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COMPLETE LOCALLY CONFORMALLY FLAT MANIFOLDS
OF NEGATIVE CURVATURE

MIGUEL BROZOS-VÁZQUEZ, EDUARDO

GARCÍA-RÍO AND RAMÓN VÁZQUEZ-LORENZO

We construct new examples of complete locally conformally flat manifolds
of negative curvature by means of warped product and multiply warped
product structures. Special attention is paid to those spaces with one-dimen-
sional base, thus generalizing the Robertson–Walker spacetimes, and to
those with higher-dimensional base of constant curvature.

1. Introduction

Locally conformally flat structures on Riemannian manifolds are natural general-
izations of isothermal coordinate systems, which are available on Riemann sur-
faces. However, not every higher-dimensional Riemannian manifold admits a lo-
cally conformally flat structure, and it is difficult to provide a classification of those
that do; this is still an open problem. Some partial results are known. A compact
simply connected locally conformally flat manifold must be a Euclidean sphere
[Kuiper 1949; Schoen and Yau 1988]. Locally symmetric manifolds which are lo-
cally conformally flat are either of constant sectional curvature or locally isometric
to a product of two spaces of constant opposite sectional curvature [Lafontaine
1988; Yau 1973]. Complete locally conformally flat manifolds with nonnegative
Ricci curvature have been studied by several authors; Zhu [1994] showed that
their universal cover is in the conformal class of Sn , Rn or R × Sn−1, where Sn

and Sn−1 are spheres of constant sectional curvature. Such conformal equivalence
can be specialized to isometric equivalence under some extra assumptions on the
scalar curvature and the sign of the Ricci curvatures [Cheng 2001; Tani 1967]
(see also [Carron and Herzlich 2004] and the references therein). In spite of the
results on locally conformally flat manifolds of nonnegative curvature, to the best
of our knowledge, there is a lack of information as concerns negative curvature.
Henceforth, our purpose on this work is to construct new examples of complete
locally conformally flat Riemannian manifolds with nonpositive curvature.

MSC2000: 53C15, 53C50.
Keywords: Locally conformally flat, warped product metric, Möbius equation, Obata equation.
Supported by projects BFM 2003-02949 and PGIDIT04PXIC20701PN (Spain).
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Since their introduction by Bishop and O’Neill [1969], warped products have
been a powerful tool for constructing manifolds of nonpositive curvature (see also
[Bertola and Gouthier 2001]). Our aim, then, is to investigate the existence of
locally conformally flat structures on manifolds equipped with a warped product
structure, or more generally on multiply warped spaces, as being a natural gener-
alization of warped products (see for example [Tojeiro 2004] and the references
therein). Other generalizations of warped product structures, like twisted or multi-
ply quasiwarped [Meumertzheim et al. 1999; Ponge and Reckziegel 1993; Tojeiro
2004] are not of interest for our purposes, since they reduce to warped and multiply
warped spaces, respectively, if they are locally conformally flat [Brozos-Vázquez
et al. 2005]. Another motivation for the consideration of locally conformally flat
structures on manifolds equipped with a warped product metric comes from the
fact that the Schouten tensor is Codazzi for any locally conformally flat manifold.
Moreover, although the local structure of Codazzi tensors is not yet completely
understood, the existence of such a tensor leads to warped product decompositions
of the manifold in many cases [Bivens et al. 1981; Tojeiro 2004].

This paper is organized as follows. In Section 2 we recall basic facts on the
curvature of warped and multiply warped spaces. Locally conformally flat multi-
ply warped spaces are investigated in Section 3. Our approach relies on the fact
that any multiply warped space is in the conformal class of a suitable product, a
fact previously observed for warped product metrics [Lafontaine 1988], which has
several implications on the geometry of the fibers and the base of the multiply
warped space. A local description of locally conformally flat spaces with the un-
derlying structure of a multiply warped product is then obtained from the fact that
any warping function must define a global conformal transformation on the base
which makes it of constant sectional curvature. Then the situation when the base
has dimension 2 or higher reduces to the existence of nontrivial solutions of some
Obata type equations on the base (sometimes called concircular transformations;
see [Kühnel 1988; Tashiro 1965]) together with some compatibility conditions
among the different warping functions. This analysis is carried out in Section 3A.
Conditions become much weaker when the base is assumed to be one-dimensional,
as shown in Section 3B, in accordance with Roberston–Walker type metrics, which
are locally conformally flat independently of the warping function. Some global
consequences are obtained in Section 4, where locally conformally flat warped
product manifolds with complete base of constant curvature are classified, as well
as multiply warped ones if the base is further assumed to be simply connected.

Applications of the results in Section 3 have already been found by R. Tojeiro
in the study of conformal immersions into the Euclidean space [2006]. Moreover,
multiply warped spaces with hyperbolic space as the base are of key interest, pro-
viding some new examples of complete locally conformally flat manifolds with
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nonpositive sectional curvature, and with nonpositive Ricci curvatures but no sign
requirement on the sectional curvature.

2. Preliminaries

Let (B, gB), (F1, g1), . . . , (Fk, gk) be Riemannian manifolds. The product mani-
fold M = B × F1 × · · · × Fk , equipped with the metric

g = gB ⊕ f 2
1 g1 ⊕ · · · ⊕ f 2

k gk,

where f1, . . . , fk : B → R are positive functions, is called a multiply warped
product. B is the base, F1, . . . , Fk are the fibers and f1, . . . , fk are the warp-
ing functions. We will denote a multiply warped product manifold as above by
M = B ×f1 F1 × · · · ×fk Fk .

Remark 2.1. The general form of multiply warped products is slightly flexible, so
we must adopt some criteria to identify multiply warped products with different
form but which are essentially the same. They are:

C1. Warping functions are supposed to be nonconstant and any two warping func-
tions which are multiples one to each other are written as the same function
and the metric of the fiber is multiplied by the constant in order to do not
modify the metric of the multiply warped product.

C2. Fibers with the same warping function are joined in one fiber.

Moreover, the possible order of the fibers is irrelevant for our purposes.

Next we fix some notation and criteria to be used in what follows. Let (M, g)
be an n-dimensional Riemannian manifold with Levi-Civita connection ∇. The
Riemann curvature tensor R is the (1, 3)-tensor field on M defined by R(X, Y )Z
= ∇[X,Y ]Z −[∇X ,∇Y ]Z , for all vector fields X , Y , Z ∈ L(M). The Ricci tensor is
the contraction of the curvature tensor given by ρ(X, Y ) = trace{U  R(X,U )Y }

and the scalar curvature is obtained by contracting the Ricci tensor, τ = trace(ρ).
For a vector field X on M the divergence of X is defined by div X = trace ∇ X . The
gradient of a function f : (M, g)→ R is determined by g(∇ f, X)= X ( f ) and the
Laplacian of f is defined by1 f = div∇ f . Also, the linear map h f (X)=∇X∇ f is
called the Hessian tensor of f on (M, g), and H f (X, Y )= g(h f (X), Y ) is called
the Hessian form of f . Finally, note that 1 f = trace h f .

In order to study the properties of multiply warped products, we need some
properties of their curvature tensor, obtained essentially in the same way as for
warped products [Bishop and O’Neill 1969]. Therefore proofs are omitted. The
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nonzero components of the curvature tensor are

(1)

RXY Z = RB
XY Z , RVi X Y =

1
fi

H f i (X, Y )Vi ,

RXUi Vi =
〈Ui , Vi 〉

fi
∇X∇ fi , RU j Ui Vi =

〈Ui , Vi 〉

fi f j
〈∇ fi ,∇ f j 〉U j if i 6= j,

RUi Vi Wi = RFi
Ui Vi

Wi −
〈∇ fi ,∇ fi 〉

f 2
i

(
〈Ui ,Wi 〉Vi − 〈Vi ,Wi 〉Ui

)
,

for all X, Y, Z ∈ L(B) and Ui , Vi ,Wi ∈ L(Fi ), where RB and RFi denote the
curvature tensor of (B, gB) and (Fi , gi ), respectively. Here H fi (X, Y ) and ∇ fi

denote the Hessian tensor and the gradient of the warping function fi with respect
to the Riemannian structure of (B, gB). A straightforward calculation from (1)
shows that the sectional curvature of M satisfies

(2)

K XY = K B
XY , K XUi = −

H fi (X, X)
fi‖X‖2 ,

KUi Vi =
1
f 2
i

K Fi
Ui Vi

−
‖∇ fi‖

2

f 2
i

, KUi V j = −
〈∇ fi ,∇ f j 〉

fi f j
if i 6= j,

where K B and K Fi denote the sectional curvatures on the base B and the fiber Fi .
Here the sectional curvature of a plane π is taken with the sign convention K (π)=
R(X, Y, X, Y ), for any orthonormal base {X, Y } of π .

3. Locally conformally flat multiply warped spaces

Recall that a Riemannian manifold (M, g) is locally conformally flat if every
point in M admits a coordinate neighborhood U which is conformal to Euclidean
space Rn; equivalently, if there is a diffeomorphism 8 : V ⊂ Rn

→ U such that
8∗g = 92g

Rs for some positive function 9. Any surface is locally conformally
flat, but not every higher-dimensional Riemannian manifold admits a locally con-
formally flat structure. Necessary and sufficient conditions for the existence of such
a structure are the nullity of the Weyl tensor W = R − C � g when dim M ≥ 4,
and, in dimension three, the condition that the Schouten tensor

C =
1

n − 2

(
ρ−

τ

2(n−1)
g
)

be a Codazzi tensor. Here � represents the Kulkarni–Nomizu product (see [La-
fontaine 1988], for example). A nonflat locally decomposable Riemannian mani-
fold is locally conformally flat if and only if it is locally equivalent to the product
N (c)×R of an interval and a space of constant sectional curvature, or to the product
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N1(c)×N2(−c) of two spaces of opposite constant sectional curvature [Lafontaine
1988; Yau 1973].

Lemma 3.1. Let M = B ×f1 F1 × · · · ×fk Fk be a locally conformally flat multiply
warped space.

(i) (B, gB) is locally conformally flat.
(ii) (Fi , gi ) is a space of constant sectional curvature for all i =1, . . . , k, provided

that dim Fi ≥ 2.

Proof. For any i = 1, . . . , k, write the multiply warped metric as

g = f 2
i

(
1
f 2
i

gB ⊕
f 2
1

f 2
i

g1 ⊕ · · · ⊕ gi ⊕ · · · ⊕
f 2
k

f 2
i

gk

)
.

Since fi maps B to R+, this expression shows that g is in the conformal class
of a suitable product metric tensor. Hence, the multiply warped metric is locally
conformally flat if and only if so is the product metric of (Fi , gi ) and the multiply
warped B̃ ×f1/ fi F1 × · · · × F̂i × · · · ×fk/ fi Fk with base B̃ ≡ (B, f −2

i gB). This
shows that either dim Fi = 1 or otherwise it is of constant sectional curvature, and
moreover that B̃×f1/ fi F1×· · ·× F̂i ×· · ·×fk/ fi Fk is of constant sectional curvature.
Now the result is obtained by iterating this process. �

Remark 3.2. Note from the previous proof that if M = B ×f1 F1 × · · · ×fk Fk is
locally conformally flat, then so is B ×f1 F1 × · · · ×fk−1 Fk−1.

3A. Locally conformally flat multiply warped spaces with base of dimension at
least 2. Although the fibers of any locally conformally flat multiply warped space
are of constant curvature, this necessary condition does not suffice for local con-
formal flatness since it strongly depends on the warping functions. In this section
we obtain a local description of such warping functions. As a consequence, we
will show the existence of some limitations on the number of fibers of a locally
conformally flat multiply warped space and also on their geometries. Assuming
that the base (B, gB) is of constant sectional curvature, the necessary and sufficient
conditions for local conformal flatness are as follows.

Theorem 3.3. Let M = B ×f1 F1 × · · · ×fk Fk be a multiply warped space with
s-dimensional base B of constant sectional curvature, where s ≥ 2. Then M is
locally conformally flat if and only if the warping functions satisfy

H fi =
1 fi

s
gB,(3)

1 fi

fi
+
1 f j

f j
= s

〈∇ fi ,∇ f j 〉

fi f j
− sK B if i 6= j,(4)

K Fi = ‖∇ fi‖
2
−

2
s

fi1 fi − f 2
i K B if dim Fi ≥ 2,(5)
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where i, j = 1, . . . , k and K B and K Fi denote the sectional curvatures of the base
(B, gB) and the fibers (Fi , gi ).

Proof. Condition (3) is equivalent to the constancy of the sectional curvature of
the base of a locally conformally flat multiply warped space. Since (B, gB) is
locally conformally flat and (B, f −2

i gB) is a space of constant sectional curvature
by Lemma 3.1, we see that (B, gB) is of constant sectional curvature if and only if
the conformal deformation gB 7→ f −2

i gB preserves the (unique) eigenspaces of the
Ricci tensor, and this occurs if and only if f is a solution of the Möbius equation;
this proves (3) (see [Kühnel 1988; Osgood and Stowe 1992]).

Next, consider the Weyl curvature tensor given by

W (X, Y, Z , T )= R(X, Y, Z , T )+
τ

(n−1)(n−2)

(
〈X, Z〉〈Y, T 〉 − 〈Y, Z〉〈X, T 〉

)
−

1
n−2

(
ρ(X, Z)〈Y, T 〉 − ρ(Y, Z)〈X, T 〉 + 〈X, Z〉ρ(Y, T )− 〈Y, Z〉ρ(X, T )

)
.

Also note from (1) that the nonzero components of the Ricci tensor of a multiply
warped space M = B ×f1 F1 × · · · ×fk Fk are given by

(6)
ρ(X, Y )= ρB(X, Y )−

∑
i

di
H fi (X, Y )

fi
,

ρ(Ua, Va)= ρFa (Ua, Va)

−〈Ua, Va〉

(
1 fa

fa
+ (da − 1)

〈∇ fa,∇ fa〉

f 2
a

+

∑
i 6=a

di
〈∇ fa,∇ fi 〉

fa fi

)
for all X, Y ∈ L(B) and Ua, Va ∈ L(Fa), where di = dim Fi and ρB and ρFi denote
the Ricci tensor of the base (B, gB) and the fibers (Fi , gi ). The scalar curvature of
M satisfies

(7) τ = τ B
+

∑
i

1
f 2
i
τ Fi

− 2
∑

i
di
1 fi

fi
−

∑
i

di (di − 1)
〈∇ fi ,∇ fi 〉

f 2
i

−
∑

i

∑
j 6=i

di d j
〈∇ fi ,∇ f j 〉

fi f j
,

where τ B and τ Fi denote the scalar curvatures of the base and the fibers.
Now, in order to show the necessity of (4) and (5), note that if M is locally

conformally flat, then it follows from Remark 3.2 that the warped product space
B ×fa Fa is also locally conformally flat, for all a = 1, . . . , k, and thus its Weyl
tensor vanishes. A straightforward calculation from (6) and (7) using that H fa =

(1 fa/s) gB shows that

W (X, Y, X, Y )=
da(da − 1)

(s+da−1)(s+da−2)

(
K B

+
2
s
1 fa

fa
+

K Fa

f 2
a

−
〈∇ fa,∇ fa〉

f 2
a

)
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for all orthogonal unit vectors X, Y ∈ L(B), whence (5). We proceed in an analo-
gous way to show the necessity of (4), just considering the multiply warped space
B ×fa Fa ×fb Fb, which is also locally conformally flat for all a 6= b ∈ {1, . . . , k}.
After some calculations from (6) and (7) and using the already proved Equation
(5), we have

W (X, Y, X, Y )=

2dadb

(s+da+db−1)(s+da+db−2)

(
K B

+
1
s
1 fa

fa
+

1
s
1 fb

fb
−

〈∇ fa,∇ fb〉

fa fb

)

for all orthogonal unit vectors X, Y ∈ L(B), which proves (4).
Next we show that conditions (3)–(5) are indeed sufficient for M to be lo-

cally conformally flat. Note first that the a-priori nonzero components of the
Weyl tensor in a local orthonormal frame {X, Y, . . . ,U1, V1, . . . ,Ua, Va, . . . } with
X, Y, . . . in L(B) and Ua, Va, . . . in L(Fa) are those given by W (X, Y, X, Y ),
W (X,Ua, X,Ua), W (Ua,Ub,Ua,Ub) and W (Ua, Va,Ua, Va). Now, a long but
straightforward calculation from (6) and (7), using the equalities H fi = (1 fi/s) gB ,
shows that

W (X, Y, X, Y )=

∑
i

di (di − 1)
(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ fi 〉

f 2
i

+
K Fi

f 2
i

+
21 fi

s fi

)
+

∑
i

∑
j 6=i

di d j

(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ f j 〉

fi f j
+
1 fi

s fi
+
1 f j

s f j

)
,

for all X, Y ∈ L(B). Also, for X ∈ L(B) and Ua ∈ L(Fa), one has

W (X,Ua, X,Ua)=

∑
i

di (di − 1)
(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ fi 〉

f 2
i

+
K Fi

f 2
i

+
21 fi

s fi

)

+

∑
i

∑
j 6=i

di d j

(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ f j 〉

fi f j
+
1 fi

s fi
+
1 f j

s f j

)

+

∑
i 6=a

di

n − 2

(
〈∇ fa,∇ fi 〉

fa fi
−
1 fa

s fa
−
1 fi

s fi
− K B

)

+
da − 1
n − 2

(
〈∇ fa,∇ fa〉

f 2
a

−
K Fa

f 2
a

−
21 fa

s fa
− K B

)
.

Next, given Ua ∈ L(Fa) and Ub ∈ L(Fb), where a 6= b, we get
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W (Ua,Ub,Ua,Ub)=

∑
i

di (di −1)
(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ fi 〉

f 2
i

+
K Fi

f 2
i

+
21 fi

s fi

)

+

∑
i

∑
j 6=i

di d j

(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ f j 〉

fi f j
+
1 fi

s fi
+
1 f j

s f j

)

+

∑
i 6=a

di

n −2

(
〈∇ fa,∇ fi 〉

fa fi
−
1 fa

s fa
−
1 fi

s fi
− K B

)

+

∑
i 6=b

di

n −2

(
〈∇ fb,∇ fi 〉

fb fi
−
1 fb

s fb
−
1 fi

s fi
− K B

)

+
da −1
n −2

(
〈∇ fa,∇ fa〉

f 2
a

−
K Fa

f 2
a

−
21 fa

s fa
− K B

)
+

db −1
n −2

(
〈∇ fb,∇ fb〉

f 2
b

−
K Fb

f 2
b

−
21 fb

s fb
− K B

)
+

(
K B

−
〈∇ fa,∇ fb〉

fa fb
+
1 fa

s fa
+
1 fb

s fb

)
,

W (Ua, Va,Ua, Va)=

∑
i

di (di −1)
(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ fi 〉

f 2
i

+
K Fi

f 2
i

+
21 fi

s fi

)

+

∑
i

∑
j 6=i

di d j

(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ f j 〉

fi f j
+
1 fi

s fi
+
1 f j

s f j

)

+

∑
i 6=a

2di

n −2

(
〈∇ fa,∇ fi 〉

fa fi
−
1 fa

s fa
−
1 fi

s fi
− K B

)

+
2(da −1)

n −2

(
〈∇ fa,∇ fa〉

f 2
a

−
K Fa

f 2
a

−
21 fa

s fa
− K B

)
+

(
K B

−
〈∇ fa,∇ fa〉

f 2
a

+
K Fa

f 2
a

+
21 fa

s fa

)
,

for all Ua, Va ∈ L(Fa).
It follows from these expressions that the compatibility conditions (4) and (5)

suffice to show the local conformal flatness of the multiply warped space M . �

Although Equations (3)–(5) characterize the warping functions of a locally con-
formally flat multiply warped space with base of constant curvature, they are dif-
ficult to deal with. However, they become simpler if the base is assumed to be
locally Euclidean:
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Theorem 3.4. Let M = Us
×f1 F1 × · · · ×fk Fk be a multiply warped space, where

Us
⊂ Rs with s ≥ 2. Then M is locally conformally flat if and only if the warping

functions satisfy

(8) fi (Ex)= ai‖Ex‖
2
+ 〈Ebi , Ex〉 + ci

for all Ex ∈ Us , where ai > 0, ci ∈ R and Ebi ∈ Rs . Moreover the warping functions
are compatible in the sense that

(9) 〈Ebi , Eb j 〉 = 2(ai c j + a j ci ), i 6= j

and the sectional curvature of each fiber of dim Fi ≥ 2 is given by

(10) K Fi = ‖Ebi‖
2
− 4ai ci , i, j = 1, . . . , k.

Proof. It follows from [Osgood and Stowe 1992] that the solutions of the Möbius
equation in Euclidean space are given by fi (Ex) = ai‖Ex‖

2
+ 〈Ebi , Ex〉 + ci for some

ai , ci ∈ R and Ebi ∈ Rs . The result follows by observing the equivalence between
(4) and (5) in Theorem 3.3 and (9) and (10) in Theorem 3.4. �

Remark 3.5. We explain how the previous theorem can be extended for not neces-
sarily flat locally conformally flat bases to get a local description of locally confor-
mally flat multiply warped spaces. Since (B, gB) is locally conformally flat, there
exist local coordinates such that gB = 92gUs . In such coordinates, the multiply
warped metric satisfies

gB ⊕ f 2
1 g1 ⊕ · · · ⊕ f 2

k gk = 92
(

gUs ⊕

( f1

9

)2
g1 ⊕ · · · ⊕

( fk

9

)2
gk

)
.

Therefore the multiply warped product gB ⊕ f 2
1 g1 ⊕ · · · ⊕ f 2

k gk is locally con-
formally flat if and only if gUs ⊕ ( f1/9)

2g1 ⊕ · · · ⊕ ( fk/9)
2gk is. Hence the

warping functions are determined locally by Theorem 3.3 up to a conformal factor
9, since the warping functions, in local coordinates where gB = 92gUs , are given
by fi (x)=

(
ai‖Ex‖

2
+ 〈Ebi , Ex〉 + ci

)
9 for all i = 1, . . . , k.

Remark 3.6. Locally conformally flat multiply warped spaces can now be easily
constructed as follows. Since any warping function of a locally conformally flat
multiply warped space M = Us

×f1 F1 × · · · ×fk Fk is completely determined by
scalars ai , ci ∈ R and vectors Ebi = (bi1, . . . , bis) ∈ Rs , consider the vectors Eξi =

(bi1, . . . , bis, ai , ci ) in Rs+2. Next, define a Lorentzian inner product in Rs+2 by
1
. . .

s

1
0 −2

−2 0
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and note that equations (9) and (10) of Theorem 3.4 are interpreted in terms of
the orthogonality Eξi ⊥ Eξ j (for all i 6= j) and K Fi = ‖Eξi‖

2 (whenever dim Fi ≥ 2),
respectively. Thus Remark 3.5 has the following consequences:

(i) A locally conformally flat space M = B ×f1 F1 ×· · ·×fk Fk has, at most, s+2
different fibers, where s = dim B.

(i) For the sectional curvatures of the fibers (Fi , gi ) of a locally conformally flat
multiply warped space, we have, whenever dim Fi ≥ 2:

(ii.1) At most dim B + 1 fibers have positive curvature.
(ii.2) At most one fiber has nonpositive curvature.

(iii) For any locally conformally flat manifold (Bs, gB), there exists s+2 locally
defined warping functions fi : U ⊂ B → R+ and (Fi , gi ) spaces of constant
curvature such that M = U×f1 F1 ×· · ·×fs+2 Fs+2 is locally conformally flat.

3B. Multiply warped spaces with one-dimensional base. Recall that a warped
product I × f F with one-dimensional base is locally conformally flat if and only
if the fiber is a space of constant sectional curvature. Local conformal flatness
is independent of the warping function f [Lafontaine 1988], in opposition to the
case of higher-dimensional base just considered. In what remains of this section
we look at the local structure of a locally conformally flat multiply warped space
with one-dimensional base.

The characterization in the next theorem is essentially independent of the last
warping function, as in the case of metrics of Robertson–Walker type.

Theorem 3.7. Let M = I ×f1 F1 · · · ×fk Fk be a multiply warped space with one-
dimensional base I . Then M is locally conformally flat if and only if , up to a
reparametrization of I , one of the following conditions holds:

(i) M = I ×f F is a warped product with fiber F of constant sectional curvature
(if dim F ≥ 2) and any (positive) warping function f .

(ii) M = I ×f1 F1 ×f2 F2 is a multiply warped product with two fibers of constant
sectional curvature (if dim Fi ≥ 2) and warping functions

f1 = (ξ ◦ f )
1
f ′
, f2 =

1
f ′

where f is a strictly increasing function and ξ is a warping function making
I ×ξ F1 of constant sectional curvature and (ξ ◦ f ) > 0.

(iii) M = I ×f1 F1 ×f2 F2 ×f3 F3 is a multiply warped product with three fibers of
constant sectional curvature (if dim Fi ≥ 2) and warping functions

f1 = (ξ1 ◦ f )
1
f ′
, f2 = (ξ2 ◦ f )

1
f ′
, f3 =

1
f ′
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where f is a strictly increasing function and ξi are warping functions making
I ×ξ1 F1×ξ2 F2 of constant sectional curvature such that ξi ◦ f > 0 for i = 1, 2.

Proof. This is a local consideration. Proceeding as in Lemma 3.1 it follows that
M is locally conformally flat if and only if

1
f 2
k

gI ⊕
f 2
1

f 2
k

g1 ⊕ · · · ⊕
f 2
k−1

f 2
k

gk−1

is of constant sectional curvature opposite to K Fk (if dim Fk ≥ 2), and hence k ≤ 3
(see Remark 3.8). Now, since fk is strictly positive, it defines a reparametrization
on I by τ =

∫
1/ fk to obtain a multiply warped metric dτ 2

⊕ ξ1(τ )
2g1 ⊕ · · · ⊕

ξk−1(τ )
2gk−1 of constant sectional curvature, where the warping functions ξi are

given in Remark 3.8. Hence fi (t)= ξi
(∫

1/ fk
)

fk(t) for i = 1, . . . , k−1, and there
are no constraints on the last warping function fk . �

Remark 3.8. Observe from (2) that, if a multiply warped space M with one-
dimensional base is of constant sectional curvature κ , then the warping functions
satisfy f ′′

i + κ fi = 0 and f ′2
i + κ f 2

i = K Fi , which is just an adjustment of the
sectional curvatures of the fibers since f ′2

i +κ f 2
i is necessarily constant. Moreover,

the necessary compatibility conditions among the different warping functions are
given by f ′

i f ′

j + κ fi f j = 0, (i 6= j), from where it follows that no more than
two fibers are admissible. As a consequence, one obtains the following (see also
[Mignemi and Schmidt 1998]):

(i) If K M
= 0, then M = I ×ξ1 F1 or M = I ×ξ1 F1 ×ξ2 F2, with warping functions

given by ξi (t) = ai t + bi and K Fi = a2
i whenever dim Fi ≥ 2 for i = 1, 2. If

the two fibers are different we have a1a2 = 0.

(ii) If K M
= c2, then M = I ×ξ1 F1 or M = I ×ξ1 F1 ×ξ2 F2, with warping

functions given by ξi (t)=ai sin ct+bi cos ct and K Fi = c2(a2
i +b2

i ), whenever
dim Fi ≥ 2 for i = 1, 2. If the two fibers are different we have a1a2+b1b2 = 0.

(iii) If K M
=−c2, then M = I×ξ1 F1 or M = I×ξ1 F1×ξ2 F2, with warping functions

given by ξi (t) = ai sinh ct + bi cosh ct and K Fi = c2(a2
i − b2

i ), provided that
dim Fi ≥ 2 for i = 1, 2. If the two fibers are different we have a1a2−b1b2 = 0.

Remark 3.9. A generalization of the notion of warped product structures B × f F
to warped bundles has been developed in [Bishop and O’Neill 1969], where it is
shown that those results which are local on B remain valid in the warped bundle
framework. Therefore, previous results in this section can be generalized to warped
bundles.
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4. Some global considerations

The existence of nontrivial globally defined solutions of (3) on complete manifolds
has significant geometrical consequences [Kühnel 1988]. They leads to:

Theorem 4.1. Let M = B ×f F be a locally conformally flat warped product
space with complete base (B, gB) of constant curvature. Then one of the following
occurs:

(i) B is isometric to the Euclidean space Rs and the warping function is given by
f (Ex)= a‖Ex‖

2
+〈Eb, Ex〉+ c. Moreover 4ac −‖Eb‖

2 > 0, a > 0 and the fiber F
is either one-dimensional or K F

= ‖Eb‖
2
− 4ac < 0.

(ii) B is isometric to a Euclidean sphere Ss and the warping function is given by

f = −
s − 1
τ

ψ + κ,

where τ denotes the scalar curvature of Ss , ψ is the restriction to the sphere
of a function 9 on Rs+1 defined by 9(Ex)= 〈Ea, Ex〉 for any Ea ∈ Rs+1, and κ is
a constant greater than (s−1)‖Ea‖/τ . Moreover F is either one-dimensional
or of constant negative curvature

K F
=
(s − 1)2

τ 2 ‖Ea‖
2
− κ2.

(iii) B is isometric to a warped product R ×αeβt+γ N , where N is a complete flat
manifold and the warping function is given by f (t) =

α
β

eβt+γ
+ c for some

constants β, c > 0. Moreover F is either one-dimensional or K F
= c2β2.

(iv) B is isometric to the hyperbolic space Hs and the warping function is given by

f (Ex)=
a‖Ex‖

2
+ 〈Eb, Ex〉 + c

xs
,

for some Eb ∈ Rs , where a > 0 and either 4ac − (b2
1 + b2

2 + · · · + b2
s ) > 0 or

4ac − (b2
1 + b2

2 + · · · + b2
s−1) ≥ 0 and bs ≥ 0. Moreover the fiber F is either

one-dimensional or K F
= ‖Eb‖

2
− 4ac.

Proof. Since any warping function f defines a global conformal transformation
that makes (B, f −2gB) have constant curvature, it follows from [Kühnel 1988]
that B is either a complete and simply connected space form or a warped product
R ×αeβt+γ N , where N is complete Ricci flat, and thus flat since B is necessarily
locally conformally flat. Now the result will follow after a case by case consid-
eration of the possible warping functions and the curvature of the induced metric
f −2gB .
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Next, observe that a solution of the Möbius equation in Rs , f (Ex) = a‖Ex‖
2
+

〈Eb, Ex〉 + c, is everywhere positive if and only if 4ac − ‖Eb‖
2 > 0, a > 0, and (i) is

obtained since the conformal metric f −2g
Rs has constant curvature 4ac−‖Eb‖

2>0.
If B ≡ Ss , it follows from [Brozos-Vázquez et al. 2005; Xu 1993] that any

warping function is given by

f = −
s − 1
τ

ψ + κ,

where τ is as in the theorem’s statement, ψ is a first eigenfunction of the Laplacian
and κ is a constant making f positive. Hence ψ is the restriction to the sphere of
a function 9 on Rs+1 defined by

9(Ex)= 〈Ea, Ex〉

for 0 6= Ea ∈ Rs+1, [Berger et al. 1971] and the sectional curvature of (Ss, f −2g
S
)

is the constant κ2
−

(
(s − 1)2/τ 2

)
‖Ea‖

2 > 0, proving (ii).
In case (iii) the warping function f gives rise to a warped product decompo-

sition of B as R ×αeβt+γ N , where the warping function is of the form f (t) =

(α/β) eβt+γ
+c for some positive constant c [Kühnel 1988]. This defines a global

conformal transformation such that (B, f −2gB) has constant curvature −c2β2;
hence the result.

Finally, assume B to be hyperbolic space. We work in the half-space model, with
domain {xs < 0} and metric obtained by a conformal deformation of the Euclidean
metric: (Hs, x−2

s g
Rs ). The general form of the warping functions then arises from

Remark 3.5. Next note that a‖Ex‖
2
+ 〈Eb, Ex〉 + c is positive in hyperbolic space if

and only if a > 0 and the minimum of the paraboloid is positive (4ac −‖Eb‖
2 > 0)

or occurs on the lower half-space (so −bs/(2a) ≤ 0) and the intersection of the
paraboloid and the hyperplane xs = 0 is positive, which gives

4ac − (b2
1 + b2

2 + · · · + b2
s−1)≥ 0.

Further note that the induced metric f −2gB is of constant curvature 4ac−‖Eb‖
2> 0

but it has no preferred sign in opposition to case (i). �

Theorem 4.2. Let M = B ×f1 F1 × · · · ×fk Fk , k ≥ 2, be a locally conformally flat
multiply warped product space with complete and simply connected base (B, gB)

of constant curvature. Then B is isometric to the hyperbolic space Hs and for
each k ≤ s + 2 there exists locally conformally flat multiply warped spaces M =

Hs
×f1 F1 × · · · ×fk Fk .

Proof. First of all, note that since B is assumed to be simply connected, the possibly
warping functions reduce to cases (i), (ii) and (iv) in Theorem 4.1. Next, in order
to show that a locally conformally flat multiply warped space whose base is the
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Euclidean space or the sphere reduces to a warped product, an analysis of the
curvature of the induced metric (B, f −2gB) is needed. Assuming that the space
M = B ×f1 F1 ×· · ·×fk Fk is locally conformally flat, so is Mi j = B ×fi Fi ×f j F j ,
whose metric tensor can be expressed as

gMi j ≡ f 2
j

(
1
f 2

j
gB ⊕

1
f 2

j
f 2
i gi ⊕ g j

)
.

This shows that M ̂ i = B × Fi , equipped with the metric (1/ f 2
j ) gB ⊕ ( f 2

i / f 2
j ) gi ,

has constant sectional curvature K M ̂ i . Since M ̂ i can be viewed as a warped
product, it follows from (2) that

K M ̂ i (X ∧ U )= −
f 3

j

fi
Ĥ fi/ f j (X, X)

for all unit vectors X ∈ L(B), U ∈ L(Fi ), where Ĥ fi/ f j denotes the Hessian of
fi/ f j with respect to the conformal metric f −2

j gB . Now, since

Ĥ fi/ f j =
1
f j

(
H fi −

fi

f j
H f j −

1
f j

gB(∇ f j ,∇ fi )gB +
fi

f 2
j

gB(∇ f j ,∇ f j )gB

)
(see [Garcı́a-Rı́o and Kupeli 1999]), one gets

(11) −K M ̂ i
fi

f j
gB = f j H fi − fi H f j − gB(∇ f j ,∇ fi )gB +

fi

f j
gB(∇ f j ,∇ f j )gB .

Proceeding similarly, and expressing the metric tensor of Mi j = B ×fi Fi ×f j F j as

gMi j ≡ f 2
i

(
1
f 2
i

gB ⊕
1
f 2
i

f 2
j g j ⊕ gi

)
,

one also gets

(12) −K M ı̂ j
f j

fi
gB = fi H f j − f j H fi − gB(∇ fi ,∇ f j )gB +

f j

fi
gB(∇ fi ,∇ fi )gB .

Now it follows from (11) and (12) that

(13) −K M ̂ i f 2
i − K M ı̂ j f 2

j = ‖ f j∇ fi − fi∇ f j‖
2.

As an immediate application of this equality we have:

Proposition 4.3. If M = B ×f1 F1 ×· · ·×fk Fk is a locally conformally flat multiply
warped space, then the (constant) sectional curvature of (B, f −2

i gB) cannot be
nonnegative for two different warping functions.

Proof. If ‖ f j∇ fi − fi∇ f j‖
2
= 0, then ∇ ln( fi/ f j ) = 0, implying fi is a multiple

of f j in opposition to Remark 2.1. This shows there exist no nontrivial locally
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conformally flat multiply warped metrics having Euclidean space or the sphere for
base. �

Finally, in order to show the existence of complete locally conformally flat multi-
ply warped products with base Hs and the maximum number of fibers, just consider
the set of functions

f 1(Ex)=
1
4(s + 4)‖Ex‖

2
+ x1 + · · · + xs−1 + (s + 2)xs + s + 1,

f 2(Ex)=
1
4(s + 4)‖Ex‖

2
+ x1 + · · · + xs−1 + sxs + s − 1,

f 3(Ex)= ‖Ex‖
2
+ 3xs + 2,

f 4(Ex)= ‖Ex‖
2
+ xs−1 + 2xs + 2,

f 5(Ex)= ‖Ex‖
2
+ xs−2 + 2xs + 2,

...

f s+2(Ex)= ‖Ex‖
2
+ x1 + 2xs + 2.

These functions are positive in hyperbolic space and satisfy the compatibility con-
ditions in Theorem 3.4. Hence, proceeding as in Remark 3.5, one sees that fi (Ex)=
f i (Ex)/xs are positive warping functions on Hs that define a locally conformally
flat multiply warped space for either one- or higher-dimensional fibers of suitable
constant curvature as in Remark 3.6. This completes the proof of the theorem. �

Remark 4.4. If M = B ×f1 F1 × · · · ×fk Fk is locally conformally flat with com-
pact base B, then k = 1. Indeed, let fi , f j be two distinct warping functions.
Proceeding as in Lemma 3.1, we conclude that (B, f −2

i gB) and (B, f −2
i gB) are of

constant sectional curvature. Since fi/ f j is not constant it follows that (B, f −2
i gB)

and (B, f −2
i gB) are conformal metrics of constant curvature, and thus Euclidean

spheres [Kühnel 1988], from which the result follows.

Examples of complete locally conformally flat manifolds of nonpositive curva-
ture. Proceeding as in [Bishop and O’Neill 1969], note that a multiply warped
manifold M = B ×f1 F1 ×· · ·×fk Fk is complete if and only if the base and all the
fibers are so. In such a case, the sectional curvature is nonpositive if and only if
the following conditions are satisfied:

(a) the sectional curvatures of the base and the fibers are nonpositive: K B
≤ 0

and K Fi ≤ 0.

