Vol. 226, No. 2, 2006

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Upper bounds for the number of limit cycles through linear differential equations

Armengol Gasull and Hector Giacomini

Vol. 226 (2006), No. 2, 277–296
Abstract

Consider the differential equation = y, = h0(x) + h1(x)y + h2(x)y2 + y3 in the plane. We prove that if a certain solution of an associated linear ordinary differential equation does not change sign, there is an upper bound for the number of limit cycles of the system. The main ingredient of the proof is the Bendixson–Dulac criterion for -connected sets. Some concrete examples are developed.

Keywords
ordinary differential equation, limit cycle, Bendixson–Dulac criterion, linear ordinary differential equation
Mathematical Subject Classification 2000
Primary: 34C07, 34C05, 34A30, 37C27
Milestones
Received: 20 November 2004
Accepted: 11 January 2005
Published: 1 August 2006
Authors
Armengol Gasull
Dept. de Matemàtiques
Universitat Autònoma de Barcelona
Edifici C
08193 Bellaterra, Barcelona
Spain
Hector Giacomini
Laboratoire de Mathématique et Physique Théorique
CNRS (UMR 6083)
Faculté des Sciences et Techniques
Université de Tours
Parc de Grandmont
37200 Tours
France