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We consider a locally compact, noncompact, totally disconnected, nondis-
crete, metrizable abelian group G that is the union of a countable chain of
compact subgroups. On G we consider a stationary standard Markov pro-
cess defined by a semigroup µt of probability measures, satisfying µs+t =

µs ∗ µt and limt→0 µt = δ0, and we consider the Lévy measure associated
to the process through the Lévy–Khintchine formula. Under the hypothesis
that the Lévy measure is unbounded, we show that the process may be ob-
tained as a limit of discrete processes defined on the discrete quotient groups
G/Gn, where Gn is a descending chain of compact open subgroups. These
discrete processes, in turn, are defined by means of a random walk on a
homogeneous tree, naturally associated to G.

1. Introduction and preliminaries

Let G be a locally compact, noncompact, totally disconnected abelian group. We
assume that G is metrizable, nondiscrete and the union of a countable chain of
compact subgroups. The hypotheses imply that there exists a double sequence of
compact open subgroups {Gn : n ∈ Z}, satisfying the following conditions (see
[Pontryagin 1966; Evans 1989]):

(i) Gn ⊂ Gn−1.

(ii)
⋃

n Gn = G and
⋂

n Gn = {0}.

(iii) Gn/Gn+1 is a finite group of order qn .

Property (iii) implies that m(Gn) = m(Gn+1)qn if m is a Haar measure for G.
Thus, if we choose the Haar measure in such a way that m(G0)= 1, we conclude
that m(Gn)= qn . . . q−1 for n < 0 and m(Gn)= q−1

n−1 . . . q
−1
0 for n > 0.

There is a natural ultrametric structure associated to the double chain of sub-
groups Gn . We define a norm for the elements of G:

Definition 1. Define |0| = 0 and |a| = m(Gn) for a ∈ Gn \ Gn+1.
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This norm satisfies the ultrametric inequality

|a + b| ≤ max{|a|, |b|}.

It is also clear that |a| = |−a| and that d(a, b)= |a−b| is a metric that gives G the
structure of a locally compact ultrametric space satisfying the following properties:

(a) Every closed ball is compact.

(b) The group of isometries acts transitively on the space.

These hypotheses imply, as shown in [Hewitt and Ross 1963; Del Muto and
Figà-Talamanca 2004], that the ultrametric space may be given the structure of a
locally compact abelian group. The same group structure can be given different
(though topologically equivalent) ultrametric structures, through a different choice
of the double sequence Gn . In particular, one could choose a maximal chain of
subgroups. In this case the groups Gn/Gn+1 would be simple and the qn would
be prime numbers. This choice however may not be always the most appropriate,
in particular when G is a local field, because in this case the chain of subgroups
which yields the additional property that |ab| = |a||b| may not be maximal.

Conversely, two different group structures may yield the same ultrametric struc-
ture. For instance, there exist local fields of characteristic zero and of characteristic
p 6= 0 that have the same metric structure.

In this paper we assume given the group structure and the chain Gn of compact
open subgroups of G satisfying the properties listed, and we define the metric
structure as above.

We recall from [Del Muto and Figà-Talamanca 2004] that to an ultrametric space
such as G we can associate, in a standard fashion, a tree T. The vertices of the
tree are the metric balls, and hence in this case the cosets {Gn + a : a ∈ G, n ∈ Z}.
The ascending sequence of subgroups {Gn : n = −1,−2, . . . } identifies a special
boundary point, which we denote by ∞. With respect to this special point we
consider the horocycles of the tree. A horocycle in this case is the set of vertices
consisting of the balls of a given radius; in other words the cosets relative to the
same subgroup Gn . Thus, for fixed n, a horocycle is the set Hn = {Gn +a : a ∈ G}.
The boundary of T may be identified with the one-point compactification G ∪{∞}

of G. We refer to [Del Muto and Figà-Talamanca 2004] and [Figà-Talamanca
1997] for a complete treatment of the association between an ultrametric space
and the tree of its metric balls. The most complete source for the basic definitions
related to the geometry of trees is still [Cartier 1972].

