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Partial differential equations and differential geometry come together in the
idea of a generalized immersion. This concept, defined by means of Grass-
mann bundles and contact forms, allows for “immersions” with “singular-
ities.” Sophus Lie’s generalized solutions to partial differential equations
are an important special case.

The classical second fundamental form has a natural generalization in
the context of generalized immersions. The rank of the form is then mean-
ingful. A constant rank assumption on the generalized second fundamental
form leads to a natural foliation of the generalized immersion, at least when
the ambient space is a space of constant curvature. Questions about the
total geodesy and regularity of the foliation are also addressed.

Introduction

Our primary goal in this paper is to develop the idea of a generalized immersion
and to understand the natural foliation of a generalized immersion that arises from
a constant rank assumption on its generalized second fundamental form. Briefly,
our main theorems are as follows: Theorem 1 deals with the natural developable
foliation of a constant rank generalized immersion; Theorem 2 addresses the issue
of the total geodesy of the leaves of the foliation; and Theorem 3 deals with the
existence of local slices for the foliation in the vector space case.

Our definition of a generalized immersion is motivated by the geometrical ap-
proach to first order partial differential equations, as formulated by Cartan and Lie;
see [Alekseevskij et al. 1991]. In this approach, a first order system of PDEs is
expressed as a submanifold of the 1-jets, say

E ⊂ J 1(Rn,R`)= Rn
× R` × L(Rn,R`),
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and a function f : Rn
→ R` is a solution to the system precisely when the prolon-

gation of f lies in E, that is, {(x, f (x), D f (x))} ⊂ E.
Next, the contact form is introduced. This is a natural R`-valued 1-form on

J 1(Rn,R`) that annihilates vectors tangent to prolongations. It is defined by

ω(x,z,A)(h, k, B)= k − A · h.

In addition, a graphical submanifold {(x, f (x), A(x))}⊂ J 1(Rn,R`) is annihilated
by contact precisely when A(x)= D f (x), for all x, i.e., the graph is a prolongation.
It is at this point that the theory broadens the meaning of “solution” by defining
a generalized solution of a PDE to be an immersed n-dimensional submanifold of
the equation manifold E that is annihilated by contact. The generalized solutions
are interpreted as “singular” solutions to the PDE.

This is not entirely satisfying. On one hand, there is a real change in emphasis
in going from prolongations of functions to immersions annihilated by contact. In
particular, a prolongation has a canonical parametrization. On the other hand, when
we allow arbitrary immersions, the jet formulation breaks down if the immersion
is not locally the graph of a function. Finally, as geometers, we would also like to
consider PDEs on arbitrary manifolds.

The ideas of contact and prolongation are essential in our formulation of a gener-
alized immersion. Details appear in Section 1, but briefly, prolongation is a process
that creates a generalized immersion from a classical immersion by including tan-
gent map information. More precisely, if γ 0

: M → M is an immersion then the
prolongation of γ 0 is the immersion γ 1

: M → Gr n(TM) defined by

γ 1(m)= Image(T γ 0
|Tm M),

where π : Gr n(TM)→ M is the Grassmann bundle of n-planes in the tangent bun-
dle to M . The Grassmann bundle plays a role analogous to the 1-jets. In particular,
there is a natural bundle-valued contact form on the Grassmann bundle that gives
a way to understand vectors tangent to prolongations; see Lemma 1.1.

We now define a generalized immersion of M in M to be an ordinary immersion
of M in Gr n(TM) that is annihilated by contact. Technically, a classical immer-
sion is not a generalized immersion. However, if I (M,M) denotes the set of all
immersions of a manifold M into a manifold M and if GI(M,M) denotes the set
of all generalized immersions of M in M , then prolongation defines a canonical
injection

I (M,M)→ GI(M,M).

Although we do not address the issue of topologies on these spaces, the canoni-
cal injection allows for the understanding of generalized immersions as (possibly
singular) limits of families of classical immersions. For example, the radius of
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a cylinder shrinks to zero or a family of hyperboloids degenerates into a cone.
It is precisely the contact condition that makes the generalized immersions in
GI(M,M) behave like (prolongations of) classical immersions of M in M . In
particular, if we start with a generalized immersion γ : M → Gr n(TM) and let
γ 0

: M → M be the point map π ◦γ , then γ agrees with the prolongation of γ 0 at
any point where γ 0 is an immersion.

Perhaps a word or two is in order about our term “generalized immersion.”
Although a generalized immersion is encoded by means of an ordinary immersion,
it should not be thought of as a special type of immersion (as would be implied
by the term “contact immersion”). Instead, generalized immersions represent an
enlargement of the class of immersions. Moreover, our use of the term “general-
ized” is meant to reflect the analogy between generalized immersions and the idea
of generalized solutions to partial differential equations, as defined by Lie.

Section 2 is devoted to the development of the generalized second fundamental
form of a generalized immersion. Lemma 2.2 provides an important pointwise
formula for the generalized second fundamental form. Its description requires some
work with connections, specifically a connection in the Grassmann bundle, along
with some local Grassmann manifold geometry. This section also introduces the
reader to the full force of local computations using coordinate-free vector space
computations. The papers [Fisher and Laquer 1999] and [Vilms 1967] can serve
as introductions to some of these ideas.

Section 3 contains the proof of Theorem 1. In short, Theorem 1 states that
a constant rank generalized immersion into a Riemannian manifold of constant
curvature has a natural developable foliation (and conversely). First, by the rank of
the generalized immersion at a point, we mean the rank of the generalized second
fundamental form interpreted as a linear map; see (2–4). Because of the lower
semicontinuity of rank, it is reasonable to assume that the rank is in fact constant —
it is always locally constant on an open dense subset. Secondly, the kernel of
the generalized second fundamental form gives the involutive distribution needed
to create the foliation. Thirdly, the idea of a developable foliation generalizes a
classical developable surface, i.e., a ruled surface for which the unit normal is
constant along rulings; see [Klingenberg 1978; Wu 1995].

Theorem 2 in Section 4 gives conditions on a constant rank generalized immer-
sion that imply the leaves of the resulting foliation immerse as totally geodesic
submanifolds. The symmetry of the ordinary second fundamental form is lost in
the generalized setup. However, a partial symmetry remains and is exploited to
study the interaction between the left and right kernels of the generalized second
fundamental form. This interaction is then used to prove the total geodesy in three
important cases.

In Section 5 we return to the setting of vector spaces, proving in Theorem 3 the



246 ROBERT J. FISHER AND H. TURNER LAQUER

existence of local cross-sections to the foliation in the case of constant-rank gen-
eralized immersions into vector spaces. This is useful since it guarantees that the
resulting leaf space is a T1-manifold. Finally, Section 6 contains several examples
illustrating ideas from the paper.

1. Generalized immersions

Let M be a smooth Riemannian manifold of dimension n + ` and let

π : Gr n(TM)→ M

denote the Grassmann bundle of n-planes in the tangent bundle of M . The pullback
bundle π∗(TM) has a canonical subbundle U of rank n that is obtained as follows:
let P ∈ Gr n(TM). Then P is an n-dimensional subspace of Tπ(P)M . Define

U = { (P, h) ∈ π∗(TM) | h ∈ P },

that is, the fiber at P is P itself. Commonly, U is referred to as the universal
n-plane bundle over Gr n(TM). Let

Q = π∗(TM)/U

be the resulting quotient bundle. At a plane P ∈ Gr n(TM), the fiber is the
`-dimensional vector space

QP = (Tπ(P)M)/P.

There is a canonical bundle-valued 1-form ω ∈ A1(Gr n(TM),Q) defined by

(1–1) ωP (v)= Tπ(v)+ P for v ∈ TP Gr n(TM),

i.e., ωP (v) is the coset in QP represented by Tπ(v). For reasons to be explained
later, ω will be referred to as the contact form. Let M be a smooth n-manifold. A
generalized immersion of M in M is an ordinary immersion γ : M → Gr n(TM)
annihilated by contact, that is, for each m ∈ M and each h ∈ Tm M ,

ωγ (m) (T γ (h))= 0,

or equivalently, Tπ (T γ (h)) ∈ γ (m).
Let γ 0

: M → M be an immersion. Then the tangent map of γ 0 defines a
generalized immersion in a canonical manner: for each m ∈ M , the restriction of
the tangent map T γ 0

: Tm M → Tγ 0(m)M is an injective linear map. Thus the image
of T γ 0 at m gives a point in Gr n(Tγ 0(m)M) and we define γ 1

: M → Gr n(TM) by

γ 1(m)= Image
(
T γ 0

|Tm M
)
.
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We call γ 1 the prolongation (or 1-jet prolongation; see [Binz et al. 1988]) of γ 0.
Note that Jensen and Rigoli [1989] use the term “Gauss map” for the prolongation,
even though they recognize that it is a “quasi-generalization” of the classical Gauss
map. Our preference is to use the term “Gauss map” only for the principal part of
the prolongation in the vector space case.