(b) The warping functions are convex, i.e., H fi is positive semidefinite.

(c) 〈∇ fi ,∇ f j 〉 ≥ 0 for all i 6= j .

Condition (a) can be omitted whenever the base and the corresponding fiber are
one-dimensional.
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A complete locally conformally flat multiply warped space with simply con-
nected base of constant curvature is of nonpositive sectional curvature if and only
if one of the following conditions holds:

(i) B ≡Rs , and then Rs
× f F is of nonpositive sectional curvature for any warping

function f as in Theorem 4.1.

(ii) B ≡ Hs , and then Hs
×f1 F1 ×· · ·×fk Fk is of nonpositive sectional curvature

if and only if the warping functions

fi (Ex)=
ai‖Ex‖

2
+ 〈 Ebi , Ex〉 + ci

xs

satisfy

fi ≥ 2bis if dim Fi ≥ 2 and 1 ≥
bis

fi
+

b js

f j
for all i 6= j .

The simplest examples illustrating this situation are as follows.

(a) Let M be the product manifold M = H2
× Fd

1 × F2 equipped with the multiply
warped metric tensor defined by the warping functions

f1(Ex)= κ

1
2‖Ex‖

2
+ x2 + 1
x2

, f2(Ex)=

1
4‖Ex‖

2
+ x2 +

1
2

x2
,

where F2 is one-dimensional and F1 is either one-dimensional or of negative
sectional curvature K F1 = −κ2.

(b) Let M be the product manifold M = H2
×F1

d
×F2 equipped with the multiply

warped metric tensor defined by the warping functions

f1(Ex)=

1
4‖Ex‖

2
+ x1 + 1
x2

, f2(Ex)=

1
2‖Ex‖

2
+ 2x1 + x2 + 2

x2
.

where F2 is one-dimensional and F1 is either one-dimensional or flat.

Further, if M = B ×f1 F1 ×· · ·×fk Fk is a locally conformally flat multiply warped
space with base of constant sectional curvature, then it follows from (3)–(5) that
M has at most (k + 1)-different Ricci curvatures given by

(14)

λB = (s − 1)K B
−

1
s

∑
i

di
1 fi

fi
,

λFa = (s − 1)K B
−

1
s

∑
i

di
1 fi

fi
− (n−2)

(
K B

+
1
s
1 fa

fa

)
.

A straightforward calculation shows that examples (a) have exactly three different
Ricci curvatures, but only two occur in case (b).
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Remark 4.5. Observe that the base and the fibers of a multiply warped prod-
uct play completely different roles. For instance, if M is a warped product with
compact base and nonpositive sectional curvature, then it follows from (2) that
the warping function satisfies H f ≥ 0, and thus f is constant, which shows that
M must be a direct product. In opposition, one can easily construct examples of
locally conformally flat multiply warped spaces of nonpositive sectional curvature
with compact fibers. In addition to examples (b) above, those metrics in Theorem
4.1(iii) can also be viewed as multiply warped metrics with one-dimensional base.
A straightforward calculation shows that R×αeβt+γ N × α

β
eβt+γ+c F is of nonpositive

sectional curvature if and only if F is one-dimensional. Further note that both N
and F can be chosen to be compact. Further, R×αeβt+γ N ×(α/β) eβt+γ+c F has three
distinct Ricci curvatures and therefore is not isometric to example (b), where only
two distinct Ricci curvatures occur.

Remark 4.6. As an immediate application of (14), a locally conformally flat multi-
ply warped space M =Hs

×f1 F1×· · ·×fk Fk (s ≥2) has nonpositive Ricci curvature
if and only if the warping functions

fi (Ex)=
ai‖Ex‖

2
+ 〈 Ebi , Ex〉 + ci

xs
satisfy ∑

i

di
bis

fi
≤ n − 1 for all i = 1, . . . , k,

(n−2)
bis

fi
+

∑
j

d j
b js

f j
≤ n − 1 for all i 6= j ∈ {1, . . . , k}.

The simplest examples of complete locally conformally flat manifolds with non-
positive Ricci curvature consist of

H2
×f1 S2

×f2 S2
×f3 S2

×f4 H2

with warping functions

f1(Ex)=

3
2‖Ex‖

2
+ x1 + 4x2 + 3

x2
, f2(Ex)=

‖Ex‖
2
+ 3x2 + 2
x2

,

f3(Ex)=

1
2‖Ex‖

2
+ x1 + 2x2 + 2

x2
, f4(Ex)=

‖Ex‖
2
+ x1 + 2x2 + 1

x2
.

The same conclusions hold for the multiply warped spaces H2
×f1 S2

×f2 S2
×f3 S2,

H2
×f1 S2

×f2 S2 and H2
×f1 S2. Also note from (13) that if Hs

×f1 F1×· · ·×fk Fk is
a locally conformally flat space of nonpositive sectional curvature, there is at most
one fiber Fa with dim Fa ≥ 2, which must necessarily be of nonpositive sectional
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curvature. This shows that none of the examples above has nonpositive sectional
curvature.
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ANALYTIC STABILITY OF THE CR CROSS-CAP

ADAM COFFMAN

For m < n, any real analytic m-submanifold of complex n-space with a
nondegenerate CR singularity is shown to be locally equivalent, under a
holomorphic coordinate change, to a fixed real algebraic variety defined by
linear and quadratic polynomials. The situation is analogous to Whitney’s
stability theorem for cross-cap singularities of smooth maps. The complex
analyticity of the normalizing transformation is proved using a rapid con-
vergence argument.

1. Introduction

For m ≤ n, if a real m-manifold M is embedded in Cn , then for each point x on M
there are two possibilities: the tangent m-plane at x may contain a complex line,
so M is said to be CR singular at x, or it may not, so M is said to be totally real
at x. This article will consider the local extrinsic geometry of a real analytically
embedded M near a CR singular point, in the case when the CR singularity satisfies
some natural nondegeneracy properties and 2

3(n + 1) ≤ m < n (so (m, n)= (4, 5)
is the case of lowest dimension). The main result is an algebraizability property:
there exists a holomorphic coordinate change in a neighborhood of x so that M is
real algebraic in the new coordinate system. In fact, M will be biholomorphically
equivalent to a fixed normal form variety, so that, unlike the well-known m = n
case, nondegenerate CR singularities have no continuous invariants under biholo-
morphisms.

The analysis of normal forms near CR singular points is part of the program of
studying the local equivalence problem for real m-submanifolds of Cn , as described
in [Baouendi et al. 2000]. Normal forms for CR singular real n-manifolds in Cn ,
where m = n ≥ 2, have been the subject of much study; see, for example, [Bishop
1965; Moser 1985; Moser and Webster 1983; Webster 1985]. Real surfaces in Cn

(m = 2, n ≥ 3) have been considered in [Harris 1981; 1983; Coffman 2004], and
real threefolds in C4 in [Coffman 2006]. A formal normal form for a CR singular
real 4-manifold in C5 was found in [Beloshapka 1997] and [Coffman 1997] — it
was shown that there exists a transformation (not unique) defined by formal power

MSC2000: 32V40, 32S05.
Keywords: normal form, CR singularity, real submanifold.

221



222 ADAM COFFMAN

series, taking M to the normal form. The new result here is the existence of a
normalizing transformation defined by series that are convergent in a neighborhood
of the singularity.

2. Topological considerations

We briefly recall some topological properties of CR singularities. We could con-
sider real submanifolds of any complex manifold, but since the main result on
the normalization is about the local geometry, we can begin by assuming M is a
smoothly immersed real m-manifold in Cn .

The most basic invariant of a CR singularity at a point x ∈ M is the number
j(x) = dimC Tx ∩ Jx Tx , where Tx is the real tangent space of M at x and Jx is
the complex structure operator corresponding to scalar multiplication by i on the
tangent space of the ambient complex manifold. The number j(x) is the dimension
of the largest complex subspace tangent to M at x, so 0 ≤ j(x)≤ m/2.

One way to keep track of j(x) is the following construction. For m ≤ n, let
G be the grassmannian variety of real m-subspaces in Cn ∼= R2n; see [Garrity
2000; Coffman 1997]. The real m-subspaces T such that dimC T ∩ iT ≥ j form a
subvariety D j of real codimension 2 j (n−m+ j) in G. The occurrence of complex
tangents of an immersion corresponds to the intersection of D j with the image of
the Gauss map M → G : x 7→ Tx , and the immersion could be called “generic” if
the Gauss map meets each stratum D j\D j+1 transversely. So, generic immersions
of M in Cn are totally real outside a subset of M of codimension 2(n−m+1), and if
m< 2

3(n+1), a generic immersion of M is totally real everywhere. This resembles
the bounds in Whitney’s embedding and immersion theorems [1944a; 1944b]. In
the range 2

3(n + 1) ≤ m ≤ n, CR singularities are topologically stable — small
smooth perturbations of a generic immersion with a CR singular point will still
have a CR singular point. For compact real submanifolds of complex manifolds,
there are topological obstructions to the property of being totally real at every point,
and the CR singularities can be enumerated by characteristic class formulas. See
[Domrin 1995a; 1995b; Coffman 1997] and references therein on this topic.

The case addressed by this paper is 2
3(n+1)≤ m< n, and j(x)= 1; that is, only

points x where exactly one complex line is tangent at x will be considered, and only
in dimension cases where the CR singularity is stable under smooth perturbations of
the immersion. As mentioned in the Introduction, the m =n case has a qualitatively
different local geometry than the m < n case and is not considered here. The cases
(m, n) = (2, 3) or (3, 4), considered in [Coffman 2004; 2006], fall outside the
topological stability range. The case (m, n) = (4, 5), considered in [Beloshapka
1997; Domrin 1995a; Coffman 1997; 2002], has the lowest dimensions in the
range, and the generic singularity is isolated (codimension 4 in M).
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3. The quadratic normal form

Let the ambient complex space be Cn , with coordinates (z1, . . . , zn). The real
and imaginary parts of the coordinate functions are labeled z j = x j + iy j for j =

1, . . . , n. Let M be a real analytic m-dimensional submanifold embedded in Cn ,
with m < n, and let x be a point on M at which M is tangent to a complex line but
not to any complex 2-plane — in terms of the previous section, j(x)= 1, which we
regard as a nondegeneracy assumption, since for M in general position, the points
where j(x) > 1 form a subset of higher codimension.

By a translation that moves x to the origin E0, and then a complex linear trans-
formation of Cn , the tangent space T = TE0 of M can be assumed to be the one
spanned by (x1, y1, x2, . . . , xm−1), and thus to contain the z1-axis. Then there is
some neighborhood 1 of the origin in Cn so that the defining equations of M in 1
are in the form of a graph over a neighborhood of the origin in T :

(1)
ys = Hs(z1, z̄1, x2, . . . , xm−1)

zu = hu(z1, z̄1, x2, . . . , xm−1),

where Hs , for s = 2, . . . ,m − 1, is a real-valued real analytic function, and hu ,
for u = m, . . . , n, is a complex-valued real analytic function, with Hs and hu

defined in a neighborhood of the origin in T , and vanishing to second order at
(x1, y1, x2, . . . , xm−1)= (0, . . . , 0). The expression “x2, . . . , xm−1” is abbreviated
as just x . So, the defining functions are of the following form:

Hs(z1, z̄1, x)=αsz2
1+βsz1 z̄1+γs z̄2

1+

∑
δs1

s z1xs1 +

∑
εs1

s z̄1xs1 +

∑
θ s1s2

s xs1 xs2

+ Es(z1, z̄1, x),

hu(z1, z̄1, x)=αuz2
1+βuz1 z̄1+γu z̄2

1+
∑

δs1
u z1xs1 +

∑
εs1

u z̄1xs1 +

∑
θ s1s2

u xs1 xs2

+ eu(z1, z̄1, x),

with Es , eu having terms of degree three or higher. Each of these functions can be
expressed as the restriction to {(z1, ζ, x) ∈ Cm

: ζ = z̄1, x = x̄} of an m-variable
series with complex coefficients:

Hs(z1, ζ, x)= αsz2
1 +βsz1ζ + γsζ

2
+

∑
δs1

s z1xs1 +

∑
εs1

s ζ xs1

+

∑
θ s1s2

s xs1 xs2 +

∑
a+b+I≥3

EabI
s za

1ζ
bx I

hu(z1, ζ, x)= αuz2
1 +βuz1ζ + γuζ

2
+

∑
δs1

u z1xs1 +

∑
εs1

u ζ xs1

+

∑
θ s1s2

u xs1 xs2 +

∑
a+b+I≥3

eabI
u za

1ζ
bx I ,
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where x I abbreviates x i2
2 x i3

3 · · · x im−1
m−1 and a+b+ I abbreviates a+b+i2+. . .+im−1.

Each of the series in (z1, ζ, x) converges on some set of the form

{(z1, ζ, x) : |z1|< r, |ζ |< r, |xs |< r},

with r > 0, to a complex analytic function, with γs = αs , εs1
s = δ

s1
2 , etc., so that

Hs(z1, z̄1, x) and Es(z1, z̄1, x) are real-valued.

Definition 3.1. A (formal) monomial Cza
1ζ

bx I (with complex coefficient C) has
degree a + b + I . A (convergent or formal) power series in m variables, say
e(z1, ζ, x) =

∑
eabI za

1ζ
bx I , is said to have degree d if eabI

= 0 for all (a, b, I )
such that a +b+ I < d. Sometimes a series of degree d will be abbreviated O(d).
An ordered k-tuple of series (e1, . . . , ek) has degree d if all its components have
degree d .

Definition 3.2. Similarly for n variables, a monomial Cza1
1 · · · zan

n has degree a1 +

· · ·+an , but we will also work with the weight a1 +· · ·+am−1 +2am +· · ·+2an .
A series p(Ez) =

∑
pa1...an za1

1 . . . z
an
n has weight W if pa1...an = 0 when a1 + · · · +

am−1 + 2am + · · · + 2an < W .

We consider two coordinate systems for a neighborhood of the origin in Cn: the
previously mentioned Ez = (z1, . . . , zn), and a new system z̃ = (z̃1, . . . , z̃n), with
z̃ j = x̃ j + ỹ j . The two systems are related by the change of coordinates

(2) z̃ = Ez + Ep(Ez),

where Ep(Ez)= (p1(Ez), . . . , pn(Ez)) and each component p j is a holomorphic function
of z1, . . . , zn whose series expansion has weight 2, and for j ≥ m, also degree 2.
Such a transformation of Cn has invertible linear part, so it is invertible on some
neighborhood of E0. In the calculations of this section, we will neglect considering
the size of that neighborhood, and consider only points close enough to the origin,
but the size of the domain of Ep will be important information in later sections.

The goal of this section is to establish some nondegeneracy conditions on the
defining equations (1), by using complex linear transformations and nonlinear
transformations of the form (2) to put the quadratic terms of (1) into a normal
form. Similar calculations have already been done in the case m = n and the
cases (m, n) = (2, 3), (3, 4), and (4, 5), in [Bishop 1965; Coffman 2004; 2006;
Beloshapka 1997], respectively, so we will skip some of the computational details.

As the first special case of a transformation of the form (2) to be used, let p1 = 0
and let p2, . . . , pn be homogeneous quadratic polynomials in z1, . . . , zm−1. Us-
ing such a transformation, the quadratic terms in hu that are products of z1 and
x only, without a z̄1 factor, can be eliminated in the new coordinate system, or
their coefficients (αu , δs1

u , θ s1s2
u ) can be altered to attain any complex values, by

a suitable choice of Ep. This transformation may also change some higher-degree
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terms but does not alter the coefficients βu , γu , εs1
u . Similarly, the quadratic terms

without z̄1 in each Hs can also be eliminated by a transformation z̃ = Ez + Ep, which
simultaneously eliminates their conjugates (using γs = αs), leaving only the mixed
term βsz1 z̄1.

The result of this preliminary normalization is that for any CR singular sub-
manifold M of the form (1), there exists a quadratic coordinate transformation of
the form (2) with p1 = 0, so that M has the following general normal form. In a
local coordinate system Ez in some neighborhood of the CR singularity, the defining
equations of M are of the form (1), with

ys = Hs(z1, z̄1, x)= βsz1 z̄1 + O(3),

zu = hu(z1, z̄1, x)= βuz1 z̄1 + γu z̄2
1 +

∑
εs1

u z̄1xs1 + O(3).

At this point we consider which invertible complex linear transformations of Cn

fix the tangent plane T with coordinates (z1, x). The matrix representation of such
a transformation must be of the form z̃ = Az, where

A =

 a1 a2 . . . am−1 am . . . an

0 R ∗

0 0 C

 .

The entries a1, . . . , an are complex, with a1 6= 0, the (m−2)× (m−2) block R has
real entries and a nonzero determinant, and the (n−m+1)× (n−m+1) block C
has complex entries and a nonzero determinant.

The first nondegeneracy condition is that the (n−m+1)×2 block of coefficients
βu , γu in the functions hu satisfies

(3) rank

 βm γm
...

...

βn γn

 = 2.

In particular, this requires m < n. In this nondegenerate case, there is a linear
transformation of Cn which uses the block C in the complex matrix above to put
these coefficients into a row echelon form:

zt = ht(z1, z̄1, x)=

∑
ε

s1
t z̄1xs1 + O(3),

zn−1 = hn−1(z1, z̄1, x)= z̄2
1 +

∑
ε

s1
n−1 z̄1xs1 + O(3),

zn = hn(z1, z̄1, x)= z1 z̄1 +

∑
εs1

n z̄1xs1 + O(3),

for t = m . . . , n − 2, or there are no ht expressions if m = n − 1.
As a consequence of the first nondegeneracy condition on the functions hu ,

the functions Hs can also be simplified. There is a linear transformation with
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components z̃s = zs − iβszn (where for s = 2, . . . ,m −1, the complex coefficients
−iβs are entries from the ∗ block of the matrix A) that eliminates the βsz1 z̄1 terms
from each function Hs . This may introduce more terms of the form z1xs1 or z̄1xs1 in
the Hs functions, which can be eliminated by z̃s = zs+ ps quadratic transformations
as done previously, without reintroducing any z1 z̄1 terms.

A linear transformation of the form z̃1 = z1 +
∑

aszs , using the block a2, . . . ,

am−1 from the matrix A, can eliminate the terms of the form z̄1xs1 from either the
hn−1 quantity or the hn quantity, but generally not both at once — we make the
choice to eliminate the terms

∑
ε

s1
n−1 z̄1xs1 from hn−1. This may introduce more

terms of the form z1xs1 or xs1 xs2 in the other hu functions, which can be eliminated
by z̃u = zu + pu quadratic transformations as done previously.

The real and imaginary parts of the coefficients εs1
u , for u = m, . . . , n − 2 and

u = n, on the terms z̄1xs1 , s1 = 2, . . . ,m −1, form a real 2(n−m)×(m−2) matrix,
in this expression where the left-hand side is a column (n − m)-vector:

(4)
(∑

εs1
u z̄1xs1

)
u=m,...,n−2,n

=

 1 i · · · 0 0
...

...

0 0 · · · 1 i





Re ε2
m Re ε3

m . . . Re εm−1
m

Im ε2
m Im ε3

m . . . Im εm−1
m

...
...

Re ε2
n−2 Re ε3

n−2 . . . Re εm−1
n−2

Im ε2
n−2 Im ε3

n−2 . . . Im εm−1
n−2

Re ε2
n Re ε3

n . . . Re εm−1
n

Im ε2
n Im ε3

n . . . Im εm−1
n



 x2
...

xm−1

z̄1.

The second nondegeneracy condition is that this real matrix has rank 2(n − m).
It follows that the number of xs directions, m − 2, must be greater than or equal
to the number 2(n − m), and this is equivalent to m ≥

2
3(n + 1), exactly the lower

bound of the dimensions of topological stability, as discussed in Section 2.
When the second nondegeneracy condition holds, the real R block of the matrix

A can transform the xs variables to put the real matrix above into echelon form,
transforming the real and imaginary parts of the εs1

u coefficients, without altering
the z̄2

1 and z1 z̄1 terms. We get the following quadratic normal form for a non-
degenerate CR singularity:

(5) ys = Hs(z1, z̄1, x)= Es(z1, z̄1, x)= O(3),

zt = ht(z1, z̄1, x)= z̄1x2(t−m+2) + i z̄1x2(t−m+2)+1 + et(z1, z̄1, x),

zn−1 = hn−1(z1, z̄1, x)= z̄2
1 + en−1(z1, z̄1, x),

zn = hn(z1, z̄1, x)= z1 z̄1 + z̄1x2 + i z̄1x3 + en(z1, z̄1, x),
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with s = 2, . . . ,m − 1, t = m, . . . , n − 2, or, again, there are no ht expressions
if m = n − 1. If m > 2

3(n + 1), then the x2, . . . , x2n−2m+1 variables appear in
the quadratic part of the normal form but the variables x2n−2m+2, . . . , xm−1 do
not. In fact, near the origin, the locus of CR singularities (with j(x) = 1) is a
codimension 2(n − m + 1) submanifold of M whose tangent space at the origin is
the real subspace with coordinates x2n−2m+2, . . . , xm−1.

Having stated these two nondegeneracy conditions, we are now ready to state
the main result:

Proposition 3.3. Given 2
3(n +1)≤ m < n, let M be a real analytic m-submanifold

of Cn with a CR singularity at x, with j(x) = 1. If its local defining equations (of
the form (1)) satisfy both nondegeneracy conditions (the full rank of the coefficient
matrices (3), (4)) so that they can be put into the form (5), then there exists a
holomorphic coordinate change z̃ = Ez + Ep as in (2), in a neighborhood of E0 ∈ Cn ,
transforming the equations (5) into the real algebraic normal form

(6) ỹs = 0 for s = 2 . . . ,m − 1,

z̃t = ¯̃z1(x̃2(t−m+2) + i x̃2(t−m+2)+1) for t = m . . . , n − 2,

z̃n−1 = ¯̃z2
1,

z̃n = ¯̃z1(z̃1 + x̃2 + i x̃3).

The real algebraic variety defined by (6) is denoted M̃m,n , or more briefly
M̃ . The example M̃4,5 is exactly the normal form of [Beloshapka 1997]. The
proposition states that any real analytic M satisfying only j(x)= 1 at a point and
both quadratic nondegeneracy conditions is locally biholomorphically equivalent
to the real algebraic model. This is the “analytic stability” mentioned in the title,
and it is apparently analogous to stability theorems in the singularity theory of
smooth maps, where any sufficiently nondegenerate singularity is equivalent under
a change of coordinates to a unique polynomial model. The equations for M̃ re-
semble the normal forms for smooth maps with cross-cap (or “S1”) singularities, as
in [Whitney 1958; Haefliger 1961; Golubitsky and Guillemin 1973, §VII.4], and
M̃ and the images of the singular maps also have similar structures as a cartesian
product when the singularity is not isolated. The main difference between Whit-
ney’s normal forms and (6) is that the quantities in (6) are not monomials, and
cannot be simultaneously transformed into monomials by holomorphic coordinate
transformations in the nondegenerate case. More will be said about the analogies
with singularity theory in Section 8.

In the case m =
2
3(n+1)when the singularity is isolated, some of the topological

invariants mentioned in Section 2 depend on an orientation of M , so it may be
useful to consider normalizing transformations that fix a given orientation of the
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tangent plane T . This corresponds to the real block R of matrix A having a positive
determinant, and the last equation of the normal form (5) falls into two cases: zn =

z̄1(z1 + x2 ± i x3). The two normal forms are equivalent under the biholomorphic
transformation z̃3 = −z3, but this reverses the orientation of T . In the remaining
sections we will not be concerned with the orientation.

4. A functional equation

To show the existence of a normalizing transformation, we will set up a system
of nonlinear functional equations, so that any solution Ep of the system will define
a normalizing transformation z̃ = Ez + Ep as in (2). In addition to finding a formal
power series solution, we will also have to show that the solution is convergent in
some neighborhood of the origin. The method of proof is the rapid convergence
technique, as used in [Moser 1985] and [Coffman 2004]. Rather than trying to solve
the system of equations directly, we first find an approximate solution by solving
a related system of linear equations. Iteration of this process gives a sequence
of approximations that approach an exact solution. The issue of the domain of
convergence of the exact solution was not addressed by [Beloshapka 1997], and
was left open in [Coffman 1997]. In this latter paper, each approximate solution in
the sequence was constructed only on a domain a fraction of the size of the previous
one in the sequence — when the domains shrink to a point, the limit is an exact
formal series solution, but no conclusion can be drawn about its analyticity. The
new step here, which is crucial for the method of [Moser 1985] to be applicable,
is the construction of a sequence of approximate solutions whose domains shrink
slowly enough so their diameters are bounded below by a positive constant.

Starting with the quadratic part of the defining equations in normal form (5),
we consider the effect of a coordinate change (2). As previously mentioned, the
z̃ =Ez+ Ep transformation is (at least formally) invertible near E0, and it may be useful
to think of z̃ = Ez + Ep as having identity linear part, although there could be linear
terms with weight 2, for example, z̃1 = z1 + anzn .

In terms of z̃ and Ez, consider the system of equations

(7) 0 = Im(z̃s)= Im(zs + ps(Ez)),

0 = z̃t − ( ¯̃z1 x̃2(t−m+2) + i ¯̃z1 x̃2(t−m+2)+1),

= zt + pt(Ez)− (z1 + p1(Ez))Re(z2(t−m+2) + p2(t−m+2)(Ez))

− i(z1 + p1(Ez))Re(z2(t−m+2)+1 + p2(t−m+2)+1(Ez)),

0 = z̃n−1 − ¯̃z2
1 = zn−1 + pn−1(Ez)− (z1 + p1(Ez))

2
,

0 = z̃n − ¯̃z1(z̃1 + x̃2 + i x̃3)

= zn + pn(Ez)−(z1+p1(Ez))
(
z1+ p1(Ez)+Re(z2+p2(Ez))+i Re(z3+p3(Ez))

)
.
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In order to get (6) to be the defining equations for M in the z̃ coordinates, the
preceding equalities must hold for points Ez on M and near E0. So, we can replace
the Ez = (z1, . . . , zn) expressions in (7) by the defining functions (5):

(8) Ez =
(
z1, x2 + i H2(z1, z̄1, x), . . . , hn(z1, z̄1, x)

)
,

to get a system of equations where the right-hand side functions depend only on
z1, z̄1, x :

(9) 0 = Im(xs + i Hs + ps(Ez))= Es(z1, z̄1, x)+ Im ps(Ez),

0 = et(z1, z̄1, x)+ pt(Ez)− p1(Ez)(x2(t−m+2) + i x2(t−m+2)+1)

− z̄1
(
Re p2(t−m+2)(Ez)+ i Re p2(t−m+2)+1(Ez)

)
− p1(Ez)

(
Re p2(t−m+2)(Ez)+ i Re p2(t−m+2)+1(Ez)

)
,

0 = en−1(z1, z̄1, x)+ pn−1(Ez)− 2z̄1 p1(Ez)− p1(Ez)
2

0 = en(z1, z̄1, x)+ pn(Ez)− z̄1
(

p1(Ez)+ Re p2(Ez)+ i Re p3(Ez)
)

− p1(Ez)(z1 + x2 + i x3)− p1(Ez)
(

p1(Ez)+ Re p2(Ez)+ i Re p3(Ez)
)
.

The components of Ee = (E2, . . . , Em−1, em, . . . , en) appear in two ways — as terms
in each equation of (9), and also in the Ez input (8) for each p j (Ez) in (9), j =

1, . . . , n. So, given Ee, if we happen to have an exact solution Ep of the system of
functional equations above, the conclusion of Proposition 3.3 holds and we are
done. However, (9) is a nonlinear system in the unknown quantity Ep, where in
addition to the composition with the given defining functions (8), there are products
of the components p j and their complex conjugates.

As a first step in solving for Ep in terms of Ee, consider the system of simpler
equations:

(10) 0 = Es(z1, z̄1, x)+ Im ps(Ez),

0 = et(z1, z̄1, x)+ pt(Ez)− p1(Ez)(x2(t−m+2) + i x2(t−m+2)+1)

− z̄1
(
Re p2(t−m+2)(Ez)+ i Re p2(t−m+2)+1(Ez)

)
,

0 = en−1(z1, z̄1, x)+ pn−1(Ez)− 2z̄1 p1(Ez),

0 = en(z1, z̄1, x)+ pn(Ez)

− z̄1
(

p1(Ez)+ Re p2(Ez)+ i Re p3(Ez)
)
− p1(Ez)(z1 + x2 + i x3),

where the Ez input for each p j is

(11) Ez =
(
z1, x2, . . . , xm−1, z̄1(x4 + i x5), . . . , z̄2

1, z̄1(z1 + x2 + i x3)
)
.

This simplifies p j (Ez) by considering only the linear and quadratic parts of the input
(8). Also, the products of p j are dropped, so that these are (real) linear equations.
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To see how the new equations are related to the original system, suppose Ee has
degree d ≥ 3, and that Ep is a solution of (10)–(11) so that p1, . . . , p2n−2m+1 have
weight ≥ d − 1, and p2n−2m+2, . . . , pn have weight ≥ d. Evaluating the right-
hand side of (9) with this solution for Ep evidently results in expressions of degree
≥ 2d−2. Converting these expressions in z1, z̄1, x to z̃1, ¯̃z1, x̃ and equating them to
the z̃ expressions in (7) gives the higher-order terms of the new defining equations
for M in the z̃ coordinate system. (It will be shown later (Theorem 6.5) that in
fact for Ez ∈ M close enough to E0, z1, z̄1, x are real analytic functions of z̃1, ¯̃z1, x̃ .)
So, while a solution Ep of the linearized equations is just an approximation to the
solution of the original system, using such a Ep to define a coordinate transformation
does have the effect of nearly doubling the order of vanishing of the Ee quantity.

5. A solution of the linear equation

The goal of this section is to construct a solution Ep of the system of linear equations
(10)–(11), given the higher-order terms of the defining equations, Ee. Considering
Ep and Ee as formal power series, such a solution exists but is not unique — this fact,
together with the approximate doubling of the degree mentioned in the previous
section and iteration of the linearization procedure, is enough to show the (already
known, as mentioned previously) formal equivalence of M and M̃ . The solution Ep
constructed here will be an n-tuple of series in Ez = (z1, . . . , zn) with the following
properties: the size of the domain of convergence of Ep is comparable in a certain
sense to the size of the domain of Ee, and also a suitable norm of Ep is bounded in
terms of a suitable norm of Ee.

Notation 5.1. For r = (r1, . . . , rN ) ∈ RN , with all r j > 0, define a polydisc in CN

by
Dr = {(z1, . . . , zN ) : |z j |< r j }.

As special cases, let

Dr = D(r,r,...,r) ⊆ Cm and 1r = D(r,...,r,2r2,...,2r2,r2,3r2) ⊆ Cn,

where there are m − 1 radius lengths r and n − m − 1 radius lengths 2r2, in the
zm, . . . , zn−2 coordinate directions.

The initial assumption on the defining equations is that

Ee(z1, z̄1, x)= (E2, . . . , Em−1, em, . . . , en)

is real analytic, so there is some r > 0 so that each component of Ee is the restric-
tion to {ζ = z̄1, x = x̄} of a multivariable power series in (z1, ζ, x) with center
(0, 0, . . . , 0) and complex coefficients which converges on a complex polydisc
Dr ⊆ Cm (or, equivalently, a complex analytic function on Dr ).
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Notation 5.2. For a complex-valued function e(z1, ζ, x) of m complex variables,
which is defined on some set containing the polydisc Dr , define the norm

|e|r = sup
(z1,ζ,x)∈Dr

|e(z1, ζ, x)|.

For an (n−1)-tuple Ee = (E2, . . . , en), define

|Ee|r = |E2|r + · · · + |en|r .

For a complex-valued function p(z1, . . . , zn) of n complex variables, which is
defined on some set containing the polydisc 1r , define the norm

‖p‖r = sup
Ez∈1r

|p(Ez)|.

With this notation, we can further assume r>0 is small enough so that |Ee(z1, ζ, x)|r
is finite. Given Ee with degree ≥ 3, the eventual goal is to find some r̃ , 0 < r̃ ≤ r ,
and a holomorphic map Ep :1r̃ → Cn , so that the transformation z̃ = Ez + Ep(Ez) is a
biholomorphism with domain 1r̃ taking M to M̃ . That is, if Ez ∈ M ∩1r̃ , then z̃
satisfies (6). However, in this section we are only looking for Ep that is a solution
of (10)–(11).

Some steps of the proof of Theorem 5.6 below will decompose series into sub-
series and their complex conjugates, where these preliminary lemmas on the |e|r
norm will be useful.

Lemma 5.3. Given 0< R < r and complex coefficients a jk I , b jk I , if∣∣∣∑ a jk I z j
1ζ

k x I
∣∣∣
r
≤ K

and for complex x with |xs |< r , j, k = 0, 1, 2, 3, . . .,∣∣∣∣∑
I

b jk I x I
∣∣∣∣ ≤

∣∣∣∣∑
I

a jk I x I
∣∣∣∣,

then ∣∣∣∣∑ b jk I z j
1ζ

k x I
∣∣∣∣

R
≤

Kr2

(r − R)2
.

Proof. For (z1, ζ, x) ∈ Dr , these series are absolutely convergent and equal:∑
a jk I z j

1ζ
k x I

=

∞∑
j=0

( ∞∑
k=0

(∑
I

a jk I x I
)
ζ k

)
z j

1 .

Using Cauchy’s estimate [Ahlfors 1979] twice, we obtain∣∣∣∣ ∞∑
k=0

(∑
I

a jk I x I
)
ζ k

∣∣∣∣ ≤
K
r j and

∣∣∣∣∑
I

a jk I x I
∣∣∣∣ ≤

K
r kr j .
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For (z1, ζ, x) ∈ Dr , the series
∑

b jk I z j
1ζ

k x I is absolutely convergent, and for
(z1, ζ, x) ∈ DR:∣∣∣∣∑ b jk I z j

1ζ
k x I

∣∣∣∣ =

∣∣∣∣∣
∞∑
j=0

( ∞∑
k=0

( ∑
I

b jk I x I
)
ζ k

)
z j

1

∣∣∣∣∣
≤

∞∑
j=0

( ∞∑
k=0

∣∣∣∣∑
I

b jk I x I
∣∣∣∣ |ζ |k)|z1|

j

≤

∞∑
j=0

( ∞∑
k=0

∣∣∣∣∑
I

a jk I x I
∣∣∣∣ |ζ |k)|z1|

j

≤

∞∑
j=0

( ∞∑
k=0

K
r kr j |ζ |

k
)

|z1|
j

=

∑
j,k

K
(

|ζ |

r

)k(
|z1|

r

) j

= K
1

1 − |ζ |/r
1

1 − |z1|/r
=

Kr2

(r − |ζ |)(r − |z1|)
<

Kr2

(r − R)2
.

�

In the applications of the lemma, for each pair ( j, k), the coefficients b jk I will
either be zero for all I or equal to a jk I for all I , so the estimate in the hypothesis
is satisfied.

Notation 5.4. On the complex vector space of formal power series, define the real
structure operator

(12) e =

∑
eabI za

1ζ
bx I

7→ e′
=

∑
eabI ζ azb

1x I .

Lemma 5.5. For r >0, the restriction of the map (12) to the subspace {e : |e|r <∞}

is an isometry.

Proof. The equality of norms uses a change of variables that does not change the
radius length r .

|e′
|r = sup

(z1,ζ,x)∈Dr

∣∣∣∑ eabI ζ azb
1x I

∣∣∣ = sup
(ζ ′,z′

1,x
′)=(z̄1,ζ̄ ,x̄)∈Dr

∣∣∣∑ eabI z′

1
a
ζ ′

b
x ′

I
∣∣∣

= sup
(ζ ′,z′

1,x
′)∈Dr

∣∣∣∣∑ eabI (z′

1)
a(ζ ′)b(x ′)I

∣∣∣∣ = sup
(z′

1,ζ
′,x ′)∈Dr

∣∣∣∑ eabI (z′

1)
a(ζ ′)b(x ′)I

∣∣∣
= |e|r . �

Of course, this map is a representation of complex conjugation: given a series
e(z1, z̄1, x) for real x , which “complexifies” to e = e(z1, ζ, x) for (z1, ζ, x) ∈ Dr

for the purposes of finding its norm as in Notation 5.2, expanding e(z1, z̄1, x) as a
series in (z1, z̄1, x) and then complexifying gives e′

= e′(z1, ζ, x).
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In an attempt to simplify the notation by avoiding an excess of indices in an
already intricate calculation, the following theorem will focus on one particular
dimension pair (m, n). In order to represent the most general behavior, we want
m < n − 1, so there is a zt equation in (5), and also m > 2

3(n + 1), so there is a
variable xm−1 that does not appear in the quadratic part of the defining equations.
The smallest pair where both conditions occur is m = 7, n = 9, so we will be
considering a real 7-manifold in C9, where the coordinates of the tangent plane are
z1, x2, . . . , x6, and the CR singular locus in M near E0 is a real curve tangent to the
x6 axis at the origin.

Theorem 5.6. Given r > 0 and Ee(z1, ζ, x) convergent on Dr with |Ee|r < ∞ and
degree d ≥ 3, there exists Ep that is convergent on1r and satisfies these properties:

(a) Ep solves the following case of the system of equations (10)–(11):

(13) 0 = Es(z1, z̄1, x)+ Im ps(Ez) for s = 2, . . . , 6,

0 = e7(z1, z̄1, x)+ p7(Ez)− p1(Ez)(x4 + i x5)− z̄1(Re p4(Ez)+ i Re p5(Ez)),

0 = e8(z1, z̄1, x)+ p8(Ez)− 2z̄1 p1(Ez),

0 = e9(z1, z̄1, x)+ p9(Ez)

− z̄1(p1(Ez)+ Re p2(Ez)+ i Re p3(Ez))− (p1(Ez))(z1 + x2 + i x3),

where

(14) Ez =
(
z1, x2, x3, x4, x5, x6, z̄1(x4 + i x5), z̄2

1, z̄1(z1 + x2 + i x3)
)
.

