since, for instance, x ∈ J1 would imply x ∈ J1 : J3.
Similarly, the assumption x /∈ J3 : J1 leads to x ∈ (J3 : J2)∩(J2 : J1)∩(J1 : J3) and

x /∈ J1 + J2 + J3.
Each of these situations is impossible: for instance, relation (5–1) implies that

x = xa1−a2 = xa2−a3 = xa3−a1 . If xk is a variable which appears in x with exponent
ck > 0, we must have ck = a1k−a2k = a2k−a3k = a3k−a1k , which is clearly
impossible. �

On a related note, we have the following general fact:

Proposition 5.2. Let I = J1 ∩ J2 ∩· · ·∩ Jn be an m-primary ideal, with J1, . . . , Jn

m-primary Gorenstein ideals. Then ω∗(ω) ⊆ (I : J1 + · · · + I : Jn)/I.

Proof. Pick J ⊆ I a Gorenstein m-primary ideal. According to relation (4–1),
ω ∼= (J : J1 +· · ·+ J : Jn)/J. Since J : Ji is annihilated by Ji in ω, its image under
any f ∈ ω∗ is also annihilated by Ji in S/I , and thus it is contained in (I : Ji )/I .

�

Lemma 5.3. Let I = J1 ∩ J2 ∩· · ·∩ Jn be a type n ideal, with J1, . . . , Jn m-primary
Gorenstein ideals. Pick J ⊆ I an m-primary Gorenstein ideal, and write Ji = J : fi

for some fi ∈ R. If u1, . . . , un ∈ S are such that ui fj ≡ uj fi (mod J ) for all
i, j = 1, . . . , n, then there is an R-linear function φ : ω → R = S/I defined by
φ( fi ) = ui .

Proof. If α1 f1 + . . . αn fn ∈ J is a relation on f1, . . . , fn as elements in ω, we must
show that α1u1 + · · · + αnun ∈ I is a relation on the images in S/I . But this is
clear, since fi (α1u1 + · · · +αnun) = ui (α1 f1 + . . . αn fn) = 0 (mod J ). �

Theorem 5.4. Let S = k[x1, . . . , xn] and let I = J1 ∩ J2 ∩ J3 be a type-3 m-
primary monomial ideal, with J1 =

(
xa11

1 , . . . , xa1n
n

)
, J2 =

(
xa21

1 , . . . , xa2n
n

)
and J3 =(

xa31
1 , . . . , xa3n

n
)
. The three conditions in Proposition 1.1 are equivalent for R =

S/I , and they hold if and only if R is isomorphic to the quotient ring obtained in
one of the following situations:

(a) I is a Teter ideal, that is, I =
(
xa1

1 , . . . , xan
n , xa1−1

1 · · · xan−1
n

)
.
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(b) J1 =
(
xa

1 , xb
2 , xc3

3 , . . . , xcn
n

)
,

J2 =
(
xa+1

1 , x2, x3, . . . , xn
)
,

J3 =
(
x1, xb+1

2 , x3, . . . , xn
)
, with n ≥ 3 and a, b, c3, . . . , cn > 1.

(c) J1 =
(
xa

1 , xb+1
2 , x3, . . . , xn

)
,

J2 =
(
xa+1

1 , xb
2 , x3, . . . , xn

)
,

J3 =
(
x1, x2, xc3

3 , . . . , xcn
n

)
.

(d) J1 =
(
xa

1 , x2, . . . , xs, xbs+1
s+1 , . . . , xbn

n
)
,

J2 =
(
xa+1

1 , x2, . . . , xn
)
,

J3 =
(
x1, xc2

2 , . . . , xcs
s , xs+1, . . . , xn

)
.

(e) J1 =
(
x1, . . . , xs, xs+1, . . . , xt , xct+1

t+1 , . . . , xcn
n

)
,

J2 =
(
x1, . . . , xs, xbs+1

s+1 , . . . , xbt
t , xt+1, . . . , xn

)
,

J3 =
(
xa1

1 , . . . , xas
s , xs+1, . . . , xt , xt+1, . . . , xn

)
.

Proof. First we check that in each of these cases we get an ideal I = J1 ∩ J2 ∩ J3

for which condition (A) in Proposition 1.1 holds.

Case (a) is covered by Teter’s result.