Next, the equation γ 0
= π ◦ γ 1 implies that for each h ∈ Tm M ,

T γ 0(h)= Tπ ◦ T γ 1(h) ∈ γ 1(m).

Thus, ωγ 1(m)(T γ 1(h))= 0 as expected. Conversely, let γ be a generalized immer-
sion such that γ 0

= π ◦ γ is a classical immersion. Then γ is the prolongation of
γ 0 by the following argument: For each h ∈ Tm M , we have Tπ(T γ (h)) ∈ γ (m)
since the immersion γ is annihilated by contact. But T γ 0(h) = Tπ(T γ (h)). So
by the injectivity of T γ 0

|Tm M , it follows that

Image
(
T γ 0

|Tm M
)
= γ (m).

More generally, suppose we start with a smooth mapping γ 0
: M → M , not

necessarily an immersion. Let M0 ⊆ M be the set of all nonsingular points, i.e., all
points where the tangent mapping is injective. If γ : M →Gr n(TM) is any lift of γ 0

to a generalized immersion of M in M then, as before, γ (m)= Image
(
T γ 0

|Tm M
)

for m ∈ M0. Next, suppose M0 is dense in M . By continuity, there can be at
most one continuous extension of γ from M0 to M . Thus there can be at most
one generalized immersion γ : M → Gr n(TM) with γ 0

= π ◦ γ . Moreover, if the
unique extension is smooth then continuity and the assumption that M0 is dense
in M will imply that the extension is annihilated by contact. For example, this
principle shows how to create a generalized immersion from a cone (including the
cone point) or from a tangentially developed surface (see Example 6.1).

The contact form ω is canonically interpreted as a vector bundle morphism

ω : T Gr n(TM)→ Q.

Because π : Gr n(TM)→ M is a submersion, it follows that ω is an epimorphism
of vector bundles and thus ker ω is a vector subbundle of T Gr n(TM), i.e., a dis-
tribution on Gr n(TM).

Let v ∈ ker ωP for some P ∈ Gr n(TM). Since

ker ω→ Gr n(TM)

is a vector bundle, there is a smooth section X of ker ω such that X (P)= v. The
existence and uniqueness theorem of ODEs then implies that there is a smooth
curve P(t) of n-planes such that P(0)= P and X (P(t))= [s 7→ P(t + s)]. Note,
if c(s) is a curve in a manifold then the notation [s 7→ c(s)] or just [c(s)] denotes
the vector tangent to c at s = 0. Thus for each contact vector v ∈ ker ωP , there is
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an integral curve P(t) of the distribution ker ω with [P(t)] = v. We will call such
a curve in Gr n(TM) a “contact curve” or a “spine of n-planes.”

An alternative view of contact vectors is given by the Cartan distribution. For-
mally, this is the subbundle C of T Gr n(TM) whose fiber at P ∈ Gr n(TM) is
the span of all vectors tangent to prolongations through P . The following lemma
shows C is a distribution and is our reason for referring to ω as the contact form.

Lemma 1.1. The kernel of ω is the Cartan distribution.

Proof. We have seen that C ⊂ ker ω. For the reverse containment, we will argue
that nonvertical contact vectors, that is vectors v ∈ ker ω such that Tπ(v) 6= 0,
are tangent to prolongations. From this it follows that vertical vectors are in C,
because any vertical vector is the difference of two nonvertical contact vectors.

Let v be a nonvertical contact vector based at an n-plane P0. We will produce
an immersion γ 0

: M → M of a smooth n-manifold and a point m0 ∈ M satisfying
the following conditions:

(1) γ 0(m0)= π(P0).

(2) The image of the tangent mapping T γ 0 at m0 is P0.

(3) v is tangent to the prolongation of γ 0 at P0.

Let P : I = (−ε, ε)→Gr n(TM) be a spine of planes representing the contact vector
v, let c(t) = π(P(t)) and let c′(t) = [s 7→ c(t + s)]. Because Tπ(v) = c′(0) 6= 0,
we can assume that c′(t) 6= 0, for all t ∈ I . By the spine condition, c′(t) ∈ P(t) for
all t ∈ I , so the pullback bundle P∗(U) → I has a natural line subbundle L → I
defined by Lt = R · c′(t). Let M ⊂ P∗(U) be any rank (n − 1)-subbundle that is
complementary to L. The eventual domain for the immersion γ 0 will be an open
neighborhood M in M of a point m0 in the zero section. Keeping in mind that
P∗(U)= { (t, h) ∈ I × U | h ∈ P(t)⊂ Tc(t)M }, define γ 0

: M → M by

γ 0(t, h)= exp(h).

Here exp is the exponential map on M as determined by the choice of a Riemannian
metric or spray on M ; see [Dieudonné 1974, (18.4)] and [Fisher and Laquer 1999].
By choosing I and M appropriately, h will be sufficiently close to zero so that
exp(h) is defined whenever (t, h) ∈ M .

The key part of the argument is to compute the tangent map of γ 0 along the zero
section in M showing that

(1–2) P(t)= Image
(
T γ 0

|T(t,0)M
)
.

This implies that γ 0 is an immersion in some neighborhood of m0 = (0, 0) ∈ M
and moreover, that the curve P(t) lies in the prolongation of γ 0. Thus v is tangent
to the prolongation of γ 0.
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The tangent space T(t,0)M has a natural splitting into vertical vectors and vectors
tangent to the zero section. The former are represented by represented by curves
s 7→ (t, s·x) for x ∈Mt , while the latter are represented by curves s 7→ (t+s, 0)∈ M .
By standard properties of the exponential mapping, see [Dieudonné 1974, (18.4.5)],

T γ 0
[s 7→ (t + s, 0)] = [s 7→ γ 0(t + s, 0)] = [s 7→ c(t + s)] = c′(t)

and
T γ 0

[s 7→ (t, s · x)] = [s 7→ exp(s · x)] = x .

Thus the image of T γ 0 at (t, 0) is given by the span of c′(t) and Mt . This gives
(1–2) and completes the proof of the lemma. �

2. The generalized second fundamental form

Let M be a smooth Riemannian manifold of dimension n + `, and consider a
generalized immersion γ : M → Gr n(TM). Our purpose in this section is to
develop the concept of the generalized second fundamental form of M in M . We
maintain the notation and terminology of the previous section.

The Riemannian metric on M gives a splitting

(2–1) π∗(TM)= U ⊕ U⊥.

Next let γ 0
= π ◦ γ and let B = (γ 0)∗(TM). From (2–1), it follows that B splits:

(2–2) B = GT(M)⊕ GN(M)

where GT(M) = γ ∗(U) and GN(M) = γ ∗(U⊥). We will refer to GT(M) and
GN(M) as the generalized tangent and generalized normal bundles of the gener-
alized immersion. Let ∇ denote the pullback to B of the Levi-Civita connection
on M . For each vector field X ∈ X(M) and each section σ ∈ 0(GT(M)), we use
(2–2) to write

∇X σ = tan(∇X σ)+ nor(∇X σ).

Then the generalized tangential component

∇X σ = tan(∇X σ)

defines a connection in GT(M) while the generalized normal component

II(X, σ )= nor(∇X σ)

defines a GN(M)-valued tensor which we will call the generalized second funda-
mental form. Similarly, for each X ∈ X(M) and each η ∈ 0(GN(M)),

∇
⊥

X η = nor(∇X η)
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defines a connection in GN(M) while

II⊥(X, η)= tan(∇X η)

is a GT(M)-valued tensor.
When M is a classically immersed submanifold of M , the classical second

fundamental form IIM is the generalized second fundamental form II of the pro-
longation. Recall that the classical second fundamental form of an immersion
γ 0

: M → M is obtained from the splitting

(2–3) (γ 0)∗(TM)= T γ 0(TM)⊕ T γ 0(TM)⊥.