Let 0 be the dual group of G. Then 0 is the union of compact open subgroups
0n = {χ ∈ 0 : χ(a) = 1 for a ∈ G−n}. The order of the quotients 0n/0n+1 is the
number q−n . Thus 0 may be given the structure of an ultrametric space with the
same properties as the group G.
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Now suppose that µt is a semigroup of probability measures on G associated to
a standard stationary Markov process on G. Then it follows from [Parthasarathy
1967; Kochubei 2001] that there exists a positive measure F on G, such that
F(cGn) <∞ for every n and

(1) µ̂t(χ)= exp
(

−t
∫

G
(1 −χ(a)) d F(a)

)
for every χ ∈ 0. The measure F is called the Lévy measure and the formula (1)
is called the Lévy–Khintchine formula. Observe that every character χ of G takes
the value 1 on a neighborhood Gn of 0. Therefore the integral in (1) is always
finite.

2. Discrete approximating processes

We shall assume henceforth that F is infinite on G; in other words, that the se-
quence αn = F(cGn) is unbounded as n →+∞. Observe that αn ≤αn+1. Therefore
limn→+∞ αn = +∞. It is also clear that limn→+∞ α−n = 0. We will presently
show that the process associated with µt may be approximated by appropriate
convolution powers of certain discrete processes.

Lemma 2. Let µt be a semigroup of probability measures associated to a sta-
tionary standard Markov process on the group G. Let F be the Lévy measure,
satisfying, with reference to the semigroup µt , the Lévy–Khintchine formula (1).
Let αn = F(cGn) and suppose that limn→∞ αn = ∞. Let λn be a sequence of
measures such that λn(Gn)= 0 and

λn(Gn + a)=
F(Gn + a)

αn
if a /∈ Gn.

Then
lim

n→∞
λ∗btαnc

n = µt ,

in measure, where btαnc denotes the integral part of tαn .

Proof. We know λn is a probability measure on G because

1
αn

∑
a /∈Gn

F(Gn + a)= 1.

We now compute the Fourier–Stieltjes transform of λn by noticing that if χ ∈0−n ,
the annihilator of Gn , we have

λ̂n(χ)=
1
αn

∫
cGn

χ(a)d F(a)= 1 +
1
αn

∫
cGn

(χ(a)− 1) d F(a).
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Since 0−n → 0 for n → ∞, and since every character is 1 on a neighborhood of
0, it follows that, for every χ ∈ 0,

lim
n→∞

∫
cGn

(χ(a)− 1) d F(a)=

∫
G
(χ(a)− 1) d F(a).

We conclude that

lim
n→+∞

λ̂n(χ)
btαnc

= exp
(

t
∫

G
(χ(a)− 1) d F(a)

)
= µ̂t(χ). �

The assumptions on the sequence λn in Lemma 2 are sufficient to characterize
it uniquely, under the condition of invariance under translations by elements of
Gn . Such a Gn-invariant sequence λn may be thought of as a measure on the
quotient G/Gn . Therefore its convolution powers define a process on the horocycle
Hn = G/Gn . It goes without saying that any measure satisfying the conditions of
Lemma 2 can be made Gn-invariant without losing these properties.

3. The process on the vertices of the tree

The geometric structure of an ultrametric space such as G allows for an intuitive
description of what a diffusion process should be. Let’s consider first of all a
discretization of the space, such as G/Gn . The elements of this space are the
metric balls of radius (or diameter) m(Gn), a number which is small when n is
large. Consider a particle that has moved out of Gn , and therefore finds itself in
Gn−1. How could it reach a ball Gn + a? It must obviously move up to larger
and larger balls, until it reaches a ball Gh large enough to contain a. It will then
move down on a chain of descending balls until it reaches Gn +a. It seems natural
therefore to associate to a diffusion process on an ultrametric space a random walk
on the tree of its metric balls. The transition probabilities should account for the
relative difficulty of moving up (or exiting) from a ball to a larger ball, and of
moving down (or entering) from a ball to a smaller ball. This idea was put to work
in [Figà-Talamanca 1994; 2001; Baldi et al. 2001; Del Muto and Figà-Talamanca
2004]. In this context, the hitting distribution of the process on the metric balls,
starting at vertex Gn−1, defines the measures λn , the powers of which approximate
µt in accordance with Lemma 2.