(b) ‖p1‖r ≤ 3|e8|r/(2r), ‖p8‖r ≤ 4|e8|r and, for any 0< R < r ,

‖p2‖R ≤
3|e9|r +18|e8|r

R
+

( 8r2

(r −R)2
+ 10

)
|E2|r +

( 4r2

(r −R)2
+ 4

)
|E3|r ,

‖p3‖R ≤
3|e9|r +18|e8|r

R
+

( 4r2

(r −R)2
+ 4

)
|E2|r +

( 8r2

(r −R)2
+ 10

)
|E3|r ,

‖p4‖R ≤
3|e7|r +9|e8|r

R
+

( 8r2

(r −R)2
+ 10

)
|E4|r +

( 4r2

(r −R)2
+ 4

)
|E5|r ,

‖p5‖R ≤
3|e7|r +9|e8|r

R
+

( 4r2

(r −R)2
+ 4

)
|E4|r +

( 8r2

(r −R)2
+ 10

)
|E5|r ,

‖p6‖R ≤
20r2

(r −R)2
|E6|r ,

‖p7‖R ≤ 4|e7|r + 12|e8|r + 8R
( r2

(r −R)2
+ 1

)
(|E4|r + |E5|r ),

‖p9‖R ≤ 4|e9|r + 24|e8|r + 8R
( r2

(r −R)2
+ 1

)
(|E2|r + |E3|r ).
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Proof. First, notice that if Ep(z1, . . . , z9) is a formal series solution of (13)–(14),
it does not follow that Ep is convergent at any point (other than the origin). For
example, with any component p j , the series expressions p j (Ez) and

(15) p j (Ez)+ ((z1 + z2 + i z3)
2z8 − z2

9) · Q(Ez)

are formally the same when restricted to Ez as in (14), for any (possibly divergent)
series Q. So, if one formal solution Ep exists, then there exist infinitely many di-
vergent solutions. There may also exist formal series solutions that are convergent
only on some neighborhood of the origin much smaller than that claimed in the
theorem.

Continuing with the abbreviation x = x2, x3, x4, x5, x6, and also using z =

z2, z3, z4, z5, z6, the following choice of normalization will simplify the construc-
tion of the solution Ep satisfying the claimed convergence and bounds:

p1(Ez)= p1(z1, z, z8), p j (Ez)= pE
j (z1, z, z8)+ z9 pO

j (z1, z, z8),

for j = 2, . . . , 9. Note that Ep does not depend on z7, and the first component p1

does not depend on z9. We may make the further assumption that p1 is an even
function of z1: p1(z1, z, z8)= p1(−z1, z, z8). The remaining components, p j , have
some terms not depending on z9, labeled pE

j , and other terms which have exactly
one linear factor of z9. The pE

j and pO
j terminology corresponds to even and odd

powers of z̄1 which appear after the substitution of (14) into Ep. The choice that Ep
has at most linear terms in z9 = z̄1(z1 + x2 + i x3) is made to avoid high powers
of the nonmonomial quantity z̄1(z1 + x2 + i x3), since as in [Coffman 1997], any
multinomial coefficients in the series expansion of Ep(Ez) could be large enough to
affect the size of the domain of convergence.

We begin with the e8 equation of the system (13). If the series expansion of e8

had only even powers of z̄1, then it would be a very simple matter to compare the
coefficients of e8(z1, z̄1, x) and pE

8 (z1, x, z̄2
1), and get a solution of the equation

with pO
8 = p1 = 0. The odd powers of z̄1 in e8 make the pO

8 and p1 quantities
necessary to solve the equation. The consideration of the terms of the compo-
nents of the given quantity Ee which are even or odd in z̄1 was part of the analysis
of [Beloshapka 1997] and [Coffman 1997] of the formal normal form problem,
and even/odd decompositions also appeared in analogous calculations in [Whitney
1943]. However, to deal with the nonmonomial property of the quadratic normal
form, there will be some rearrangements of the terms in the series which were not
required in Whitney’s work. First, decompose e8 into even and odd parts e8A, e8B ,
e8C , and then apply an add-and-subtract trick to e8C , as follows:

e8 =
∑

eabI
8 za

1 z̄b
1x I

= e8A + e8B + e8C ,

e8A =
∑

b even eabI
8 za

1 z̄b
1x I ,
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e8B =
∑

a even, b odd eabI
8 za

1 z̄b
1x I ,

e8C =
∑

a, b odd eabI
8 za

1 z̄b
1x I

= e8D + e8E ,

e8D = z̄1(z1 + x2 + i x3)
∑

a, b odd eabI
8 za−1

1 z̄b−1
1 x I ,

e8E = −(x2 + i x3)
∑

a, b odd eabI
8 za−1

1 z̄b
1x I .

Let f8 = e8B + e8E , so f8(z1, z̄1, x) is even in z1 and odd in z̄1. Then, combining
e8 = e8A + e8D + f8 with the normalization for p1 and p8 in the e8 equation from
(13), a straightforward (by construction) comparison of coefficients yields

0 = e8A(z1, z̄1, x)+ pE
8 (z1, x, z̄2

1),

0 = e8D(z1, z̄1, x)+ z̄1(z1 + x2 + i x3)pO
8 (z1, x, z̄2

1),

0 = f8(z1, z̄1, x)− 2z̄1 p1(z1, x, z̄2
1).

If pE
8 (z1, z, z8)=

∑
pacI

8 za
1zc

8z I , then the coefficient pacI
8 must be equal to −ea,2c,I

8 ,
and we get an estimate for the norm of pE

8 on the polydisc 1r ⊆ C9:

‖pE
8 ‖r = sup

Ez∈1r

|pE
8 (Ez)| = sup

|z1|<r, |xs |<r,
|ζ 2

|<r2

∣∣pE
8 (z1, x, ζ 2)

∣∣ = sup
(z1,ζ,x)∈Dr

∣∣−e8A(z1, ζ, x)
∣∣

= |e8A|r =
∣∣ 1

2(e8(z1, ζ, x)+ e8(z1,−ζ, x))
∣∣
r ≤ |e8|r .

By using the averaging formula to extract the even part of e8, we can just apply
the triangle inequality to get the estimate for the subseries instead of Lemma 5.3.
There is a similar estimate for the other component pO

8 , but this time the Schwarz
Lemma [Ahlfors 1979] is used in two steps:

‖z9 pO
8 ‖r ≤ ‖z9‖r‖pO

8 ‖r = 3r2 sup
|z1|<r, |xs |<r,

|ζ 2
|<r2

|pO
8 (z1, x, ζ 2)|

= 3r2 sup
(z1,ζ,x)∈Dr

∣∣∣∣ −e8D(z1, ζ, x)
ζ(z1 + x2 + i x3)

∣∣∣∣ = 3r2 sup
(z1,ζ,x)∈D∗

r

∣∣∣∣−e8C(z1, ζ, x)
z1ζ

∣∣∣∣
≤ 3r2 sup

(z1,ζ,x)∈D∗
r

(|z1|/r) sup|z1|<r |e8C |

|z1||ζ |

≤ 3r sup
(z1,ζ,x)∈D∗

r

sup|z1|<r

∣∣(|ζ |/r) sup|ζ |<r |e8C |
∣∣

|ζ |
= 3|e8C |r

=
3
4

∣∣e8(z1, ζ, x)− e8(z1,−ζ, x)− e8(−z1, ζ, x)+ e8(−z1,−ζ, x)
∣∣
r

≤ 3|e8|r .

In some of these steps, we restricted to the open subset

D∗

r = Dr \
(
{z1 = 0} ∪ {ζ = 0}

)
,
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which avoids division by 0 but, by the maximum principle, does not affect the
supremum.

From f8 = e8B + e8E and the Schwarz Lemma,

| f8|r ≤ |e8B |r + |e8E |r

=
1
4

∣∣e8(z1, ζ, x)− e8(z1,−ζ, x)+ e8(−z1, ζ, x)− e8(−z1,−ζ, x)
∣∣
r

+

∣∣∣∣− x2 + i x3

z1
e8C

∣∣∣∣
r

≤ |e8|r + |x2 + i x3|r ·
1
r
|e8C |r ≤ 3|e8|r .

Solving for p1 involves complex conjugation, so we take care to work out a few
steps. By comparing the coefficients of f8 and p1, we see that if p1(z1, z, z8) =∑

α even pαβ I
1 zα1 zβ8 z I , then pαβ I

1 =
1
2 f 2β,α+1,I

8 . Using the Schwarz Lemma and
Lemma 5.5, we obtain

‖p1‖r = sup
(z1,ζ,x)∈Dr

∣∣∣ ∑
α even

pαβ I
1 zα1 ζ

2βx I
∣∣∣ = sup

(z1,ζ,x)∈Dr

∣∣∣ ∑
α even

1
2 f 2β,α+1,I

8 zα1 ζ
2βx I

∣∣∣
= sup
(z1,ζ,x)∈Dr

∣∣∣∣∣ ∑
a even, b odd

f abI
8 ζ azb

1x I

2z1

∣∣∣∣∣ =

∣∣∣ f ′

8(z1, ζ, x)
2z1

∣∣∣
r

≤
1
2r

| f ′

8|r =
1
2r

| f8|r ≤
3
2r

|e8|r .

By construction, p1 has weight d − 1 and p8 has weight d .
Moving next to the E6 equation of (13), split the real valued series E6 into

subseries, some real and some in complex conjugate pairs:

E6 = e6A + e6A + E6B + e6C + e6C + e6D + e6D + E6E ,

e6A =
∑

a > b, b even EabI
6 za

1 z̄b
1x I ,

E6B =
∑

a even EaaI
6 za

1 z̄a
1 x I ,

e6C =
∑

a > b, a even, b odd EabI
6 za

1 z̄b
1x I ,

e6D =
∑

a > b, a, b odd EabI
6 za

1 z̄b
1x I ,

E6E =
∑

a odd EaaI
6 za

1 z̄a
1 x I .

By Lemma 5.3, we have

|e6A|R ≤
r2

(r − R)2
|E6|r ,
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and all the other subseries have the same bound. We rearrange two of these sub-
series to be able to compare coefficients with p6:

e6D = e6F + e6G,

e6F = (z1 + x2 + i x3)z̄1
∑

a > b, a, b odd EabI
6 za−1

1 z̄b−1
1 x I ,

e6G = −(x2 + i x3)
∑

a > b, a, b odd EabI
6 za−1

1 z̄b
1x I ,

E6E = e6H + e6H + e6I + e6I ,

e6H =
1
2(z1 + x2 + i x3)z̄1

∑
a odd EaaI

6 za−1
1 z̄a−1

1 x I ,

e6I = −
1
2(x2 + i x3)

∑
a odd EaaI

6 za−1
1 z̄a

1 x I ,

and collect some of these subseries back together:

f6A(z1, z̄1, x)= e6A + e6I =
∑

a > b, b even f abI
6A za

1 z̄b
1x I ,

f6C(z1, z̄1, x)= e6C + e6G =
∑

a < b, a odd, b even f abI
6C za

1 z̄b
1x I ,

so

E6 = f6A + f6A + E6B + f6C + f6C + e6F + e6F + e6H + e6H .

The unknown p6 can also be expressed as a sum of subseries:

p6 = pE
6 (z1, z, z8)+ z9 pO

6 (z1, z, z8),

pE
6 = p6A + p6B + p6C ,

p6A =
∑

α > 2γ pαγ I
6A zα1 z I zγ8 ,

p6B =
∑

pγ I
6B z2γ

1 z I zγ8 ,

p6C =
∑

α < 2γ , α odd pαγ I
6C zα1 z I zγ8 ,

pO
6 = p6D + p6E ,

p6D =
∑

α > 2γ , α even pαγ I
6D zα1 z I zγ8 ,

p6E =
∑

pγ I
6E z2γ

1 z I zγ8 .
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Comparing coefficients, the equation 0 = E6 −
1
2 i(p6 − p6) from (13) turns into

these five equations and their complex conjugates:

0 = f6A −
1
2 i p6A,

0 =
1
2 E6B −

1
2 i p6B,

0 = f6C −
1
2 i p6C ,

0 = e6F −
1
2 i(z1 + x2 + i x3)z̄1 p6D,

0 = e6H −
1
2 i(z1 + x2 + i x3)z̄1 p6E .

Solving for each component of p6 gives a weight d quantity, and using Lemma
5.5, the Schwarz Lemma, and the previously mentioned estimates for the subseries
of E6, we get these estimates:

‖p6A‖R = | − 2i f6A|R = 2|e6A + e′

6I |R ≤ 2(|e6A|R + |e6I |R),

≤ 2
(

|e6A|R +

∣∣∣∣−(x2 + i x3)E6E

2z1

∣∣∣∣
R

)
,

≤ 2
(

r2
|E6|r

(r − R)2
+

2R
2

·
1
R

·
r2

|E6|r

(r − R)2

)
=

4r2

(r − R)2
|E6|r ,

‖p6B‖R =
∣∣−2i ·

1
2 E6B

∣∣
R ≤

r2

(r − R)2
|E6|r ,

‖p6C‖R = | − 2i f6C |R = 2|e′

6C + e′

6G |R,

≤ 2
(

|e6C |R +

∣∣∣∣−(x2 + i x3)e6D

z1

∣∣∣∣
R

)
,

≤ 2
(

r2
|E6|r

(r − R)2
+ 2R ·

1
R

·
r2

|E6|r

(r − R)2

)
=

6r2

(r − R)2
|E6|r ,

‖z9 p6D‖R ≤ ‖z9‖R‖p6D‖R = 3R2
∣∣∣∣−2i

e6F

(z1 + x2 + i x3)ζ

∣∣∣∣
R

= 6R2
∣∣∣∣e6D

z1ζ

∣∣∣∣
R
,

≤ 6|e6D|R ≤
6r2

(r − R)2
|E6|r ,

‖z9 p6E‖R ≤ 3R2
∣∣∣∣−2i

e6H

(z1 + x2 + i x3)ζ

∣∣∣∣
R
= 6R2

∣∣∣∣ e6E

2z1ζ

∣∣∣∣
R

≤
3r2

(r − R)2
|E6|r .

Finding p2, p3, p4, p5 is a bit trickier since each appears in more than one equa-
tion of (13). We will simultaneously solve for p4, p5, p7, using a more involved
comparison of coefficients, and similarly but independently, also p2, p3, p9.
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To find p4, p5, and p7, we consider the E4, E5, e7 equations of (13), and use
the previously found solution for p1 to get the system with the unknowns on the
left-hand side and the known O(d) quantities on the right-hand side:

Im p4 = −E4,(16)

Im p5 = −E5,(17)

p7 − z̄1 Re p4 − i z̄1 Re p5 = −e7 + (x4 + i x5)p1(18)

Starting with the right-hand side of (16), the following decomposition of E4 is
different from that of E6:

E4 = E4A + e4B + e4B + e4C + e4C + E4D,

E4A =
∑

a, b even EabI
4 za

1 z̄b
1x I ,

e4B =
∑

a > b, a odd, b even EabI
4 za

1 z̄b
1x I ,

e4C =
∑

a > b, a even, b odd EabI
4 za

1 z̄b
1x I ,

E4D =
∑

a, b odd EabI
4 za

1 z̄b
1x I

= e4E + e4F ,

e4E = (z1 + x2 + i x3)z̄1
∑

a, b odd EabI
4 za−1

1 z̄b−1
1 x I ,

e4F = −(x2 + i x3)
∑

a, b odd EabI
4 za−1

1 z̄b
1x I .

The E4A piece is simply an even part, so |E4A|r ≤ |E4|r , and similarly for the odd
part, |E4D|r ≤|E4|r . The other two subseries satisfy the estimate from Lemma 5.3:

|e4B |R ≤
r2

(r − R)2
|E4|r and |e4C |R ≤

r2

(r − R)2
|E4|r .

We regroup some of these subseries:

m4(z1, z̄1, x)= e4B + e4C + e4F =
∑

a even, b odd mabI
4 za

1 z̄b
1x I ,

f4(z1, z̄1, x)= E4A + e4B + e4C + m4 =
∑

b even f abI
4 za

1 z̄b
1x I .

Hence,
E4 = f4 + e4E + m4 − m4.

Similarly, E5 = f5 + e5E + m5 − m5, where f5 is even in z̄1 and m5 is even in z1

and odd in z̄1.
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The estimates follow from Lemma 5.5 and the Schwarz Lemma:

|m4|R = |e′

4B + e4C + e4F |R ≤ |e4B |R + |e4C |R + |e4F |R

≤
r2

(r − R)2
|E4|r +

r2

(r − R)2
|E4|r + |x2 + i x3|R

∣∣∣∣ E4D

z1

∣∣∣∣
R

≤

(
2r2

(r − R)2
+ 2

)
|E4|r ,

| f4|R = |E4A + 2e4B + 2e′

4C + e′

4F |R ≤

(
4r2

(r − R)2
+ 3

)
|E4|r ,

and similarly for m5 and f5.
From the right-hand side of (18), let f7(z1, z̄1, x)=−e7+(x4+i x5)p1(z1, x, z̄2

1),
so

(19) | f7|r ≤ | − e7|r +

∣∣∣∣(x4 + i x5)
f8

2ζ

∣∣∣∣
r
≤ |e7|r + 3|e8|r .

It splits into even and odd parts, f7 = f7A + f7B + f7C , with

f7A =
∑

b even f abI
7A za

1 z̄b
1x I

f7B =
∑

a, b odd f abI
7B za

1 z̄b
1x I ,

f7C =
∑

a even, b odd f abI
7C za

1 z̄b
1x I ,

with | f7A|r ≤ | f7|r and the same bound for f7B , f7C . Let

g7A = f7A + i z̄1m4 − z̄1m5 =
∑

b even gabI
7A za

1 z̄b
1x I ,

g7B = f7B − i z̄1m4 + z̄1m5 =
∑

a, b odd gabI
7B za

1 z̄b
1x I

= g7C + g7D,

g7C = (z1 + x2 + i x3)z̄1
∑

a, b odd gabI
7B za−1

1 z̄b−1
1 x I ,

g7D = −(x2 + i x3)
∑

a, b odd gabI
7B za−1

1 z̄b
1x I .

Then

f7 = g7A + g7C + g7D + f7C − z̄1(im4 − im4 − m5 + m5)

is in a form that compares to the left-hand side of (18) to give

pE
7 = g7A,(20)

(z1 + x2 + i x3)z̄1 pO
7 = g7C ,(21)

−z̄1(Re p4 + i Re p5)= g7D + f7C − z̄1(im4 − im4 − m5 + m5).(22)
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Equations (20) and (21) determine p7, with the estimates

‖pE
7 ‖R = |g7A|R = | f7A + iζm4 − ζm5|R

≤ | f7|r + R
(

2r2

(r − R)2
+ 2

)
|E4|r + R

(
2r2

(r − R)2
+ 2

)
|E5|r

‖z9 pO
7 ‖R ≤ 3R2

∣∣∣∣ g7C

(z1 + x2 + i x3)ζ

∣∣∣∣
R

= 3R2
∣∣∣∣g7B

z1ζ

∣∣∣∣
R

≤ 3| f7B − iζm′

4 + ζm′

5|R

≤ 3| f7|r + 3R
(

2r2

(r − R)2
+ 2

)
|E4|r + 3R

(
2r2

(r − R)2
+ 2

)
|E5|r .

Dividing (22) by −z̄1, then considering the real and imaginary parts and recalling
(16) and (17), we get the system

Re p4 = Re
g7D + f7C

−z̄1
+im4−im4, Re p5 = Im

g7D + f7C

−z̄1
+im5−im5,

Im p4 = −E4 = − f4−e4E −m4+m4, Im p5 = −E5 = − f5−e5E −m5+m5.

It is at this point that the second nondegeneracy condition — the full rank of the
coefficient matrix (4) — is used: if the quadratic term ε5

7 z̄1x5 in h7 had coefficient
0 instead of i , then Re p5 would not appear in the e7 equality of (13), and (18)
could not be solved this way.

Recombining the real and imaginary parts of p4, p5, there is (by construction)
a convenient cancellation:

p4 = Re p4 + i Im p4 = Re
g7D + f7C

−z̄1
− i f4 − ie4E ,

p5 = Re p5 + i Im p5 = Im
g7D + f7C

−z̄1
− i f5 − ie5E .

These equations were set up so that e4E and e5E are the only terms on the right-
hand side with odd powers of z̄1, so p4 = pE

4 + z9 pO
4 and p5 = pE

5 + z9 pO
5 are

each determined by a comparison of coefficients, and by construction, p4 and p5

have weight d − 1 and satisfy the estimates

‖pE
4 ‖R =

∣∣∣∣ g7D

−2ζ
+

f7C

−2ζ
+

g′

7D

−2z1
+

f ′

7C

−2z1
− i f4

∣∣∣∣
R

≤
1
R

|g7D|R +
1
R

| f7C |R + | f4|R

≤
1
R

∣∣∣∣−(x2 + i x3)
g7B

z1

∣∣∣∣
R

+
1
R

| f7|R + | f4|R

≤
3|e7|r + 9|e8|r

R
+

(
8r2

(r − R)2
+ 7

)
|E4|r +

(
4r2

(r − R)2
+ 4

)
|E5|r
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‖pE
5 ‖R =

∣∣∣∣ g7D

−2iζ
+

f7C

−2iζ
−

g′

7D

−2i z1
−

f ′

7C

−2i z1
− i f5

∣∣∣∣
R

≤
3|e7|r + 9|e8|r

R
+

(
4r2

(r − R)2
+ 4

)
|E4|r +

(
8r2

(r − R)2
+ 7

)
|E5|r ,

‖z9 pO
4 ‖R ≤ ‖z9 pO

4 ‖r ≤ 3r2
∣∣∣∣ −ie4E

(z1 + x2 + i x3)ζ

∣∣∣∣
r
= 3r2

∣∣∣∣ E4D

z1ζ

∣∣∣∣
r
≤ 3|E4|r

‖z9 pO
5 ‖R ≤ ‖z9 pO

5 ‖r ≤ 3r2
∣∣∣∣ −ie5E

(z1 + x2 + i x3)ζ

∣∣∣∣
r
= 3r2

∣∣∣∣ E5D

z1ζ

∣∣∣∣
r
≤ 3|E5|r .

The method of finding p2, p3, p9 can be copied from the solution of p4, p5, p7.
In the place of (16), (17), (18), the system to be solved is

(23) Im p2 = −E2,

Im p3 = −E3,

p9 − z̄1 Re p2 − i z̄1 Re p3 = −e9 + (z1 + x2 + i x3)p1 + z̄1 p1,

and the right-hand side of the third equation can be abbreviated f9, in analogy with
f7. The estimate (19) changes to

| f9|r ≤ | − e9|r +

∣∣∣∣(z1 + x2 + i x3)
f8

2ζ

∣∣∣∣
r
+

∣∣∣∣ζ f ′

8

2z1

∣∣∣∣
r
≤ |e9|r + 6|e8|r .

Both the construction of the solution and the estimates proceed by only changing
the subscripts from 4, 5, 7 to 2, 3, 9, and adjusting the estimate for f9 to get the
claimed results — the second nondegeneracy condition on the quadratic part of h9

is used here also in the same way. �

Corollary 5.7. Given 2
3(n + 1) ≤ m < n, r > 0, and Ee(z1, ζ, x) convergent on Dr

with |Ee|r <∞ and degree d ≥ 3, there exists Ep that is convergent on 1r , solves the
system of equations (10)–(11), satisfies

‖p1‖r ≤
3
2r

|en−1|r and ‖pn−1‖r ≤ 4|en−1|r ,

and, for any 0< R < r , satisfies

‖p2‖R ≤
3|en|r + 18|en−1|r

R
+

( 8r2

(r −R)2
+ 10

)
|E2|r +

( 4r2

(r −R)2
+ 4

)
|E3|r ,

‖p3‖R ≤
3|en|r + 18|en−1|r

R
+

( 4r2

(r −R)2
+ 4

)
|E2|r +

( 8r2

(r −R)2
+ 10

)
|E3|r ,

‖pn‖R ≤ 4|en|r + 24|en−1|r + 8R
( r2

(r −R)2
+ 1

)
(|E2|r + |E3|r ).
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Further, if m > 2
3(n + 1), then

‖ps‖R ≤
20r2

(r − R)2
|Es |r for s = 2n − 2m + 2, . . . ,m − 1,

and if m < n − 1, then for t = m, . . . , n − 2,

‖p2(t−m+2)‖R ≤
3|et |r + 9|en−1|r

R
+

( 8r2

(r −R)2
+ 10

)
|E2(t−m+2)|r

+

( 4r2

(r −R)2
+ 4

)
|E2(t−m+2)+1|r ,

‖p2(t−m+2)+1‖R ≤
3|et |r + 9|en−1|r

R
+

( 4r2

(r −R)2
+ 4

)
|E2(t−m+2)|r

+

( 8r2

(r −R)2
+ 10

)
|E2(t−m+2)+1|r ,

‖pt‖R ≤ 4|et |r + 12|en−1|r + 8R
( r2

(r −R)2
+ 1

)
(|E2(t−m+2)|r + |E2(t−m+2)+1|r ).

Proof. The method of solution from the proof of Theorem 5.6 groups the system of
equations into smaller subsystems that can be solved sequentially, so the general-
ization from (7, 9) to (m, n) can be accomplished by a straightforward relabeling
of subscripts (described below), resulting in similar estimates as claimed. The
nondegeneracy conditions remain essential for any (m, n).

The solution claimed by the corollary can be chosen to have the following form,
where now z abbreviates z2, . . . , zm−1 and again p1 is even in z1:

p1(Ez)= p1(z1, z, zn−1)

p j (Ez)= pE
j (z1, z, zn−1)+ zn pO

j (z1, z, zn−1),

for j = 2, . . . , n. For m < n − 1, this Ep does not depend on zm, . . . , zn−2.
The en−1 equation from (10) determines pn−1 and p1, exactly as in the solution

of the e8 equation, replacing the subscript 8 with n − 1 in the first part of the
preceding proof. The subscript 1 does not change.

If m > 2
3(n + 1), then each of the 3m − 2n − 2 individual Es equations, s =

2n−2m +2, . . . ,m −1, independently determines ps , in analogy with the solution
for p6 in terms of E6 in the second part of the preceding proof. If m =

2
3(n+1) (the

case of an isolated singularity), there are no equations analogous to the proof’s E6

equation.
The subsystem of three equations determining p2, p3, pn in terms of E2, E3,

en , and p1, can be solved in analogy with the above E2, E3, e9 group of equations
(23), only the subscript 9 needs to change to n. If m = n − 1, then those three
equations are the only remaining ones in the system.
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If m < n − 1, then there are n − m − 1 more subsystems of three equations, to
be solved for p2(t−m+2), p2(t−m+2)+1, pt , t = m, . . . , n −2, in terms of E2(t−m+2),
E2(t−m+2)+1, et , and p1, in analogy with equations (16)–(18). Solving each of these
subsystems depends only on having solved for p1, and not any other equations in
the system (10). �

It is not yet claimed that using the solution Ep of Theorem 5.6 or Corollary 5.7 in
(2) defines a local biholomorphism; this will be shown later (Theorem 6.4), under
certain conditions on Ee and r . The most important property so far of the solution
Ep is that the norms of its components can be estimated on 1R for R less than, but
arbitrarily close to, r .

Corollary 5.8. Given 2
3(n +1)≤ m < n, there is a constant c1 > 0 (depending only

on m, n) such that, for any Ep, Ee as in Corollary 5.7 and any radius lengths ρ, r
with 1

2 < ρ < r ≤ 1, we have

max
j=1,...,n

{
‖p j‖ρ

}
≤

c1|Ee|r
(r − ρ)2

and max
j=1,...,n

{ n∑
k=1

∥∥∥∥dpk

dz j

∥∥∥∥
ρ

}
≤

c1|Ee|r
(r − ρ)3

.

Proof. Let R =
1
2(ρ + r). The bound on each p j follows from ‖p j‖ρ ≤ ‖p j‖R

and the bounds from the previous corollary, using 1
2 < R < r ≤ 1, and 16 <

1/(r − R)2 = 4/(r − ρ)2. The bounds for the derivatives of pk follow from this
consequence of Cauchy’s estimate (for which see [Ahlfors 1979]): If 0< R2 < R1

and f (w) is holomorphic and bounded by K for |w|< R1, then d f/dw is bounded
by K/(R1 − R2) for |w|< R2.

This fact can be applied with K = ‖pk‖R and R1 − R2 = R − ρ =
1
2(r − ρ)

for the z1, . . . , zm−1 derivatives, R1 − R2 = R2
− ρ2 > R − ρ =

1
2(r − ρ) for the

zn−1 derivatives, and R1 − R2 = 3R2
− 3ρ2 > 3

2(r −ρ) for the zn derivatives. The
zm, . . . , zn−2 derivatives are zero by construction. �

The lower bound r > 1
2 was important for the previous corollary, but it is not

a significant a priori restriction on the manifold M . By a real rescaling Ez 7→

(a1z1, . . . , a1zm−1, a1
2zm, . . . , a1

2zn), with a1 > 0, equations (5) can be assumed
to define M for |z1| < 1, |xs | < 1; and for any η > 0, there is a rescaling making
|Ee|1 less than η.

6. The new defining equations and some estimates

To get a solution of the nonlinear equation (9) by iterating the solution of the
linear equation, the rapid convergence technique will apply, closely following the
methods used in [Moser 1985] on a different CR singularity problem. Each step
along the way to a proof of Proposition 3.3 is stated as a theorem.
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Substituting the linear equation’s normalized solution Ep from Corollary 5.7 into
E2, . . . , en in the right-hand side of the nonlinear equation (9) gives a quantity Eq
depending on z1, z̄1, x . Let

(24) Ez = (z1, x, . . . , z̄1(x2(t−m+2) + i x2(t−m+2)+1), . . . , z̄2
1, z̄1(z1 + x2 + i x3)),

as in (11), let

(25) Ez + Ee =
(
z1, x2 + i E2, . . . , xm−1 + i Em−1, . . . ,

z̄1(x2(t−m+2) + i x2(t−m+2)+1)+ et , . . . ,

z̄2
1 + en−1, z̄1(z1 + x2 + i x3)+ en

)
,

as in (8), and then define

Eq(z1, z̄1, x)= (Q2, . . . , Qm−1, qm, . . . , qn)

by

(26) Qs = Im
(

ps(Ez + Ee)− ps(Ez)
)
,

qt = pt(Ez + Ee)− pt(Ez)− (x2(t−m+2) + i x2(t−m+2)+1)(p1(Ez + Ee)− p1(Ez))

− z̄1 · Re
(

p2(t−m+2)(Ez + Ee)− p2(t−m+2)(Ez)
)

− i z̄1 Re
(

p2(t−m+2)+1(Ez + Ee)− p2(t−m+2)+1(Ez)
)

− p1(Ez + Ee)
(
Re p2(t−m+2)(Ez + Ee)+ i Re p2(t−m+2)+1(Ez + Ee)

)
,

qn−1 = pn−1(Ez + Ee)− pn−1(Ez)− 2z̄1(p1(Ez + Ee)− p1(Ez))− (p1(Ez + Ee))
2
,

qn = pn(Ez + Ee)− pn(Ez)− z̄1(p1(Ez + Ee)− p1(Ez))

− z̄1(Re
(

p2(Ez + Ee)− p2(Ez)
)
+ i Re

(
p3(Ez + Ee)− p3(Ez)

)
)

− (z1 + x2 + i x3)(p1(Ez + Ee)− p1(Ez))

− (p1(Ez + Ee))(p1(Ez + Ee)+ Re p2(Ez + Ee)+ i Re p3(Ez + Ee)).

To outline the role of Eq in the argument, the next step (Theorem 6.2) will suppose
that Ep(z1, . . . , zn) is complex analytic on 1ρ and |Ee|σ is small enough that Ez ∈1σ

implies Ez + Ee ∈ 1ρ ; hence Eq is a real analytic function for (z1, z̄1, x) ∈ Dσ . If
Eq(z1, z̄1, x) happens to be identically zero, the manifold M has been brought to
normal form by the functions Ep. Otherwise, the degree of Eq is at least 2d −2 by the
construction of the solution Ep, and defining Eq(z1, ζ, x) by Equations (26), with ζ
formally substituted for z̄1 and allowing complex x , the norm |Eq|σ can be bounded
in terms of the norm of Ee. Then later, in the proof of Theorem 6.6, converting
Eq(z1, z̄1, x) into an expression in z̃1, ¯̃z1, x̃ and equating it to the z̃ polynomial
expression in (7) gives the defining equations of M in the z̃ coordinate system.
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The case Ñ = N of the next result is [Coffman 2004, Lemma 4.1].

Lemma 6.1. Let f = ( f1, . . . , f Ñ ) : Dr → CÑ be a holomorphic map with

max
j=1,...,N

{ Ñ∑
k=1

sup
Ez∈Dr

∣∣∣∣d fk

dz j
(Ez)

∣∣∣∣} ≤ K .

Then, for Ez, Ez ′
∈ Dr ,

Ñ∑
k=1

| fk(Ez ′)− fk(Ez)| ≤ K
N∑

j=1

|z′

j − z j |.

Theorem 6.2. There are some constants c2 > 0 and δ1 > 0 (depending on m, n)
such that if 1

2 < σ < r ≤ 1, and Ee is as in Corollary 5.7, with |Ee|r ≤ δ1(r −σ), then

|Eq|σ ≤
c2|Ee|2r
(r − σ)3

.

Proof. Let ρ =
1
2(r +σ). Note that if δ1 ≤

1
2 , the formal series for Eq is convergent

on Dσ , since then, for (z1, ζ, x)∈ Dr , |xs +i Es |<σ+δ1(r −σ)≤σ+(ρ−σ)=ρ,
|ζ(x2(t−m+2)+i x2(t−m+2)+1)+et |<2σ 2

+(ρ−σ)<2σ 2
+(ρ−σ)(2(ρ+σ))=2ρ2,

and similarly |ζ 2
+ en−1| < ρ

2 and |(z1 + x2 + i x3)ζ + en| < 3ρ2, so Ez + Ee ∈ 1ρ ,
which is contained in the domain of Ep by Corollary 5.7. The case N = n, Ñ = 1,
Dr =1ρ of Lemma 6.1 applies to pk :1ρ → C, with

max
j=1,...,n

{∥∥∥∥dpk

dz j

∥∥∥∥
ρ

}
≤ K =

c1|Ee|r
(r − ρ)3

,

by Corollary 5.8, and Ez ′
= Ez + Ee ∈1ρ , so the conclusion is

|pk(Ez + Ee)− pk(Ez)| ≤ K (|E2|r + · · · + |en|r )=
c1|Ee|r
(r − ρ)3

|Ee|r =
8c1|Ee|2r
(r − σ)3

.

This provides bounds for the differences that appear in (26), and the remaining
terms are the products, where we can use 1

2 < σ < ρ < r ≤ 1, the bound of
Theorem 5.6 on the p1 factor, and the bounds of Corollary 5.8 on the other factors.
For example, for the qt equation of (26), in a case where t = m < n −1, part of the
expression is the product

sup
Dσ

∣∣∣∣(p1(Ez + Ee))′
p4(Ez + Ee)+ (p4(Ez + Ee))′ + i p5(Ez + Ee)+ i(p5(Ez + Ee))′

2

∣∣∣∣
≤ ‖p1‖ρ

(
‖p4‖ρ + ‖p5‖ρ

)
≤

3
2r

|en−1|r
2c1 |Ee|r
(r − ρ)2

<
6c1|Ee|2r
(r − ρ)2

<
12c1 |Ee|2r
(r − σ)3

. �
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The following lemma on inverse functions will be used twice, in the construction
of the new coordinate system and the new defining equations; a proof by a standard
iteration procedure is sketched in [Coffman 2004].

Lemma 6.3. Suppose 0< R2,k < R1,k for k = 1, . . . , N , so that

D2
= D(R2,1,...,R2,N ) ⊆ D1

= D(R1,1,...,R1,N ).

Let f (Ez)= ( f1(z1, . . . , zN ), . . . , fN (z1, . . . , zN )) be holomorphic on D1, with

max
j=1,...,N

{ N∑
k=1

sup
Ez∈D1

∣∣∣∣d fk

dz j
(Ez)

∣∣∣∣} ≤ K < 1

and
N∑

k=1

sup
Ez∈D2

| fk(Ez)| ≤ (1 − K ) min
k=1,...,N

{R1,k − R2,k}.

Given Ew ∈ D2, there exists a unique solution Ez ∈ D1 of the equation

Ew = Ez + f (Ez),

and this solution satisfies

N∑
k=1

|zk −wk | ≤
1

1 − K

N∑
k=1

| fk( Ew)|.

Theorem 6.4. There is some constant δ2 > 0 (depending on m, n) so that for any
radius lengths 1

2 < σ < r ≤ 1, and Ee, Ep as in Corollary 5.7, with |Ee|r ≤ δ2(r − σ)3

and ρ =
1
2(r + σ), the transformation

9 : Ez = (z1, . . . , zn) 7→ z̃ =
(
z1 + p1(Ez), . . . , zn + pn(Ez)

)
has a holomorphic inverse ψ(z̃)= Ez such that z̃ ∈1σ implies ψ(z̃) ∈1ρ .