Let ∇ denote the pullback of the Levi-Civita connection on M . The splitting (2–3)
defines the induced connection ∇

M in T γ 0(TM) and the corresponding second
fundamental form IIM by

∇X σ = ∇
M
X σ + IIM(X, σ )

for all X ∈ X(M) and σ ∈ 0(T γ 0(TM)). Let γ 1
: M → Gr n(TM) be the prolon-

gation of γ 0. By way of the canonical identification between (γ 1)∗(π∗(TM)) and
(γ 0)∗(TM), (2–2) and (2–3) are the same splitting; thus ∇ = ∇

M and II = IIM .
For a generalized immersion γ with γ 0

= π ◦γ , the splitting in (2–2) is always
defined. On the other hand, the splitting in (2–3) is defined if and only if γ 0 is a
subimmersion. Indeed, if γ 0 is not a subimmersion, then T γ 0(TM) is not a bundle,
although the splitting

Bm = T γ 0 (Tm M)⊕ T γ 0 (Tm M)⊥

is defined for each m ∈ M . Moreover, when (2–3) is a bundle splitting, (2–2) and
(2–3) agree if and only if γ 0 is an immersion. Example 6.2 shows that the two
splittings can be distinct.

For each m ∈ M the tensor II is viewed canonically as a linear map

(2–4) IIm : Tm M → L(GT(M)m,GN(M)m).

By the kernel of IIm , we will always mean the following:

ker IIm = { h ∈ Tm M | IIm(h, σ )= 0 ∀σ ∈ GT(M)m }.

We will also be discussing the right kernel of IIm , which is defined by

R ker IIm = { σ ∈ GT(M)m | IIm(h, σ )= 0 ∀h ∈ Tm M }.

The generalized immersion is said to have rank k if and only if the rank of the
linear mapping IIm in (2–4) is equal to k for all m ∈ M . Under the constant rank
assumption, ker II defines a subbundle of TM of rank n−k, i.e., a distribution on
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M . By the lower semicontinuity of rank [Dieudonné 1974, (18.10.1)], the rank of
IIm is always locally constant on an open dense subset of M .

The connection form in Gr n(TM). Following [Dieudonné 1972, (17.16.3)] and
[Fisher and Laquer 1999, (§3)], let

C : TM ⊕ TM → T (TM)

be a connection in the tangent bundle to M . Commonly, C(h, x) is called the
horizontal lift of h that is based at x .

The Grassmann bundle is an associated fiber bundle of the frame bundle of M ,
so that a connection C induces both a horizontal lift Ĉ and a connection form θ in
Gr n(TM). Both are described naturally in terms of parallel translation.

The horizontal lift Ĉ : π∗(TM)→ T Gr n(TM) is defined by

(2–5) Ĉ(P, h)= [τt (P)],

where τt (P) is the curve of n-planes obtained by parallel translation of P along
any curve m(t) representing the tangent vector h. Since parallel translation is an
isomorphism, the translation of P as a set is again an n-plane.

Let V = ker Tπ , the bundle of vertical tangent vectors to Gr n(TM). The con-
nection form θ : T Gr n(TM)→ V is given by

(2–6) θ(v)= v− Ĉ(πGr (v) , Tπ · v)= [τ−1
t
(P(t))]

where v = [P(t)], i.e., the tangent vector represented by the curve τ−1
t
(P(t)).

A more detailed discussion of Ĉ and θ in the general context of fiber bundles
associated to a principal bundle is found in Chapter 20 of [Dieudonné 1974], and
specifically problem 20.5.1.

Vertical vectors. Let P ∈ Gr n(TM) and let m = π(P). The vertical space VP is
the tangent space at P to the fiber π−1(m) = Gr n(Tm M), so that vertical vectors
at a point are just tangent vectors to a single Grassmann manifold. Our immediate
discussion will be in those terms. Let E be a vector space of dimension n + ` and
let Gr n(E) denote the Grassmann manifold of all n-dimensional subspaces of E .
A direct sum decomposition E = P ⊕ Q of E gives rise to two natural projection
maps ProjP

Q : E → E and ProjQ
P : E → E,where ProjP

Q is projection onto Q parallel
to (or with kernel) P . Using cosets, the projection is given by

ProjP
Q(x)= (x + P)∩ Q.

In other words, the intersection of the coset of P through x with Q allows one to
visualize the linear map ProjP

Q as moving x parallel to P until it intersects Q.
Fix an inner product 〈 · , · 〉 on E . Let P ∈ Gr n(E) and let L(P, P⊥) denote the

vector space of linear maps A : P → P⊥. The canonical chart centered at P is the
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set UP ={H ∈Gr n(E) | E = H⊕P⊥
} along with the mapping ϕP :UP → L(P, P⊥)

defined as follows:

ϕP (H)= A if and only if Ax = −
(
(x + H)∩ P⊥

)
for all x ∈ P.

In other words, ϕP (H)= −ProjH
P⊥

∣∣
P . The inverse of ϕP is the function

ϕ−1
P
(A)= {x + Ax | x ∈ P},

that is, ϕ−1
P
(A) is the graph of A relative to the direct sum E = P ⊕ P⊥. We let

PA denote ϕ−1
P
(A).

The natural map Perp :Gr n(E)→Gr `(E) sending P to P⊥ is a diffeomorphism.
To understand the canonical local form of Perp at P ∈ Gr n(E), consider the stan-
dard charts (UP , ϕP ) and (UP⊥, ϕ

P⊥
). It is routinely argued that Perp restricts to

a bijection between UP and UP⊥ . Next, let A ∈ L(P, P⊥). The transpose of A
relative to the inner product is the linear map tA : P⊥

→ P that is defined by the
equation

〈Ax, y〉 = 〈x, tAy〉

for all x ∈ P, y ∈ P⊥. In particular, for all x ∈ P, y ∈ P⊥,

〈x + Ax, y −
tAy〉 = 〈Ax, y〉 − 〈x, tAy〉 = 0.

From this it follows immediately that

P⊥

A = {y −
tAy | y ∈ P⊥

}.

Thus the local form of Perp is the linear isomorphism

ϕ
P⊥

◦ Perp ◦ϕ−1
P

: L(P, P⊥)→ L(P⊥, P)

given by
ϕ

P⊥
◦ Perp ◦ϕ−1

P
(A)= −

tA.

Implicit in this discussion is the equality tA = ProjP⊥

A
P

∣∣
P⊥ . So geometrically, tA

moves a vector y ∈ P⊥ parallel to P⊥

A until it intersects P (see Figure 1).
Next let

ψP = TϕP : TP(Gr n(E))→ T0(L(P, P⊥))∼= L(P, P⊥).

Given a curve P(t) that represents a tangent vector v ∈ TP(Gr n(E)), we have

ψP (v)= (ϕP ◦ P)′(0).

For each t , E splits as P(t)⊕ P(t)⊥. Let

Pr t = ProjP(t)⊥
P(t) and Pr⊥

t = ProjP(t)
P(t)⊥
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(I+A·

tA)y

(I+tA·A)x

(−Ax)

(I+A·
tA)−1(−Ax)

Ax

y −
tAy

−
tAy

tAy

x + Ax

Pr⊥

A(x)=

(ι− tA)(I+A·
tA)−1(−Ax)

∼=

∼=

∼=

∼=

Figure 1. Projections determined by a local chart on Gr n(E).

denote the corresponding projection maps determined by the direct sum, both
viewed as curves in the vector space L(E, E).

Lemma 2.1. ψP ([P(t)])= −
( d

dt

∣∣
t=0 Pr⊥

t
)

where the right hand side is interpreted
as an element of L(P, P⊥) by restriction.

Proof. To simplify notation, set αt = Pr⊥
t . The following argument shows that

d
dt

∣∣
t=0 αt maps P into P⊥, and so by restricting to P , d

dt

∣∣
t=0 αt defines an element

of L(P, P⊥). Let h, k ∈ P . Because 〈αt(h), k〉 = 〈αt(h), αt(k)〉, it follows that

〈α′

0(h), k〉 =
d
dt

∣∣
t=0 〈αt(h), k〉 =

d
dt

∣∣
t=0 〈αt(h), αt(k)〉

= 〈α′

0(h), 0〉 + 〈0, α′

0(k)〉 = 0.

Next, the linear mappings (I + A ·
tA) : P⊥

→ P⊥ and (I +
tA · A) : P → P are

invertible because each is a composition of invertible linear maps. Explicitly,

(I + A ·
tA)= ProjPA

P⊥

∣∣
P⊥

A
◦ (ι− tA) and (I +

tA · A)= ProjP⊥

A
P

∣∣
PA

◦ (ι+ A)

where
(ι− tA)= ProjP

P⊥

A

∣∣
P⊥ and (ι+ A)= ProjP⊥

PA

∣∣
P .

The upper portion of Figure 1 provides a visual understanding of the first equation,
while the second equation is expressed in the right portion of Figure 1.
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Supported by the lower portion of Figure 1, the previous paragraph implies
routinely that the PA and P⊥

A components of x ∈ P are

Pr A(x)= (ι+ A)(I +
tA · A)−1(x) ∈ PA

and
Pr⊥

A(x)= (ι− tA)(I + A ·
tA)−1(−A · x) ∈ P⊥

A .