The chief novelty of the present paper is that we do not assume that the measures
µt depend only on the distance from 0. In other words, the diffusion process
defined by µt is anisotropic (which accounts for the title of this paper). For a
different approach to diffusion on ultrametric spaces (in fact on local fields) one
should consult the papers of S. Albeverio and his collaborators cited in [Del Muto
and Figà-Talamanca 2004]. A full set of references may be found in [Albeverio
and Zhao 2000].
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We now proceed to define the random process on the tree of metric balls of
G. We introduce first, as in [Del Muto and Figà-Talamanca 2004], the sequence
ζi = αi/αi+1, and we observe that limn→−∞ αn = 0 implies that

lim
n→+∞

ζhζh−1 . . . ζh−n =
αh−n

αh+1
= 0 for every h ∈ Z.

We also introduce a sequence of subtrees τi of the tree T. For i ∈ Z, the vertices
of τi are Gi and the metric balls (cosets) contained in Gi \Gi+1. The sets of vertices
of the trees τi are disjoint and their union is the set of vertices of T. We use, with
a slight abuse of language, the same notation τi for the tree and its set of vertices.
We use the notation x ∼ y to denote two adjacent vertices.

We now define, for x and y two metric balls (cosets), the probability P(x, y) of
going from x to y in one step. First we stipulate that P(x, y)=0 if x is not adjacent
to y. We assume that x ∈ τi and define P(x, y)= 0 if x = Gi and y = Gi+1. This
means that according to the random walk P it is not possible to go down on the
geodesic {Gi }. Finally, if x ∈ τi and x ∼ y 6= Gi+1, we set

P(x, y)=



ζi

1 + ζi
if x ⊂ y,

1
1 + ζi

F(y)
F(x)

if y ⊂ x and x 6= Gi ,

1
1 + ζi

F(y)
F(Gi \ Gi+1)

if x = Gi , y ⊂ x and y 6= Gi+1.

This definition does not cover the case in which the denominators of the quotients
F(y)/F(Gi \ Gi+1) or F(y)/F(x) are zero. To complete the definition we stip-
ulate that the quotient F(y)/F(Gi \ Gi+1) is replaced by m(y)/m(Gi \ Gi+1) if
F(Gi \ Gi+1) = 0, and F(y)/F(x) is replaced by m(y)/m(x) if F(x) = 0. As
a result the probability of going up from the vertex x to the vertex immediately
above in one step is always ζi/(1 + ζi ).

We observe that P(x, y) is defined for every pair of vertices because T is the
disjoint union of the subtrees τi .

For fixed i we consider the probability ηik that, starting at a vertex of τi that
belongs to a horocycle Hk (with k ≥ i), we reach sooner or later a vertex of the
horocycle Hk−1. We can prove, as in [Del Muto and Figà-Talamanca 2004], that
this probability is independent of k and equals ζi . We recall here the proof for
convenience. Every path of the process P that starts at a vertex of τi and moves
outside τi visits the horocycle Hk−1 before going outside τi (if k > i) or as its first
step outside τi (if k = i). Thus the probability of visiting Hk−1 given that one starts
at a vertex of τi belonging to Hk remains the same if this event is conditioned to
the event that the process P remains within the subtree τi before reaching Hk−1.
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But within the subtree,

ηik =
ζi

1 + ζi
+

1
1 + ζi

η2
ik .

This implies that ηik = ζi is independent of k. We have proved in particular that ζi

is the probability of visiting the horocycle Hi−1 starting from Gi .

Lemma 3. Let n be any integer and Hn the corresponding horocycle. Starting at
any vertex of the tree T, with probability one, the random walk defined by P keeps,
after a finite number of steps, below the horocycle Hn .

Proof. We show first that, with probability one, after a finite number of steps, the
random walk will stay inside one of the subtrees τi . This will certainly be the
case if the random walk never visits a vertex of the double geodesic {Gk : k ∈ Z}.
Suppose then that a vertex Gh is visited. We observed above that

lim
n
ζhζh−1 . . . ζh−n = 0

for every fixed integer h. But the product ζhζh−1 . . . ζh−n is the probability that
starting at the vertex Gh , we reach sooner or later the vertex Gh−n . We conclude
that the probability that the random walk defined by P will move up indefinitely
on the geodesic {Gk : k ∈ Z} is zero. This means that, with probability one, the
random walk will stay indefinitely inside one of the subtrees τi (corresponding to
the Gi of lowest index ever reached). The fact that the random walk visits and
stays inside τi implies that ζi < 1, because the case ζi = 1 implies that within τi

the probability of going up is the same as the probability of going down, which in
turn implies that the random walk cannot keep indefinitely inside τi . The condition
ζi < 1 implies that ζi/(1 + ζi ) <

1
2 . This is the probability of moving within τi

from a horocycle Hk to a horocycle Hk−1 in one step. We conclude that it is more
probable to go down to the horocycle of larger index and that the random walk
eventually stays below the horocycle Hn . �

Of course, the vertices that lie below the horocycle Hn are the balls strictly
contained in the balls of Hn . Abusing language slightly we may say that, starting
at any vertex, the random walk eventually stays inside a ball of arbitrarily small
radius.