Proof. By Corollary 5.8,

max
j=1,...,n

{ n∑
k=1

∥∥∥∥dpk

dz j

∥∥∥∥
ρ

}
≤

c1|Ee|r
(r − ρ)3

≤
c1δ2(r − σ)3

(r − ρ)3
= 8δ2c1 ≤

1
2 = K ,

if δ2 ≤ 1/(16c1). Also by Corollary 5.8,
n∑

k=1

‖pk‖σ ≤
nc1|Ee|r
(r − σ)2

≤ nc1δ2(r − σ)≤ (1 − K )(ρ− σ)

if δ2 ≤ 1/(4nc1). The hypotheses of Lemma 6.3 are satisfied with 1σ ⊆ 1ρ , and
R1,k − R2,k ≥ ρ − σ , so given z̃ ∈ 1σ , there exists a unique Ez ∈ 1ρ such that
z̃ =

(
z1 + p1(Ez), . . . , zn + pn(Ez)

)
. This defines ψ so that 9 ◦ψ is the identity map

on 1σ . �
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For (z1, ζ, x) ∈ DR1 ⊆ Cm , define zc
∈ Cn by

zc
= (z1, x2 + i E2(z1, ζ, x), . . . , xm−1 + i Em−1(z1, ζ, x), . . . ,

ζ(x2(t−m+2) + i x2(t−m+2)+1)+ et(z1, ζ, x), . . . ,

ζ 2
+ en−1(z1, ζ, x), ζ(z1 + x2 + i x3)+ en(z1, ζ, x)),

and define a map τ : DR1 → Cm by

τ(z1, ζ, x)=
(
τ1(z1, ζ, x), . . . , τm(z1, ζ, x)

)
=

(
z1 + p1(zc), ζ + (p1(zc))′, x2 +

1
2(p2(zc)+ (p2(zc))′), . . . ,

xm−1 +
1
2(pm−1(zc)+ (pm−1(zc))′)

)
.

Theorem 6.5. There is some constant δ3 > 0 (depending on m, n) so that for
any radius lengths 1

2 < r ′ < r ≤ 1, with σ = r ′
+

1
3(r − r ′), and any Ee, Ep as in

Corollary 5.7, with |Ee|r ≤ δ3(r −r ′)3, the transformation τ : (z1, ζ, x) 7→ (z̃1, ζ̃ , x̃)
has a holomorphic inverse φ(z̃1, ζ̃ , x̃)= (z1, ζ, x) such that if (z̃1, ζ̃ , x̃)∈ Dr ′ , then
φ(z̃1, ζ̃ , x̃) ∈ Dσ .

Proof. Let ρ = r ′
+

2
3(r − r ′), so σ − r ′

= ρ − σ = r − ρ =
1
3(r − r ′) < 1

6 , and
let r̄ =

1
2(r + r ′), so 1

2 < r ′ < σ < r̄ < ρ < r ≤ 1. If (z1, ζ, x) ∈ Dr̄ , and δ3 ≤
2
3 ,

then |E2(z1, ζ, x)| ≤ δ3(r − r ′)3 = 216δ3(ρ − r̄)3 < (216/122) δ3(ρ − r̄) ≤ ρ − r̄ ,
and similarly |en−1(z1, ζ, x)|<ρ2

− r̄2, etc., so zc
∈1ρ , and Ep(zc) and τ are well-

defined and holomorphic on Dr̄ . Using Cauchy’s estimate as in Corollary 5.8, for
(z1, ζ, x) ∈ Dσ ,∣∣∣∣ d

dz1
p2(zc)

∣∣∣∣ ≤
|p2(zc)|r̄

r̄ − σ
≤

‖p2‖ρ
1
2(ρ− σ)

≤
2c1|Ee|r

(ρ− σ)(r − ρ)2
=

54c1|Ee|r
(r − r ′)3

.

Similarly, the derivative of each term, p1(zc), ps(zc), (p1(zc))′, (ps(zc))′, with
respect to each variable z1, ζ , xs , is bounded by a comparable quantity, so there is
some constant c3 > 0 (depending on m, n) so that

max
j=2,...,m−1

{∣∣∣∣dp1(zc)

dz1

∣∣∣∣
σ

+

∣∣∣∣d((p1(zc))′)

dz1

∣∣∣∣
σ

+

m−1∑
s=2

∣∣∣∣d( 1
2(ps(zc)+ (ps(zc))′))

dz1

∣∣∣∣
σ

,

∣∣∣∣dp1(zc)

dζ

∣∣∣∣
σ

+

∣∣∣∣d((p1(zc))′)

dζ

∣∣∣∣
σ

+

m−1∑
s=2

∣∣∣∣d( 1
2(ps(zc)+ (ps(zc))′))

dζ

∣∣∣∣
σ

,

∣∣∣∣dp1(zc)

dx j

∣∣∣∣
σ

+

∣∣∣∣d((p1(zc))′)

dx j

∣∣∣∣
σ

+

m−1∑
s=2

∣∣∣∣d( 1
2(ps(zc)+ (ps(zc))′))

dx j

∣∣∣∣
σ

}
≤ c3|Ee|r/(r − r ′)3 ≤ c3δ3 ≤

1
2

if δ3 ≤ 1/(2c3). It also follows from Corollary 5.8 that
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|p1(zc)|r ′ + |(p1(zc))′|r ′ +

m−1∑
s=2

∣∣ 1
2(ps(zc)+ (ps(zc))′)

∣∣
r ′

≤ 2‖p1‖ρ +

m−1∑
s=2

‖ps‖ρ ≤
mc1|Ee|r
(r − ρ)2

≤
mc1δ3(r − r ′)3

(r − ρ)2

= 9mc1δ3(r − r ′)≤
1
2(σ − r ′)

if δ3 ≤ 1/(54mc1). So, by Lemma 6.3, given (z̃1, ζ̃ , x̃) ∈ Dr ′ , there exists a unique
(z1, ζ, x) ∈ Dσ such that (z̃1, ζ̃ , x̃)= τ(z1, ζ, x). �

By inspection of the form of τ , if (z1, ζ, x)∈ Dσ and τ(z1, ζ, x)= (z̃1, ζ̃ , x̃), then
τ(ζ̄ , z̄1, x̄) = (ζ̃ , ¯̃z1, ¯̃x). If, further, (z̃1, ζ̃ , x̃) = (ζ̃ , ¯̃z1, ¯̃x) ∈ Dr ′ , then (z1, ζ, x) =

(ζ̄ , z̄1, x̄) by uniqueness of the inverse. In particular, if |z̃1| < r ′ and for s =

2, . . . ,m − 1, x̃s is real and |x̃s | < r ′, then φ(z̃1, ¯̃z1, x̃) is of the form (z1, z̄1, x)
for some z1 with |z1| < σ and x real with |xs | < σ . Such (z1, x) is unique, given
(z̃1, x̃): suppose there were (z0

1, x0) with |z0
1|< σ , |x0

s |< σ , x0 real, such that

z̃1 = τ1(z0
1, z0

1, x0),

x̃s = τs+1(z0
1, z0

1, x0) for s = 2, . . . ,m − 1.

Then the second component τ2(z0
1, z0

1, x0) can be calculated to have some value ζ̃ ,

so τ(z0
1, z0

1, x0)= (z̃1, ζ̃ , x̃). By the formula for τ , ζ̃ = ¯̃z1, so (z̃1, ζ̃ , x̃) ∈ Dr ′ and

(z0
1, z0

1, x0)= φ(z̃1, ζ̃ , x̃)= φ(z̃1, ¯̃z1, x̃)= (z1, z̄1, x), so we can conclude from the
uniqueness of Lemma 6.3 that z0

1 = z1 and x0
= x .

Theorem 6.6. There exist constants c4 > 0 and δ4 > 0 (depending on m, n) such
that for any 1

2 < r ′ < r ≤ 1 (with σ , ρ as in the previous theorem), and any Ee as in
Corollary 5.7 with |Ee|r ≤ δ4(r − r ′)3, there exist a holomorphic map

9 :1ρ → Cn, (z1, . . . , zn) 7→ (z̃1, . . . , z̃n),

with a holomorphic inverseψ :1σ →1ρ , and a holomorphic map ẽ= (Ẽ2, . . . , ẽn)

from Dr ′ to Cn−1, such that the defining equations for M are

ỹs = Ẽs(z̃1, ¯̃z1, x̃),

z̃t = ¯̃z1(x̃2(t−m+2) + i x̃2(t−m+2)+1)+ ẽt(z̃1, ¯̃z1, x̃),

z̃n−1 = ¯̃z2
1 + ẽn−1(z̃1, ¯̃z1, x̃),

z̃n = ¯̃z1(z̃1 + x̃2 + i x̃3)+ ẽn(z̃1, ¯̃z1, x̃),

for |z̃1|< r ′, |x̃s |< r ′. The degree of ẽ is at least 2d − 2, and

|ẽ|r ′ ≤
c4|Ee|2r
(r − r ′)3

.
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Proof. Initially, choose δ4 ≤ min{
8
3δ1,

8
27δ2, δ3}, so that Theorems 6.2, 6.4, 6.5

apply, and define 9, ψ , Eq , and φ in terms of the given Ee and the functions Ep
constructed in Corollary 5.7. Define ẽ to be the composite of holomorphic maps
Eq ◦φ : Dr ′ → Cn−1, so that by Theorem 6.2,

|ẽ|r ′ ≤ |Eq|σ ≤
c2|Ee|2r
(r − σ)3

=
c2|Ee|2r

(2
3(r − r ′))3

.

Since φ(z̃1, ¯̃z1, x̃) has no constant terms, and Eq has degree ≥2d−2 by construction,
ẽ(z̃1, ¯̃z1, x̃) also has degree at least 2d − 2.

Given z̃1, x̃ such that |z̃1| < r ′, and x̃ is real with |x̃s | < r ′, define quantities
z̃2, . . . , z̃n by

(27) z̃s = x̃s + i Ẽs(z̃1, ¯̃z1, x̃),

z̃t = ¯̃z1(x̃2(t−m+2) + i x̃2(t−m+2)+1)+ ẽt(z̃1, ¯̃z1, x̃)

z̃n−1 = ¯̃z2
1 + ẽn−1(z̃1, ¯̃z1, x̃),

z̃n = ¯̃z1(z̃1 + x̃2 + i x̃3)+ ẽn(z̃1, ¯̃z1, x̃),

and define z̃ = (z̃1, z̃2, . . . , z̃n). The claim of the theorem is that ψ(z̃) ∈ M .
If δ4

2
≤ 32/(81c2), then

|ẽ|r ′ ≤
c2(δ4(r − r ′)3)2

(r − σ)3
= c2(δ4)

2 36

23 (σ − r ′)3 ≤ c2(δ4)
2 36

2362 (σ − r ′)≤ σ − r ′,

so z̃ ∈1σ , the domain of ψ .
By Theorem 6.5, there exists a unique (z1, x) (the first and last components of

(z1, z̄1, x)= φ(z̃1, ¯̃z1, x̃)) such that |z1|< σ , x is real with |xs |< σ , and

z̃1 = z1 + p1(z1, x2 + i E2(z1, z̄1, x), . . . , z̄1(z1 + x2 + i x3)+ en(z1, z̄1, x)),

x̃s = xs + Re
(

ps(z1, x2 + i E2(z1, z̄1, x), . . . , z̄1(z1 + x2 + i x3)+ en(z1, z̄1, x))
)
.

Then define quantities z2, . . . , zn by

zs = xs + i Es(z1, z̄1, x),

zt = z̄1(x2(t−m+2) + i x2(t−m+2)+1)+ et(z1, z̄1, x),

zn−1 = z̄2
1 + en−1(z1, z̄1, x),

zn = z̄1(z1 + x2 + i x3)+ en(z1, z̄1, x),

and define, as in (11) and (24), Ez = (z1, x, . . . , z̄1(z1 + x2 + i x3)) and Ez + Ee =

(z1, z2, . . . , zn) as in (8) and (25). Since |z1|<σ < r and |xs |<σ < r , Ez + Ee ∈ M ,
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and if δ4 ≤
4
3 , then

|Ee|σ ≤ |Ee|r ≤ δ4(r − r ′)3 = δ4 · 27(ρ− σ)3 < δ4
27
62 (ρ− σ) ≤ (ρ− σ),

so Ez + Ee ∈1ρ , which is contained in the domain of Ep.
Next, by the construction of Eq, ẽ, and z̃, we see that 9(Ez + Ee) equals(

z1 + p1(Ez + Ee), . . . , zn + pn(Ez + Ee)
)

=

(
z̃1, . . . , x̃s + i Es(z1, z̄1, x)+ i Im ps(Ez + Ee), . . . ,

z̃1 − p1(Ez + Ee)
(
x̃2(t−m+2) − Re p2(t−m+2)(Ez + Ee)

)
+ i z̃1 − p1(Ez + Ee)

(
x̃2(t−m+2)+1 − Re p2(t−m+2)+1(Ez + Ee)

)
+ et(z1, z̄1, x)+ pt(Ez + Ee), . . . ,

z̃1 − p1(Ez + Ee)
2
+ en−1(z1, z̄1, x)+ pn−1(Ez + Ee),

z̃1 − p1(Ez + Ee)
(
z̃1− p1(Ez+Ee)+ x̃2−Re p2(Ez+Ee)+i x̃3−i Re p3(Ez+Ee)

)
+ en(z1, z̄1, x)+ pn(Ez + Ee)

)
=

(
z̃1, . . . , x̃s + i Qs(z1, z̄1, x), . . . ,

¯̃z1(x̃2(t−m+2) + i x̃2(t−m+2)+1)+ qt(z1, z̄1, x), . . . ,
¯̃z2

1 + qn−1(z1, z̄1, x), ¯̃z1(z̃1 + x̃2 + i x̃3)+ qn(z1, z̄1, x)
)

=
(
z̃1, . . . , x̃s + i Qs(φ(z̃1, ¯̃z1, x̃)), . . . ,

¯̃z1(x̃2(t−m+2) + i x̃2(t−m+2)+1)+ qt(φ(z̃1, ¯̃z1, x̃)), . . . ,
¯̃z2

1 + qn−1(φ(z̃1, ¯̃z1, x̃)), ¯̃z1(z̃1 + x̃2 + i x̃3)+ qn(φ(z̃1, ¯̃z1, x̃))
)

=
(
z̃1, . . . , x̃s + i Ẽs(z̃1, ¯̃z1, x̃), . . . ,

¯̃z1(x̃2(t−m+2) + i x̃2(t−m+2)+1)+ ẽt(z̃1, ¯̃z1, x̃), . . . ,
¯̃z2

1 + ẽn−1(z̃1, ¯̃z1, x̃), ¯̃z1(z̃1 + x̃2 + i x̃3)+ ẽn(z̃1, ¯̃z1, x̃)
)

= z̃.

Here we have used the fact that Ep is a solution of (10)–(11). By the uniqueness of
Theorem 6.4, ψ(z̃)= Ez + Ee lies in M . �

7. Composition of approximate solutions

The previous theorem’s quadratic estimate on the size of ẽ in terms of Ee allows
for the rapid convergence of a sequence of approximations. A couple of technical
lemmas will be needed to measure the behavior of composite mappings. Theorem
7.7, which is the last step in proving Proposition 3.3, uses these lemmas and the
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estimates of the previous section to prove convergence of a sequence of transfor-
mations, following the ideas of [Moser 1985].

Notation 7.1. For R1 > 0 and a n × n matrix of complex-valued functions F =

(Fk j (Ez)) on 1R1 , define

|||F |||R1 = max
j=1,...,n

{ n∑
k=1

sup
Ez∈1R1

|Fk j (Ez)|
}
.

This “maximum column sum” norm has already appeared, in Corollary 5.8 and
Lemmas 6.1 and 6.3, in the case where F = D f = DEz f , the Jacobian matrix of
some map f :1R1 → Cn at Ez ∈1R1 . The 3 × 3 case of the following lemma was
proved in [Coffman 2004].

Lemma 7.2. If |||A|||R1 < 1, then 1+ A is invertible (where 1 is the n × n identity
matrix), and

|||(1+ A)−1
|||R1 ≤

1
1 − |||A|||R1

.

We need an elementary fact from the calculus of one real variable:

Lemma 7.3. If µk is a sequence such that 0 ≤ µk < 1 and
∞∑

k=0
µk is a convergent

series, then the sequence of partial products

N∏
k=0

1
1 −µk

is bounded above by some positive limit.

Notation 7.4. For ν=0, 1, 2, . . ., define a sequence
{
1, 3

4 ,
4
6 ,

5
8 , . . .

}
by the formula

rν =
1
2

(
1 +

1
ν+ 1

)
.

Note that 1
2 < rν ≤ 1, and the sequence is decreasing, with

rν − rν+1 =
1

2(ν+ 1)(ν+ 2)
and

rν+1 − rν+2

rν − rν+1
=
ν+ 1
ν+ 3

≥
1
3
.

Notation 7.5. Define σν = rν+1 +
1
3(rν − rν+1), ρν = rν+1 +

2
3(rν − rν+1), as in

Theorem 6.5.

Recall that given η > 0, there is some scaling transformation so that M ∩11 is
defined by (5), with Ee holomorphic on D1, degree d ≥ 3, and |Ee|1 ≤ η.

Notation 7.6. Set Ee0 = Ee (so |Ee0|r0 =|Ee|1 ≤ η), and inductively define the formal se-
ries Eeν+1(z1, ζ, x) in terms of Eeν(z1, ζ, x), by the Ee 7→ ẽ procedure of Theorem 6.6,
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with r = rν , r ′
= rν+1. Each Eeν defines, as in the previous theorems, functions Epν ,

Eqν , 9ν , ψν , φν , and the degree of Eeν is denoted dν .

Also recall that the degree dν+1 of Eeν+1 is at least 2dν − 2; it can be checked
that this, together with d0 = d ≥ 3, implies dν ≥ 2ν + 2.

The plan is to show that the bound for Eeν in the hypothesis of Theorem 6.6
holds for all ν, to get a sequence of transformations ψν : 1σν → 1ρν , so that the
composition

ψ0 ◦ . . . ◦ψν−1 ◦ψν :1σν →1ρ0

is well-defined, Eeν is holomorphic on Drν , and lim
ν→∞

|Eeν |rν = 0.

Theorem 7.7. There exists η > 0 (depending on m, n) so that if Ee0 and M are as
described above, then there exists a holomorphic transformation ψ : 11/2 → Cn ,
with a holomorphic inverse 9, and such that if z̃ ∈ M̃ ∩11/2, then ψ(z̃) ∈ M.

Proof. Set δ5 = min{δ4, 1/(27c4)} and choose 0< η <min{δ5/64, 1/(1728c1)}. It
will be shown that |Eeν |rν ≤ δ5(rν−rν+1)

3 implies |Eeν+1|rν+1 ≤ δ5(rν+1 −rν+2)
3. By

Theorem 6.6, |Eeν |rν ≤ δ4(rν − rν+1)
3 and |Eeν |rν ≤ (rν − rν+1)

3/(27c4) imply

|Eeν+1|rν+1 ≤
c4|Eeν |2rν

(rν − rν+1)3
≤

1
27

|Eeν |rν ;

this already suggests a geometric decrease in the sequence of norms. Then, using
the properties of the sequence rν ,

1
27 |Eeν |rν ≤

1
27δ5(rν − rν+1)

3
≤ δ5(rν+1 − rν+2)

3,

which proves the claimed implication. Using this as an inductive step, and starting
the induction with |Ee0|r0 ≤ η < 1

64δ5 = δ5(r0 − r1)
3, the hypothesis of Theorem

6.6 is satisfied for all ν. The first of three conclusions from Theorem 6.6 is that
Eeν is holomorphic on Drν , with degree dν ≥ 2ν + 2, and |Eeν |rν ≤ 27−νη. Secondly,
ψ0 ◦ . . . ◦ψν is a well-defined holomorphic map 1σν →1ρ0 , and 9ν ◦ . . . ◦90 is
well-defined and holomorphic on the image (ψ0 ◦ . . . ◦ψν)(1σν ), so that

9ν ◦ . . . ◦90 ◦ψ0 ◦ . . . ◦ψν

is the identity on 1σν . The third conclusion is that if |z̃1| < rν+1 and |x̃s | < rν+1,
and z̃ is defined as in (27) with ẽ = Eeν+1, then (ψ0 ◦ . . . ◦ ψν)(z̃) ∈ M . For any
Ez = (z1, . . . , zn)∈11/2, the sequence (depending on ν) (ψ0 ◦ . . .◦ψν−1 ◦ψν)(Ez) is
contained in 1ρ0 =111/12. The following argument, beginning with several appli-
cations of Lemma 6.1, shows this sequence is a Cauchy sequence, and converges
to some value ψ(Ez).



254 ADAM COFFMAN

We have

(28)
n∑

k=1

∣∣(ψ0 ◦ . . . ◦ψν+1)k(Ez)− (ψ0 ◦ . . . ◦ψν)k(Ez)
∣∣

=

n∑
k=1

∣∣(ψ0)k((ψ1 ◦ . . . ◦ψν+1)(Ez))− (ψ0)k((ψ1 ◦ . . . ◦ψν)(Ez))
∣∣

≤ |||Dψ0|||ρ1 ·

n∑
j=1

∣∣(ψ1 ◦ . . . ◦ψν+1) j (Ez)− (ψ1 ◦ . . . ◦ψν) j (Ez)
∣∣

≤

( ν∏
`=0

|||Dψ`|||ρ`+1

)
·

n∑
j=1

∣∣(ψν+1) j (Ez)− z j
∣∣.

By the estimate from Lemma 6.3, with f = Epν+1 and K =
1
2 from the proof of

Theorem 6.4, and then using the bound for Ep from Corollary 5.8,

n∑
j=1

|(ψν+1) j (Ez)− z j | ≤
1

1 −
1
2

n∑
j=1

|( Epν+1) j (Ez)| ≤ 2
n∑

j=1

‖( Epν+1) j‖1/2

≤ 2
n∑

j=1

‖( Epν+1) j‖ρν+1 ≤ 2n
c1|Eeν+1|rν+1

(rν+1 − ρν+1)2

= 18n
c1|Eeν+1|rν+1

(rν+1 − rν+2)2
= 72nc1(ν+ 2)2(ν+ 3)2|Eeν+1|rν+1

≤
72nc1(ν+ 2)2(ν+ 3)2η

27ν+1 . �

It follows from DEzψ` = (1+ Dψ`(Ez) Ep`)
−1 and Lemma 7.2 that

|||Dψ`|||ρ`+1 = |||(1+ Dψ`(Ez) Ep`)
−1

|||ρ`+1 ≤ |||(1+ D Ep`)−1
|||ρ` ≤

1
1 − |||D Ep`|||ρ`

.

Then, by Lemma 7.3, the product from (28) is bounded above by some constant
c5 > 0, since by Corollary 5.8,

∞∑
`=0

|||D Ep`|||ρ` ≤

∞∑
`=0

c1|Ee`|r`
(r` − ρ`)3

=

∞∑
`=0

27c1|Ee`|r`
(r` − r`+1)3

=

∞∑
`=0

216(`+ 1)3(`+ 2)3c1|Ee`|r` ≤

∞∑
`=0

216(`+ 1)3(`+ 2)3c1η

27`
,

a convergent infinite series with terms less than 1.
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The inequality

n∑
k=1

∣∣(ψ0 ◦ . . . ◦ψν+1)k(Ez)− (ψ0 ◦ . . . ◦ψν)k(Ez)
∣∣ ≤

72nc1c5(ν+ 2)2(ν+ 3)2η
27ν+1

is enough to show that the sequence of composite functions converges pointwise
and uniformly to a function ψ on 11/2.

Remark. Although some details remain to be checked, it seems plausible that a
similar rapid convergence argument could be used to prove an analogous analytic
stability property for a nondegenerate CR singularity of a real 3-manifold in C4,
as conjectured in [Coffman 2006].

8. Analogy with singularity theory

To continue with the theme of analogies between the normal form result and the
properties of Whitney’s cross-cap singularity, we briefly consider the notion of
complexification. If the defining equations of a real m-submanifold M in Cn with
a CR singularity at E0 are given as a graph over the tangent space as in (1), then M
can also be considered as the image of a real analytic parametrization

π : Rm
→ R2n, (z, x) 7→ (z, x, Hs(z, x), hu(z, x)).

Then the spaces Rm , R2n can be embedded as totally real subspaces of Cm , C2n ,
and there is a complex analytic map πc : Cm

→ C2n which restricts to π on the
totally real subspaces. In the following examples, composing with a projection
P : C2n

→ Cn gives a holomorphic map P ◦πc which restricts to π on the totally
real Rm subspace, and its image is a complex subvariety of Cn containing M .
Even though πc is an embedding, the composite P ◦ πc can be singular, and the
image of its critical point set contains the CR singular locus of M . For details and
more examples of this construction, see [Webster 1985; Coffman 2002; Coffman
2003], and to be more precise, these maps should be considered only in some
neighborhood of the origin in the domain and target.

Example 8.1. In the case m = n = 2 [Bishop 1965], the local defining equation
of a real surface with a nondegenerate CR singularity in C2 can be normalized to
z2 = β(z2

1 + z̄2
1)+ z1 z̄1 + O(3), where the coefficient β ≥ 0 is a biholomorphic

invariant. Considering the real embedding’s quadratic part,

π : (z1, z̄1) 7→
(
z1, z̄1, z2 = β(z2

1 + z̄2
1)+ z1 z̄1, z̄2 = β(z2

1 + z̄2
1)+ z1 z̄1

)
is a real analytic map from the totally real subspace {(z1, w1) : w1 = z̄1} of C2 to
the totally real subspace {(z1, w1, z2, w2) :w1 = z̄1, w2 = z̄2} of C4, which extends
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to a complex analytic embedding

πc : (z1, w1) 7→
(
z1, w1, β(z2

1 +w2
1)+ z1w1, β(w

2
1 + z2

1)+w1z1
)
.

Then composing with the projection P : C4
→ C2 that forgets the w1, w2 variables

in the target gives a map P ◦πc : (z, w) 7→ (z, β(z2
+w2)+ zw). For β > 0, this

is a ramified two-to-one map onto C2 [Moser and Webster 1983; Webster 1985],
and is analogous to Whitney’s fold singularity (x, y) 7→ (x, y2).

Example 8.2. An example of a cubic normal form for a CR singular surface in C2

in the β = 0 case is z2 = z1 z̄1 + z̄3
1 [Moser 1985]. The map P ◦ πc : (z1, w1) 7→

(z1, z1w1 +w3
1) is analogous to Whitney’s cusp, (x, y) 7→ (x, xy + y3).

Example 8.3. An example of a surface M in C3 with a topologically unstable CR
singularity, considered in [Coffman 2004], has real equations z2 = z̄2

1, z3 = z1 z̄1,
which complexify to P ◦πc : (z1, w1) 7→ (z1, w

2
1, z1w1), exactly Whitney’s normal

form for the parametrization of the cross-cap singularity. The image of P ◦ πc

in C3 is {z2
1z2 − z2

3 = 0}, a singular complex hypersurface (Whitney’s “umbrella”
surface), and the smallest complex variety containing M .

Example 8.4. For the normal form variety M̃4,5, a parametrization C4
→C10

→C5

of the complexification is

(z1, w1, z2, z3) 7→ (z1, z2, z3, w
2
1, w1(z1 + z2 + i z3)).

The real manifold M̃4,5 is the image of the restriction of this map to the totally real
subspace {w1 = z̄1, z2 = z̄2, z3 = z̄3} in the domain. The holomorphic map C4

→C5

parametrizes a singular complex hypersurface H, which is the product of Whitney’s
cross-cap surface and a complex 2-plane, and the image {(z1 + z2 + i z3)

2z4 − z2
5 =

0} is the smallest complex variety in C5 containing M̃4,5; a similar expression
appeared in (15). The geometry of M̃4,5

⊆ H is considered in [Coffman 2003, §8],
but with a different expression for the quadratic normal form.

Example 8.5. In general, the real variety M̃m,n is contained in a singular subvariety
of complex dimension m in Cn , the defining ideal of which contains, for example,
(z1 + z2 + i z3)

2zn−1 − z2
n . As a consequence of Proposition 3.3, any real analytic

M is not a local uniqueness set for holomorphic functions in a neighborhood of a
nondegenerate CR singularity; compare [Harris 1983].

For surfaces in C2, the two-to-one nature of the complexification C2
→ C2 as

in Example 8.1 was used in [Moser and Webster 1983] to solve a normal form
problem in the 0<β < 1

2 case. Their methods are different from that of this paper;
for example in the (m, n) = (4, 5) case, the map C4

→ C5 from Example 8.4 is
generally one-to-one, the two-to-one locus being contained in a complex subvariety
in the domain as shown in [Coffman 2003].
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Normal forms for the complexifications that look more like Whitney’s monomial
normal forms would be possible using a larger group, where the z and w vari-
ables could be transformed independently. Under the subgroup used to normalize
the CR singularity, one expects equivalence classes of maps to be smaller, and
continuous parameters (“moduli”) to appear sooner (for more and for lower-order
terms). However, invariants which distinguish maps under the larger group will still
distinguish them under the smaller group. One may speculate that invariants of the
complexification, such as the intrinsic derivative, the Boardman sequence, Jacobian
extensions, etc., could provide a coarse but general beginning to the development
of a CR singularity theory analogous to the singularity theory of maps [Golubitsky
and Guillemin 1973; Porteous 1971].
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QUOTIENTS OF MILNOR K -RINGS, ORDERINGS,
AND VALUATIONS

IDO EFRAT

We define and study the Milnor K -ring of a field F modulo a subgroup of
the multiplicative group of F. We compute it in several arithmetical situa-
tions, and study the reflection of orderings and valuations in this ring.

Introduction

Let F be a field and let F× be its multiplicative group. The Milnor K -ring K M
∗
(F)

of F is the tensor (graded) algebra of the Z-module F× modulo the homogeneous
ideal generated by all elements a1 ⊗ · · · ⊗ ar , where 1 = ai + a j for some 1 ≤

i < j ≤ r [Milnor 1970]. Alongside with K M
∗
(F), the quotients K M

∗
(F)/m =

K M
∗
(F)/mK M

∗
(F), for m a positive integer, also play an important role in many

arithmetical questions. In this paper we study a natural generalization of these
two functors. Specifically, we consider a subgroup S of F× and define the graded
ring K M

∗
(F)/S to be the quotient of the tensor algebra over F×/S modulo the

homogeneous ideal generated by all elements a1S⊗· · ·⊗ar S, where 1 ∈ ai S+a j S
for some 1 ≤ i < j ≤ r . The graded rings K M

∗
(F) and K M

∗
(F)/m then correspond

to S = {1} and S = (F×)m , respectively.
The ring-theoretic structure of K M

∗
(F)/S reflects many of the main arithmetical

properties of F , especially those related to orderings and valuations. We illustrate
this by computing it in the following situations:

(1) F×/S is a finite cyclic group. Here, if F has no orderings containing S then
K M

∗
(F)/S is trivial in degrees> 1. Otherwise K M

∗
(F)/S coincides in degrees

> 1 with the tensor algebra over {±1} (Theorem 4.1). This includes as a
special case the computation of the Milnor K -ring of finite fields, which goes
back to Steinberg and Milnor [Milnor 1970, Example 1.5].

(2) There is a (Krull) valuation v on F whose 1-units are contained in S. We
show that under a mild assumption, K M

∗
(F)/S is then obtained from the cor-

responding K -ring of the residue field and from v(F×)/v(S) by means of a

MSC2000: primary 19F99; secondary 12J10, 12J15, 12E30.
Keywords: generalized Milnor K -rings, orderings, valuations.
The research has been supported by the Israel Science Foundation grant No. 8008/02–1.
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natural algebraic construction analogous to the construction of a polynomial
ring over a given ring (Section 5).

(3) F×/S is finitely generated, and is generated by the 1-units of a rank-1 val-
uation v such that S is open in the v-topology on F . We then prove that
K M

∗
(F)/S is trivial in degrees > 1 (Theorem 6.2).

(4) F×/S is finite, and there is a rank-1 valuation v on F with mixed character-
istics (0, p) such that S = (F×)p(1 + p2mv), where mv is the valuation ideal
(when v is Henselian the latter condition just means that S = (F×)p). We
show that then K M

∗
(F)/S is either the Milnor K -ring of a finite extension of

Qp, or else it is trivial in degrees> 1 and v(F×) is p-divisible (Theorem 7.4).
The proof is based on the vanishing theorem of (3) above.

These results are mostly of a local nature. In a forthcoming paper we com-
pute the functor K M

∗
(F)/S in global situations, where S is related to a family of

orderings and valuations.
Studying Milnor’s K -theory modulo a subgroup S by means of the functor

K M
∗
(F)/S resembles the reduced theory of quadratic forms: there one studies

quadratic forms modulo a preordering T on F via the reduced Witt ring functor
WT (F), rather than the classical Witt ring; see [Lam 1983; Becker and Köpping
1977] for details.

Furthermore, the celebrated Bloch–Kato–Milnor conjecture predicts that KM
∗
(F)

is isomorphic to the Galois cohomology of the absolute Galois group G F of F with
respect to twisted cyclotomic actions [Kahn 1997]. Similarly, when p is a prime
number and F contains a primitive p-th root of unity, K M

∗
(F)/p is related to the

Galois cohomology ring of the maximal pro-p Galois group G F (p) of F with
its trivial action on Z/p. From this viewpoint, the generalized functor K M

∗
(F)/S

serves in some sense as an analog of the Galois cohomology of an arbitrary relative
Galois group Gal(E/F) of F .

1. κ-Structures

In this section we define a convenient target category for the generalized Milnor
K -ring functor. Recall that the Milnor K -ring of a field F is a graded ring with
degree 1 component F×. Furthermore, the element −1 of F× plays a special role
in this ring. The idea is therefore to consider graded rings with a distinguished
element in degree 1, which will play the role of −1. The resulting category of “κ-
structures” is a slight modification of the “κ-algebras” defined in [Bass and Tate
1973], in the sense that we require in addition that the degree-0 component of the
graded ring is Z. This turns out to be useful for defining natural constructions in the
resulting category, such as extensions (see below) and direct products. Other formal
categories that were studied in the context of quadratic form theory (like abstract
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Witt rings, quaternionic structures, or abstract spaces of orderings [Marshall 1980;
1996]) are specializations of the category of κ-structures in a natural way.

Denote the tensor algebra of an abelian group 0 by Tens(0). We let

κ =

∞⊕
r=0

κr = Tens({±1}),

and denote the nontrivial element of κ1 ∼= Z/2 by ε. Thus κ0 = Z and for all r ≥ 1,
κr = {0, εr

} ∼= Z/2.

Definition 1.1. A κ-structure consists of a graded ring A =
⊕

∞

r=0 Ar and a graded
ring homomorphism κ → A such that

(i) A0 = Z, and the homomorphism κ → A is the identity in degree 0,

(ii) A1 generates A as a ring, and

(iii) the image εA of ε in A satisfies a2
= εAa = aεA for all a ∈ A1.

For every a, b ∈ A1 we have ab + ba = (a + b)2 − a2
− b2

= 0, by (iii). Thus
A is anticommutative. A morphism A → B of κ-structures is a graded ring ho-
momorphism which commutes with the structural homomorphisms κ → A and
κ → B.

The category of κ-structures has direct products. Namely, the direct product∏
i∈I Ai of κ-structures Ai for i ∈ I , is defined by (

∏
i∈I Ai )0 =Z and (

∏
i∈I Ai )r =∏

i∈I (Ai )r for r ≥ 1, with the natural multiplicative structure. The homomorphism
κr →

∏
i∈I (Ai )r is given by ε 7→ (εAi )i∈I .

Recall that the tensor product in the category of graded rings is defined by

A ⊗Z B =

∞⊕
r=0

( ⊕
i+ j=r

Ai ⊗Z B j

)
,

with the product given by

(a ⊗ b)(a′
⊗ b′)= (−1)i

′ j aa′
⊗ bb′

for a ∈ Ai , a′
∈ Ai ′ , b ∈ B j , b′

∈ B j ′ . Given κ-structures A, B, we define their
tensor product in the category of κ-structures to be A ⊗κ B = (A ⊗Z B)/I , where
I is the homogeneous ideal generated by εA ⊗1B −1A ⊗ εB . The homomorphism
κ → A ⊗κ B is given by ε 7→ εA ⊗ 1B + I = 1A ⊗ εB + I . Since A and B
are anticommutative, so is A ⊗Z B. Further, given a ∈ A1 and b ∈ B1 we have
(a ⊗ 1B)

2
= (εA ⊗ 1B)(a ⊗ 1B) and (1A ⊗ b)2 = (1A ⊗ εB)(1A ⊗ b), so by the

anticommutativity,

(a ⊗ 1B + 1A ⊗ b)2 + I = (εA ⊗ 1B)(a ⊗ 1B + 1A ⊗ b)+ I
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in (A⊗κ B)2. This implies the first equality in (iii) for A⊗κ B. The second is proved
similarly, showing that A ⊗κ B is a κ-structure. There are canonical morphisms
ι : A → A⊗κ B and ι′ : B → A⊗κ B with respect to which A⊗κ B is the coproduct
of A and B in the category of κ-structures (in the sense of, e.g., [Lang 1984, I §7]).
One has A ∼= A ⊗κ κ and B ∼= κ ⊗κ B via these morphisms.

Next we construct free objects in this category. Let 0 be an abelian group. We
define κ[0] to be the quotient of Tens(κ1⊕0) by the homogeneous ideal generated
by all elements ε⊗γ−γ⊗γ , where γ ∈0. Replacing γ by ε+γ one sees that this
ideal also contains γ ⊗ ε− γ ⊗ γ . The obvious embedding κ1 ↪→ κ1 ⊕0 induces
a graded ring homomorphism κ → κ[0]. Then κ[0] is a κ-structure satisfying
the following universal property (which follows from the universal property of the
tensor algebra):

For every κ-structure B and an abelian group homomorphism θ : 0→ B1 there
exists a unique morphism κ[0] → B extending θ .