Set At = ϕP (P(t)). From above, it follows that for each x ∈ P

αt(x)= −(ι− tAt)(I + At ·
tAt)

−1(At x).

So, since A0 = 0, tA0 = 0, and A′

0 = (ϕP ◦ P)′(0), it follows that( d
dt

∣∣
t=0 αt

)
(x)=

( d
dt

∣∣
t=0 αt(x)

)
= −A′

0 · x = −ψP ([P(t)])(x). �

We will now use Lemma 2.1 to establish a formula for the generalized second
fundamental form.

Lemma 2.2. At a point m ∈ M , IIm : Tm M × GT(M)m → GN(M)m is given by

IIm(h, σ )=
(
ψγ (m) ◦ θ ◦ T γ (h)

)
· σ.

Proof. Clearly, the formula holds for h = 0. So assume that h 6= 0 and that m(t) is
a curve representing h. Next, let m(t)= (γ 0

◦ m)(t) and let

τt : Tm(0)M → Tm(t)M

denote the parallel translation in M along m(t). Set P(t)= (γ ◦ m)(t) and

P(t)= τ−1
t (P(t)).

Then by (2–6), the curve P(t) represents the vertical vector θ(T γ (h)) based at the
n-plane P = P(0)= γ (m). There are two curves of projection maps, namely,

Pr⊥t : Tm(t)M = P(t)⊕ P(t)⊥ → P(t)⊥

and
Pr⊥

t : Tm(0)M = P(t)⊕ P(t)⊥ → P(t)⊥.

Also present are the companion curves Prt = I − Pr⊥t and Pr t = I − Pr⊥
t . As

before, these projections are viewed as endomorphisms of the appropriate spaces.
By definition,

IIm(h, σ )= nor(∇h σ)= Pr⊥

0
( d

dt

∣∣
t=0 τ

−1
t σ(m(t))

)
,

where σ represents some extension of the vector σ to a local section of GT(M).
There is however a natural extension of σ , namely, one whose values along m(t)
are

Prt(τt(σ )) ∈ P(t)= GT(M)m(t).
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Thus,
IIm(h, σ )= Pr⊥

0
( d

dt

∣∣
t=0 (τ

−1
t ◦ Prt ◦ τt) σ

)
.

On the other hand, because the parallel translation on M is an isometry,

P(t)⊥ = τ−1
t (P(t)⊥)

and consequently, the following diagram commutes:

Tm(0)M
τt- Tm(t)M

P(t)

Pr t ? τt- P(t).

Prt?

Thus, Pr t = τ−1
t ◦ Prt ◦ τt . Therefore by Lemma 2.1 and (2–6),

IIm(h, σ )= Pr⊥

0
( d

dt

∣∣
t=0 Pr t(σ )

)
= Pr⊥

0
( d

dt

∣∣
t=0 (σ − Pr⊥

t (σ ))
)

= −Pr⊥

0
( d

dt

∣∣
t=0 Pr⊥

t (σ )
)
= ψγ (m)([P(t)]) · σ

= ψγ (m) (θ(T γ (h))) · σ. �

3. Developable generalized immersions

A generalized immersion of M in M is defined to be (n − k)-developable if and
only if the following properties hold:

(1) M has a foliation, written M =
⋃
α Lα, where dim(Lα)= n − k.

(2) The restriction γ : Lα → Gr n(TM) is a horizontal immersion.

From property 2, γ (Lα) is transverse to the bundle projection, and hence
γ 0

=π ◦γ restricts to an immersion of Lα into M for each α. We set Lα =γ 0(Lα).
It is of interest to know whether or not the immersed leaves are totally geodesic
submanifolds of M . This issue is addressed by Theorem 2 in the following section
and further ahead in the examples.

For us, a developable generalized immersion is a generalization of what is clas-
sically referred to as a “developable surface” in R3, that is, a ruled surface where
the unit normal is constant along each ruling; see [Klingenberg 1978; Wu 1995].
We next state and prove the main theorem.

Theorem 1. Let M be a smooth Riemannian manifold of constant sectional cur-
vature. A rank-k generalized immersion of M in M is (n − k)-developable. Con-
versely, if γ : M → Gr n(TM) is an (n − k)-developable generalized immersion,
then at each point m ∈ M , the generalized second fundamental form IIm has rank
at most k.

Proof. The argument is divided into three steps.
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Step 1: ker II is an involutive distribution. First, the rank assumption implies that
ker II is a distribution of rank n − k. Next, let ∇

M be any torsion-free connection
on M . Define

∇ II : X(M)× X(M)×0(GT(M))→ 0(GN(M))

by the formula

(3–1) ∇II(X, Y, σ )= ∇
⊥

X II(Y, σ )− II(∇M
X Y , σ )− II(Y,∇X σ).

Lemma 3.1. If ∇II is symmetric, then [X, Y ] ∈ 0(ker II) for all X, Y ∈ 0(ker II).

Proof. When Y ∈ 0(ker II), (3–1) reduces to

∇II(X, Y, σ )= −II(∇M
X Y, σ ).

Similarly, when X ∈ 0(ker II)

∇II(Y, X, σ )= −II(∇M
Y X, σ ).

So, by the symmetry of ∇II and the fact that ∇
M is torsion-free, it follows that

0 = ∇II(X, Y, σ )− ∇II(Y, X, σ )= −II(∇M
X Y − ∇

M
Y X , σ )= −II([X, Y ] , σ ).

Thus [X, Y ] ∈ 0(ker II). �

The remainder of step 1 is implied by the following two lemmas.

Lemma 3.2. The tensor ∇II is symmetric if and only if the generalized tangent
bundle GT(M) is an invariant subbundle of the curvature tensor.

Lemma 3.3. If M has constant sectional curvature, then GT(M) is an invariant
subbundle of the curvature tensor.

Proof of Lemma 3.2. Let 〈 · , · 〉 denote the pullback of the Riemannian metric on
M to the bundle B = (γ 0)∗(TM). To show that ∇II is symmetric, it suffices to
prove that

〈 ∇II(X, Y, σ )− ∇II(Y, X, σ ) , η 〉 = 0

for all X, Y ∈ X(M), σ ∈ 0(GT(M)), and η ∈ 0(GN(M)). Let R denote the
curvature of the connection ∇ in B. We first show that the skew-symmetric part of
∇II(X, Y, · ) is the GT(M)-component of R(X, Y ) restricted to GT(M), that is,

(3–2) 〈 ∇II(X, Y, σ )− ∇II(Y, X, σ ) , η 〉 = 〈 R(X, Y ) σ , η 〉.

To begin,

(3–3) 〈 ∇II(X, Y, σ )− ∇II(Y, X, σ ) , η 〉 = 〈 ∇
⊥

X II(Y, σ )− ∇
⊥

Y II(X, σ ) , η 〉

− 〈 II(∇M
X Y, σ )− II(∇M

Y X, σ ) , η 〉 − 〈 II(Y,∇X σ)− II(X,∇Y σ) , η 〉.
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The three summands on the right side of (3–3) can be simplified as follows: By
applying the definition of ∇

⊥,

∇
⊥

X II(Y, σ )= ∇X II(Y, σ )− II⊥(X, II(Y, σ )).

Because II⊥(X, II(Y, σ )) ∈ 0(GT(M)) and GT(M)⊥ GN(M), we see that

〈 ∇
⊥

X II(Y, σ ) , η 〉 = 〈∇X II(Y, σ ) , η 〉.

Thus, the first summand on the right side of (3–3) is given as

〈 ∇
⊥

X II(Y, σ )− ∇
⊥

Y II(X, σ ) , η 〉 = 〈∇X II(Y, σ )−∇Y II(X, σ ) , η 〉.

Next, since ∇
M is torsion-free, the second summand on the right side of (3–3)

becomes
〈 II(∇M

X Y − ∇
M
Y X, σ ) , η 〉 = 〈 II([X, Y ], σ ) , η 〉.

For the third summand of (3–3), it follows both from the definition of II and from
GT(M)⊥ GN(M) that

〈 II(Y,∇X σ)− II(X,∇Y σ) , η 〉 = 〈∇Y ∇X σ −∇X ∇Y σ , η 〉.

Rewriting (3–3), we get

(3–4) 〈 ∇II(X, Y, σ )− ∇II(Y, X, σ ) , η 〉 = 〈∇X II(Y, σ )−∇Y II(X, σ ) , η 〉

−〈 II([X, Y ], σ ) , η 〉 − 〈∇Y ∇X σ −∇X ∇Y σ , η 〉.