We now fix an integer n and, for x ∈Hn , we define λn(x) to be the probability that
the random walk, starting at the vertex Gn−1, visits and stays indefinitely below
(or inside) the vertex x . The probability measure λn may also be thought of as
the conditional expectation with respect to the partition Hn = G/Gn of the hitting
distribution of P , starting at the vertex Gn−1, on the boundary of the tree.

Lemma 4. The measures λn satisfy the hypothesis of Lemma 2.
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Proof. Under the assumption that the random walk P(x, y) starts at Gn−1 we
define ψ(x) to be the probability that the random walk visit x and keeps eventually
below the vertex (inside the ball) x . The function ψ is defined for every vertex of
the tree, although it is zero for infinitely many vertices, and does not sum to one.
By definition ψ(Gn)= 0, and ψ(x) = λn(x), for x ∈ Hn . Let x ∈ Hn and suppose
x 6= Gn . Let {x = x0, x1, . . . xh = Gn−h} be the chain of vertices connecting x to
the geodesic {Gi }. Then

λn(x)= ψ(x1)
F(x)
F(x1)

.

Indeed if we assume that the random walk stays eventually inside x1 we may con-
clude that there is a last time in which x1 is visited. At that time the probability
F(x)/F(x1) that x is visited at the following step equals the probability of staying
eventually inside x . Iterating this reasoning we conclude that

λn(x)= ψ(x2)
F(x)
F(x1)

F(x1)

F(x2)
= · · · = ψ(Gn−h)

F(x)
F(Gn−h \ Gn−h+1)

= ζn−1 . . . ζn−(h−1)(1 − ζn−h)
F(x)

F(Gn−h \ Gn−h+1)

=
αn−1

αn

αn−2

αn−1
. . .

αn−h+1 −αn−h

αn−h+1

F(x)
αn−h+1 −αn−h

=
F(x)
αn

,

showing that λn satisfies the hypothesis of Lemma 2. �

We now have all the ingredients needed to make our construction. Using the
Lévy measure associated to the process µt we define the process P(x, y) on the
vertices of the tree T of G, which accounts for the relative difficulty of exiting or
entering a ball. We consider the hitting distribution on the boundary G of the tree,
of the process P(x, y) starting at the vertex Gn−1. The conditional expectations
with respect to the partition provided by Hn of these hitting distributions are mea-
sures λn that define discrete processes on the horocycles Hn . Appropriate powers
of these measures approximate the measures µt .

4. Stable processes

These results apply in particular to processes associated to a stable distribution
on a local field. When G is a locally compact field it is convenient to choose
the sequence Gn in such a way that the norm associated to the sequence satisfies
|ab| = |a||b|. This is achieved by letting G0 be the ring of integers of G and G1

its unique maximal ideal. Next, one chooses a generator p of the maximal ideal
G1, and defines Gn = pnG0. The quotient G0/G1 is a finite field of order q = ph ,
which is also the order of each quotient Gn/Gn+1. In this context, the most general
definition of a stable distribution was the one given by A. N. Kochubei [1998], who
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showed that stable processes satisfying the additional condition µt(E)= µt(−E)
for any Borel set E are associated to Lévy measures having the following property:
For some α > 0, there exists a positive integer N and a generator p of the maximal
ideal in the ring of integers, such that

F(pN B)= q NαF(B) for every ball B ∈ G.

Conversely, if the Lévy measure enjoys this property, the associated process is
stable. The preceding equation implies, for the sequence {ζn},

ζn · · · ζn+N−1 = q Nα.

This condition holds if and only if the double sequence {ζn : n ∈ Z} is periodic. The
simplest (isotropic) case occurs when N = 1, ζn = ζ is constant, and F is uniformly
distributed on Gn \ Gn+1. This was the case studied in [Baldi et al. 2001], which
yielded ζ = q−α and

µ̂t(ξ)= e−t |ξ |α .
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