Case (b). Take J =
(
xa+1

1 , xb+1
2 , xc3

3 , . . . , xcn
n

)
, as well as

f1 = x1x2, f2 = xb
2 xc3−1

3 · · · xcn−1
n , f3 = xa

1 xc3−1
3 · · · xcn−1

n ,

so that Ji = J : fi . For each i ≥ 3, define φi : ωR → R by

φi ( f1) = xi , φi ( f2) = xb
2 , φi ( f3) = xa

1 .

This is well-defined by Lemma 5.3, since we have: xi f2 ≡ xb
2 f1 ≡ 0 (mod J ),

xi f3 ≡ xa
1 f1 ≡ 0 (mod J ), and xa

1 f2 = xb
2 f3. Thus, x3, . . . , xn ∈ ω∗(ω). Further,

define φ1 : ω → R and φ2 : ωR → R by

φ1( f1) = x1, φ1( f2) = xb−1
2 xc3

3 − 1 · · · xcn−1
n , φ1( f3) = 0;

φ2( f1) = x2, φ2( f2) = 0, φ2( f3) = xa−1
1 xc3−1

3 · · · ccn−1
n .

It is not hard to check that xiφ( fj ) ≡ xjφ( fi ) (mod J ) for all i, j = 1, 2, 3, where
φ is φ1 or φ2. Thus φ1 and φ2 are well-defined, and x1, x2 ∈ ω∗(ω).

Case (c). Take J =
(
xa+1

1 , xb+1
2 , xc3

3 . . . , xcn
n

)
, as well as

f1 = x1xc3−1
3 · · · xcn−1

n , f2 = x2xc3−1
3 · · · xcn−1

n , f3 = xa
1 xb

2 ,
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so that Ji = J : fi , and ω = (J, f1, f2, f3)/J . For each i ≥ 3 define φi : ω → R by

φi ( f1) = x1, φi ( f2) = x2, φi ( f3) = xi .

We have x1 f2 ≡ x2 f1, xi f1 ≡ x1 f3 ≡ 0 (mod J ), xi f2 ≡ x2 f3 ≡ 0 (mod J ), and
thus φi is well-defined by Lemma 5.3.

Case (d). Take J =
(
xa+1

1 , xc2
2 , . . . , xcs

s , xbs+1
s+1 , . . . , xbn

n
)
, as well as

f1 = x1xc2−1
2 · · · xcs−1

s , f2 = xc2−1
2 · · · xbn−1

n , f3 = xa
1 xbs+1−1

s+1 · · · xbn−1
n .

For each i = 2, . . . , s and j = s + 1, . . . , n define φi j : ω → R by

φi j ( f1) = xj , φi j ( f2) = xa
1 , φi j ( f3) = xi .

We have xa
1 f1 ≡ xj f2 ≡0 (mod J ), xa

1 f3 ≡ xi f2 ≡0 (mod J ), and xi f1 ≡ xj f3 ≡0
(mod J ), thus φi j is well-defined, and x2, . . . , xn ∈ ω∗(ω). Define φ : ω → R by

φ( f1) = x1, φ( f2) = xbs+1−1
s+1 · · · xbn−1

n , φ( f3) = 0.

We have xbs+1−1
s+1 · · · xbn−1

n f1 ≡ x1 f2 and xbs+1−1
s+1 · · · xbn−1

n f3 ≡ x1 f3 ≡ 0 (mod J ),
thus φ is well-defined, and x1 ∈ ω∗(ω).

Case (e). Take J =
(
xa1

1 , . . . , xcn
n

)
, together with

f1 = xa1−1
1 · · · xbt−1

t , f2 = xa1
1 · · · xas−1

s xct+1−1
t+1 · · · xcn−1

n , f3 = xbs+1−1
s+1 · · · xcn−1

n .

For each i = 1, . . . , s, j = s + 1, . . . , t , k = t + 1, . . . , n, we can define a map
φi jk : ω → R by

φi jk( f1) = xk, φi jk( f2) = xj , φi jk( f3) = xi .

We have xk f2 ≡ xk f3 ≡ xj f1 ≡ xj f3 ≡ xi f1 ≡ xi f2 ≡ 0 (mod J ), and therefore
φi jk is well-defined, and x1, . . . , xn ∈ ω∗(ω).

Now, we show that condition (A) in Proposition 1.1 implies one of the cases
(a)–(e) listed in the statement of the theorem.

Whenever we have a variable xk ∈ Ji : Jj , this implies that either xk ∈ Ji or
xk = xai −aj . The latter is equivalent to{

aik = a jk + 1,

ail ≤ a jl for l 6= k.