Next, by the definition of II,

∇X II(Y, σ )−∇Y II(X, σ )− II([X, Y ], σ )

= ∇X∇Yσ −∇X∇Yσ −∇Y∇Xσ +∇Y ∇Xσ −∇[X,Y ]σ + ∇[X,Y ]σ.

Plugging this into (3–4) and simplifying in the obvious way gives

〈 ∇II(X, Y, σ )− ∇II(Y, X, σ ) , η 〉 = 〈 (∇X∇Y −∇Y∇X −∇[X,Y ]) σ , η 〉

= 〈 R(X, Y ) σ , η 〉.

If ∇II is symmetric, then (3–2) implies that 〈 R(X, Y ) σ, η 〉 = 0. Thus

R(X, Y ) σ ∈ 0(GT(M)),

i.e., GT(M) is an invariant subbundle of R. Conversely, if GT(M) is an invariant
subbundle of R, then the right hand side of (3–2) vanishes, so

〈 II(X, Y, σ )− II(Y, X, σ ) , η 〉 = 0.

Hence II(X, Y, σ )= II(Y, X, σ ). �
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Proof of Lemma 3.3. We prove that if M has constant sectional curvature, then
R(X, Y ) σ ∈ GT(M)m for any σ ∈ GT(M)m and any pair of tangent vectors
X, Y ∈ Tm M . Note that R is the pullback via γ 0 of the curvature of the Levi-
Civita connection on M; the same symbol R is used for both curvatures. Thus if
σ = (m, s) ∈ (γ 0)∗(TM) then

Rm(X, Y ) σ = Rγ 0(m)
(
T γ 0(X), T γ 0(Y )

)
s.

Because M has constant sectional curvature, there is a constant λ such that for any
x, y, z ∈ Tγ 0(m)M ,

(3–5) Rγ 0(m)(x, y) z = λ (〈 z, x 〉 y − 〈 z, y 〉 x) ;

see [Kobayashi and Nomizu 1963, (5.2.3)]. Next, by the definition of a generalized
immersion, γ is annihilated by contact; so T γ 0(Tm M) ⊂ γ (m) = GT(M)m . It
follows that

Rm(X, Y ) σ = λ
(
〈 s, T γ 0(X)〉 T γ 0(Y )− 〈 s, T γ 0(Y )〉 T γ 0(X)

)
∈ GT(M)m .

In other words, GT(M)m is an invariant subspace of Rm(X, Y ). �

By the Frobenius Theorem and the involutivity of ker II, we get a foliation {Lα}

of M where the leaves are (n−k)-dimensional and where Tm(Lα) = ker IIm . We
call this the (ker II)-foliation.

Step 2: The images of the leaves Lα under γ are horizontal. Let m(t) be an
integral curve of the distribution ker II. Let m(t)= (γ 0

◦m)(t) and denote parallel
translation by τ t : Tm(0)M → Tm(t)M . By (2–5), it suffices to show that the image
curve P(t)= (γ ◦ m)(t) has the form

P(t)= τ t (P(0)).

In other words, P(t) is the parallel translate of the initial n-plane P(0) along m(t).
Let τ t also denote the parallel translation in B along m(t) and let τt denote the

parallel translation in GT(M) along m(t) corresponding to the induced connec-
tion ∇. Since II(m′(t), · ) = 0, the map τt : GT(M)m(0) → GT(M)m(t) is just the
restriction of the linear map τ t : Bm(0) → Bm(t) to GT(M)m(0).

Next, recall GT(M)m = γ (m) so that

P(t)= γ (m(t))= GT(M)m(t).

Thus by the observation just above, we conclude that

τ−1
t (P(t))= τ−1

t
(
GT(M)m(t)

)
= GT(M)m(0) = P(0),

so P(t) = τ t(P(0)). It now follows that the image of each leaf Lα under γ is
horizontal in Gr n(TM).
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Step 3: Converse. Suppose the generalized immersion is (n −k)-developable. Let
Lα denote a typical leaf of the foliation and let h ∈ TmLα. Since T γ (h) is a
horizontal tangent vector to Gr n(TM), Lemma 2.2 gives

IIm(h, σ )=
(
ψγ (m) θ(T γ (h))︸ ︷︷ ︸

0

)
· σ = 0.

Thus, TmLα⊂ ker IIm and so the dimension of ker IIm is at least n−k. Equivalently,
the rank of IIm is at most k. �

4. The total geodesy question

In the previous section we described the natural foliation that occurs when a gen-
eralized immersion has less than full rank. In this section we determine sufficient
conditions for the leaves of the foliation to be totally geodesic. Example 6.3 shows
that these conditions are reasonably sharp.

Theorem 2. Let M be a smooth Riemannian manifold of constant sectional cur-
vature and let γ : M → Gr n(TM) be a rank k generalized immersion. Then the
immersed leaves Lα of the (ker II)-foliation are totally geodesic in each of the
following cases:
(1) M is any classically immersed submanifold of M;

(2) M is any codimension-1 generalized immersion;
(3) ker II has codimension 1, i.e., rank II = 1.

The proof of Theorem 2 requires several preliminary lemmas.

Lemma 4.1. The tangent map of γ 0
= π ◦ γ induces a homomorphism of vector

bundles over the identity,

T̃ γ 0 : TM → B = (γ 0)∗(TM).

The image of T̃ γ 0 lies in GT(M). Notationally, if h ∈ TM then h̃ = T̃ γ 0(h).

Proof. Let πM : TM → M denote the tangent bundle projection. Then

h̃ = (πM (h), T γ 0
· h).

By assumption, the immersion γ : M → Gr n(TM) is annihilated by contact. So

T γ 0
· h = Tπ · T γ · h ∈ γ (m) for m ∈ M and h ∈ Tm M .

On the other hand, by (2–2), GT(M)m = Uγ (m) = γ (m). �

It follows from the lemma that T̃ γ 0 induces a map on sections, namely,

X 7→ X̃ = T̃ γ 0 (X)

where X̃ ∈ 0(GT(M)) is interpreted pointwise.
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Given any connection ∇ on M , let T denote its torsion tensor. Then the pullback
of T to M by γ 0 is the B-valued 2-form given by

T (X, Y )= ∇X Ỹ −∇Y X̃ − [̃X, Y ]

for all vector fields X, Y ∈ X(M). As before, ∇ denotes both the connection in
TM and in the pullback bundle B.

Assume that ∇ is torsion free, i.e., T = 0. Then

(4–1) ∇X Ỹ −∇Y X̃ = [̃X, Y ]

for all vector fields X, Y ∈ X(M). As a consequence:

Lemma 4.2. The generalized second fundamental form satisfies the property:

II(X, Ỹ )= II(Y, X̃) for all X, Y ∈ X(M).

Proof. Combining the definition of II with (4–1),

II(X, Ỹ )= nor
(
∇X Ỹ

)
= nor

(
∇Y X̃ + [̃X, Y ]

)
= II(Y, X̃)+ nor [̃X, Y ].

By Lemma 4.1, [̃X, Y ] ∈ 0(GT(M)). Thus nor [̃X, Y ] = 0. �

Lemma 4.3. The restriction of T̃ γ 0 to ker II defines an injective bundle morphism

T̃ γ 0 : ker II → GT(M)

whose image lies in R ker II.

Proof. Let h ∈ ker IIm . Then by Lemma 4.2,

IIm(v, h̃)= IIm(h, ṽ)= 0

for all v ∈ Tm M . So by definition, h̃ ∈ R ker IIm . On the other hand, suppose that
h ∈ ker IIm and h̃ =0. Then T γ 0(h)=0 and thus T γ (h) is a vertical tangent vector.
However, T γ (h) is also a horizontal tangent vector by Theorem 1. Consequently,
T γ (h)= 0, and thus h = 0 because T γ is injective. �

Lemma 4.4. For each X, Y ∈ 0(ker II) and for all Z ∈ X(M),

II
(
Z ,∇X Ỹ

)
= 0.

Proof. By the definition of ∇II (see (3–1))

∇II(X, Z , Ỹ )= ∇
⊥

X II(Z , Ỹ )− II(∇M
X Z , Ỹ )− II(Z ,∇X Ỹ ).

Combining Lemma 4.3 with the assumption that Y ∈ 0(ker II),

II(Z , Ỹ )= 0 and II(∇M
X Z , Ỹ )= 0.
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Thus,
∇ II(X, Z , Ỹ )= −II(Z ,∇X Ỹ ).