Given a κ-structure A, we call A[0]= A⊗κ κ[0] the extension of A by 0. When
A = κ it coincides with our previous notation. This extends Serre’s construction
mentioned in [Milnor 1970, p. 323]. We identify (A[0])1 with A1 ⊕0, and we let
ι : A → A[0] be the canonical morphism.

Lemma 1.2. Let ϕ : A → B be a morphism of κ-structures and let θ : 0 → B1 be
a homomorphism of abelian groups. There exists a unique morphism A[0] → B
extending θ which commutes with ϕ and ι.

Proof. The universal property of κ[0] yields a unique morphism κ[0] → B ex-
tending θ . Now use the fact that the tensor product is a coproduct. �

Corollary 1.3. For a κ-structure A and abelian groups 01, 02 one has

(A[01])[02] ∼= A[01 ⊕02].

Example 1.4. Let A be a κ-structure and let 0 be a cyclic group with generator
γ . For every i ≥ 1, we have γ i

= εi−1
A γ in A[0], by (iii) of Definition 1.1. It

follows that (A[0])r = Ar ⊕ (Ar−1 ⊗Z 0) for r ≥ 1.

2. The functor K M
∗ (F)/S

Let F be a field and let S be a subgroup of F×. For r ≥ 0, let

(F×/S)⊗r
= (F×/S)⊗Z · · · ⊗Z (F×/S) (r times).

Let StF,r (S) be the subgroup of (F×/S)⊗r generated by all elements a1S⊗· · ·⊗ar S
such that 1 ∈ ai S + a j S for some i 6= j . Generalizing standard terminology, we
call such elements Steinberg elements. Let

K M
r (F)/S = (F×/S)⊗r/StF,r (S).
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In particular, K M
0 (F)/S = Z and K M

1 (F)/S = F×/S. For t ≥ 0, one has

StF,r (S)⊗Z (F×/S)⊗t
⊆ StF,r+t(S), (F×/S)⊗t

⊗Z StF,r (S)⊆ StF,r+t(S).

Therefore

K M
∗
(F)/S =

∞⊕
r=0

K M
r (F)/S

is a graded ring respect to the multiplication induced by the tensor product. We
call it the Milnor K -ring of F modulo S. Given a1, . . . , ar ∈ F×, we denote the
image of a1S ⊗ · · · ⊗ ar S in K M

r (F)/S by {a1, . . . , ar }S .
When S ={1} we obtain the classical Milnor K -ring K M

∗
(F)=

⊕
∞

r=0 K M
r (F) of

F as in [Milnor 1970]. In this case we write as usual {a1, . . . , an} for {a1, . . . , an}S .
In general, we have graded ring homomorphisms Tens(F×/S)→ K M

∗
(F)/S and

K M
∗
(F)→ K M

∗
(F)/S.

Define a graded ring homomorphism κ→ K M
∗
(F)/S by setting ε 7→−S ∈ F×/S.

Since the identities {a, a}S = {−1, a}S = {a,−1}S of part (iii) of Definition 1.1 are
well known to hold when S = {1} [Milnor 1970, §1], they also hold in K M

∗
(F)/S.

Hence K M
∗
(F)/S is a κ-structure.

Proposition 2.1. For positive integers m, r and for S = (F×)m we have

K M
r (F)/S = K M

r (F)/m.

Proof. There is an obvious graded ring homomorphism ϕ : K M
r (F)/m → K M

r (F)/S
commuting with the canonical projections from (F×)⊗r . Conversely, suppose
a1, . . . , ar ∈ F× and a1S ⊗ · · · ⊗ ar S ∈ StF,r (S), that is, 1 = aiα

m
+ a jβ

m for
some i < j and α, β ∈ F×. Then

{a1, . . . , ar } ∈ {a1, . . . , aiα
m, . . . , a jβ

m, . . . , ar } + mK M
r (F)= mK M

r (F).

We obtain a projection ψ : K M
r (F)/S → K M

r (F)/m which also commutes with the
projections from (F×)⊗r . Thus ϕ andψ are inverse maps, hence isomorphisms. �

We consider the class of all pairs (F, S) where F is a field and S ≤ F× as a cat-
egory, in which morphisms (F, S)→ (F1, S1) are pairs of compatible embeddings
F ↪→ F1, S ↪→ S1. For such a pair and for r ≥ 0, we have a group homomorphism
(F×/S)⊗r

→ (F×

1 /S1)
⊗r mapping StF,r (S) to StF1,r (S1). It therefore induces a κ-

structure morphism Res : K M
∗
(F)/S → K M

∗
(F1)/S1, which we call the restriction

morphism. The map (F, S) 7→ K M
∗
(F)/S is thus a covariant functor from the

category of pairs (F, S) to the category of κ-structures.
A topology on a field F is called a ring topology if the addition and multiplica-

tion maps F × F → F are continuous. We will need:
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Proposition 2.2. Let T be a ring topology on a field F1 and let F be a subfield
of F1 which is T-dense in F1. Let S be a subgroup of F× and let S1 be a T-
open subgroup of F×

1 containing S. Then Res : K M
∗
(F)/S → K M

∗
(F1)/S1 is an

epimorphism. When S = F ∩ S1, it is an isomorphism.

Proof. For every a ∈ F×

1 , we have F ∩aS1 6= ∅ by the density assumption. Hence
the natural homomorphism F×/S → F×

1 /S1 is surjective. Consequently, so is
Res : K M

∗
(F)/S → K M

∗
(F1)/S1.

Suppose that S = F ∩ S1. For each r the induced map (F×/S)⊗r
→ (F×

1 /S1)
⊗r

is an isomorphism. Therefore the injectivity of Res would follow by a snake lemma
argument once we show that the induced map StF,r (S)→ StF1,r (S1) is surjective.
To this end, take a generator a1S1 ⊗· · ·⊗ar S1 ∈ StF1,r (S1), where a1, . . . , ar ∈ F×

1
and 1 ∈ ai S1 + a j S1 for some distinct i, j . By continuity, there exist nonempty T-
open subsets V,W ⊆ S1 such that ai V +a j W ⊆ S1. Using the density assumption
we find x1, . . . , xr ∈ F with xi ∈ ai V , x j ∈ a j W , and xl ∈ al S1 for all l 6= i, j . Then
xi + x j ∈ S1 ∩ F = S, so x1S ⊗· · ·⊗ xr S ∈ StF,r (S). Furthermore, x1S ⊗· · ·⊗ xr S
maps to a1S1 ⊗ · · · ⊗ ar S1 under the homomorphism above, as required. �

3. Orderings

Let again F be a field, and let S be a subgroup of F×. Following standard terminol-
ogy (see, e.g., [Neukirch et al. 2000, p. 191]), we call the map BockF,S : F×/S →

K M
2 (F)/S, {x}S 7→ {x}

2
S = {x,−1}S , the Bockstein operator of the subgroup S of

F . It is clearly a group homomorphism.

Lemma 3.1. If BockF,S is injective then S is additively closed.

Proof. It suffices to show that 1 + S ⊆ S. To this end take s ∈ S. Then

BockF,S({1 + s}S)= {1 + s,−1}S = {1 + s,−s}S = 0.

By injectivity, {1 + s}S = 0, so 1 + s ∈ S. �

By an ordering on F , we mean an additively closed subgroup P of F× such
that F×

= P ∪· − P . Recall that a ring is reduced if it has no nonzero nilpotent
elements. The following fact is a variant of [Bass and Tate 1973, I, Theorem (3.1)].

Proposition 3.2. The following conditions are equivalent:

(a) K M
∗
(F)/S ∼= κ as κ-structures;

(b) F×
= S ∪· − S and K M

∗
(F)/S is reduced;

(c) F×
= S ∪· − S and {−1,−1}S 6= 0;

(d) S is an ordering on F.
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Proof. (a) ⇒ (b) ⇒ (c): Immediate.
(c) ⇒ (d): By Lemma 3.1 and the assumptions, S is additively closed. The rest is
clear.
(d) ⇒ (a): We first show that StF,r (S) is trivial for all r ≥ 2. Take a1, . . . , ar ∈ F×

with 1 ∈ ai S + a j S for some distinct 1 ≤ i, j ≤ r . If ai , a j were both in −S then
we would get −1 ∈ S + S ⊆ S, a contradiction. Hence at least one of ai , a j must
be in S. It follows that a1S ⊗ · · · ⊗ ar S = 1 in (F×/S)⊗r , as claimed.

Consequently, K M
∗
(F)/S = Tens(F×/S) ∼= Tens({±1}) = κ as graded rings.

Further, this is a κ-structure isomorphism. �

A preordering on F is an additively closed subgroup S of F× containing (F×)2

but not −1. Preorderings can be characterized K -theoretically as follows.

Proposition 3.3. Suppose that (F×)2 ≤ S < F×. The following conditions are
equivalent:

(a) S is a preordering on F ;

(b) BockF,S is injective.

Proof. (a) ⇒ (b): Let x ∈ F× satisfy {x}
2
S = 0 and let P be an ordering on F

containing S. Then {x}
2
P = 0, and since K M

∗
(F)/P ∼= κ is reduced (Proposition

3.2), {x}P =0, i.e., x ∈ P . As a preordering, S is the intersection of all the orderings
P containing it [Lam 1983, Theorem 1.6]. Consequently, x ∈ S, as desired.
(b) ⇒ (a): In light of Lemma 3.1, S is additively closed. By assumption, there
exists x ∈ F×

\S. By injectivity, {x,−1}S 6=0. Hence −1 6∈ S, so S is a preordering.
�

4. The cyclic case

Using the K -theoretic analysis of orderings obtained in the previous section, we
can now completely describe K M

∗
(F)/S when F×/S is a finite cyclic group.

Theorem 4.1. Let F be a field and let S be a subgroup of F× such that F×/S is
finite and cyclic. Then one of following holds:

(a) K M
r (F)/S = 0 for all r ≥ 2;

(b) (F×
: S)=2m with m odd, and there exists a unique ordering P on F contain-

ing S. Furthermore, Res : K M
∗
(F)/S → K M

∗
(F)/P (∼= κ) is an isomorphism

in all degrees r ≥ 2.

Proof. Let pd1
1 · · · pdn

n be the primary decomposition of (F×
: S). For each 1 ≤

i ≤ n, choose ai ∈ F× such that the coset {ai }S generates the pi -primary part
of F×/S. Let a = a1 · · · an . Then the coset {a}S generates F×/S, and one has
{a, a}S = {a,−1}S =

∑n
i=1{ai ,−1}S .
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Assume that (a) does not hold, i.e., K M
r (F)/S 6= 0 for some r ≥ 2. Since

the canonical map (F×/S)r → K M
r (F)/S is multilinear, {a, . . . , a}S generates

K M
r (F)/S. Hence {a, . . . , a}S 6= 0, and therefore {a, a}S 6= 0. It follows that

{ai ,−1}S 6= 0 for some 1 ≤ i ≤ n. We obtain that the orders of {ai ,−1}S and of
{−1}S are precisely 2. Furthermore, pdi

i {ai ,−1}S = 0, so we must have pi = 2.
Therefore 2di −1

{ai }S = {−1}S , and we get

2di −1
{ai ,−1}S = 2di −1

{ai , ai }S = {ai ,−1}S 6= 0.

This implies that di = 1. Consequently, (F×
: S)= 2m, with m odd.

Let P be the unique subgroup of F× of index 2 which contains S. Then P/S is
cyclic of order m, and is generated by {a2

}S . Since {−1}S has order 2 in F×/S, it
is not in P/S. Therefore F×

= P ∪· − P .
Next we claim that 1+P ⊆ P . Indeed, suppose that x ∈ P . In particular, x 6=−1.

Take s, t with −x ∈ as S and 1 + x ∈ at S. Then

0 = {−x, 1 + x}S = {as, at
}S = st{a, a}S.

Now −x 6∈ P , so s is odd. But {a, a}S = {a,−1}S has order 2. It follows that t
must be even, i.e., 1+ x ∈ P . Therefore P is additively closed, hence an ordering.

Finally, for every r , the functorial map K M
r (F)/S → K M

r (F)/P is clearly
surjective. When r ≥ 2, the group K M

r (F)/S is generated by {a, a, . . . , a}S =

{a,−1, . . . ,−1}S , so it has order at most 2. By Proposition 3.2, K M
r (F)/P has

order 2. Consequently, the above map is an isomorphism, and (b) holds.
For the uniqueness part of (b), assume that S ≤ P ′ < F× is another ordering on

F . Then 4|(F×
: P ∩ P ′)|(F×

: S)= 2m, contrary to the fact that m is odd. �

Corollary 4.2. Let S be a subgroup of F× with F×/S cyclic of prime power order.
Then either K M

r (F)/S = 0 for all r ≥ 2, or S is an ordering (hence K M
∗
(F)/S ∼= κ).

As mentioned in the introduction, Theorem 4.1 generalizes the well-known fact
that K M

2 (F) = 0 for a finite field F [Milnor 1970, Example 1.5; Fesenko and
Vostokov 1993, IX, Proposition 1.3]. Indeed, F× is cyclic [Lang 1984, VII §5,
Theorem 11] and since char F > 0, there are no orderings on F .

5. S-compatible valuations

Recall that a (Krull) valuation on a field F is a group homomorphism v from F×

into an ordered abelian group (0,≤) such that v(x + y) ≥ min{v(x), v(y)} for
all x, y ∈ F with x 6= −y. One defines v(0) to be a formal value +∞ which is
strictly larger than every value in 0. Let Ov be the valuation ring of v, and mv its
maximal ideal. Thus x ∈ F lies in Ov (respectively mv) if and only if v(x) ≥ 0
(respectively v(x) > 0). Let O×

v be the unit group of Ov, let Gv = 1 + mv be the
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group of principal units of v, let Fv = Ov/mv be the residue field of v, and let
πv : Ov → Fv, a 7→ ā, be the canonical projection.

Let S a subgroup of F×. Its push-down Sv = πv(S ∩ O×
v ) under v is a subgroup

of F×
v . The maps v and πv induce short exact sequences of abelian groups

1 → S ∩ O×

v → S
v

−→ v(S) → 0
and

1 → S ∩ Gv → S ∩ O×

v

πv
−→ Sv → 1.

In particular, this holds for S = F×. The snake lemma therefore gives rise to
canonical exact sequences

(5–1) 1 → O×

v /(S ∩ O×

v ) → F×/S
v∗

−→ v(F×)/v(S) → 0

and

(5–2) 1 → Gv/(S ∩ Gv) → O×

v /(S ∩ O×

v )
π∗
v

−→ F×

v /Sv → 1.

Following [Arason et al. 1987], we say that the valuation v is S-compatible if
Gv ≤ S. (When S = (F×)p for p prime and char Fv 6= p, this is a weak form
of Hensel’s lemma; see [Wadsworth 1983, Proposition 1.2].) Then the sequences
(5–1) and (5–2) combine to a single canonical short exact sequence

(5–3) 1 → F×

v /Sv
η

−→ F×/S
v∗

−→ v(F×)/v(S) → 0,

where for a ∈ O×
v with residue ā we set η({ā}Sv )= {a}S .

We will be interested in situations where (5–1) splits. For example, this is so in
the following cases:

(1) v(F×) ∼= Z and S = {1}. Then a section of v∗ corresponds to a choice of a
uniformizer for v.

(2) (F×)p
≤ S for some prime number p. In fact, then F×/S and v(F×)/v(S)

are free (Z/p)-modules.

(3) (F×)q ≤ S ≤ (F×)q O×
v , where q = ps is a prime power. Indeed, the group

v(F×) is torsion-free, hence a flat Z-module. Thus v(F×)/v(S) = v(F×)/q
is a flat Z/q-module. Since Z/q is a nilpotent local ring, it is a consequence
of the Nakayama lemma [Matsumura 1980, 3.G] that v(F×)/q is a free Z/q-
module.

We now obtain a connection between valuations and extensions of κ-structures,
in the sense of Section 1.

Theorem 5.1. Let F be a field and let S be a subgroup of F×. Every section of
(5–1) canonically induces an epimorphism of κ-structures

K M
∗
(F)/S −→ (K M

∗
(Fv)/Sv)[v(F×)/v(S)].
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This morphism is injective if and only if v is S-compatible.

Proof. Let θ : v(F×)/v(S) → F×/S be a section of v∗. Take S ≤ 1 ≤ F× with
1/S = Im(θ). Then F×/S = (SO×

v /S) × (1/S). Thus every x ∈ F× can be
written as x = ab with a ∈ O×

v and b ∈1. We set ā = πv(a) and write [v(b)]S for
the coset of v(b) in v(F×)/v(S). We obtain a well-defined group epimorphism

(5–4) F×/S → (F×

v /Sv)⊕ (v(F×)/v(S)), {x}S 7→ {ā}Sv + [v(b)]S.

This abelian group epimorphism uniquely extends to a graded ring epimorphism

λ : Tens(F×/S)→ (K M
∗
(Fv)/Sv)[v(F×)/v(S)].

We claim that λ is trivial on StF,r (S) for all r . It suffices to show that when
x, y ∈ F× and 1 ∈ x S + yS, we have λ({x}S ⊗ {y}S) = 0. We may assume that
1 = x + y. Write x = ab and y = cd , with a, c ∈ O×

v and b, d ∈1. Then

λ(x S ⊗ yS)=
(
{ā}Sv + [v(b)]S

)
·
(
{c̄}Sv + [v(d)]S

)
= {ā, c̄}Sv +

(
{ā}Sv · [v(d)]S − {c̄}Sv · [v(b)]S

)
+ [v(b)]S · [v(d)]S.

To show that this expression vanishes, we distinguish between four cases:

Case I: x ∈ Gv. Here we can take a = x and b = 1. Then {ā}Sv = 0 and [v(b)]S = 0,
so the assertion is clear.

Case II: x ∈ mv. Then y ∈ Gv, so we can take c = y and d = 1. Hence {c̄}Sv = 0
and [v(d)]S = 0, and we are done again.

Case III: x ∈ O×
v \ Gv. Then y = 1− x ∈ O×

v , so we can take a = x , b = 1, c = y,
and d = 1. Hence λ(x S ⊗ yS)= {x̄, 1−x}Sv = 0 once again.

Case IV: x−1
∈mv. For any a, b as above, y =a(x−1

−1)·b, with a(x−1
−1)∈ O×

v .
Thus we may take c = a(x−1

− 1) and d = b. Then {c̄}Sv = {−ā}Sv . Further,
{ā}Sv−{−ā}Sv = {−1̄}Sv and {ā,−ā}Sv = 0. It follows that

λ(x S ⊗ yS)= {−1̄}Sv · [v(b)]S + [v(b)]S · [v(b)]S = 0,

using property (iii) of Definition 1.1.
This proves the claim. Consequently, λ induces an epimorphism of κ-structures

λ̄ : K M
∗
(F)/S −→ (K M

∗
(Fv)/Sv)[v(F×)/v(S)],

as desired.
For the second assertion of the theorem, suppose that v is S-compatible. Then

(5–3) is exact. The abelian group monomorphism η of (5–3) induces a mor-
phism Tens(F×

v /Sv) → Tens(F×/S) of graded rings. Since Gv ≤ S, it maps
StFv,r (Sv) into StF,r (S) for every r ≥ 1. Hence it induces a κ-structure morphism
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K M
∗
(Fv)/Sv → K M

∗
(F)/S. By the universal property of extensions (Lemma 1.2),

there exists a unique κ-structure morphism ν̄ which extends the section θ and for
which the following diagram commutes (where ι is the canonical morphism as in
Section 1):

K M
∗
(Fv)/Sv

ι- (K M
∗
(Fv)/Sv)[v(F×)/v(S)]

K M
∗
(F)/S.

ν̄

?-

In degree 1, ν̄ coincides with the isomorphism η⊕ θ . Hence it is surjective in all
degrees. By construction, λ̄ is given in degree 1 by the map (5–4). It follows that
λ̄ ◦ ν̄ = id in degree 1, and therefore in all degrees. This proves that ν̄ is injective.
Therefore both ν̄ and λ̄ are isomorphisms.

Conversely, suppose that λ̄ is an isomorphism. Its definition in degree 1 shows
that it maps GvS/S trivially. Hence Gv ≤ S, as required. �

Remark 5.2. When v is a discrete valuation and S = {1}, the first part of The-
orem 5.1 is due to Bass and Tate [1973, I, Proposition 4.3]. They also prove its
second part when (F, v) is a complete, discretely valued field with positive residue
characteristic prime to m and when S = (F×)m [Bass and Tate 1973, I, Corollary
4.7]. Note that in the latter case, v is S-compatible by Hensel’s lemma. Wadsworth
[1983, §2] proves Theorem 5.1 for any valued field (F, v) when S = (F×)q Gv and
q is a prime power.

Remark 5.3. The epimorphism of Theorem 5.1 is functorial in the following sense:
suppose (F1, v1) is a valued field extension of (F, v), and suppose that S ≤ F×,
S1 ≤ F×

1 , and S ≤ S1. Further assume there exist homomorphic sections θ and θ1

of the projections

v∗
: F×/S → v(F×)/v(S), v∗

1 : F×

1 /S1 → v1(F×

1 )/v1(S1)

induced by v and v1, respectively. Moreover, suppose that the following square
commutes:

v(F×)/v(S)
θ - F×/S

v1(F×

1 )/v1(S1)

?
θ1- F×

1 /S1.

?
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Then the epimorphisms given in Theorem 5.1 and the restriction morphisms induce
a square:

K M
∗
(F)/S - (K M

∗
(Fv)/Sv)[v(F×)/v(S)]

K M
∗
(F1)/S1

?
- (K M

∗
((F1)v1)/(S1)v1)[v1(F×

1 )/v1(S1)].

?

This square commutes in degree 1, hence in all degrees.

Remark 5.4. There are partial converses to Theorem 5.1. Namely, if S = (F×)p

for a prime number p and if K M
∗
(F)/S is an extension of some κ-structure by

(Z/p)d , then apart from some well-understood exceptional cases, F is equipped
with an S-compatible valuation v with v(F×)/pv(F×) ∼= (Z/p)d . Indeed, this
follows from the results of [Jacob 1981; Ware 1981; Arason et al. 1987; Hwang
and Jacob 1995]; see [Efrat 1999] for a K -theoretic formulation of this line of
results.

6. A vanishing theorem

Recall that a valuation v on F induces a ring topology Tv on F , with basis con-
sisting of all sets a + bOv, where a, b ∈ F and b 6= 0. For 0 < γ ∈ v(F×) the
set

Wγ =
{

x ∈ F×
| v(1 − x)≥ γ

}
is a Tv-open subgroup of Gv = 1 + mv.

Lemma 6.1. Let v be a valuation on the field F. Let S be a subgroup of F× such
that Gv/(S ∩ Gv) is a finitely generated group. Then there exists 0 < γ ∈ v(F×)

such that

(i) SGv = SWγ , and

(ii) if char Fv = p then 1 + pOv ≤ Wγ .

Proof. We choose a1, . . . , an ∈ mv such that the cosets of 1 − ai , i = 1, . . . , n,
generate Gv/(S ∩ Gv). Hence (1 − ai )S, i = 1, . . . , n, generate SGv/S. Take any
0< γ ≤ min{v(a1), . . . , v(an)}. Then 1 − ai ∈ Wγ , i = 1, . . . , n. Combined with
Wγ ≤ Gv, this shows that SWγ /S = SGv/S. When char Fv = p we take

γ = min{v(p), v(a1), . . . , v(an)}. �

One says that the valuation v on F has rank 1 (or that it is Archimedean) if
v(F×) embeds in R as an ordered abelian group. Equivalently, for every 0 <
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α, γ ∈ v(F×) there exists a positive integer s such that α < sγ [Bourbaki 1972,
VI §4.5, Proposition 8].

Theorem 6.2. Let v be a valuation of rank 1 on the field F. Let S be a Tv-
open subgroup of F× such that F×/S is finitely generated and F×

= SGv. Then
K M

r (F)/S = 0 for all r ≥ 2.

Proof. It suffices to show that aS ⊗ bS ∈ StF,2(S) for a, b ∈ Gv. Suppose that this
is not the case. In particular, a, b 6∈ S. Lemma 6.1 yields 0< γ ∈ v(F×) such that
F×

= SGv = SWγ .
We define inductively a sequence c1, c2, . . . ∈ Gv such that for each i ,

1 − ci ∈ (1 − b)(1 − Wγ )
i−1, aS ⊗ bc−1

i S ∈ StF,2(S).

We can take c1 = b. Next suppose that ci has already been constructed. Since
aS ⊗ bS 6∈ StF,2(S) we have ci 6= 1. Choose yi ∈ S such that a/(1 − c−1

i ) ∈ yi Wγ .
As a 6∈ S and yi ∈ S, we may define ci+1 = ci (1 − y−1

i a). Since ci ∈ Gv we have
y−1

i a ∈ (1 − c−1
i )Wγ ⊆ mv. Hence ci+1 ∈ Gv. Now

1 − ci+1

1 − ci
= 1 −

y−1
i a

1 − c−1
i

∈ 1 − Wγ ,

so by the induction hypothesis, 1 − ci+1 ∈ (1 − b)(1 − Wγ )
i . Furthermore,

aS ⊗ bc−1
i+1S = aS ⊗ bc−1

i S − aS ⊗ (1 − y−1
i a)S

= aS ⊗ bc−1
i S − y−1

i aS ⊗ (1 − y−1
i a)S ∈ StF,2(S).

This completes the inductive construction.
Since v has rank 1, the sets (1 − Wγ )

s , s = 1, 2, 3, . . . , form a local basis for
Tv at 0. As b 6= 1, the set (1 − b)−1(1 − S) is a Tv-open neighborhood of 0.
Hence there exists a positive integer t such that (1 − Wγ )

t
⊆ (1 − b)−1(1 − S).

Then 1 − ct+1 ∈ (1 − b)(1 − Wγ )
t
⊆ 1 − S, and so ct+1 ∈ S. We conclude that

aS ⊗ bS = aS ⊗ bc−1
t+1S ∈ StF,2(S), a contradiction. �

7. Wild valuations of rank 1

In this section we study K M
∗
(F) when F is a field of characteristic 0 equipped

with a valuation v such that char Fv = p > 0. First we assume that v is a discrete
valuation. Thus mv = aOv for some a ∈ mv. For i ≥ 1, the map 1 + mi

v → Fv,
1 + ai b 7→ πv(b), is a group homomorphism with kernel 1 + mi+1

v .

Lemma 7.1. Let (E, u)/(F, v) be an extension of discrete valued fields with the
same value group and residue field. Then:

(a) (1 + mi
u)/(1 + mi

v)
∼= E×/F× canonically for all i ≥ 1.

(b) For every Tu-open subgroup S of E×, one has E×
= F×S.
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Proof. (a) For i = 1 this follows from the exact sequences (5–1) and (5–2), with
F, S replaced by E, F×, respectively. For 1 ≤ i , the preceding remark gives a
commutative diagram with exact rows:

0 - 1 + mi+1
v

- 1 + mi
v

- Fv - 1

0 - 1 + mi+1
u

?
- 1 + mi

u

?
- Eu

wwwwwwwwww
- 1.

The snake lemma gives rise to a canonical isomorphism

(1 + mi+1
u )/(1 + mi+1

v )
∼

−→ (1 + mi
u)/(1 + mi

v),

so we are done by induction.
(b) Since u is discrete, the subgroups 1+mi

u , i = 1, 2, 3, . . . , form a local basis
for Tu at 1. Hence there exists i with 1 + mi

u ≤ S. By (a), E×
= F×(1 + mi

u), so
E×

= F×S. �

Now let p be a prime number and let q = pd be a p-power with d ≥ 1.

Proposition 7.2. Let v be a discrete valuation on a field F such that char F =0 and
char Fv = p. Let (E, u) be the completion of (F, v) and let S = (F×)q(1+q2mv).
Then Res : K M

∗
(F)/S → K M

∗
(E)/q is an isomorphism.

Proof. By the Hensel–Rychlik lemma [Fesenko and Vostokov 1993, II (1.3), Corol-
lary 2], 1 + q2mu ≤ (E×)q . In particular, (E×)q is Tu-open in E . By Lemma
7.1(b), E×

= F×(1 + qmu). Hence (E×)q = (F×)q(1 + q2mu). It follows that
F ∩ (E×)q = (F×)q(1 + q2mv)= S.

Since F is Tu-dense in E , the assertion now follows from Proposition 2.2. �

Note that here the field E is a complete, discrete valued field of characteristic 0
and finite residue field of characteristic p. Therefore it is a finite extension of Qp.
For a detailed analysis of the Milnor K -ring of such fields, refer to [Fesenko and
Vostokov 1993, Chapter IX].

The following theorem extends arguments of Pop, which are implicit in the proof
of [Pop 1988, Korollar 2.7]. In Theorem 7.4 below we use it in conjunction with
Theorem 6.2 to compute the functor K M

∗
(F)/S in another mixed characteristic

situation.

Theorem 7.3. Let v be a valuation of rank 1 on a field F such that char F = 0 and
char Fv = p. Suppose that F×/(F×)p(1 + pmv) is finite. Then either

(a) v(F×) is discrete and Fv is finite, or

(b) v(F×) is p-divisible and Fv is perfect.
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Proof. Let S = (F×)p(1 + pmv). We break the argument into five parts.

Part I: Fv is perfect. Indeed, Sv = (F×
v )

p. By the exact sequences (5–1) and
(5–2), F×

v /(F
×
v )

p is finite. Since char Fv = p, this quotient must be trivial [Efrat
2003, Corollary 1.6], as desired.

Part II: S ∩ Gv = G p
v (1+ pmv). To show this, consider the commutative diagram

of exponentiations by p:

1 - Gv
- O×

v
- F×

v
- 1

1 - Gv

p

?
- O×

v

p

?
- F×

v

p

?
- 1.

Since char Fv = p, the right vertical map is injective. The snake lemma implies
that (O×

v )
p
∩ Gv = G p

v . Hence also (F×)p
∩ Gv = G p

v . Since 1 + pmv ≤ Gv we
obtain

S ∩ Gv = ((F×)p
∩ Gv)(1 + pmv)= G p

v (1 + pmv).

Part III: S∩Gv ⊆ (1−S)(1+ pmv). Indeed, recall that p|
( p

i

)
for i = 1, . . . , p−1.

Hence for every a ∈ mv we have

(1 − a)p
∈ 1 − a p

+ pmv = (1 − a p)(1 + pmv)⊆ (1 − S)(1 + pmv).

Thus G p
v ⊆ (1 − S)(1 + pmv). Now use Part II.

Part IV: v(F×) is either discrete or p-divisible. In view of the structure of the
ordered group R, it suffices to find 0< γ ∈ v(F×) such that for every b ∈ F with
0< v(b) < γ , one has v(b) ∈ pv(F×). Since F×/S is finite, the sequences (5–1)
and (5–2) imply that Gv/(S∩Gv) is also finite. Hence we may take γ as in Lemma
6.1. By property (i) of Wγ and since Wγ ≤ Gv, we have 1−b ∈ Gv = (SWγ )∩Gv =

(S ∩ Gv)Wγ . It therefore follows from part III and from property (ii) of Wγ that
1 − b ∈ (1 − S)Wγ . So choose s ∈ S with 1 − b ∈ (1 − s)Wγ . As Wγ ≤ Gv we get
1 − s ∈ Gv. Hence

v(b − s)= v

(
b − s
1 − s

)
= v

(
1 −

1 − b
1 − s

)
≥ γ.

Since v(b) < γ , necessarily v(b)= v(s) ∈ v(S)= pv(F×), as desired.

Part V: When v(F×) is discrete, Fv is finite. Indeed, as we have observed, in this
case

Gv/(1 + m2
v)= (1 + mv)/(1 + m2

v)
∼= Fv.
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Using again that p |
( p

i

)
for 1 ≤ i ≤ p − 1, we get

G p
v (1 + pmv)≤ 1 + m2

v.

In light of Part II, this gives rise to a group epimorphism Gv/(S ∩ Gv)→ Fv. We
have already noted that Gv/(S ∩ Gv) is finite. Consequently so is Fv. �

Theorem 7.4. Let v be a valuation of rank 1 on a field F such that char F = 0 and
char Fv = p. Let S = (F×)q(1+q2mv) and suppose that (F×

: S) <∞. Then one
of the following holds:

(a) v(F×) is discrete, Fv is finite, and K M
∗
(F)/S ∼= K M

∗
(E)/q for the completion

E of F with respect to v;

(b) v(F×) is p-divisible and K M
r (F)/S = 0 for all r ≥ 2.

Proof. We have v(S)= qv(F×) and Sv = (F×
v )

q . Since

(F×)q(1 + q2mv)≤ (F×)p(1 + pmv),

the finiteness assumption implies that (F×
: (F×)p(1 + pmv)) <∞. By Theorem

7.3, one of the following cases occurs:

Case (i): v(F×) is discrete and Fv is finite. Then we apply Proposition 7.2.

Case (ii): v(F×) is p-divisible and Fv is perfect. Then v(S) = v(F×) and Sv =

F×
v . The exact sequences (5–1) and (5–2) therefore show that F×

= SGv. Since
S is Tv-open in F , Theorem 6.2 implies that K M

r (F)/S = 0 for r ≥ 2. �
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UPPER BOUNDS FOR THE NUMBER OF LIMIT CYCLES
THROUGH LINEAR DIFFERENTIAL EQUATIONS

ARMENGOL GASULL AND HECTOR GIACOMINI

Consider the differential equation ẋ = y, ẏ = h0(x)+ h1(x) y+ h2(x) y2 + y3

in the plane. We prove that if a certain solution of an associated linear
ordinary differential equation does not change sign, there is an upper bound
for the number of limit cycles of the system. The main ingredient of the
proof is the Bendixson–Dulac criterion for `-connected sets. Some concrete
examples are developed.

1. Main results

Although second order ordinary differential equations of the form ẍ = f (x, ẋ)
are some of the easiest autonomous planar differential equations, most problems
concerning the study of the number of periodic solutions remain open. For instance,
even if we consider the Kukles system ẋ = y, ẏ = f3(x, y), where f3 is a polynomial
of degree at most 3, the maximum number of limit cycles that it can have is still
unknown.

This paper deals with the problem of finding methods to establish upper bounds
for the number of limit cycles of planar differential equations of the form

(1–1) ẋ = y, ẏ = h0(x)+ h1(x)y + h2(x)y2
+ y3,

where the functions hi are smooth enough.
The proof of our main result is based on the use of the generalized Bendixson–

Dulac criterion for `-connected sets. Recall that an open subset U of R2 is said to
be `-connected if its fundamental group π1(U ) is the free group in ` generators.
This method has already been used with similar goals by several authors; see for
instance [Cherkas 1997; Lloyd 1979; Yamato 1979; Cherkas and Grin’ 1997; 1998;
Gasull and Giacomini 2002]. The novelty of our approach is that we are able to
reduce the computation of an upper bound for the number of limit cycles of the
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Keywords: ordinary differential equation, limit cycle, Bendixson–Dulac criterion, linear ordinary

differential equation.
The first author is partially supported by the DGES grant number BFM2002-04236 and CONACIT
grant number 2001SGR-00173.
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differential system (1–1) to the study of the positiveness of a certain function, which
has the important property of satisfying a linear ordinary differential equation.

More precisely, our main result is this:

Theorem A. Let X be the vector field associated with the differential equation

(1–2) ẋ = y, ẏ = h0(x)+ h1(x)y + h2(x)y2
+ y3,

and fix a positive integer number n. Then there exists a constructive procedure,
detailed in Lemmas 2.2 and 2.4, to associate with X two functions fn(x, y) and
Mn(x), such that

(i) div
(
| fn(x, y)|−3/n X (x, y)

)
= −

3
n sgn

(
fn(x, y)

)
| fn(x, y))|−1−3/n Mn(x), and

(ii) the function y = Mn(x) is defined for all x ∈ R and is a solution of a linear
ordinary differential equation of the form

sn,n+1(x) y(n+1)(x)+ sn,n(x) y(n)(x)+ · · · + sn,1(x) y′(x)+ sn,0(x) y(x)= 0.

Assume furthermore that Mn(x) does not change sign and vanishes only at finitely
many points. Then:

(iii) The limit cycles of (1–2) do not cut the curves { fn(x, y)= 0}.

(iv) The number of limit cycles of (1–2) contained in an `-connected component
U of R2

\ { fn(x, y) = 0} is at most `. All these limit cycles are hyperbolic
and their stability is given by the sign of Mn(x) and the sign of fn(x, y) in the
region occupied by the limit cycle.

From the proof of the theorem it is easy to observe that, with small modifications,
it can also be applied to systems for which the second equation is ẏ = h0(x)+

h1(x)y + h2(x)y2
+ h3(x)y3.

In Section 3 we study a simple example, the van der Pol equation, to show how
the method works.

In Section 4 we study the number of limit cycles of the system

ẋ = y, ẏ = −x3
+ dxy2

+ y3.

For this system the expected upper bound is of one limit cycle, but as far as we
know this is still an open question. The authors have studied this problem by using
several existing methods in the literature but no progress has been possible. For this
reason we have selected this problem to test the effectiveness of the new method
proposed. A motivation for its study is also given at the beginning of Section 4.
The results obtained are detailed in Section 5.