According to Lemma 5.1, every variable xk is in one of the ideals I : J1, I : J2, or
I : J3. Without loss of generality we may assume x1 ∈ I : J1. Therefore, one of the
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following holds:

x1 ∈ J2 ∩ J3, x1 = xa3−a1 ∈ J2,

x1 = xa2−a1 ∈ J3, x1 = xa3−a1 = xa2−a1 .

We claim that x1 = xa3−a1 = xa2−a1 implies that I is a Teter ideal. We have
a31 = a21 = a11 +1, and a3k, a2k ≤ a1k for all k 6= 1, and therefore we may assume
that xk /∈ J1 for all k 6= 1. On the other hand, xk ∈ I : Ji for some i . If i = 1, it
follows that xk ∈ J2 ∩ J3, since otherwise we would have xk = x1.

Since I has type 3, there must be at least two variables, say x2 and x3, not in
J2 ∩ J3 (otherwise we would have a containment between J2 and J3). Without
loss of generality, assume that x2 = xa1−a2 (in I : J2) and x3 = xa1−a3 (in I : J3). It
follows that a1k = a2k for all k 6= 1, 2, and a1k = a3k for all k 6= 1, 3. In particular,
all the variables xk with k > 3 have a1k = a2k = a3k , and therefore they must be in
J1 ∩ J2 ∩ J3 and can be omitted. We are in case (a).

Suppose now that I is not a Teter ideal, thus xk ∈ I : Ji implies that xk ∈ Jj + Jl ,
where {i, j, k} = {1, 2, 3}.

Assume that we have two distinct variables, say x1, x2 ∈ I : J1, that belong to at
most one of J1, J2, J3. We must have either x1 = xa2−a1 ∈ J3 and x2 = xa3−a1 ∈ J2,
or vice versa. For k > 2, we have a2k, a3k ≤ a1k . If xk ∈ I : J1, then xk ∈ J2 ∩ J3. If
xk ∈ I : J2, then xk = xa1−a2 (since otherwise xk ∈ J1 implies xk ∈ J1 ∩ J2 ∩ J3 and
we may omit the variable xk from the presentation of S/I ). But this implies that
a1l ≤ a2l for all l 6= k, contradicting that x2 ∈ J2 \ J1. We thus are in case (b).

From now on suppose that, for each i ∈ {1, 2, 3}, there is at most one variable
in I : Ji that is not in the intersection of two of the ideals J1, J2, J3.

Consider the case when each of I : J1 and I : J2 contains a variable which belongs
to at most one of J1, J2, J3. Without loss of generality, assume that these variables
are x1 ∈ I : J1 and x2 ∈ I : J2.

– If x1 = xa3−a1 ∈ J2 and x2 = xa1−a2 ∈ J3, then a1k ≤ a2k for all k 6= 2. On the
other hand, a21 = 1, thus a11 = 1, contradicting x1 /∈ J1.

– If x1 = xa3−a1 ∈ J2, x2 = xa3−a2 ∈ J1, then a3k ≤ a1k for all k 6= 1. On the
other hand a12 = 1, thus a32 = 1, contradicting x2 /∈ J3.

– If x1 = xa2−a1 ∈ J3 and x2 = xa3−a2 ∈ J1, then a2k ≤ a1k for all k 6= 1. On the
other hand, a12 = 1, thus a22 = 1, contradicting x2 /∈ J2.

– If x1 = xa2−a1 ∈ J3 and x2 = xa1−a2 ∈ J3, then a1k = a2k for all k > 2. Thus,
xk ∈ J1 : J2 or xk ∈ J2 : J1 implies that xk ∈ J1 ∩ J2. If xk ∈ I : J3, it follows
that x1xk ∈ J2 ∩ J3. Since x1 /∈ (J2 + J3), we must have xk ∈ J2 ∩ J3. Therefore
xk ∈ J1 ∩ J2 ∩ J3, and we may omit these variables.

Therefore we are in case (c).
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Suppose that there is only one variable that belongs to exactly one of J1, J2, J3,
say x1 = xa2−a1 ∈ J3, and that all other variables belong to exactly two of J1, J2, J3.
Since a2k ≤ a1k for all k 6= 1, we have either xk ∈ J2 ∩ J1 or xk ∈ J2 ∩ J3. Thus we
must be in case (d).

Finally, if every variable belongs to exactly two of J1, J2, J3, we are in case (e).
�
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