On the other hand, Lemmas 3.2 and 3.3 show that ∇II is symmetric when M has
constant sectional curvature. Thus ∇II(X, Z , Ỹ ) = ∇II(Z , X, Ỹ ). However, in the
expansion of ∇II(Z , X, Ỹ ), the terms II(X, Ỹ ), II(∇M

Z X, Ỹ ), and II(X,∇ Z Ỹ ) all
vanish. It follows that ∇II(Z , X, Ỹ )= 0 and thus II(Z ,∇X Ỹ )= 0. �

Let (ker IIm)
∼ denote the image of ker IIm in R ker IIm .

Lemma 4.5. If (ker II)∼ = R ker II, then the immersed leaves Lα are totally geo-
desic submanifolds of M.

Proof. Denote by ∇
α the connection on Lα induced from ∇ and by IIα its second

fundamental form. Then for all W, Z ∈ X(Lα),

∇W Z = ∇
α
W Z + IIα(W, Z).

By definition, Lα is totally geodesic in M if and only if IIα = 0, or equivalently, if
and only if

∇W Z = ∇
α
W Z;

see [O’Neill 1983, (4.12)]. Whether or not Lα is totally geodesic is a local question.
So since the leaf Lα immerses, we may assume it is embedded. Thus, each vector
field of Lα is γ 0-related from a unique vector field of Lα. Given W, Z ∈ X(Lα),
let X, Y ∈ X(Lα) be the unique vector fields such that for each m ∈ Lα, we have
T γ 0

· X (m) = W (γ 0(m)) and T γ 0
· Y (m) = Z(γ 0(m)). By Theorem 1, vector

fields of Lα can be extended to sections of ker II; hence it is assumed at the outset
that X, Y ∈ 0(ker II).

Along Lα, ∇X Ỹ and ∇W Z agree in the following sense: let m ∈ Lα and let
m(t) be an integral curve of X with origin m. Next, let τ t : Bm → Bm(t) denote
parallel translation in B along m(t). Using the same symbol,

τ t : Tγ 0(m)M → Tγ 0(m(t))M

also denotes parallel translation in TM along the curve (γ 0
◦m)(t). Then ∇X Ỹ (m)

is represented by the curve τ−1
t

Ỹ (m(t)). In contrast, ∇W Z (γ 0(m)) is represented
by the curve τ−1

t
Z(γ 0(m(t))), because (γ 0

◦m)(t) is an integral curve of Z through
m. In particular,

τ−1
t

Ỹ (m(t))= τ−1
t

(
m(t), T γ 0

· Y (m(t))
)
= τ−1

t

(
m(t), Z(γ 0(m(t)))

)
=

(
γ (m) , τ−1

t
Z(γ 0(m(t)))

)
,

so that

(4–2) ∇X Ỹ (m)= (m,∇W Z (m))
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for each m ∈ Lα.
By Lemma 4.4, ∇X Ỹ (m)∈ R ker IIm for each m ∈ M . So by hypothesis, there is

a unique vector field U ∈0(ker II) such that Ũ =∇X Ỹ . But U restricts to a vector
field along Lα, i.e., U (m) ∈ ker IIm = TmLα. Hence T γ 0

·U (m) ∈ T γ 0(TmLα)=

Tγ 0(m)Lα. Equation (4–2) then implies

∇W Z (m)= T γ 0
· U (m) ∈ Tγ 0(m)Lα.

Thus ∇W Z (m)= ∇
α
W Z (m). �

Proof of Theorem 2. We will show that, for each of the three cases given in the
statement of the theorem, the hypothesis of Lemma 4.5 is valid.

Case 1. Let M be a classically immersed submanifold of M . Then γ is the prolon-
gation of the immersion γ 0

: M → M , that is, for each m ∈ M , γ (m)= T γ 0(Tm M).
Since GT(M)m = γ (m), for each σ ∈ GT(M)m , there is a unique v ∈ Tm M such
that

σ = (m, T γ 0(v))= ṽ.

By Lemma 4.2, for each h ∈ Tm M ,

IIm(h, σ )= IIm(h, ṽ)= IIm(v, h̃).

So if σ = ṽ ∈ R ker IIm , we conclude from the observations above that IIm(v, h̃)= 0
for all h̃ ∈ T̃ γ 0(Tm M)= GT(M)m . Thus (ker IIm)

∼
= R ker IIm .

Case 2. Given m ∈ M , the constant rank k assumption on the generalized immer-
sion implies h 7→ IIm(h, · ) is a linear map

Tm M → L (GT(M)m,GN(M)m)

whose image has dimension k. Next, dim GN(M)m = 1 for all m ∈ M by the
codimension-1 hypothesis of case 2. The remainder of the argument is pointwise.

Given m ∈ M , identify L (GT(M)m,GN(M)m) with GT(M)∗m by choosing a
linear isomorphism from GN(M)m to R. By Grassmann duality (the obvious gen-
eralization of projective duality [Arnol’d 1988]), the subspace

{ IIm(h, · ) | h ∈ Tm M } ⊂ GT(M)∗m

is dual to
R ker IIm = ∩h∈Tm M ker IIm(h, · )⊂ GT(M)m .

As the former space has dimension k, the latter has dimension n − k. On the other
hand, in Lemma 4.3 we showed that T̃ γ 0 maps ker IIm injectively to R ker IIm .
So since ker IIm has dimension n − k, its image (ker IIm)

∼ in R ker IIm is all of
R ker IIm .
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Case 3. Suppose ker IIm has codimension 1. Then (ker IIm)
∼ is an (n −1)-dimen-

sional subspace of both R ker IIm and GT(M)m . Because GT(M)m has dimension
n, either (ker IIm)

∼
= R ker IIm or R ker IIm = GT(M)m . Suppose the latter is true.

Then IIm(h, σ ) = 0 for σ ∈ GT(M)m and h ∈ Tm M . Thus, Tm M = ker IIm which
contradicts the assumption dim(ker IIm)= n − 1.

The proof of Theorem 2 is now complete. �

Note that the case where rank II = 0 is also covered by Theorem 2. If rank II = 0,
then ker IIm = Tm M , so all of M is a single leaf. Since the leaves immerse in M ,
we are in the classical situation.

5. More on jets

The goal of this section is to prove that the (ker II)-foliation has local cross-sections
in the case where M is a finite dimensional real vector space E of dimension n +`

with the canonical flat connection (see Theorem 3). This will guarantee that the
leaf space M/L is at least a T1-manifold, i.e., locally Euclidean but not necessarily
Hausdorff. En route to Theorem 3, we develop some additional machinery for
vector space computations.

The canonical flat connection C : TE ⊕ TE → T (TE) is defined by

C(m; h, x)= (m, x; h, 0).

As usual, we use the canonical trivializations TE = E×E , T (TE)= TE×TE , and
so on. The connection C is the Levi-Civita connection for any constant Riemannian
metric on E , say 〈 · , · 〉. The corresponding parallel translations are all trivial:
τ (m1, x)= (m2, x) along any curve from m1 to m2.

Consider a generalized immersion γ : M → Gr n(TE). Using the canonical
trivialization for Gr n(TE), we write

γ (m)= (γ 0(m),P(m)) ∈ Gr n(TE)= E × Gr n(E).

We call the smooth map m 7→ P(m) the Gauss map of the generalized immersion.
The choice of an orthogonal splitting E = H ⊕K with dim H = n and dim K = `

gives rise to a natural chart

β : J 1(H, K )→ U ⊂ Gr n(TE)= E × Gr n(E)

defined by
β(x, z, A)= (x + z , graph(A)),

where graph(A)= { h + A · h | h ∈ H }. Here, we use the canonical description of
1-jets, namely J 1(H, K )= H × K × L(H, K ).

The image U of the mapping β is an open dense subset of Gr n(TE) and, by
varying the choice of splitting, we can cover all of Gr n(TE) by such charts. The set
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U consists of those n-planes that are graphical relative to the splitting E = H ⊕ K .
Since any n-plane is graphical relative to some splitting, the local behavior of a
generalized immersion in E can be understood in terms of a jet space J 1(H, K ).
Thus we will assume that γ : M → Gr n(TE) is a generalized immersion whose
image lies in the set U defined by a fixed splitting E = H ⊕ K . Elements of E
can then be viewed as pairs (h, k) or as sums h + k, as convenient. Moreover, for
local computations, the manifold M can be assumed to be a real vector space of
dimension n.