In these two examples we see that we can reduce the study of the number of limit
cycles of a planar polynomial system to the study of a linear ordinary differential
equation. Although the study of this last equation is not easy and requires special
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tricks for each concrete application, it provides a new way for trying to control the
number of limit cycles for special classes of planar polynomial systems. Also, for
the main example developed in Section 4, we can see that the final step goes to a
one-variable nonlinear equation. To end this introduction we would like to stress
this last scheme:

Planar ordinary
nonlinear differential equation

−→
Linear ordinary

differential equation
−→

Nonlinear
equation

2. Preliminary results and proof of Theorem A

First we recall the generalized Bendixson–Dulac criterion. For various proofs, see
[Lloyd 1979; Yamato 1979; Gasull and Giacomini 2002].

Proposition 2.1 (Generalized Bendixson–Dulac Criterion). Consider a C1 differ-
ential system

ẋ = P(x, y), ẏ = Q(x, y),

and set X = (P, Q). Let U be an open `-connected subset of R2 with a smooth
boundary. Assume that

div(X)=
∂P
∂x

+
∂Q
∂y

does not change sign on U and vanishes only on a null measure Lebesgue set. Then
the system can have at most ` periodic orbits contained in U. Each such orbit is
hyperbolic and its stability is given by the sign of div(X).

We now turn to preliminary computations needed to prove Theorem A.

Lemma 2.2. Consider the system (1–2),

ẋ = y =: P(x, y),

ẏ = h0(x)+ h1(x)y + h2(x)y2
+ y3

=: Q(x, y),

and fix a positive integer number n. There is a constructive procedure to find n +1
functions rn,i (x), i = 0, . . . , n, satisfying the following condition:

Let y(x)= gn(x) be any solution of the order-(n+1) linear ordinary differential
equation

(2–1) y(n+1)(x)+ rn,n(x) y(n)(x)+ · · · + rn,1(x) y′(x)+ rn,0(x) y(x)= 0,

and let gn,i (x), where i = 0, . . . , n − 1, be defined in terms of h0(x), h1(x),
h2(x), gn(x), their derivatives, and gn,n(x) := gn(x). Then, setting

fn(x, y) := gn,0(x)+ gn,1(x)y + gn,2(x)y2
+ · · · + gn,n(x)yn,

the expression
Mn := 〈∇ fn, (P, Q)〉 −

n
3

fn div(P, Q)
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is a function of only the x-variable.

Proof. Instead of dealing with a general n and for the sake of clarity, we present
the details of the proof just for the case n = 2. The general case can be handled in
the same way. Also, for the sake of brevity and during this proof, when a function
of x appears that we do not want to specify, we will write ∗ .

Take f2(x, y) = g2,0(x)+ g2,1(x)y + g2,2(x)y2
:= g0(x)+ g1(x)y + g2(x)y2.

Then,

M2(x, y)=
〈
∇ f2, (P, Q)

〉
−

2
3 div(P, Q) f2

=
(
g′

2(x)+
2
3 g2(x)h2(x)− g1(x)

)
y3

+
(
g′

1(x)+
4
3 g2(x)h1(x)− 1

3 g1(x)h2(x)− 2 g0(x)
)
y2

+
(
g′

0(x)+
1
3 g1(x)h1(x)− 4

3 h2(x)g0(x)+ 2 g2(x)h0(x)
)
y

+
(
g1(x)h0(x)− 2

3 h1(x)g0(x)
)
.

By choosing

(2–2)
g0(x)=

1
2

(
g′

1(x)+
4
3 g2(x)h1(x)− 1

3 g1(x)h2(x)
)
,

g1(x)= g′

2(x)+
2
3 g2(x)h2(x),

we ensure that the coefficients of y2 and y3 in M2 vanish. Observe that g1(x) =

g′

2(x)+∗ g2(x) and that g0(x)= g′′

2 (x)/2+∗ g′

2(x)+∗ g2(x). If we substitute these
equalities into the coefficient of y in the expression for M2, we obtain g′′′

2 (x)/2 +

∗ g′′

2 (x)+ ∗ g′

2(x)+ ∗ g2(x). By imposing that this last expression be identically
zero, we get the linear ordinary differential equation (2–1) given in the statement
of the lemma. Hence for these values of the functions gi , where i = 0, 1, 2, the
expression of M2 is the function of one variable

(2–3) M2(x)= g1(x)h0(x)− 2
3 h1(x)g0(x),

as we wanted to prove. �

Remark 2.3. (i) From the proof of Lemma 2.2 it is easy to observe that if all the
functions hi appearing in system (1–2) are polynomials, then all the functions
rn,i are polynomials as well.

(ii) If in system (1–2) instead of considering ẏ = h0(x)+h1(x)y +h2(x)y2
+ y3,

we take ẏ = h0(x)+ h1(x)y + h2(x)y2
+ h3(x)y3, then a similar result can

be proved. The main difference is that the function h3 and its powers appear
in the denominators of the expressions of rn,i . Hence, all the computations
make sense on only the strips where h3(x) does not vanish.
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Lemma 2.4. Let Mn(x) be the one-variable function described in Lemma 2.2.
Then there exists an order-(n+1) linear ordinary differential equation

(2–4) sn,n+1(x) y(n+1)(x)+sn,n(x) y(n)(x)+· · ·+sn,1(x) y′(x)+sn,0(x) y(x)=0,

such that y = Mn(x) is one of its solutions. Here the functions sn,i , for i = 0, . . . ,
n + 1, can be explicitly obtained from all the functions appearing in Lemma 2.2.

Proof. As for Lemma 2.2, we detail the proof just for the case n = 2. We continue
denoting a generic smooth function of the variable x by ∗. From (2–3) and (2–2),
we have M := M2 = ∗ g′′

2 +∗ g′

2 +∗ g2 and from the proof of Lemma 2.2 we obtain
g′′′

2 (x)+∗ g′′

2 (x)+∗ g′

2(x)+∗ g2(x)= 0. Hence, if we differentiate the first equality
three times and the second one twice, we get the linear system

0 0 1 ∗ ∗ ∗ 0
0 1 ∗ ∗ ∗ ∗ 0
1 ∗ ∗ ∗ ∗ ∗ 0
0 0 0 ∗ ∗ ∗ M
0 0 ∗ ∗ ∗ ∗ M ′

0 ∗ ∗ ∗ ∗ ∗ M ′′

∗ ∗ ∗ ∗ ∗ ∗ M ′′′





gV
2

g I V
2

g′′′

2
g′′

2
g′

2
g2

1


=



0
0
0
0
0
0
0


.

Since for all x , this system has the nonzero solution given by the function g2(x)
and its derivatives, the determinant of the matrix is identically zero. By developing
it from its last column, we get the linear ordinary differential equation satisfied by
M given in the statement of the lemma. �

Remark 2.5. A main difference between the linear differential equations of order
n+1 satisfied by gn and Mn and those given in (2–1) and (2–4), respectively, is that
the coefficient of the highest order derivative is identically 1 in the first case, and
a function of x in the second case. Hence, one could think that Mn is not defined
for all x , but this is not the case because it is also given by (2–3). In other words,
Mn is a solution of the linear equation (2–4) defined for all real x .

Proof of Theorem A. (i) From Lemma 2.2 we can construct a function fn(x, y)
such that

Mn := 〈∇ fn, X〉 −
n
3

div(P, Q) fn

depends just on x , as we wanted to prove.
(ii) By Lemma 2.4, the function y = Mn(x) satisfies the linear ordinary differ-

ential equation (2–4). Furthermore, by Remark 2.5 we know that it is defined for
all x ∈ R.

Assume from now on that Mn(x) does not change sign and vanishes only on a
finite set of points.



282 ARMENGOL GASULL AND HECTOR GIACOMINI

(iii) Since

Mn| fn=0 = 〈∇ fn, X〉| fn=0 ,

from the control on the sign of Mn , the periodic orbits of (1–2) never cut the
curves { fn = 0}, because the flow associated with X crosses each one of them
either inwards or outwards.

(iv) Instead of considering the vector field X , we take the new one | fn|
−3/n X .

From the previous paragraph, we know that none of the limit cycles of X intersect
{ fn = 0}. Hence each limit cycle is contained in a connected component U of
R2

\ { fn = 0}. Note that

div
(
| fn|

−3/n X
)
=

〈
∇(| fn|

−3/n), X
〉
+ | fn|

−3/n div(X)

= −
3
n sgn( fn)| fn|

−1−3/n
〈∇ fn, X〉 + | fn|

−3/n div(X)

= −
3
n sgn( fn)| fn|

−1−3/n(
〈∇ fn, X〉 −

1
3 n fn div(X)

)
= −

3
n sgn( fn)| fn|

−1−3/n Mn.

Therefore, div(| fn|
−3/n X) does not change sign on U . By using the generalized

Bendixson–Dulac criterion (Proposition 2.1), the theorem follows. �

3. A first example: the van der Pol equation

The uniqueness of the limit cycle of the van der Pol equation can be proved by
several different methods. We have chosen this simple example to illustrate our
approach. Recall that the van der Pol equation is

ẋ = y − ε
( 1

3 x3
− x

)
, ẏ = −x .

It can be transformed into the form (1–2) by interchanging x and y and then chang-
ing y to −y. This gives

(3–1) ẋ = y, ẏ = −x − ε
( 1

3 y3
− y

)
.

To prove the uniqueness of the limit cycle of this system by our method, we will
apply Theorem A with n = 2. Notice that since f2(x, y) = g0(x) + g1(x)y +

g2(x)y2, for this value of n all the connected components of R2
\{ f2 = 0} are either

simply connected or 1-connected. Furthermore, there is at most one 1-connected
component that surrounds the origin.

With the notation introduced in Theorem A, we have

(3–2)
g0(x)=

3
2(3g′′

2 (x)−
4
3 g2(x)), g1(x)= −3g′

2(x),

M2(x)=
1
3(4g2(x)+ 9xg′

2(x)− 9g′′

2 (x)),
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where we have taken ε = 1 to simplify the calculations. The function g2(x) is any
solution of the third order linear differential equation

9y′′′(x)− 6y′(x)− 4xy(x)= 0.(3–3)

We have to choose a suitable solution g2 such that its associated M2 does not change
sign. From the classical theory of linear differential equations, (see for instance
[Ince 1927; Wasow 1965]), the solutions of this equation are analytic and entire.
We can write them as

g2(x)=

∞∑
n=0

anxn,

with a3 =
1
9a1 and

an =
4an−4 + 6(n − 2)an−2

9n(n − 1)(n − 2)
, for n ≥ 4.(3–4)

For facilitating the control of the sign of M2(x) we take the even solution of (3–3),
defined by the conditions

y(0)= 1, y′(0)= 0, y′′(0)= 0.

With these initial conditions, it is clear from (3–4) that all the nonzero coefficients
an are positive. Hence, g2 as well as all of its derivatives, are positive for positive
x . Furthermore, from (3–2) we see that M2 is an even function with M2(0)= 4/3.
Hence, it suffices to study the sign of M2(x) for x > 0. Let us prove that the m-
th derivative of M2(x) is positive for x > 0 and any m ≥ 3. By taking the third
derivative of M2(x) from (3–2), and by using (3–3), we obtain

M ′′′

2 (x)=
2
3

( 68
9 xg2(x)+

(
2x2

+
13
3

)
g′

2(x)+ xg′′

2 (x)
)
.

This equality and the properties of g2(x) and its derivatives imply that M ′′′

2 (x) > 0
for all positive x . Furthermore, by taking more derivatives of this expression, and
using the equality g′′′

2 (x) =
1
9

(
6g′

2(x) + 4xg2(x)
)

at each step, we obtain only
positive coefficients during all of the computations. Hence, our assertion follows
about the derivatives of M2. By using Taylor’s Formula and some straightforward
computations, we get

M2(x)=
4
3 −

2
3 x2

+
17
81 x4

+
1
5!

M (5)
2 (sx)x5,

for some sx between 0 and x . Hence, for x > 0,

M2(x)≥
4
3 −

2
3 x2

+
17
81 x4 > 0,
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as we wanted to prove. As a consequence of Theorem A, we conclude that the
system (3–1) has at most one limit cycle. Moreover, when this limit cycle exists,
it is hyperbolic and stable.

The van der Pol equation has a unique critical point located at the origin and it
is repelling for ε > 0. The point at infinity is also a repeller for ε > 0. Therefore,
the system has at least one limit cycle. Combining both statements we have proved
the existence, uniqueness and hyperbolicity of the limit cycle.

We remark that in order to find an upper bound for the number of limit cycles
by using our approach, it has not been necessary to explicitly solve the linear
differential equation satisfied by the function g2(x). Only general properties of
this function, which can be easily obtained from the linear equation, have been
employed. In the next section we analyze a more difficult case.

4. A second example

We start this section with some motivation for the system of ordinary differential
equations that we will study. In [Cima et al. 1997] it is proved that there are systems
of the form

ẋ = P2n+1(x, y), ẏ = Q2m+1(x, y),

with P2n+1 and Q2m+1 homogeneous polynomials of degrees 2n + 1 and 2m +

1 respectively (n 6= m), possessing at least n + m + 1 limit cycles surrounding
the origin. These examples are constructed by studying the perturbations of the
Hamiltonian system ẋ = y2n+1, ẏ = −x2m+1. Inside this family, the simplest case,
n = 0 and m = 1, gives a system of the form

ẋ = ax + by, ẏ = cx3
+ dx2 y + exy2

+ f y3

with at least two limit cycles. We would like to investigate whether there can be
more than two. This seems to be a hard problem, and so we start by considering
the simplest case:

(4–1) ẋ = y, ẏ = −x3
+ dx2 y + y3,

for which it is not difficult to prove that there is at least one limit cycle [Cima et al.
1997]. This section is devoted to trying to prove that in fact one is the maximum
number of limit cycles that the system can have. Before starting our study, we
want to comment that we have not been able to prove the uniqueness of the limit
cycles of system (4–1) by using standard results in the literature, such as those in
[Ye et al. 1986; Zhang et al. 1992]. Our results are summarized in Section 5. As a
starting point we prove a previous result that reduces the study to the case d < 0.

Lemma 4.1. (i) The origin is the only critical point of the system (4–1).

(ii) If d ≥ 0, the system has no limit cycles.
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(iii) For d < 0 is close enough to zero, the system has at least one limit cycle.

(iv) If for some d̄ < 0 the system has no limit cycles, the same holds for any d ≤ d̄.

Proof. Part (i) is trivial.
(ii) The divergence of X = (P, Q), the vector field associated with (4–1), equals

dx2
+3y2. For d ≥0 this is always positive or zero, so using the divergence criterion

we deduce that system (4–1) has no limit cycles.
(iii) Notice that (4–1) is a semicomplete family of rotated vector fields with re-

spect to the parameter d, or SCFRVF for short (see [Duff 1953; Perko 1975]). This
follows from the next computations, where we denote the vector field associated
with (4–1) by Xd(x, y)= (Pd(x, y), Qd(x, y)),

∂

∂d
arctan

Qd(x, y)
Pd(x, y)

=
Pd(x, y)∂Qd(x, y)/∂d − Qd(x, y)∂Pd(x, y)/∂d

P2
d (x, y)+ Q2

d(x, y)

=
x2 y2

P2
d (x, y)+ Q2

d(x, y)
≥ 0.

In [Cima et al. 1997] it is proved that the origin is a repeller when d ≥ 0, and an
attractor when d < 0. Combining this with the fact that our system is an SCFRVF,
we see that a repelling limit cycle bifurcates from the origin when d is negative
and small. Hence, item (iii) follows.

To prove item (iv) we need to recall more properties of an SCFRVF. The first
is the nonintersection property, which asserts that limit cycles corresponding to
different values of d are disjoint.

The second is the planar termination principle [Perko 1990a; 1990b], which
asserts the following for polynomial families of an SCFRVF: If d varies and we
consider the continuous evolution of some limit cycle born at a critical point p
(allowing for the possibility that the limit cycle goes to a multiple limit cycle, in
which case we continue with the other limit cycle that has collided with it), then
the union of this one-parameter family of limit cycles is a 1-connected open set
K whose boundaries are p and a cycle of separatrices of Xd . The corners of this
cycle of separatrices are finite or infinite critical points of Xd . In our case, because
the only finite critical point of Xd is the origin, K is unbounded.

If for some value of d = d̄< 0 the system has no limit cycles, this means that the
limit cycles starting at the origin for d = 0 have disappeared for some d∗, where
d̄ < d∗< 0, covering the set K . Since K covers from a neighborhood of the origin
until infinity, then by the nonintersection property, the limit cycle cannot exist for
d ≤ d̄ either, as we wanted to prove. �

Nonexistence of limit cycles. We will now find a value d = d̄ , as sharp as possible,
that determines parameter values for which there are no limit cycles. In a later
section (page 289) we will study when there is a unique limit cycle.
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From Lemma 4.1, to complete the study of the nonexistence of limit cycles for
(4–1), the case d < 0 remains:

(4–2) ẋ = y, ẏ = −x3
− a2x2 y + y3.

To prove the nonexistence of limit cycles, it suffices to apply Theorem A with
n = 1, because for this value of n all of the connected components of R2

\{ f1 = 0}

are simply connected. With the notation introduced in this theorem we have

M1(x)= −x2(xg1(x)− 1
3a2g′

1(x)
)
,

where g1(x) is any solution of the linear ordinary differential equation

(4–3) y′′(x)− 2
3a2x2 y(x)= 0.

To conclude the nonexistence of limit cycles, it suffices to give a concrete solution
g1 of (4–3) such that the corresponding M1 does not change sign. In fact it suffices
to ensure that

(4–4) ha(x) := xg1(x)− 1
3a2g′

1(x)

does not change sign. Furthermore, from Theorem A we also know that M1 satisfies
a second order linear differential equation. Hence, the same happens with ha . The
expression ha(x) satisfies the equation

(4–5)
(
(6a6

− 81)x2
− 27a2) y′′(x)− 6(2a6

− 27)xy′(x)

−
(
(4a8

− 54a2)x4
− 18a4x2

+ 162
)

y(x)= 0.

Fortunately, we can solve (4–3) in terms of the modified Bessel functions. More
concretely, for all x ∈ R+, define

(4–6) Iν(x) :=

∞∑
k=0

(x/2)ν+2k

0(ν+ k + 1)0(k + 1)
.

This function is a solution of the Bessel equation

x2 y′′(x)+ xy′(x)− (x2
+ ν2)y(x)= 0.

Hence, it is easy to check that

(4–7) g1(x)=
√

x I1/4

(
ax2
√

6

)
is a solution of (4–3) for x > 0, and it can be extended to an odd solution of (4–3)
for all x ∈ R.
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From now on we will fix this choice for g1. In Lemma 4.2 we collect some
known properties of the modified Bessel functions that are useful for our study of
ha . Before stating them we need to introduce some standard notations.

Following Poincaré’s definition, given a function f : R → R, its asymptotic
expansion at ∞ is

∑
∞

k=0 bk x−k if

lim
x→∞

xn
(

f (x)−
n∑

k=0

bk

xk

)
= 0 for all n ∈ N.

The usual notation is f (x)∼
∑

∞

k=0 bk x−k . Furthermore, the notation

f (x)∼ g(x)
∞∑

k=0

bk x−k

means f (x)/g(x)∼
∑

∞

k=0 bk x−k . In this case,

lim
x→∞

(
f (x)
g(x)

− b0

)
= 0.

This fact is also denoted as f (x) ∼ b0g(x) at ∞, and b0g(x) is said to be the
dominant term or to represent the leading behavior of f (x) at infinity.

Lemma 4.2. The modified Bessel function Iν(x) of (4–6) satisfies

I ′

ν(x)= Iν−1(x)−
ν

x
Iν(x), Iν(x)∼

ex
√

2πx
at ∞.

Lemma 4.3. Let ha be given by expression (4–4) with g1 given in (4–7).

(i) The function ha is an even function.

(ii) In a neighborhood of zero,

ha(x)= −
213/8

39/8

a9/4

0
( 1

4

) + m(a)x2
+ O(x4),

where m(a) is positive for a > 0.

(iii) For a > 6
√

27/2, we have limx→+∞ ha(x)= −∞.

(iv) For a < 6
√

27/2, we have limx→+∞ ha(x)= +∞.

(v) If the system of equations ha(x)= h′
a(x)= 0 has some positive solution, it has

to be at the point

x = x∗(a) :=
3a

√
2a6 − 27

.

(vi) For x>0 and sufficiently large values of a, the function ha(x) does not vanish.

Proof. (i) From its definition, it is clear that ha is even. Hence, from now on we
will consider only positive values of x .
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(ii) By Lemma 4.2, it is easy to verify that

(4–8) ha(x)=
x3/2

9

(
9I1/4

(ax2
√

6

)
−

√
6a3 I−3/4

(ax2
√

6

))
.

By using this last expression and (4–6), the Taylor expansion of ha at the origin
follows.

(iii), (iv) By applying the second part of Lemma 4.2 to the last expression of ha

and by the asymptotic expansion properties, we obtain

ha(x)∼
1

√
2π

(18 − 2
√

6a3)x2eax2/
√

6

18x3/2 at ∞.

Hence the results about the behavior of ha at infinity are proved.

(v) Let x̄(a) be a solution of the system of equations ha(x)= h′
a(x)= 0. Since ha

satisfies the linear ordinary differential equation (4–5), we have when x = x̄(a),
then

(
(6a6

− 81)x2
− 27a2

)
h′′

a(x) has to be zero. Assume that at this point h′′
a also

vanishes, and that x̄(a) 6= x∗(a). Then, since x̄(a) is not a singular point for (4–5),
this implies that ha(x)≡ 0, which gives a contradiction. Therefore x̄(a) has to be
the positive root of

(
(6a6

− 81)x2
− 27a2

)
= 0, say x∗(a), as we wanted to prove.

(vi) Let x̃(a) be a positive solution of ha(x)=0. Then x = x̃(a) is also a solution
of the equation

(4–9)
I1/4

(ax2
√

6

)
I−3/4

(ax2
√

6

) =

√
6a3

9
.

If for sufficiently large a such a solution x̃(a) exists, there are two possibilities:

(a) either ax̃(a)2 is bounded above when a tends to infinity,

(b) or ax̃(a)2 is unbounded.

In the first case we can construct a sequence {an}n tending to infinity and such
that limn→∞ an x̃(an)

2
= k ≥ 0. By replacing these values in (4–9) we arrive at a

contradiction.
In the case (b), by Lemma 4.2, I1/4 and I−3/4 have the same behavior at infinity.

Therefore, the left hand side of Equation (4–9) tends to 1 when an x̃(an)
2 tends to

infinity. However, the right hand side tends to infinity, again reaching a contradic-
tion. Hence, for sufficiently large a, the function ha does not vanish, as we wanted
to prove. �

The main result of this subsection is this:
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Proposition 4.4. Let ϕ be the function

(4–10) ϕ(a) := 3
√

3I1/4

(
3
√

3/2a3

2a6 − 27

)
−

√
2a3 I−3/4

(
3
√

3/2a3

2a6 − 27

)
.

Denote by ā the largest positive solution of the equation ϕ(a)= 0. Then the differ-
ential equation (4–2) has no limit cycles for a ≥ ā.

Proof. To prove that system (4–2) has no limit cycles for some value of a, it suffices
to show that its corresponding ha does not change sign. For sufficiently large a, by
Lemma 4.3(vi), we already know that this is true. On the other hand, by studying
the behavior of ha near zero and infinity (see again Lemma 4.3), it is clear that ha

changes sign for a< 6
√

27/2. Hence the case a ≥
6
√

27/2 remains to be studied. Let
ã be the biggest value of a for which the function ha has some zero. Denote any
of these zeros by z(ã). From the behavior of ha near zero and infinity, and from
the regularity of ha with respect to x and a, we have hã(z(ã)) = h′

ã(z(ã)) = 0.
Hence, by Lemma 4.3(v),

z(ã)= x∗(ã) :=
3ã

√
2ã6 − 27

.

By imposing that hã(x∗(ã))= 0 in the expression for ha given in (4–8), we get the
desired expression for ϕ. �

Remark 4.5. Although we have not been able to perform the analytic study of the
zeros of ϕ, it is not difficult to make a numerical study. The equation ϕ(a)= 0 has
a unique positive solution ā ' 1.636. For this value of a, the corresponding value
of d = −a2 in (4–1) is d̄ ' −2.678.

Uniqueness of limit cycles. From Lemma 4.1, we have to study (4–1) only in the
case d< 0. As in the van der Pol equation, for obtaining the uniqueness of the limit
cycle with our procedure, it suffices to apply Theorem A with n = 2. Following
the notation introduced in Theorem A we get

(4–11) M2(x)= 3dg′′

2 (x)+ 9xg′

2(x)+ 4d2x2g2(x),

where g2(x) is any solution of the linear ordinary differential equation

(4–12) y′′′(x)+ 2dx2 y′(x)+
( 8

3 d − 4x2)xy(x)= 0.

Hence, to prove the existence of at most one limit cycle and its hyperbolicity, it
suffices to choose a concrete g2 as the solution of (4–12), such that its associated
M2, given in (4–11), does not change sign.

All the solutions of (4–12) are analytic for all x ∈ R, with an infinite radius
of convergence. We will choose the even solution of (4–12) defined by the initial
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conditions

(4–13) y(0)= 1, y′(0)= y′′(0)= 0.

Notice that this function g2 produces an even function M2. Before studying the
sign of M2 we need to study the function g2 near infinity in some detail. Recall
that g2 is a solution of Equation (4–12). It is easy to see that infinity is a singularity
for Equation (4–12). Although unfortunately not regular,1 the singularity turns out
to be of normal irregular type. For this kind of singularity there are some powerful
results, which in most cases give the asymptotic expansions of a fundamental set
of solutions. The result we need here is a generalization of a theorem of Poincaré;
a proof can be found in [Horn 1901]. See also [Wasow 1965, Theorem 12.3].

Theorem 4.6. Consider the linear ordinary differential equation

(4–14) y(n)(x)+ b1(x)y(n−1)(x)+ · · · + bn(x)y(x)= 0,

where the functions bs(x) are either rational functions or admit asymptotic expan-
sions at infinity of the form

(4–15) bs(x)∼ x sk
∞∑

i=0

bs,i

x i , s = 1, 2, . . . , n,

where k is a positive integer or zero. Assume that the algebraic equation

mn
+ b1,0mn−1

+ · · · + bn−1,0m + bn,0 = 0

associated with (4–14) has n different roots m1,m2, . . . ,mn . Then (4–14) has
n linearly independent solutions y1, y2, . . . , yn whose asymptotic expansions at
infinity are of the form

ys(x)∼ e fs(x)xαs

∞∑
i=0

Bs,i

x i , s = 1, 2, . . . , n,

where αs and Bs,i are constants with Bs,0 = 1, and the fs are polynomials in x
of degree k + 1, vanishing at zero and having leading coefficient ms/(k + 1). The
asymptotic expansions of the functions ys(x) can be uniquely determined by formal
substitutions in (4–14).

(A more general result about irregular singularities of linear equations, including
also the case of multiple roots, can be found in [Wasow 1965, Theorem 19.1].
See [Bender and Orszag 1999, Chapter 3; Erdélyi 1956, Chapter III; Ince 1927,

1When infinity is a regular singularity for a linear equation, generically the solutions of the
equation for sufficiently large x are xα

∑
∞
k=0 bk x−k , where α is not necessarily an integer, and

the series has a positive radius of convergence; in nongeneric cases, some logarithms can appear in
the expressions of the solutions.
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Chapters VII and XVII] for more examples of irregular singularities, both normal
and not; for a more recent point of view about linear differential equations, see
[Varadarajan 1996] and the references therein.)

The next lemma gives the desired properties of g2 at infinity.

Lemma 4.7. Consider −
3
√

27/2 < d < 0. Let g2 be the solution of (4–12) with
initial conditions given in (4–13). Then the following conditions hold:

(i) The function g2 is defined for all x ∈ R, and it is an even positive function.

(ii) The functions g′

2(x) and g′′

2 (x) are positive for all x > 0.

(iii) The dominant term of the asymptotic behavior of g2 at infinity is

(4–16) g2(x)∼ c1er1x2
xα1,

where r1 is the positive root of 2r3
+ dr − 1 = 0, α1 = −

2
3

2d + 9r2
1

d + 6r2
1

, and c1

is a positive constant.

Proof. (i) From the initial conditions that g2 satisfies, we get

g2(x)=

∞∑
n=0

an(x2)n,

where a0 = 1, a1 = 0, a2 = −d/9, and

an =
1

n(n − 1)(2n − 1)
(an−3 −

1
3 d(3n − 4)an−2), for n ≥ 3.

Furthermore, since an > 0 for n ≥ 2, item (i) holds. Item (ii) follows by taking
derivatives of the expression of g2.

We prove item (iii) in two steps: first we find a basis of formal solutions of
(4–12), then we use Theorem 4.6 and formal computations to get the leading term
of the asymptotic behavior of g2.

We start our first step by using a heuristic method, called the method of dominant
balance, to get the leading terms of the basis of formal solutions; see for instance
[Bender and Orszag 1999, p. 76]. Apply to (4–12) the change of dependent variable
y(x)= eS(x), which yields

3S′′′(x)+ 9S′(x)S′′(x)+ 3S′(x)3 + 6dx2S′(x)− 12x3
+ 8dx = 0.(4–17)

The leading behavior of g2(x) will be determined by those contributions to S(x)
that do not tend to zero when x approaches the irregular singularity. We sup-
pose that the dominant terms in this equation when x is sufficiently large are
3S′(x)3, 6dx2S′(x) and −12x3. Then we obtain the simplified equation 3S′(x)3 +

6dx2S′(x) − 12x3
= 0, whose solutions are Ss(x) = rs x2

+ ps (s = 1, 2, 3),
where the rs are the three roots of the equation 2r3

+ dr − 1 = 0 and the ps
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are arbitrary constants that we take as zero for simplicity. Afterwards, we can
verify that when we replace these expressions of Ss(x) in (4–17), the terms of
the equation that we have neglected are, at infinity, of smaller order than those
we have kept in the simplified equation. This fact validates the first step of the
procedure. Once a value of s = 1, 2, 3 is fixed, to obtain the next contribution to
the leading behavior we introduce the new change of variable y(x) = ers x2

+S(x),
with limx→∞ S(x)/x2

= 0. We apply the method of dominant balance again (for
brevity we omit the full differential equation satisfied for this new S). We propose
the simplified equation 3(2d + 12r2

s )x
2S′(x)+ (36r2

s + 8d)x = 0, whose solution
is S(x)= αs log x , with αs = −(4d +18r2

s )/(3d +18r2
s ), where again the additive

constant is not taken into account. As before, we can verify the self-consistency of
the calculations by replacing this expression of S(x) in the complete equation. A
third term is obtained by using the change of variable y(x)=ers x2

+αs log x+S(x), with
limx→∞ S(x)/log x = 0. Repeating the same procedure, we obtain a solution that
does not contribute to the leading behavior. Hence our candidates to be the leading
behaviors at infinity of a basis of formal solutions of (4–12) are ers x2

xαs , where
s = 1, 2, 3. To end this step we show that (4–12) admits three formal solutions of
the form

(4–18) ŷs(x)= ers x2
xαs

∞∑
i=0

Cs,i

x2i ,

where the Cs,i , for s = 1, 2, 3 and i = 1, 2, . . ., are constant, with Cs,0 = 1. To
prove this last assertion, fix a value of s and introduce in (4–12) the change of
variables y(x)= xαs ers x2

h(u), with u = 1/x . Then the function h(u) must satisfy
an equation with the structure

b1u9h′′′(u)+u6(b2+b3u2)h′′(u)+u3(b4+b5u2
+b6u4)h′(u)+u4(b7+b8u2)h(u)=0,

where the coefficients bi depend on the parameter d and on rs . It is straight-
forward to verify that this equation admits a formal solution of the form h(u) =∑

∞

n=0 hn(u2)n if and only if b4 = 54((30d3
−324)r2

s −162d2rs +108d −d4) 6= 0.
Since rs satisfies the equation 2r3

+ dr − 1 = 0 and d ∈ (− 3
√

27/2, 0), we have
b4 6= 0. Hence, for each s, (4–12) admits the formal solution given in (4–18) as
we wanted to prove. This is precisely the definition of a normal irregular singular
point [Ince 1927, p. 168]. (The radius of convergence of these formal series is
generally difficult to determine, and may be zero.)

For the second step in the proof of (iii), we check that (4–12) satisfies the as-
sumptions of Theorem 4.6. Notice that

b1(x)≡ 0, b2(x)= 2dx2, b3(x)= x3
(
−4 +

8d
3x2

)
.
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Hence k = 1, and the equation associated with (4–12) is m3
+ 2dm − 4 = 0.

Therefore, the polynomials given in (4–15) are of the form fs(x)= ms x2/2+ns x ,
where ms , for s = 1, 2, 3 are the three different roots of the previous cubic equation
(notice that we need to use the interval of values where d varies, and that in the left
boundary of this interval, Theorem 4.6 is no longer applicable, because the cubic
polynomial has a double root). If we write fs(x) = rs x2

+ ns x , then the values
rs are in fact the roots of the cubic equation 2r3

+ dr − 1 = 0 obtained above by
the dominant balance method. Notice also the approach above gives ns = 0, for
s = 1, 2, 3. Hence, by using Theorem 4.6 we can assure that Equation (4–12) has
a basis of solutions ys , for s = 1, 2, 3, such that

(4–19) ys(x)∼ ŷs(x)= ers x2
xαs

∞∑
i=0

Cs,i

x2i ,

with Cs,0 = 1, and some constants Cs,i , where s = 1, 2, 3 and i = 1, 2, . . ..
Now the function g2 can be written as g2(x) = c1 y1(x)+ c2 y2(x)+ c3 y3(x),

for some constants cs (s = 1, 2, 3). From (4–19), we have the leading behaviors
at infinity of this basis of solutions. Since from items (i) and (ii) we know that the
function g2(x) is a solution of (4–12) that tends to infinity when x → +∞, we
conclude that the leading behavior of the asymptotic expansion of g2 is g2(x) ∼

c1er1x2
xα1 for the value c1 > 0 given above, where r1 is the positive root of 2r3

+

dr − 1 = 0 and α1 = −(4d + 18r2
1 )/(3d + 18r2

1 ), as we wanted to prove. �

The next lemma gives some properties for the function M2. To stress its depen-
dence with respect to d, we will rename it M2,d . Hence

(4–20) M2,d(x) := M2(x)= 3dg′′

2 (x)+ 9xg′

2(x)+ 4d2x2g2(x).

Lemma 4.8. Consider −
3
√

27/2< d < 0. Let M2,d be given in (4–20), where g2 is
the solution of (4–12), with initial conditions given in (4–13). Then

(i) The function M2,d(x) is positive for x 6= 0 near 0, and M2,d(0)= 0.

(ii) limx→+∞ M2,d(x)= +∞.

(iii) If M ′

2,d(x1)=0 for some x1 > 0, then M2,d(x1)= (( 2d3
+27
3 )x1 −

3d
x1
)g′

2(x1) >0.

Proof.
(i) Using the series expansion of g2(x) we obtain M2,d(x) = −dx4

+ ( 9
5 +

4
27 d3)x6

+ 0(x8). Since d is negative, we have M2,d(x) is positive for x 6= 0 near
0, as we wanted to prove.

(ii) By using Lemma 4.7(iii), the leading term of the asymptotic expansion of M2,d

at infinity is
M2,d(x)∼ c1er1x2

x2+α1
(
4d2

+ 18r1 + 12dr2
1
)
,
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where c1, r1 and α1 are given also in that Lemma. Hence, because we have 4d2
+

18r1 + 12dr2
1 > 0, for the values of d considered here, the result follows.

(iii) By taking the derivative of (4–20) with respect to x , we get an expression
that also involves g′′′

2 (x). Because g2(x) satisfies (4–12), we can simplify this
expression. Finally, by evaluating the resulting expression at x1, item (iii) follows
since x1 satisfies M ′

2,d(x1)= 0. �

Using Lemmas 4.7 and 4.8, we get the main result of this section:

Proposition 4.9. System (4–1) has at most one limit cycle when d ∈ (− 3
√

27/2, 0).
When it exists, the limit cycle is hyperbolic and unstable.

Proof. Recall that, for each value of d , by using Theorem A and the results of this
subsection, we have reduced the problem to proving that the function M2,d(x) does
not change sign. Recall also that M2,d is an even function vanishing at the origin,
so it suffices to study it for positive values of x .

Consider, from now on, that d is a fixed value in (− 3
√

27/2, 0). As straightfor-
ward consequences of Lemma 4.8, we have:

(a) For x positive and small enough, M2,d is positive.

(b) For x positive and large enough, M2,d is positive.

(c) If M2,d has a local minimum at some value x̄ > 0, the function evaluated at
this minimum x̄ takes a positive value.

We claim that M2,d is positive for x > 0. Assume for a contradiction that it
takes a negative value for some x∗> 0. By items (a) and (b), an absolute minimum
x̄ > 0 exists, at which of course M2,d(x̄) < 0. But this inequality contradicts (c).
Hence M2,d is always positive or zero, as we wanted to prove. �

5. Conclusions

Collecting the results obtained earlier, we conclude that system (4–1) has:

(i) No limit cycles when d ≥ 0 or d <−2.679 (this value being obtained numer-
ically by solving a nonlinear equation).

(ii) At most one limit cycle when 0> d >−
3
√

27/2 ' −2.381.

We have not been able to cover all the values of the parameter d . There is a small
gap for which we do not know the maximum number of limit cycles of system
(4–1). By a numerical study, we conclude that the limit cycle is unique and exists
only when −2.198 < d < 0. Hence, although we have not completely solved
the problem, it seems the method presented in this paper gives reasonably good
estimates for the regions of nonexistence of limit cycles, and for the regions of
uniqueness of limit cycles.
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ON THE CMC FOLIATION OF FUTURE ENDS
OF A SPACETIME

CLAUS GERHARDT

We consider spacetimes with compact Cauchy hypersurfaces and with Ricci
tensor bounded from below on the set of timelike unit vectors, and prove
that the results known for spacetimes satisfying the timelike convergence
condition, namely, foliation by CMC hypersurfaces, are also valid in the
present situation, if corresponding further assumptions are satisfied.

In addition we show that the volume of any sequence of spacelike hyper-
surfaces, which run into the future singularity, decays to zero provided
there exists a time function covering a future end, such that the level hyper-
surfaces have nonnegative mean curvature and decaying volume.

1. Introduction

Let N be a (n+1)-dimensional spacetime with a compact Cauchy hypersurface, so
that N is topologically a product, N = I ×S0, where S0 is a compact Riemannian
manifold and I = (a, b) an interval. The metric in N can then be expressed in the
form

(1–1) ds̄2
= e2ψ(

−(dx0)2 + σi j (x0, x) dx i dx j)
;

x0 is the time function and (x i ) are local coordinates for S0.
If N satisfies a future mean curvature barrier condition and the timelike con-

vergence condition, then a future end N+ = (x0)−1
(
[a0, b)

)
can be foliated by

constant mean curvature (CMC) spacelike hypersurfaces and the mean curvature
of the leaves can be used as a new time function [Gerhardt 1983; 2003]. Moreover,
one of Hawking’s singularity results implies that N is future timelike incomplete
with finite Lorentzian diameter for the future end.

In this paper we want to extend these results to the case when the Ricci tensor
is only bounded from below on the set of timelike unit vectors

(1–2) R̄αβνανβ ≥ −Λ for all 〈ν, ν〉 = −1

MSC2000: 35J60, 53C21, 53C44, 53C50, 58J05.
Keywords: Lorentzian manifold, timelike incompleteness, CMC foliation, general relativity.
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for some Λ ≥ 0, and in addition, we want to show that the volume of the CMC
leaves decays to zero, if the future singularity is approached.

We summarize our results:

Theorem 1.1. Suppose that in a future end N+ of N the Ricci tensor satisfies the
estimate (1–2) of the preceding page, and suppose that a future mean curvature
barrier exists (Definition 2.2). Then a slightly smaller future end Ñ+ can be foli-
ated by CMC spacelike hypersurfaces, and there exists a smooth time function x0

such that the slices

Mτ = {x0
= τ }, τ0 < τ <∞,

have mean curvature τ for some τ0 >
√

nΛ. The precise value of τ0 depends on
the mean curvature of a lower barrier.

Recall that a subset M ⊂ N is said to be achronal if any timelike piecewise
C1-curve intersects M at most once.

Theorem 1.2. Suppose that a future end N+ = (x0)−1
(
[a0, b)

)
of N can be covered

by a time function x0 such that the mean curvature of the slices Mt = {x0
= t} is

nonnegative and the volume of Mt decays to zero:

lim
t→b

|Mt | = 0.

Then the volume |Mk | of any sequence of spacelike achronal hypersurfaces Mk

such that
lim

k
inf
Mk

x0
= b

decays to zero. Thus, if the additional conditions of Theorem 1.1 are also satisfied,
the volume of the CMC hypersurfaces Mτ converges to zero:

lim
τ→∞

|Mτ | = 0.

N is also future timelike incomplete if there is a compact spacelike hypersurface
M with mean curvature H satisfying

H ≥ H0 >
√

nΛ,

due to a result in [Andersson and Galloway 2002].

2. Notations and definitions

The main objective of this section is to state the equations of Gauss, Codazzi,
and Weingarten for space-like hypersurfaces M in a (n+1)-dimensional Lorentzian
manifold N . Geometric quantities in N will be denoted by (ḡαβ), (R̄αβγ δ), etc., and
those in M by (gi j ), (Ri jkl), etc. Greek indices range from 0 to n and Latin from
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1 to n; the summation convention is always used. Generic coordinate systems in
N and M will be denoted by (xα) and (ξ i ), respectively. Covariant differentiation
will simply be indicated by indices; only in cases of possible ambiguity they will
be preceded by a semicolon. For example, for a function u in N , the gradient will
be (uα) and the Hessian (uαβ), but the covariant derivative of the curvature tensor
will be abbreviated by R̄αβγ δ;ε . We also point out that

R̄αβγ δ;i = R̄αβγ δ;εxεi

with obvious generalizations to other quantities.
Let M be a spacelike hypersurface, i.e., the induced metric is Riemannian, with

a differentiable normal ν which is timelike.
In local coordinates, (xα) and (ξ i ), the geometric quantities of the spacelike

hypersurface M are connected through the Gauss formula,

(2–1) xαi j = hi jν
α.

Here, and also in the sequel, a covariant derivative is always a full tensor, i.e.,

xαi j = xα,i j −Γ k
i j x

α
k + Γ̄ α

βγ xβi xγj .

The comma indicates ordinary partial derivatives.
In this implicit definition the second fundamental form (hi j ) is taken with respect

to ν.
The second equation is the Weingarten equation

ναi = hk
i xαk ,

where we remember that ναi is a full tensor.
Finally, we have the Codazzi equation

hi j;k − hik; j = R̄αβγ δναxβi xγj xδk

and the Gauss equation

Ri jkl = −(hikh jl − hilh jk)+ R̄αβγ δxαi xβj xγk xδl .

Now assume that N is a globally hyperbolic Lorentzian manifold with a compact
Cauchy surface. N is then a topological product R × S0, where S0 is a compact
Riemannian manifold, and there exists a Gaussian coordinate system (xα), such
that the metric in N has the form

ds̄2
N = e2ψ(

−(dx0)2 + σi j (x0, x) dx i dx j),
where σi j is a Riemannian metric, ψ a function on N , and x an abbreviation
for the spacelike components (x i ); see [Geroch 1970; Hawking and Ellis 1973,
p. 212; Geroch and Horowitz 1979, p. 252; Gerhardt 1983, Section 6]. We also
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assume that the coordinate system is future-oriented, that is, the time coordinate
x0 increases on future-directed curves. Hence, the contravariant timelike vector
(ξα) = (1, 0, . . . , 0) is future-directed, and so is its covariant version (ξα) =

e2ψ(−1, 0, . . . , 0).
Let M = graph u|S0 be a spacelike hypersurface

M = { (x0, x) : x0
= u(x), x ∈ S0 }.

Then the induced metric has the form

gi j = e2ψ(−ui u j + σi j ),

where σi j is evaluated at (u, x), and its inverse (gi j )= (gi j )
−1 can be expressed as

gi j
= e−2ψ

(
σ i j

+
ui

v

u j

v

)
,

where (σ i j )= (σi j )
−1 and

ui
= σ i j u j , v2

= 1 − σ i j ui u j ≡ 1 − |Du|
2.

Hence, graph u is spacelike if and only if |Du|< 1.
The covariant and contravariant forms of a normal vector of a graph look like

(να)= ±v−1eψ(1,−ui ), (να)= ∓v−1e−ψ(1, ui ),

respectively. Thus:

Remark 2.1. Let M be spacelike graph in a future-oriented coordinate system. The
contravariant future-directed and past-directed normal vectors have the respective
forms

(2–2) (να)= v−1e−ψ(1, ui ), (να)= −v−1e−ψ(1, ui ).

In the Gauss formula (2–1) of the preceding page, we are free to choose the
future- or past-directed normal, but we stipulate that we always use the past-
directed normal for reasons explained in [Gerhardt 2000a, Section 2].

Look at the component α = 0 in (2–1) and obtain, in view of (2–2) above,

(2–3) e−ψv−1hi j = −ui j − Γ̄ 0
00ui u j − Γ̄ 0

0 j ui − Γ̄ 0
0i u j − Γ̄ 0

i j .

Here, the covariant derivatives are taken relative to the induced metric of M and

−Γ̄ 0
i j = e−ψ h̄i j ,

where (h̄i j ) is the second fundamental form of the hypersurfaces {x0
= const}.
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An easy calculation shows

h̄i j e−ψ
= −

1
2 σ̇i j − ψ̇σi j ,

where the dot indicates differentiation with respect to x0.
Finally, we define what we mean by a future mean curvature barrier.

Definition 2.2. Let N be a globally hyperbolic spacetime with compact Cauchy
hypersurface S0 so that N can be written as a topological product N = R ×S0 and
its metric expressed as

ds̄2
= e2ψ(

−(dx0)2 + σi j (x0, x) dx i dx j).
Here, x0 is a globally defined future-directed time function and (x i ) are local co-
ordinates for S0. N is said to have a future mean curvature barrier if there is a
sequence M+

k of closed spacelike achronal hypersurfaces such that

lim
k→∞

H |M+

k
= ∞ and lim sup inf

M+

k

x0 > x0(p) for all p ∈ N

Likewise, N is said to have a past mean curvature barrier if there is a sequence
M−

k such that

lim
k→∞

H |M−

k
= −∞ and lim inf sup

M−

k

x0 < x0(p) for all p ∈ N .

A future mean curvature barrier certainly represents a singularity, at least if N
satisfies (1–2) on page 297, because of the future timelike incompleteness, but
these singularities need not be crushing; see [Gerhardt 2004, Introduction].

3. Proof of Theorem 1.1

We start with some simple but very useful observations. If, for a given coordinate
system (xα), the metric has the form (1–1) of page 297, then the coordinate slices
M(t)= {x0

= t} can be looked at as a solution of the evolution problem

(3–1) ẋ = −eψν,

where ν = (να) is the past-directed normal vector. The embedding x = x(t, ξ) is
then given as x = (t, x i ), where (x i ) are local coordinates for S0.

From (3–1) we can immediately derive evolution equations for the geometric
quantities gi j , hi j , ν and H = gi j hi j of M(t); see [Gerhardt 2000a, Section 3].

To avoid confusion with notations for the geometric quantities of other hyper-
surfaces, we occasionally denote the induced metric and second fundamental of
coordinate slices by ḡi j , h̄i j and H̄ . Thus, the evolution equations

(3–2) ˙̄gi j = −2eψ h̄i j
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and

(3–3) ˙̄H = −∆eψ + (| Ā|
2
+ R̄αβνανβ)eψ

are valid.
The last equation is closely related to the derivative of the mean curvature op-

erator: Let M0 be a smooth spacelike hypersurface and in a tubular neighborhood
U of M0, consider hypersurfaces M that can be written as graph u over M0 in the
corresponding normal Gaussian coordinate system. Then the mean curvature of M
can be expressed as

(3–4) H = −∆u + H̄ + v−2ui u j h̄i j ,

(see (2–3) on page 300), and hence, choosing u = εϕ, ϕ ∈ C2(M0), we deduce

(3–5)
d
dε

H |ε=0 = −∆ϕ+
˙̄Hϕ = −∆ϕ+ (| Ā|

2
+ R̄αβνανβ)ϕ.

Next we shall prove that CMC hypersurfaces are monotonically ordered, if the
mean curvatures are sufficiently large.

Lemma 3.1. Let M1 = graph u1 and M2 = graph u2 be spacelike hypersurfaces
such that the mean curvatures H1 and H2 satisfy H1 < H2 = τ2, where H2 is
constant, and

√
nΛ< τ2. Then

(3–6) u1 < u2.

Proof. We first observe that the weaker conclusion u1 ≤u2 is as good as the u1<u2,
in view of the maximum principle. Now suppose for a contradiction that u1 ≤ u2

is not valid, so that

E(u1)= { x ∈ S0 : u2(x) < u1(x) } 6= ∅.

Then there exist points pi ∈ Mi such that

0< d0 = d(M2,M1)= d(p2, p1)= sup{ d(p, q) : (p, q) ∈ M2 × M1 },

where d is the Lorentzian distance function. Let ϕ be a maximal geodesic from
M2 to M1 realizing this distance with endpoints p2 and p1, and parametrized by
arc length.

Denote by d̄ the Lorentzian distance function to M2, i.e., for p ∈ I +(M2)

d̄(p)= sup
q∈M2

d(q, p).

Since ϕ is maximal, 0 = {ϕ(t) : 0 ≤ t < d0 } contains no focal points of M2

[O’Neill 1983, Theorem 34, p. 285]. Hence there exists an open neighborhood
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V = V(0) such that d̄ is smooth in V [O’Neill 1983, Proposition 30], because d̄ is
a component of the inverse of the normal exponential map of M2.

Now, M2 is the level set {d̄ = 0}, and the level sets

M(t)= { p ∈ V : d̄(p)= t }

are smooth hypersurfaces; x0
= d̄ is a time function in V and generates a normal

Gaussian coordinate system, since 〈Dd̄, Dd̄〉 = −1. Hence, by Equation (3–3) on
page 302, the mean curvature H̄(t) of M(t) satisfies

˙̄H = | Ā|
2
+ R̄αβνανβ,

and therefore we have

(3–7) ˙̄H ≥
1
n
|H̄ |

2
−Λ> 0,

in view of the assumption
√

nΛ< τ2.
Next, consider a tubular neighborhood U of M1 with corresponding normal

Gaussian coordinates (xα). The level sets

M̃(s)= {x0
= s}, −ε < s < 0,

lie in the past of M1 = M̃(0) and are smooth for small ε.
Since the geodesic ϕ is normal to M1, it is also normal to M̃(s) and the length

of the geodesic segment of ϕ from M̃(s) to M1 is exactly −s, i.e., equal to the
distance from M̃(s) to M1. Hence we deduce

d(M2, M̃(s))= d0 + s;

that is, {ϕ(t) : 0 ≤ t ≤ d0 + s } is also a maximal geodesic from M2 to M̃(s). We
conclude further that, for fixed s, the hypersurface M̃(s)∩V is contained in the past
of M(d0 + s) and touches M(d0 + s) in ps = ϕ(d0 + s). The maximum principle
then implies

H |M̃(s)(ps)≥ H |M(d0+s)(ps) > τ2,

in view of (3–7) above.
On the other hand, the mean curvature of M̃(s) converges to the mean curvature

of M1 if s tends to zero; hence

H1(ϕ(d0))≥ τ2,

contradicting the assumption that H1 < H2. �

Corollary 3.2. The CMC hypersurfaces with mean curvature

τ >
√

nΛ

are uniquely determined.



304 CLAUS GERHARDT

Proof. Let M1 =graph u1 and M2 =graph u2 be hypersurfaces with mean curvature
τ and suppose that, say,

{ x ∈ S0 : u1(x) < u2(x) } 6= ∅.

Consider a tubular neighborhood of M1 with a corresponding future-oriented nor-
mal Gaussian coordinate system (xα). Then the evolution of the mean curvature
of the coordinate slices satisfies

˙̄H = | Ā|
2
+ R̄αβνανβ ≥

1
n
|H̄ |

2
−Λ> 0

in a neighborhood of M1; i.e., the coordinate slices M(t)= {x0
= t} with t > 0 all

have mean curvature H̄(t) > τ . Using now M1 and M(t), t > 0, as barriers, we
infer that for any τ ′

∈ R, τ < τ ′ < H̄(t), there exists a spacelike hypersurface Mτ ′

with mean curvature τ ′ such that Mτ ′ can be expressed as graph u over M1, where

0< u < t.

For a proof see [Gerhardt 1983, Section 6]; a different more transparent proof
of this result has been given in [Gerhardt 2000b].

Writing Mτ ′ as graph over S0 in the original coordinate system without changing
the notation for u, we obtain

u1 < u,

and by choosing t small enough, we may also conclude that

E(u)= { x ∈ S0 : u(x) < u2(x) } 6= ∅,

which is impossible, in view of the preceding result. �

Lemma 3.3. Under the assumptions of Theorem 1.1, if Mτ0 = graph uτ0 is a CMC
hypersurface with mean curvature τ0>

√
nΛ, then the future of Mτ0 can be foliated

by CMC hypersurfaces

(3–8) I +(Mτ0)=

⋃
τ0<τ<∞

Mτ .

Each set Mτ can be written over S0 as

Mτ = graph u(τ, · ),

such that u is strictly monotone increasing with respect to τ and continuous in
[τ0,∞)× S0.

Proof. The monotonicity and continuity of u follow from Lemma 3.1 and Corollary
3.2, in view of the a priori estimates.

It remains to verify the relation (3–8). Letting p = (t, yi ) ∈ I +(Mτ0), we have
to show p ∈ Mτ for some τ > τ0.
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In [Gerhardt 1983, Theorem 6.3] it is proved that there exists a family

{ Mτ : τ0 ≤ τ <∞ },

of CMC hypersurfaces Mτ if there is a future mean curvature barrier.
Define u(τ, · ) by

Mτ = graph u(τ, · ).

Then u(τ0, y)< t < u(τ ∗, y) for some large τ ∗, because the mean curvature barrier
condition together with Lemma 3.1 implies that the CMC hypersurfaces run into
the future singularity, if τ goes to infinity.

In view of the continuity of u( · , y) we conclude that there exists τ1 such that
τ0 < τ1 < τ

∗ and
u(τ1, y)= t.

Hence p ∈ Mτ1 . �

Remark 3.4. The continuity and monotonicity of u holds in any coordinate system
(xα), even in those that do not cover the future completely like the normal Gauss-
ian coordinates associated with a spacelike hypersurface, which are defined in a
tubular neighborhood.

The proof of Theorem 1.1 is now almost finished. The remaining arguments
are identical to those in [Gerhardt 2003, Section 2], but for the convenience of the
reader, we shall briefly summarize the main steps.

We have to show that the mean curvature parameter τ can be used as a time
function in {τ0 < τ <∞}, i.e., τ should be smooth with a nonvanishing gradient.
Both properties are local.

First step: Fix an arbitrary τ ′
∈ (τ0,∞), and consider a tubular neighborhood U

of M ′
= Mτ ′ . Each set Mτ ⊂ U can then be written as graph u(τ, · ) over M ′. For

small ε > 0 we have

Mτ ⊂ U for all τ ∈ (τ ′
− ε, τ ′

+ ε),

and with the help of the implicit function theorem we now show that u is smooth.
Define the operator G by

G(τ, ϕ)= H(ϕ)− τ,

where H(ϕ) is an abbreviation for the mean curvature of graphϕ|M ′ . Then G is
smooth and from (3–5) (page 302) we deduce that D2G(τ ′, 0)ϕ equals

−∆ϕ+ (‖A‖
2
+ R̄αβνανβ)ϕ,

where the Laplacian, the second fundamental form and the normal correspond
to M ′. Hence D2G(τ ′, 0) is an isomorphism and the implicit function theorem
implies that u is smooth.
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Second step: Still in the tubular neighborhood of M ′, define the coordinate trans-
formation

Φ(τ, x i )= (u(τ, x i ), x i );

note that x0
= u(τ, x i ). Then

det DΦ =
∂u
∂τ

= u̇.

We know that u̇ is nonnegative. If it is strictly positive, Φ is a diffeomorphism,
and hence τ is smooth with nonvanishing gradient. A proof that u̇ > 0 is given in
[Gerhardt 2003, Lemma 2.2], but we give a simpler one: The CMC hypersurfaces
in U satisfy an equation

H(u)= τ,

where the left hand-side can be expressed as in Equation (3–4), page 302. Differ-
entiating both sides with respect to τ and evaluating for τ = τ ′, i.e., on M ′, where
u(τ ′, · )= 0, we get

−∆u̇ + (|A|
2
+ R̄αβνανβ)u̇ = 1.

In a point where u̇ attains its minimum, the maximum principle implies

(|A|
2
+ R̄αβνανβ)u̇ ≥ 1.

Hence u̇ 6= 0 and u̇ is therefore strictly positive.

4. Proof of Theorem 1.2

Let x0 be a time function satisfying the assumptions of Theorem 1.2. In other
words, N+ = {a0 < x0 < b}, the mean curvature of the slices M(t) = {x0

= t} is
nonnegative, and

lim
t→b

|M(t)| = 0.

Also let Mk be a sequence of spacelike achronal hypersurfaces such that

lim inf
Mk

x0
= b.

Write Mk as graph uk over S0. Then

gi j = e2ψ(ui u j + σi j (u, x))

is the induced metric, where we dropped the index k for better readability, and the
volume element of Mk has the form

dµ= v
√

det(ḡi j (u, x)) dx,



ON THE CMC FOLIATION OF FUTURE ENDS OF A SPACETIME 307

where

(4–1) v2
= 1 − σ i j ui u j < 1,

and (ḡi j (t, · )) is the metric of the slices M(t).
From (3–2) we deduce

(4–2)
d
dt

√
det(ḡi j (t, · ))= −eψ H̄

√
det(ḡi j )≤ 0.

Now, let a0 < t < b be fixed. Then for almost every k we have

(4–3) t < uk

and hence

|Mk | =

∫
S0

v
√

det(ḡi j (uk, x)) dx

≤

∫
S0

√
det(ḡi j (t, x)) dx = |M(t)|,

in view of (4–1), (4–2) and (4–3). We conclude that lim sup |Mk | ≤ |M(t)| for all
a0 < t < b, and thus lim|Mk | = 0.
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THE AMBIENT OBSTRUCTION TENSOR AND THE
CONFORMAL DEFORMATION COMPLEX

A. ROD GOVER AND LAWRENCE J. PETERSON

We construct here a conformally invariant differential operator on alge-
braic Weyl tensors that gives special curved analogues of certain opera-
tors related to the deformation complex and that, upon application to the
Weyl curvature, yields the (Fefferman–Graham) ambient obstruction ten-
sor. This new definition of the obstruction tensor leads to simple direct
proofs that the obstruction tensor is divergence-free and vanishes identi-
cally for conformally Einstein metrics. Our main constructions are based on
the ambient metric of Fefferman–Graham and its relation to the conformal
tractor connection. We prove that the obstruction tensor is an obstruction to
finding an ambient metric with curvature harmonic for a certain (ambient)
form Laplacian. This leads to a new ambient formula for the obstruction in
terms of a power of this form Laplacian acting on the ambient curvature.
This result leads us to construct Laplacian-type operators that generalise
the conformal Laplacians of Graham–Jenne–Mason–Sparling. We give an
algorithm for calculating explicit formulae for these operators, and this is
applied to give formulae for the obstruction tensor in dimensions 6 and
8. As background to these issues, we give an explicit construction of the
deformation complex in dimensions n ≥ 4, construct two related (detour)
complexes, and establish essential properties of the operators in these.

1. Introduction

The Bach tensor [1921] has long been considered an important natural invariant
in 4-dimensional Riemannian and pseudo-Riemannian geometry and continues to
play an interesting role. See [Anderson 2005; Tian and Viaclovsky 2005], for
example. It is conformally invariant, vanishes for metrics that are conformal to
Einstein metrics, and arises as the total metric variation of the action

∫
|C |

2, where

MSC2000: primary 53A55; secondary 22E70, 53A30, 58J10.
Keywords: ambient metric, conformal deformations, conformal geometry, detour complexes,

differential complexes.
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C denotes the Weyl curvature. From the latter and the conformal invariance of
the Weyl curvature, it follows that it is a symmetric trace-free 2-tensor involving 4
derivatives of the metric. An explicit formula for the Bach tensor in terms of the
Weyl curvature C , the Ricci tensor, and the Levi-Civita connection is very simple:

(1) Bab = ∇
c
∇

dCacbd +
1
2 Riccd Cacbd .

In higher even dimensions n, an analogue of the Bach tensor was discovered by
Fefferman and Graham [1985]; it arose as an obstruction to their ambient metric
construction. This Fefferman–Graham obstruction tensor, which we denote Oab (or
sometimes On

ab), shares many of the properties of the Bach tensor. It is a trace-free
symmetric 2-tensor that vanishes for conformally Einstein metrics. The obstruction
tensor has the form 1n/2−2

∇
c
∇

dCacbd + lots. Here “lots” indicates lower order
terms. There is strong evidence that the obstruction tensor will be as important in
each even dimension as the Bach tensor is in dimension 4. Very recently Graham
and Hirachi [2005] have shown that Oab is the total metric variation of

∫
Q, where

Q is Branson’s Q-curvature [Branson 1995; Branson and Ørsted 1991]. This gen-
eralises the situation in dimension 4, since in that case

∫
Q and

∫
|C |

2 agree up
to a multiple. There is a direct link between the obstruction tensor and the nonex-
istence of certain operators on conformal manifolds which also generalises the
4-dimensional setting [Gover and Hirachi 2004] and further indicates the critical
role of the obstruction tensor.

Despite this progress, the obstruction tensor has remained somewhat mysterious,
partly due to the lack of a general formula. In the next section we explain that
there is a fundamental difference between the Bach tensor in dimension 4 and the
obstruction tensor in even dimensions 6 and greater. The idea is as follows. From
the Bianchi identities, the expression (1) for the Bach tensor can be written as

∇
(c
∇

d)Cacbd +
1
2 Riccd Cacbd ,

where the parentheses indicate symmetrisation over the index pair cd. The differen-
tial operator ∇

(c
∇

d)
+

1
2 Riccd is a conformally invariant operator which acts on the

bundle of “algebraic Weyl tensors” (the bundle whose sections are 4-tensor fields
with the same conformal weight and algebraic symmetries as the Weyl curvature)
and takes values in a (density weighted) irreducible tensor bundle. One might
hope that a similar result would hold in higher dimensions. This is not the case.
In Proposition 2.1, we establish that in dimensions n ≥ 6, the obstruction tensor
cannot arise in this manner from a conformally invariant operator that acts between
irreducible tensor bundles. This is an easy consequence of representation theory
results of Boe and Collingwood [1985] that give a classification of conformally
invariant operators on the sphere. (See [Eastwood and Slovák 1997] and references
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therein.) One focus of this article is to describe the correct generalisation of the
described construction of the Bach tensor. This is Theorem 2.3, one of the main
results.

In the conformally flat setting, the conformally invariant operator defined in the
previous paragraph is the formal adjoint of an operator in the so-called (confor-
mal) deformation complex. This is a complex of conformally invariant differen-
tial operators arising in connection with infinitesimal deformations of a conformal
structure based at a conformally flat metric. The linearisation of the obstruction
tensor, which we denote by B, is an operator in a class of conformally invariant
operators acting between bundles in the complex. These “long operators” are pre-
dicted by the Boe–Collingwood classification. In Proposition 2.2, we show that
the linearised obstruction operator and another long operator denoted by L factor
through operators from the complex. For example, we obtain that B = GC, where
C is the linearised Weyl curvature operator and G is a gauge companion operator
for L. That is, L and G have the same domain space (algebraic Weyl tensors), the
system (L,G) gives a conformally invariant equation, and in Riemannian signature
this system is elliptic. Theorem 2.3 gives a curved analogue of this picture. The
theorem describes a conformally invariant differential operator B which, on general
conformal manifolds of even dimension, acts on algebraic Weyl tensors and takes
values in a reducible bundle. In dimensions n ≥ 6, composing this with projection
to a quotient gives a conformally invariant operator L which takes algebraic Weyl
tensors to weighted algebraic Weyl tensors; L generalises L to conformally curved
manifolds. This operator annihilates the Weyl curvature C , and B(C) is the ob-
struction tensor. An application of these results is given in Proposition 2.4, which
in the conformally flat setting relates the conformally invariant null space of the
system (L,G) to the cohomology of the deformation complex.

For a conformal structure of dimension n, the ambient metric is an associated,
suitably homogeneous, and Ricci-flat metric on an (n+2)-manifold. In [Fefferman
and Graham 1985], Oab arose as an obstruction in even dimensions to the existence
of a formal power series solution for this ambient metric. In Section 3B, we show
that the obstruction tensor may equivalently be viewed as a formal obstruction
to having the ambient curvature harmonic for a certain ambient form-Laplacian
1/ . This leads to a new proof that the obstruction tensor is an obstruction to the
ambient metric (see (v) of Theorem 4.4) and a very simple ambient formula for
the obstruction. Let R denote the curvature of the ambient metric. Then 1/ n/2−2 R
is a disguised form of the obstruction. This is also established in Theorem 4.4 and
in the same place used to give a new proof that the obstruction is divergence-free,
i.e. that ∇

aOab = 0. (An alternative proof of this last result is given in [Graham
and Hirachi 2005], and it also follows from the variational characterisation given
in the same work. See [Branson 2005].)
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An interpretation of these results on the underlying conformal manifold can be
achieved via tractor bundles. The standard tractor bundle is a vector bundle with
a conformally invariant connection that we may view as arising as an induced
structure from the Cartan bundle with its normal conformal Cartan connection. On
the other hand, this rank n + 2 vector bundle also arises in a simple way from the
tangent bundle of the ambient manifold. Using this observation, in Theorem 4.1
and Proposition 4.8 we construct families of conformally invariant operators with
leading term a power of the Laplacian; these act between arbitrary tractor bundles
of an appropriate density weight and generalise the GJMS operators of [Graham
et al. 1992]. In Theorem 4.2, we show that the obstruction tensor is obtained by
applying one of these operators, namely �/ n/2−2, which has the form1n/2−2

+lots,
to the tractor field W that corresponds to R. Thus the problem of finding formulae
for the obstruction tensor is reduced to understanding the special case �/ n/2−2 of
the generalised GJMS-type operators �/ k .

There is a one-to-one correspondence between Einstein metrics and a class of
parallel standard tractors [Gauduchon 1990; Gover and Nurowski 2006]. With the
tractor formula for the obstruction �/ n/2−2W , this forms the basis of the proof of
Theorem 4.3, which shows that the obstruction vanishes for conformally Einstein
metrics.

Theorem 4.1 constructs a very general class of Laplace type conformal oper-
ators. The inductive steps leading to Theorem 4.1 yield a simple and effective
algorithm for calculating explicit formulae for the conformal Laplacian operators
of that theorem. Hence by Theorem 4.2, they give an algorithm for calculating
explicit formulae for the obstruction. This algorithm is efficient in the sense that
it does not entail constructing the ambient manifold but uses just its existence; the
algorithm recovers only those invariants of the ambient metric that actually turn up
in the final formula for the operator. In Section 4B, explicit tractor formulae for
conformal Laplacian operators are given. See expressions (59) and (62). These are
then applied to the W -tractor to give formulae for the obstruction in dimensions 6
and 8. Tractor formulae are given in (60) and (64), and formulae in terms of the
Levi-Civita connection and its curvature are given in (61) and on page 348.

The next section establishes the basic background and notation before construct-
ing the conformal deformation complex and introducing some related operators. It
is a pleasure to thank Tom Branson and Robin Graham for helpful discussions.

2. Relationship to the conformal deformation complex

We first sketch here notation and background for conformal structures. Further
details may be found in [Čap and Gover 2003], [Gover and Peterson 2003] or
[Branson and Gover 2005]. We mainly follow the notational conventions of the
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last of these. Let M be a smooth manifold of dimension n ≥ 3. To simplify our
discussions we assume M is orientable. Recall that a conformal structure on M is
a smooth ray subbundle Q ⊂ S2T ∗M whose fibre over x consists of conformally
related metrics at the point x . The principal bundle π : Q → M has structure
group R+, and so each representation R+ 3 x 7→ x−w/2

∈ End(R) induces a natural
line bundle on (M, [g]) that we term the conformal density bundle E[w]. We shall
write E[w] for the space of sections of this bundle. Here and throughout the article,
sections, tensors, and functions are always smooth. When no confusion is likely
to arise, we will use the same notation for a bundle and its section space.

We write g for the conformal metric, the tautological section of S2T ∗M ⊗ E[2]

determined by the conformal structure. This will be used to identify T M with
T ∗M[2]. For many calculations we will use abstract indices in an obvious way.
Given a choice of metric g from the conformal class, we write ∇ for the corre-
sponding Levi-Civita connection. With these conventions the Laplacian1 is given
by 1 = gab

∇a∇b = ∇
b
∇b . Note that E[w] is trivialised by a choice of metric g

from the conformal class, and we write ∇ for the connection corresponding to this
trivialisation. It follows immediately that (the coupled) ∇a preserves the conformal
metric.

The curvature Rab
c

d of the Levi-Civita connection is known as the Riemannian
curvature and is defined by

[∇a,∇b]v
c
= Rab

c
dv

d ,

where [ · , · ] indicates the usual commutator bracket. The Riemannian curvature
can be decomposed into the totally trace-free Weyl curvature Cabcd and a remain-
ing part described by the symmetric Schouten tensor Pab using Rabcd = Cabcd +

2gc[aPb]d + 2gd[bPa]c, where [ · · · ] indicates the antisymmetrisation over the en-
closed indices. The Schouten tensor is a trace modification of the Ricci tensor Ricab

and vice versa: writing J for the trace Pa
a of P, then Ricab = (n − 2)Pab + J gab.

Under a conformal transformation we replace a choice of metric g by the metric
ĝ = e2ωg, where ω is a smooth function. Explicit formulae for the correspond-
ing transformation of the Levi-Civita connection and its curvatures are given, for
example, in [Bailey et al. 1994a; Gover and Peterson 2003]. We recall that in
particular the Weyl curvature is conformally invariant, that is, Ĉabcd = Cabcd .

A tensor T a···b
c···d of weight w and with k contravariant indices and ` covariant

indices has total order `− k −w. For example, the Weyl curvature, the Schouten
tensor, and the scalar curvature all have total order 2. The conformal metric gab
has total order zero, and so the total order of any tensor is unchanged by the raising
and lowering of indices using the conformal metric.
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A differential operator P is a natural differential operator if it can be written as
a universal polynomial in covariant derivatives with coefficients depending polyno-
mially on the metric, its inverse, the curvature tensor, and its covariant derivatives.
The coefficients of natural operators are called natural tensors. In the case that
they are scalar they are often also called Riemannian invariants. Note that if T is a
tensor with total order t then ∇T has total order t +1. It follows immediately that
for any natural differential operator P that has T in its domain, the total order of
PT is at least t . We say P is a conformally invariant differential operator if it is
well-defined on conformal structures, i.e., is independent of a choice of conformal
scale.

We will use Ek as a convenient alternative notation for ∧
k T ∗M . The tensor

product of Ek
⊗ E`, `≤ n/2, k ≤ dn/2e, decomposes into irreducibles. We denote

the highest weight component by Ek,`. (Here “weight” does not refer to conformal
weight, but rather to the weight of the inducing O(n)-representation.) We realise
the tensors of Ek,` as trace-free covariant (k + `)-tensors Ta1···akb1···b` which are
skew on the indices a1 · · · ak and also on the set b1 · · · b`. Skewing over more
than k indices annihilates T , as does symmetrising over any 3 indices. Then we
write, for example, Ek,`

[w] as a shorthand for the tensor product Ek,`
⊗E[w]. The

space of sections of each of these bundles is indicated by replacing E with E. The
sections of E2,2

[2] are the algebraic Weyl tensors as discussed in the introduction,
that is, tensors uabcd with the same symmetries and weight as the Weyl curvature. In
particular, the Weyl curvature itself is a section in E2,2

[2]. We will also often use the
notation Ek,`[w] as a shorthand for Ek,`

[w+2k+2`−n]. This notation is suggested
by the duality between Ek,`

[w] and Ek,`[−w]; for ϕ ∈ Ek,`
[w] and ψ ∈ Ek,`[−w],

with one of these compactly supported, there is the natural conformally invariant
global pairing

ϕ,ψ 7→ 〈ϕ,ψ〉 :=

∫
M
ϕ ·ψ dµg,

where ϕ ·ψ ∈ E[−n] denotes a complete contraction between ϕ and ψ .
Since the Weyl curvature is conformally invariant, it follows easily that the lin-

earisation (at a conformally flat metric) of the nonlinear operator g 7→Cg
∈ E2,2

[2],
with Cg the Weyl curvature of the metric g, is a conformally invariant operator
C : E1,1

[2] → E2,2
[2]. The formal adjoint of a conformally invariant operator is

again conformally invariant. In particular, the formal adjoint of C is conformally
invariant:

C∗
: E2,2[−2] → E1,1[−2].

Now observe that in dimension 4 we have E2,2
[2] = E2,2[−2], and so C∗ acts on

the space of algebraic Weyl tensors E2,2
[2]. It is given explicitly up to a multiple

by Uabcd 7→ (∇(a
∇

c)
+ Pac)Uabcd . It is straightforward to verify directly using

(34) or the transformation formulae from [Gover and Peterson 2003] that this is
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also conformally invariant in the general curved case, and this operator applied to
the Weyl curvature gives the Bach tensor.

On conformally flat structures of dimension at least 4, the null space of C locally
agrees with the range of the conformal Killing operator K : E1

[2] → E1,1
[2] given

by va 7→ ∇(avb)0 , where ( · · · )0 indicates the symmetric trace-free part. These
operators give the initial sequence of the conformal deformation complex. On
oriented structures of dimension 4 this complex is simply

E1
[2]

K
→ E1,1

[2]
C
→ E2,2

[2]
C∗?
→ E1,1[−2]

K∗

→ E1[−2],

where ? is the (conformal) Hodge star operator. Recall that in even dimensions
this gives an isomorphism on the space of middle forms ? : En/2

→ En/2, and so it
also gives an isomorphism ? : En/2,2

[2] → En/2,2
[2].

The situation is more complicated in higher dimensions. In the deformation
complex, the operator C is followed by the Weyl–Bianchi operator Bi from E2,2

[2]

to E3,2
[2], given (in a conformal scale) by

(2) Uabcd 7→ (n − 3)∇[aUbc]de − gd[a∇|s|Ubc]
s

e + ge[a∇|s|Ubc]
s

d .