The contact form. As in the previous sections, let π : Gr n(TE) → E be the
Grassmann bundle of n-planes in the tangent bundle to E , let U ⊂ π∗(TE) be
the universal n-plane bundle over Gr n(TE), let U⊥ be the corresponding normal
bundle, and let Q be the quotient bundle Q = π∗(TE)/U. Recall that the contact
form ω is the Q-valued 1-form on Gr n(TE) that is defined by ωP (v)= Tπ(v)+ P
for v ∈ TP(Gr n(TE)).

Next, we compute β∗ω. The tangent vector (h, k, B) at (x, z, A) ∈ J 1(H, K ) is
represented by the curve c(t)= (x, z, A)+ t (h, k, B). It follows that

(β∗ω) · [c(t)] = ω (Tβ · [c(t)])= Tπ · Tβ · [c(t)] +β(c(0))

= [(x, z)+ t (h, k)] +β(x, z, A)= ((x, z), (h, k)+ graph(A)).

Clearly, since (h, A · h) ∈ graph(A) it follows that

(h, k)+ graph(A)= (0, k − A · h)+ graph(A).

Moreover, k − A ·h is the unique representative of the coset (h, k)+graph(A) that
lies in K . Thus, the contact form on Gr n(TE) can be reinterpreted as the K -valued
1-form on J 1(H, K ) defined by

(5–1) ω(x,z,A)(h, k, B)= k − A · h.

Vertical vectors. Because the chart β is compatible with the bundle projection π ,
the vertical vectors at (x, z, A) ∈ J 1(H, K ) are all of the form (0, 0, B) for B ∈

L(H, K ). The formula for the generalized second fundamental form in Lemma
2.2 requires that we reinterpret a vector tangent to the fiber of π : Gr n(TE)→ E
at P as a linear mapping P to P⊥. So let (x, z, A(t)) be a curve representing the
vertical vector (0, 0, B) at (x, z, A) and let G(t) = graph(A(t)) ∈ Gr n(E). The
curve P(t) = ((x, z),G(t)) then represents Tβ

[
(x, z, A(t))

]
. As with A(t), we

will let the initial plane P(0) be denoted by P . Adopting the notation of Lemma
2.1, we have:

Lemma 5.1. If A(0)= A and A′(0)= B then

ψP

(
Tβ

[
(x, z, A(t))

])
· (h, A · h)= (ι− tA)(I + A ·

tA)−1
· B · h.
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Proof. Let Pr⊥
t be the orthogonal projection of E onto G(t)⊥. A direct computation

using Lemma 2.1 and a variant of Figure 1 gives

ψP ([P(t)]) · (h, A · h)= −
d
dt

∣∣
t=0 Pr⊥

t (h, A · h)

= −
d
dt

∣∣
t=0 Pr⊥

t
(
(h, A · h)− (h, A(t) · h)

)
= −

d
dt

∣∣
t=0 Pr⊥

t
(

0 , (A−A(t)) · h
)

= −
d
dt

∣∣
t=0 (ι−

tA(t)) · (I + A(t) · tA(t))−1
· (A−A(t)) · h

= (ι− tA)(I+A ·
tA)−1

· B · h. �

The generalized second fundamental form. Let

γ (m)= (x(m), z(m), A(m)) : M → J 1(H, K )

be a generalized immersion. By (5–1), annihilation by contact is the requirement
that

Dz(m) · v = A(m) · Dx(m) · v

for all (m, v) ∈ TM = M × M . The generalized tangent space at m is given by

GT(M)m = { (h, A(m) · h) | h ∈ H }.

Next by lemmas 2.2 and 5.1, the generalized second fundamental form is given by

II
(
m ; v , (h, A(m) · h)

)
= ψβ◦γ (m)

(
θ · Tβγ (m)(Dx(m)v, Dz(m)v, D A(m)v)

)
· (h, A(m)h)

= ψβ◦γ (m)
(
Tβ · [(x(m), z(m), A(m)+ t · D A(m)v)]

)
· (h, A(m)h)

= (ι− tA(m)) · (I + A(m) · tA(m))−1
· D A(m) · v · h.

(5–2)

In particular, ker IIm = { v ∈ M | D A(m) · v = 0 ∈ L(H, K ) }.

Local cross-sections. Let M be a smooth manifold with a foliation {Lα}. We say
the foliation admits slices or local cross-sections if and only if for each m ∈ M ,
there is a local submanifold6=6m of M that intersects each leaf at most once and
such that Tm M = Tm6⊕ TmL[m], where L[m] is the leaf containing m. The local
slices can be used to define a locally Euclidean structure on M/L. If in addition the
equivalence relation is closed so that M/L is Hausdorff, then we call the foliation
regular; see [Abraham et al. 1988, (4.4.9)] and examples 6.4 and 6.5.

Theorem 3. The (ker II)-foliation of a constant rank generalized immersion into a
vector space admits local cross-sections.

Proof. Let γ : M → Gr n(TE) be a rank-k generalized immersion into a vector
space E equipped with the canonical flat connection. Keeping to the notation of
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this section,
γ (m)= (γ 0(m),P(m)) ∈ E × Gr n(E),

where m 7→ P(m) is the Gauss map of the generalized immersion. It is an immedi-
ate corollary of Theorem 1 that the Gauss map is constant along the leaves of the
(ker II)-foliation. Next, it will be argued that for each m ∈ M ,

(5–3) ker
(

T P : Tm M → TP(m)Gr n(E)
)
= ker IIm .

This is a pointwise statement, so a local argument using the vector space methods
established earlier in the section is appropriate. Let

γ (m)= (x(m), z(m), A(m)) : M → J 1(H, K )

be our generalized immersion. Then the Gauss map P is realized as the smooth
function A : M → L(H, K ) and the principal part of the tangent mapping T A is
the derivative D A : M → L(M, L(H, K )). It is then immediate from (5–2) that
ker IIm = ker D A(m); thus (5–3) follows.

To obtain local slices, let ϕ : U → L ⊕ Q be a foliation chart centered at a point
m. We can assume that ϕ is onto so that the connected components (U ∩ Lα)

β of
U ∩ Lα are cosets of L , that is,

ϕ( (U ∩ Lα)
β )= qβα + L for appropriate qβα ∈ Q.

Next, 6̃ = ϕ−1(Q) is an embedded submanifold of M . By consideration of the
chart, Tm6̃ ∩ TmL[m] = {0}, and so Tm6̃ ⊕ TmL[m] = Tm M . It follows that the
linear map T P : Tm6̃ → TP(m)Gr n(E) is injective. Otherwise (5–3) would imply
that Tm6̃∩TmL[m] 6= {0}. Now by the Inverse Function Theorem, there is an open
neighborhood 6m of m in 6̃ such that the map P :6m → Gr n(E) is an embedding.
Finally, because the Gauss map P is both constant on leaves and injective on 6m ,
the set 6m intersects each leaf at most once and is thus a local slice. �

6. Examples

Example 6.1. Let c(s) be a smooth curve in R3, parameterized by arc length
whose curvature is everywhere nonzero. Let (T, N , B) be the resulting orthonor-
mal Frenet frame along the curve, that is, c′(s)= T (s), c′′(s)= T ′(s)= κ(s) N (s),
and B(s)= T (s)×N (s). Here, the curvature κ(s) is assumed to be strictly positive.
Also, the torsion τ of the curve is defined by B ′(s)= −τ(s) N (s).

Consider the tangentially developed surface defined by c, i.e., let

γ 0(s, t)= c(s)+ t c′(s) : R2
→ R3.

We have

(6–1) Dγ 0(s, t) · (h, k)= (h + k) T (s)+ t h κ(s) N (s),
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so γ 0(s, t) is singular if and only if t = 0. The nonsingular set is then dense in R2.
So by the general principle described in Section 1, there is at most one generalized
immersion γ : R2

→ Gr 2(T R3) that lifts the mapping γ 0. Indeed by (6–1), the
only way to lift γ 0 to a mapping annihilated by contact is to let

γ (s, t)= (γ 0(s, t), B(s)⊥) ∈ R3
× Gr 2(R

3).

Recall, γ must be the prolongation of γ 0 along the nonsingular set. This mapping
is clearly smooth and, by general principles, is annihilated by contact. The only
remaining issue is whether γ is an immersion. We will prove that γ (s, t) is an
immersion unless t = 0 and τ(s) = 0. Thus, a generic tangentially developed
surface (that is, one where the developing curve has nonvanishing torsion) can be
viewed as a generalized immersion in an absolutely canonical way.

The tangent vector (s, t; h, k) ∈ T(s,t)R2 is represented by the curve

u 7→ (s + uh, t + uk),

so that T γ (s, t; h, k) is represented by the curve

u 7→
(
γ 0(s + uh, t + uk), B(s + uh)⊥

)
∈ R3

× Gr 2(R
3).

Let P(u) = B(s + uh)⊥. By Lemma 2.1, we can interpret the tangent vector to
Gr 2(R

3) represented by the curve u 7→ P(u) as an element of L(P(0), P(0)⊥). In
this particular case, the projection map Pr⊥

u is given by

Pr⊥

u (v)= 〈v, B(s + uh)〉 B(s + uh).

Differentiation at u = 0 yields

d
du

∣∣
u=0 Pr⊥

u (v)= 〈v, B(s)〉 h B ′(s)+ 〈v, h B ′(s)〉 B(s)

= −hτ(s) 〈v, B(s)〉 N (s)− hτ(s) 〈v, N (s)〉 B(s).

By Lemma 2.1, the tangent vector represented by the curve u 7→ P(u) corresponds
to the linear map

v 7→ hτ(s) 〈v, N (s)〉 B(s)

from P(0)= B(s)⊥ to P(0)⊥ = R · B(s). Viewing T γ (s, t; h, k) as an element of
R3

× L(P(0), P(0)⊥), we have

T γ (s, t; h, k)=
(
Dγ 0(s, t)·(h, k) , hτ(s) 〈 · , N (s)〉 B(s)

)
.

Taking (6–1) into account, the only way that this can be zero without having both
h and k equal to zero is if t = 0, τ(s)= 0, and h = −k.
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Example 6.2. Let c(t) = (x(t), y(t), z(t)) be a smooth curve in R3, where for
convenience, we assume x ′(t) 6= 0 for all t . Define a generalized immersion
γ : R2

→ J 1(R2,R)⊂ Gr 2(T R3) by

γ (s, t)=

(
x(t) , y(t) , z(t) ,

(
z′(t)
x ′(t)

+ s y′(t) , −s x ′(t)
))

;

see Figure 2.

Figure 2. The generalized immersion of Example 6.2.

Let

A(s, t)=

(
z′(t)
x ′(t)

+ s y′(t) , −s x ′(t)
)
.

Computing

D A(s, t)=

( (
y′ , −x ′

)
,
( x ′ z′′

−z′ x ′′

(x ′)2
+ s y′′ , −s x ′′

) )
where for convenience, we omit the explicit dependence on t . Since x ′(t) 6= 0 by
assumption, we see that Dγ (s, t) is injective for all (s, t) ∈ R2, and so γ is an
immersion. Moreover γ is annihilated by contact because, by (5–1),

ωγ (s,t) Dγ (s, t) · (s1, t1)= t1 z′
−

(
z′

x ′
+ s y′,−s x ′

) (
t1 x ′

t1 y′

)
= 0.

Next by (5–2), the kernel of the generalized second fundamental form at (s, t) is
the same as the kernel of D̃ A(s, t), where D̃ A(s, t) is the 2 × 2 matrix defined by
making the two entries of D A(s, t) into columns. Again since x ′(t) 6= 0, we see
that the rank of D A(s, t) is either 1 or 2, depending on whether the determinant of
D̃ A(s, t) is 0 or not. Computing,

(6–2) det D̃ A(s, t)= s (x ′ y′′
− y′ x ′′)+

x ′ z′′
− z′ x ′′

x ′
.

The curvature κ(t) of the curve c is zero at c(t) if and only if c′(t) and c′′(t) are
linearly dependent, or equivalently, if and only if the cross product c′(t)× c′′(t) is
0. Clearly, if κ(t) = 0 then D A(s, t) has rank 1 for all s. Conversely by (6–2),
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if κ(t) 6= 0 and x ′ y′′
− y′ x ′′

6= 0 (not really a restriction if κ(t) 6= 0 by general
position), then D A(s, t) has rank 2 unless

s =
z′ x ′′

− x ′ z′′

x ′ (x ′ y′′ − y′ x ′′)
.

For this particular value of s we see that

A(s, t)=

(
z′ y′′

− y′ z′′

x ′ y′′ − y′ x ′′
,

x ′ z′′
− z′ x ′′

x ′ y′′ − y′ x ′′

)
.

The graph of this particular A(s, t) is precisely the osculating plane at c(t).

Example 6.3. Let J 1
= J 1(R3,R2) and let m = (r, s, t) ∈ R3. Define γ : R3

→ J 1

by
γ (m)= (x(m), z(m), A(m))

where

x(m)=

 r
r2

0

 , z(m)=

(
0
0

)
, and A(m)=

(
0 0 s
0 0 t

)
.

We will show that γ is a generalized immersion of rank 2. Considering the leaves
of the rank-1 foliation defined by the kernel of the generalized second fundamental
form, we will show that the images of the leaves are parabolas in J 0

= R3
× R2.

Hence they are not totally geodesic submanifolds of J 0. The example fails the
hypotheses of the three cases in Theorem 2. The generalized immersion is not
classical; the codimension is 2; and the rank of II is 2. Computing,

Dγ (m) · (r1, s1, t1)=

 r1

2 r r1

0

 ,

(
0
0

)
,

(
0 0 s1

0 0 t1

) ,

so that

(r1, s1, t1) ∈ ker (Dγ (m)) ⇐⇒ (r1, s1, t1)= (0, 0, 0).

Thus, γ is a smooth immersion. Next, we show that γ is annihilated by contact.
According to Section 5, this is verified by the computation

ωγ (m)
(
Dγ (m) · (r1, s1, t1)

)
=

(
0
0

)
−

(
0 0 s
0 0 t

)  r1

2 r r1

0

 =

(
0
0

)
.

The generalized second fundamental form of γ is given as follows: Let v =

(r1, s1, t1) ∈ R3. Then by equation (5–2)

IIm : R3
× GTm → GNm
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is the bilinear map

IIm
(
v , (h, A(m) · h)

)
= (ι− tA(m)) · (I + A(m) · tA(m))−1

· D A(m) · v · h

and the kernel of II is { v ∈ R3
| D A(m) · v = 0 }. As

D A(m) · v =

(
0 0 s1

0 0 t1

)
,

it follows that
v ∈ ker IIm ⇐⇒ v = (r1, 0, 0).

Thus ker IIm is 1-dimensional for all m ∈ R3. The leaves of the foliation are lines
of the form

L(s,t) = { (x, s, t) | x ∈ R }.

Next,

Dγ 0(m) · (r1, 0, 0)=

 r1

2 r r1

0

 ,

(
0
0

) .

Clearly then,
Dγ 0(m) · (r1, 0, 0)= 0 ⇐⇒ r1 = 0.

Thus, Dγ 0(m) is injective on ker IIm and the restriction of γ 0 to L(s,t) is an im-
mersion. Moreover, the immersed leaves

γ 0(L(s,t))=


 x

x2

0

 ,

(
0
0

) ∣∣ x ∈ R


are parabolas, which are not totally geodesic submanifolds of J 0.

Example 6.4. The torn trough (Figure 3, left) illustrates limits to the regularity
of the foliation defined by the (ker II)-distribution. Immerse a plane in R3 as a
cylindrical trough. The resulting parallel rulings then form the (ker II)-foliation.
However by introducing a tear in the surface, the resulting leaf space (Figure 3,
right) ceases to be Hausdorff although the local cross-sections from Theorem 3
guarantee that the resulting leaf space is a locally Euclidean T1-manifold. The
Euclidean neighborhoods UA and UB of the leaves A and B always intersect.

Example 6.5. Let λ ∈ C be a complex number of length 1 that corresponds to a
rotation by an irrational multiple of π . Use λ to define a properly discontinuous
action of Z on R × C by

n · (t, z)= (t + n, λnz).
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A B
A B

UA UB
^ ^

_ _

Figure 3. The torn trough and its associated leaf space.

Since the action is properly discontinuous, the quotient

M = R × C/(t, z)∼ n · (t, z)

is a manifold. Moreover because the action is by isometries, the quotient inherits
the flat Euclidean geometry of R × C. Figure 4 represents a rank-1 immersion of
the 2-torus into the manifold M . The figure shows a fundamental domain for the
action — the manifold M is obtained by identifying points on the left side with
points on the right side, after an appropriate rotation. Because the torus inherits
the flat geometry of a cylinder, the leaves of the (ker II)-foliation form irrational
windings of the torus, as is displayed in the figure. In this case, as with any foliation
all of whose leaves are dense, the topology of the leaf space is trivial. In particular,
it is not locally Euclidean.

. . . . . . . . . . . . . . . . . . . . . . . . ...
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. . .
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•
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Figure 4. An irrational winding of the torus as a (ker II)-foliation:
the space M = [0, 1] × C/∼ where (0, z)∼ (1, λz) for all z ∈ C.
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