Here | · | indicates that the enclosed indices are omitted from the skew-symmetrisa-
tion process. (Note that an easy consequence of its symmetries is that the operator
(2) is trivial in dimension 4.) On oriented structures the formal adjoints of these
operators conclude the complex, and so we have the picture

·
K
→ E1,1

[2]
C
→ E2,2

[2]
Bi
→ E3,2

[2] → · · · → E3,2[−2]
Bi
→ E2,2[−2]

C∗

→ E1,1[−2]
K∗

→ ·

Here we have omitted the initial section space E1
[2] and terminal section space

E1[−2], since they are outside the main focus of our discussions. In dimensions
other than 6, Bi is Bi∗. In dimension 6, Bi means the composition Bi∗?. The
Hodge star is also implicitly used in interpreting the diagram in dimension 5. In
this case it gives isomorphisms ? : E2,2

[2]→ E3,2[−2] and ? : E3,2
[2]→ E2,2[−2],

and under these Bi is identified modulo a sign with Bi∗. In dimensions at least 5,
C∗ is given by Uabcd 7→ (∇(a

∇
c)

+ Pac)Uabcd , the same formula as in dimension
4. In even dimensions n ≥ 8, the centre of the pattern consists in an obvious
way of operators Bi(k) : Ek,2

[2] → Ek+1,2
[2] for k = 3, . . . , n/2 − 1, their formal

adjoints Bi∗(k) : Ek+1,2[−2] → Ek,2[−2] for k = 3, . . . , n/2 − 2, and Bi∗(n/2−1)? :

En/2,2
[2] → En/2−1,2[−2]. The operators Bi(k) generalise (2), which can be viewed

up to a constant multiple as the “k = 2 case”. For U ∈ Ek,2, an explicit formula
is (Bi(k)U )a0a1···akb1b2 = Proj(∇a0Ua1···akb1b2), where Proj is the bundle morphism
which executes the projection into Ek+1,2

[2]. In odd dimensions at least 7, we
have the operators Bi(k) for k = 3, . . . , bn/2 − 1c and their formal adjoints for
k = 3, . . . , bn/2 − 2c. (The operator Bi(bn/2−1c) is formally self-adjoint).
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In each dimension, the operators of the deformation complex are all conformally
invariant, and the complex is locally exact and extends to give a resolution (on the
sheaves of germs of smooth sections) of the sheaf of conformal Killing fields.
This is a particular generalised Bernstein–Gelfand–Gelfand (gBGG) resolution.
These resolutions are well understood and classified through the dual theory of
generalised Verma modules, and the explicit construction of the complex above is
an immediate consequence of the local uniqueness of the operators in the relevant
gBGG resolution, along with explicit verification of the conformal invariance and
nontriviality of the operators mentioned. See [Gasqui and Goldschmidt 1984] for
an alternative construction of the complex via a theory of overdetermined systems
of partial differential equations based around Spencer cohomology.

According to the results of [Boe and Collingwood 1985], in even dimensions
the operators of the deformation complex are not the only conformally invariant
operators between the bundles involved. There are also “long operators” from
Ek,`

[2] to Ek,`[−2], and an additional pair of operators about the centre of the
pattern. We obtain the operator diagram

·
K
→ E1,1

[2]
C
→ E2,2

[2]
Bi
→ E3,2

[2] → · · · → E3,2[−2]
Bi
→ E2,2[−2]

C∗

→ E1,1[−2]
K∗

→ ·

6
B

6L 6

for dimensions 10 or greater. The operators in this diagram are unique up to multi-
plying by a constant, and the diagram indicates by arrows all the operators between
the bundles explicitly presented. Thus, by implication, all compositions vanish.
The same diagram applies in dimensions 8 and 6 with minor adjustments. In di-
mension 8 there are two “short” operators with domain E3,2

[2] and two with range
E3,2[−2]. From these there is one nontrivial composition E3,2

[2]→E3,2[−2]. Sim-
iliarly in dimension 6 we have ?Bi :E2,2

[2]→E3,2
[2] and Bi∗ :E3,2

[2]→E2,2[−2],
as well as the operators indicated, and L=Bi∗Bi. In dimension 4 the corresponding
diagram is

·
K
→ E1,1

[2]

C
→
→

?C

E2,2
[2]

C∗?
→
→

C∗

E1,1[−2]
K∗

→ ·

6B

and in this case B := C∗C. Evidently on even-dimensional conformally flat struc-
tures there are detour complexes [Branson and Gover 2005], where one shortcuts
the deformation complex via a long operator. The examples relevant here are

(3) E1
[2]

K
→ E1,1

[2]
B

−→ E1,1[−2]
K∗

→ E1[−2]
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and in dimensions n ≥ 6,

E1
[2]

K
→ E1,1

[2]
C
→ E2,2

[2]
L

−→ E2,2[−2]
C∗

→ E1,1[−2]
K∗

→ E1[−2].

These have applications in constructing torsion quantities which generalise Chee-
ger’s de Rham half-torsion [Branson and Gover, in progress].

According to [Fefferman and Graham 1985], the obstruction tensor Oab is a
trace-free symmetric 2-tensor of weight 2 − n. In other words, it is a section of
E1,1[−2]=E1,1

[2−n]. From the general theory in [Eastwood and Slovák 1997], we
know that all the operators indicated explicitly by arrows in the diagrams above
admit curved analogues, that is, generalisations to general conformal structures.
(In fact, the formulae given above for K, C∗, and Bi give conformally invariant
operators on general structures. We will continue to use this notation for these
operators even in the conformally curved setting.) From the diagrams, however,
the difference between dimension 4 and higher even dimensions is clear. In dimen-
sion 4 there is a conformal operator E2,2

[2]→ E1,1[−2] that yields the Bach tensor,
as described above. In higher dimensions the conformally invariant C∗ does not
have E2,2

[2] as its domain. These observations establish the following key point.

Proposition 2.1. In even dimensions n ≥ 6, there can be no conformally invariant
differential operator E2,2

[2] → E1,1[−2] that recovers the obstruction tensor upon
application to the Weyl curvature C.

If there were such an operator, then by Theorem 4.4 or by [Graham and Hirachi
2005], it would necessarily have as highest order term 1n/2−2

∇
a
∇

cUabcd . Its
linearisation would therefore be an operator E2,2

[2] → E1,1[−2]. But there is
no operator between these bundles in the diagram.

This brings us to the question of whether there can be any conformally invariant
operator that yields the obstruction tensor in dimensions n ≥ 6. We will see that
there is, and we will construct the operator. To understand how this works, it is
helpful to expose some properties of the operators B and L.

Proposition 2.2. The operators B : E1,1
[2] → E1,1[−2] and L : E2,2

[2] → E2,2[−2]

are formally self-adjoint. In each even dimension n ≥ 6, there is a natural linear
differential operator H : E2,2

[2]→ E2,2[−2] such that B is given by the composition

B = C∗HC,

and there is a natural linear differential operator N : E3,2
[2] → E3,2[−2] such that

L is given by the composition
L = Bi∗NBi.

We prove this in Section 4 using the geometric tools developed below. The
factorisations described in the proposition can also be established via central char-
acter arguments; see also [Branson and Gover 2005]. Note that L is only defined
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in even dimensions n ≥ 6. In dimension 6, N is the identity. Otherwise, from the
classification of conformally invariant operators on conformally flat manifolds, as
discussed above, it follows that the operators H and N are not conformally invariant.

On conformally flat structures the operator G :=C∗H is not conformally invariant
(n 6= 4). It is, however, conformally invariant on the range of the linearised Weyl
curvature, and we have B = GC. On the other hand, L annihilates the range of C.
The next theorem gives special curved analogues of these operators.

We need some further notation. On conformal manifolds of dimension n there
is a natural reducible, but indecomposable, bundle W2,2 that has the composition
series E2,2[−2]

�� E2,1[−2]
�� E1,1[−2]. This means that E1,1[−2] is a (con-

formally invariant) subbundle and that E2,1[−2] is a subbundle of the quotient
W2,2/E1,1[−2]. The bundle W2,2, which is a subbundle of a certain tractor bundle,
is constructed explicitly in proof of Theorem 2.3 in Section 4. It decomposes as
[W2,2]g = E2,2[−2] ⊕ E2,1[−2] ⊕ E1,1[−2], given a choice of metric g from the
conformal class. Let us write I∗ and P for the respective canonical bundle maps
W2,2 → E2,2[−2] and W2,2 → E2,2[−2]

�� E2,1[−2] which are unique up to a
constant multiple.

Theorem 2.3. On conformal manifolds of even dimension n ≥ 6 there is a natural
nontrivial conformally invariant linear differential operator

B : E2,2
[2] → W2,2 = E2,2[−2]

�� E2,1[−2]
�� E1,1[−2]

with the following properties:

(i) The composition (I∗B =: L) : E2,2
[2] → E2,2[−2] is a nontrivial conformally

invariant differential operator of order n − 4.

(ii) There is a linear differential operator B such that BB = 1` + lots. Thus on
Riemannian signature conformal structures, B is graded injectively elliptic.

(iii) For the Weyl curvature C ∈ E2,2
[2] we have B(C) ∈ E1,1[−2]. The natural

conformal invariant Oab ∈ E1,1[−2] given this way agrees with the obstruction
tensor.

We prove the theorem in Section 4. Note that there is a degenerate version of the
theorem for dimension 4; see expression (28) and the comments that follow it.

From the uniqueness of L it is clear that on conformally flat manifolds L recovers
L up to a constant multiple. However L is a special curved generalisation of L, since
the property L(C) = 0 generalises to arbitrary conformal structures the vanishing
of the composition LC. Since L(C) vanishes, it follows from the composition series
for W2,2 that the component of B(C) in E2,1[−2] is a natural conformal invariant.
That this also vanishes is a special property of B that, in a sense, carries to general
structures the nonexistence of an operator E1,1

[2] → E2,1[−2]. It follows that on
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conformally flat structures the composition BC determines a nontrivial operator
E1,1

[2] → E1,1[−2] which therefore agrees with B. If, for each metric g in the
conformal class, we write G for the composition of B followed by projection to
the component E1,1[−2] (we have such a projection since, recall, W2,2 completely
decomposes given a conformal scale), then by construction, G is a curved analogue
of the operator G. That is, the restriction of G to conformally flat structures is G.
Note that G has the special property that G(C) = O, and as we will see from
the construction of W2,2, although G is not conformally invariant, the conformal
variation of G under g 7→ e2ωg is only quadratic in ω. Since G also has this sort
of variation, this is optimal.

In the conformally flat case, it is easily shown that PB can be reexpressed as a
composition UL. Here U is the operator (35) below, except withw set to 6−n. This
result follows from the nonexistence of a nontrivial conformal operator E2,2

[2] →

E2,1[−2]. It follows from this and (ii) that in even dimensions n ≥ 6, (L,G) is a
right factor of a Laplacian. That is, there are linear differential operators L and G

such that

(L , G)

(
L

G

)
=1` + lots.

Since also G is conformally invariant on the null space of L, it follows that G is a
conformal gauge companion operator in the sense of [Branson and Gover 2002];
see also [Branson and Gover 2005]. Thus in Riemannian signature, the operator
pair (L,G) is an elliptic system. Since L has Bi as a right factor, the system (Bi,G)

is also elliptic and has a conformally invariant null space. Let us denote this by
H2

G , and note that on compact manifolds, H2
G is finite-dimensional. This is closely

related to the second cohomology of the deformation complex. For example, from
Proposition 2.2 and an easy adaption of the proof of Proposition 2.5 in [Branson
and Gover 2005], we obtain the following result, which suggests that H2

G is a
candidate for a space of conformal harmonics. Here we write H i , i = 1, 2, for the
first and second cohomology spaces in the deformation complex, and H 1

B for the
first cohomology of the detour complex (3).

Proposition 2.4. On even-dimensional conformally flat manifolds of dimension
n ≥ 6, there is an exact sequence

0 → H 1
→ H 1

B → H2
G → H 2,

where the last map H2
G → H 2 is simply 8 7→ [8], the middle H 1

B → H2
G is the

map on the quotient N(B)/R(K) induced by the restriction of C to N(B), the null
space of B, and the first map H 1

→ H 1
B is inclusion.

There are further results concerning the relationship of H 1
B to H 1 and H2

G to H 2,
but this will be taken up elsewhere; see also [Branson and Gover 2002].
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3. The ambient construction and tractor calculus

In the subsequent sections we will explore the relationship between the Fefferman–
Graham ambient metric construction [Fefferman and Graham 1985] and tractor
calculus as derived in [Čap and Gover 2003; Gover and Peterson 2003]. The no-
tation and conventions for the ambient metric closely follow [Branson and Gover
2005].

For π : Q → M a conformal structure of signature (p, q), use ρ to denote the R+

action on Q given by ρ(s)(x, gx) = (x, s2gx). An ambient manifold is a smooth
(n+2)-manifold M̃ endowed with a free R+-action ρ and an R+-equivariant em-
bedding i : Q → M̃ . We write X ∈ X(M̃) for the fundamental field generating the
R+-action: for f ∈ C∞(M̃) and u ∈ M̃ , we have X f (u) = (d/dt) f (ρ(et)u)|t=0.
For an ambient manifold M̃ , an ambient metric is a pseudo–Riemannian metric h
of signature (p + 1, q + 1) on M̃ satisfying the conditions: (i) LX h = 2h, where
LX denotes the Lie derivative by X ; (ii) for u = (x, gx) ∈ Q and ξ, η ∈ TuQ,
we have h(i∗ξ, i∗η) = gx(π∗ξ, π∗η); (iii) Ric(h) = 0 up to the addition of terms
vanishing to order n/2 − 1 if n is even or Ric(h)= 0 to all orders if n is odd; and
(iv) h(X, ·)=

1
2 d Q to all orders.

If M is locally conformally flat, then there is a canonical solution to the ambient
metric problem to all orders. This is simply a flat ambient metric. This is forced
by (i)–(iii) in odd dimensions, but in even dimensions this extends the solution;
see comments in [Branson and Gover 2005]. When discussing the conformally flat
case, we assume this solution.

We write ∇ for the ambient Levi-Civita connection and use uppercase abstract
indices A, B, etc., for tensors on M̃ . The ambient Riemann tensor will be denoted
RAB

C
D . Since LX h = 2h, it follows that

∇X = h,(4)

X A RABC D = 0.(5)

Equalities without qualification, as here, indicate that the results hold to all orders
or identically on the ambient manifold.

3A. Tractor bundles. Let Ẽ(w) denote the space of functions on M̃ which are
homogeneous of degree w ∈ R with respect to the action ρ. More generally, a
tensor field F on M̃ is said to be homogeneous of degree w if ρ(s)∗F = swF , that
is, LX F =wF . Just as sections of E[w] are equivalent to functions in Ẽ(w)|Q, the
restriction of a homogeneous tensor field to Q has an interpretation on M . Denote
by T the space of sections of T M̃ which are homogeneous of degree −1 and write
T (w) for sections in T ⊗Ẽ(w), where here ⊗ indicates a tensor product over Ẽ(0).
From [Čap and Gover 2003] we have the following results: We may identify the



THE OBSTRUCTION TENSOR AND DEFORMATION COMPLEX 321

standard tractor bundle T with T M̃ |Q modulo a suitable R+-action, so that sections
of T are in one-one correspondence with sections in T . Thus we write T for the
space of sections of the standard tractor bundle. The filtration of T, which we
traditionally indicate by a composition series,

(6) T = E[1]
�� E1

[1]
�� E[−1],

reflects the vertical subbundle of T Q and T Q as a subbundle of T M̃ |Q. Then since
the ambient metric h is homogeneous of degree 2, it descends to give a metric on
T. This is the usual tractor metric. Sections of T may be characterised as those
sections of T M̃ which are covariantly parallel along the integral curves of X , which
on Q are exactly the fibres of π . The normal tractor connection agrees with the
ambient connection as follows. For U ∈ T, let Ũ be the corresponding section of
T |Q. A tangent vector field ξ on M has a lift to a field ξ̃ ∈ T (1) on Q, which is
everywhere tangent to Q. This is unique up to adding f X , where f ∈ Ẽ(0). We
extend Ũ and ξ̃ smoothly and homogeneously to fields on M̃ and form ∇ξ̃ Ũ |Q; this
section is independent of the extensions and independent of the choice of ξ̃ as a
lift of ξ and is exactly the section of T (0)|Q corresponding to ∇ξU where ∇ here
indicates the tractor connection.

When abstract indices are required, the section spaces of the tractor bundle and
its dual can also be denoted TA and TA. A choice of metric g from the conformal
class determines a canonical splitting of the composition series (6), by [Bailey
et al. 1994a; Čap and Gover 2000]. Via this splitting, direct sums ⊕ replace the
semidirect sums

�� in that series, and we introduce g-dependent sections Z Ab in
TAb

[−1] and Y A in TA
[−1] that describe the decomposition of T into the direct

sum E[1]⊕ Ea[1]⊕ E[−1]. According to V A
= Y Aσ + Z Abµb + X Aρ, a section

V ∈ T then corresponds to a triple [V ]g = (σ, µ, ρ) of sections, and in these
terms the tractor metric is given by h(V, V ) = gabµaµb + 2σρ. Thus the tractor
contractions of the projectors are

(7) X AYA = 1, Z Ab Z Aa = δb
a ,

and 0 for the other pairings.
If Ŷ A and Ẑ A

b are the projectors for the metric ĝ = e2ωg, then we have

(8) Ẑ Ab
= Z Ab

+ϒb X A, Ŷ A
= Y A

−ϒb Z Ab
−

1
2ϒbϒ

b X A.

Here ϒ := dω. In terms of this splitting, determined by g, the tractor connection
is given by

(9) ∇a X A = Z Aa , ∇a Z Ab = −Pab X A − YA gab , and ∇aYA = Pab Z A
b.

We use the notation T̃8 to denote an arbitrary ambient tensor bundle (with T̃0

meaning the trivial bundle) and write T 8(w), w ∈ R, for the subspace of 0(T̃8)
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consisting of sections S satisfying ∇X S = wS; we will say such sections are ho-
mogeneous of weight w. From the constructions above, it follows that the sections
in T 8(w)|Q are equivalent to sections of a tractor bundle that we denote T8[w].
We write T8

[w] for the section space of the latter.
A basic example of interest is the bundle of k-form tractors Tk , which is the k-th

exterior power of the bundle of standard tractors. It is straightforward to verify that
this has a composition series which, in terms of section spaces, is given by

(10) Tk
=3kT ∼= Ek−1

[k]
�� {Ek

[k] ⊕ Ek−2
[k − 2]}

�� Ek−1
[k − 2].

Also of direct relevance to our constructions below are the bundles denoted by
T2,2

[w], which are the subbundles of T2
⊗ T2

⊗ E[w] consisting of tractors of
weight w and Weyl-tensor-type symmetries, that is, trace-free Riemann-tensor-
type symmetries. We write T2,2

[w] for the section space of T2,2
[w] and note that

(with notation as in Section 2) it has the composition series

(11)

E2,2
[w+ 4]

⊕

E2,1
[w+ 4] E2

[w+ 2] E2,1
[w+ 2]

E1,1
[w+ 4]

�� ⊕
�� ⊕

�� ⊕
��E1,1

[w].

E1
[w+ 2] E1,1

[w+ 2] E1
[w]

⊕

E[w]

A comment on punctuation is in order: here the columns represent composition
factors, decomposed into O(g)-irreducibles, and these are separated by

�� ’s which
indicate the composition structure. This series may be obtained by any so(n+2) to
so(n) branching-rule algorithm or, alternatively, by simply considering the possible
contractions of the projectors X , Y , and Z into a typical element of T2,2

[w].

3B. Operators and invariants via the ambient metric. An operator P acting be-
tween ambient tensor bundles is said to be homogeneous of weight u ∈ R if
[∇X , P]= u P . Operators homogeneous in this sense map homogeneous tensors of
weightw to homogeneous tensors of weightw+u. On the other hand, a differential
operator P is said to act tangentially along Q, as an operator on some domain
space, if we have P Q = Q P ′ for some operator P ′ (or equivalently [P, Q] = Q P ′′

for some P ′′). Of particular interest are linear differential operators P which are
both homogeneous and also act on some homogeneous tensor space T 8(w) as
domain tangentially along Q. Each such operator P clearly determines a well-
defined operator on T 8(w)|Q, and hence determines an operator on the equivalent
weighted tractor bundle section space T8

[w]. If the operator P is natural as an
operator on the ambient manifold, then since the ambient construction is not de-
pendent on a choice of metric from the conformal class, it follows that the induced
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operator on weighted tractor fields is conformally invariant. The remaining issue
is whether this induced operator is natural for the underlying conformal structure.
For the operators we are interested in here, we solve this by giving an algorithm for
expressing the induced operator as a formula in terms of known natural operators.
This solves two problems, since one of our aims is to obtain explicit formulae for
the operators concerned.

Before we construct examples of such operators, we require some further back-
ground. First note that from (4), we have

(12) [1, X] = 2∇, where 1 := ∇
A
∇A,

and ∇A Q = 2X A. Both identities hold to all orders. Thus ∇X Q = 2Q; Q is
homogeneous of weight 2. A short computation shows that if U is an ambient
tensor field, then

(13) [1, Q]U = 2(n + 2∇X + 2)U.

It follows that for any positive integer `, if an ambient tensor field U is O(Q`),
then 1U and ∇U are both O(Q`−1).

Now we define an operator D (or DA when indices are used). Let

(14) DV := ∇(n + 2∇X − 2)V − X1V,

for any ambient tensor field V . It is readily verified that D is homogeneous of
weight −1. By (12) we also have the equivalent formula

(15) DV = ∇(n + 2∇X)V − 1XV .

Using either of these with the computations above, we obtain DQV = Q DV +

4Q∇V , and so D acts tangentially. For later use we note that for any integer `≥ 2,
if V is O(Q`), then DAV is O(Q`−1).

Since D acts tangentially on any ambient tensor bundle, it follows that for every
tractor bundle T8 and w ∈ R we obtain an operator

D : T8
[w] → T ⊗ T8

[w− 1]

equivalent to D as an operator T 8(w)|Q →T ⊗T 8(w−1)|Q. It is straightforward
to prove (see [Čap and Gover 2003; Gover and Peterson 2003]) that D is the usual
tractor-D operator of [Thomas 1926; Bailey et al. 1994a]. For a choice of metric
g from the conformal class and for any V ∈ T8

[w], D is given explicitly by

(16) D AV := (n + 2w− 2)wY AV + (n + 2w− 2)Z Aa
∇a V − X A�V,

where �V := 1V +wJV . We note that D is a natural differential operator. A
differential operator taking values in a tractor bundle (or acting between tractor
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bundles) is said to be natural if the so(g)-irreducible components of the operator
are natural.

Acting on T 8(1 − n/2), the operator D is simply −X1, and correspondingly
D simplifies to −X� on T8

[1 − n/2]. Thus 1 acts tangentially on T 8(1 − n/2)
and as an operator on the restriction of this space to Q, is equivalent to the tractor-
coupled conformal Laplacian

(17) � : T8
[1 − n/2] → T8

[−1 − n/2].

Many identities involving D are obtained most easily by calculating with D on
M̃ . For example, a short calculation using (4) and (12) shows that

(18) DA X AV = (n + 2w+ 2)(n +w)V − Q1V

for any V ∈ T 8(w). Hence for any V ∈ T8
[w], we have

(19) DA X AV = (n + 2w+ 2)(n +w)V .

An observation key to the next section is that the ambient curvature R is “har-
monic” for a certain Laplacian, at least at low orders. Before we construct this
Laplacian we need some further notation. Write ] (hash) for the natural tensorial
action of sections A of End(T M̃) on ambient tensors. For example, on an ambient
covariant 2-tensor TAB , we have A]TAB = −AC

ATC B − AC
B TAC . If A is skew

for h, then at each point, A is so(h)-valued. The hash action thus commutes with
the raising and lowering of indices and preserves the SO(h)-decomposition of ten-
sors. For example, A] maps trace-free symmetric tensors to trace-free symmetric
tensors. As a section of the tensor square of the h-skew bundle endomorphisms of
T M̃ , the ambient curvature has a double hash action on ambient tensors; we write
R]]T . As a point on punctuation, it should be noted that we will treat tensors in
composite expressions as multiplication operators. A composition of operators L ,
M , and N acting on S denoted L M N S means L(M(N (S))). For example, ∇R]]T
has the same interpretation as ∇(R]]T ).

From the Bianchi identities, we have that on any Riemannian or pseudo-Rie-
mannian manifold,

(20) 4∇A1∇B1RicA2 B2

= 1RA1 A2 B1 B2 +
1
2 R]]RA1 A2 B1 B2 − RicC A1 RC

A2 B1 B2 + RicC B1 RC
B2 A1 A2 .

Remark. In (20) we adopt the convention that sequentially labeled indices in
the subscript position (such as A1 and A2) are implicitly skew-symmetrised. This
convention applies throughout this paper unless noted otherwise.
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Let us define a Laplacian operator 1/ by the formula

1/ := 1 +
1
2 R]].

Then from (20) and the conditions on Ric(h) for the ambient metric, we have

(21) 4∇A1∇B1RicA2 B2 = 1/ RA1 A2 B1 B2 + O(Qn/2−1)

in even dimensions. Therefore

(22) 1/ RBC DE = 0

modulo O(Qn/2−3) in even dimensions and to infinite order in odd dimensions.

Remarks. 1. The operator 1/ is a type of form-Laplacian. On a Riemannian or
pseudo-Riemannian manifold, suppose U is any tensor with Riemann tensor type
symmetries. A short calculation shows that

1/U = −
1
2

(
δ∇

1 d∇

1 + d∇

1 δ∇

1 + δ∇

2 d∇

2 + d∇

2 δ∇

2
)

U,

where d∇

i is the Levi-Civita connection-coupled exterior derivative, δ∇

i is its formal
adjoint, and the index i is 1 or 2 according to whether we regard U as a 2-form
with values in a tensor bundle on the first pair of indices or the last pair. In terms
of the Levi-Civita connection ∇, we have (d∇

1 U )A0 A1 A2 B1 B2 = 3∇A0UA1 A2 B1 B2 and
(δ∇

2 U )A1 A2 B2 = −∇
B1UA1 A2 B1 B2 , for example.

Returning to the ambient manifold, note that from these observations, the results
concerning the degree to which the ambient curvature is 1/ -harmonic are manifest,
since on the one hand d∇

1 and d∇

2 annihilate R by the Bianchi identity and on
the other hand δ∇

1 R and δ∇

2 R are O(Qn/2−2) (or O(Q∞) in odd dimensions) by
dint of the contracted Bianchi identity and the condition (iii) on the ambient Ricci
curvature.

2. Note that from (20), if Ric vanishes to all orders on the ambient manifold, then
it is immediate that 1/ R vanishes to all orders. Conversely, if 1/ R vanishes to all
orders, then so does 4∇A1∇B1RicB2 A2 + RicC A1 RC

A2 B1 B2 − RicC B1 RC
B2 A1 A2 . On

the other hand, contracting the latter with X A1 X B1 and using (4) and (5) yields
2RicA2 B2 . Thus on the ambient manifold, the vanishing of Ric to all orders is
equivalent to the vanishing of 1/ R to all orders.

We may view the operator 1/ as the special case α =
1
2 of the family of ambient

Laplacians

(23) 1α := 1 +αR]], α ∈ R,

which also includes the ambient form Laplacian at α = 1 and the usual ambient
Bochner Laplacian at α = 0. While the latter was used in the constructions of
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[Graham et al. 1992] giving conformal operators between densities, the general-
isation to the ambient form Laplacian proved appropriate in [Branson and Gover
2005] for the study of conformal operators on (weighted) differential forms. It
seems likely that others in the family will also have important roles, and so much
of the discussion in the next section allows for the possibility of any α ∈ R. Certain
key identities for 1 are unaffected by the addition of the R]] term. In particular,
since X A RABC D = 0 it follows that

(24) [1α, X] = [1, X] = 2∇.

Using this, or even more simply by noting that [R]], Q] = 0, we obtain

(25) [1α, Q] = [1, Q] = 2(n + 2∇X + 2).

A point of departure is [1α,∇]. Observe that if VBC ···E is any ambient tensor, then
by the Ricci-flatness of the ambient metric,

(26) [1,∇A]VBC ···E

= −2RA
P

B
Q
∇P VQC ···E − 2RA

P
C

Q
∇P VB Q···E − · · · − 2RA

P
E

Q
∇P VBC ···Q .

This equality holds modulo O(Qn/2−2) in even dimensions and to infinite order in
odd dimensions.

Using the results above and the Bianchi identities, it is straightforward to verify
that if we define the ambient homogeneous (of weight −2) tensor field

(27) W A1 A2 B1 B2 :=
3

n − 2
DA0 X A0 RA1 A2 B1 B2,

then in dimensions other than 4, we have W |Q = (n − 4)R|Q. Note that W is
well-defined in all dimensions and by construction is conformally invariant. Thus
the equivalent tractor field WABC E is conformally invariant and of weight −2. In
dimensions other than 4, it is immediate that this has Weyl tensor type symmetries.
(Recall that R|Q is trace-free.) In fact, it has these symmetries in all dimensions
and is a natural tractor field. In a choice of conformal scale, WABC E is given by

(28) (n − 4)
(
Z A

a Z B
b ZC

c Z E
eCabce − 2Z A

a Z B
b X[C Z E]

e Aeab

− 2X[A Z B]
b ZC

c Z E
e Abce

)
+ 4X[A Z B]

b X[C Z E]
e Beb,

where Aabc is the Cotton tensor,

(29) Aabc := 2∇[bPc]a,

and

(30) Bab := ∇
c Aacb + PdcCdacb.
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Note that from (28) it follows that in dimension 4, Beb is conformally invariant.
This is the Bach tensor: from the contracted Bianchi identity, we have

(31) (n − 3)Aabc = ∇
dCdabc,

and so in dimension 4, (30) agrees with (1). In other dimensions n ≥ 3 we also
refer to Bab as defined in (30) as the Bach tensor. The tractor field W first appeared
in [Gover 1999, 2001]. The connection to the ambient curvature was derived in
[Čap and Gover 2003], where the above results are treated in detail.

4. Conformal Laplacians and the ambient obstruction

In this section we show how one can obtain the ambient obstruction tensor by
applying a conformally invariant operator �/ n/2−2 of the form 1n/2−2

+ lots to the
natural tractor field W defined above. For any integer m ≥ 1, we let

�/ m := �1/2
m ,

where �
1/2
m is the case α = 1/2 of the operator �α

m of Theorem 4.1. We prove
Theorem 4.1 in Section 4A. The inductive nature of this proof will show that one
can construct explicit tractor formulae for the operators �α

m in terms of X , D, W ,
h, and h−1. One may thus use Theorem 4.2 together with a choice of conformal
scale and the formula for W given in (28) to construct a tractor formula for Oab. It
is then easy to expand this tractor formula to a formula in terms of the Levi-Civita
connection and its curvature.

In what follows, the phrase “generic n-even case” refers to the case in which n
is even and M is conformally curved.

Theorem 4.1. For every integer m ≥ 1 and for every α ∈ R, there exists a confor-
mally invariant operator �α

m : T8
[m−n/2]→ T8

[−m−n/2] having leading term
1m . The operator �α

m is natural in the following cases: in odd dimensions and for
conformally flat M for all m ≥ 1; in the generic n-even case for 1 ≤ m ≤ n/2−2, if
α = 0 for 1 ≤ m ≤ n/2−1, if T8

[m −n/2] = T[m −n/2] for 1 ≤ m ≤ n/2−1, or
if T8

[m − n/2] = T0
[m − n/2] for 1 ≤ m ≤ n/2. In these cases there is a tractor

formula for �α
m given by a partial contraction polynomial in �, D, W , X , h, and

h−1, and this polynomial is linear in U. In the tractor formula for �α
mU , each free

index appears either on U or on a W -tractor.

We believe the operators �/ m will be important for many problems. For our
current purposes, we are primarily interested in them when n is even, m = n/2−2,
and the domain bundle is T2,2

[−2]. In particular, we have the following result,
which is an immediate consequence of Theorem 4.4.
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Theorem 4.2. Let M be a conformal manifold of dimension n even. Then

(32) �/ n/2−2WA1 A2 B1 B2 = K (n)X A1 Z A2
a X B1 Z B2

bOab.

Here K (n) is a known nonzero constant depending on n, and Oab ∈ E(ab)0[2−n] is
the Fefferman–Graham obstruction tensor. It is conformally invariant and natural.

We have K (4) = −8. In dimensions at least 6, the constant K (n) is given by
(n − 4)k(n), where k(n) is given in (38). Note that �/ n/2−2W ∈ T2,2

[2−n]. The
theorem states that its components vanish in all factors of the composition series
(11) for T2,2

[2−n], except for the (injecting) factor E1,1[−2] = E1,1
[2−n], and the

term here is the obstruction, up to scale.

Theorem 4.3. The obstruction tensor Oab vanishes on conformally Einstein mani-
folds.

Proof. A conformally Einstein manifold M admits a parallel standard tractor I (see
[Gover and Nurowski 2006]) such that σ := IA X A 6= 0 is an Einstein scale. It
follows immediately that I annihilates the tractor curvature �bc

D
E :

∇cID
= 0 H⇒ �bc

D
E IE

= [∇b,∇c]I
D

= 0.

Also since I is parallel, viewing it as a multiplication operator, it is clear that
[D, I] = 0. From (27) (see also [Čap and Gover 2003]) we have WA1 A2

D
E =

(3/(n − 2))D A0 X A0 Z A1
b Z A2

c�bc
D

E . Thus WBC DE IE
= 0.

By Theorem 4.1 there is a formula for �/ n/2−2WA1 A2 B1 B2 which is polynomial
in �, D, W , X , h, and h−1, and in this formula each of the indices A1, A2, B1,
and B2 appears on a W tractor. On the other hand, since I is parallel and of weight
0, it commutes with the operators in this expression for �/ n/2−2WA1 A2 B1 B2 . Thus

(33) IB1�/ n/2−2WA1 A2 B1 B2 = 0,

since IAWABC D = 0.
From [Gover and Nurowski 2006] we have IA

= (1/n) D Aσ . Thus from the
expression (16) for the tractor-D operator, we have the expression

[IA
]g = σY A

− (1/n) Jσ X A

for IA in terms of the (Einstein) metric g := σ−2 g. (Recall that if ∇ is the Levi-
Civita connection determined by g = σ−2 g, then tautologically ∇σ = 0.) In
particular, in this scale, we have IA Z A

a
= 0. Thus from Theorem 4.2 above,

4(K (n))−1 Z A2
a Z B2

bIA1IB1�/ n/2−2WA1 A2 B1 B2 = σ 2Oab.

But from (33), the left-hand side vanishes, and hence Oab = 0 on M . �
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Obtaining the obstruction tensor via a conformally invariant operator on a trac-
tor field as in Theorem 4.2 enables us to relate it to other conformally invariant
operators associated with the deformation complex, by ideas along the lines of the
curved translation principle of Eastwood [1996] and collaborators. This is the idea
behind Theorem 2.3, which we are now ready to prove. Related generalisations
of the curved translation principle have been explored in depth in the setting of
operators on differential forms [Branson and Gover 2005].

Proof of Theorem 2.3. We first construct B and prove (iii). Let W 2,2 denote
the quotient of T2,2

[−2] by the subbundle which is the kernel of the bundle map
T2,2

[−2] → T3
⊗ T3 given by

UA2 A3 B2 B3 7→ X A1 X B1UA2 A3 B2 B3 .

We write W2,2 for the subbundle of T2,2
[2−n] consisting of tractors which are

annihilated by any contraction with X , and write W2,2 and W2,2 for the section
spaces of W 2,2 and W2,2, respectively. Note that complete contractions between
elements of T2,2

[−2] and sections of T2,2
[2−n] take values in E[−n]. Hence there

is a conformally invariant pairing between T2,2
[−2] and T2,2

[2−n]. It is clear that
the contractions between elements of T2,2

[−2] and sections of T2,2
[2−n] induce

a well-defined bundle map

〈 · , · 〉 : W 2,2
⊗ W2,2 → E[−n],

and so there is also a conformally invariant pairing between W2,2 and W2,2.
Given a section UABC D ∈ T2,2

[−2], let [UABC D] be its image in the quotient
space W2,2. From the tractor composition series (6) (see also (10) and the discus-
sion there), it follows easily that the space W2,2 has a composition series

E1,1
[2]

�� E2,1
[2]

�� E2,2
[2]

and that the injection I : E2,2
[2] → W2,2 is given by

uabcd 7→ [Z A
a Z B

b ZC
c Z D

duabcd ].

The differential operator D : W2,2
→ T2,2

[−2] given by

[UA2 A3 B2 B3] 7→
9

n(n − 2)
Y2,2 D A1 DB1 X A1 X B1UA2 A3 B2 B3

is clearly well-defined and conformally invariant. Here Y2,2 is the bundle map
executing the projection of T2

[−1] ⊗ T2
[−1] onto the direct summand T2,2

[−2].
We write D∗ for the formal adjoint of D. This is a conformally invariant operator

D∗
: T2,2

[2−n] → W2,2.
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On the other hand, from Theorem 4.1 there is a conformally invariant Laplacian-
type operator �/ n/2−2 : T2,2

[−2] → T2,2
[2−n]. Thus we have the composition

D∗�/ n/2−2D : W2,2
→ W2,2.

The operator B in the theorem is (up to a constant multiple) simply the composition

(D∗�/ n/2−2DI =: B) : E2,2
[2] → W2,2.

By construction this is natural and conformally invariant.
Now in a conformal scale, (DI(u))BC E F is given explicitly by

(34) (n − 4)
(
(n − 3)Z B

b ZC
c Z E

e Z F
f ubce f − 2Z B

b ZC
c X[E Z F]

f
∇

eue f bc

− 2X[B ZC]
c Z E

e Z F
f
∇

bubce f
)

+ 4X[B ZC]
c X[E Z F]

f (∇(b
∇

e)ubce f + (n − 3)Pbeubce f ).

Thus from (28) and a minor calculation, D(I(C))ABC D = (n − 3)WABC D, where
C is the Weyl curvature. So by Theorem 4.2, we have

(�/ n/2−2DIC)A2 A3 B2 B3 = (n − 3)K (n)X A2 Z A3
a X B2 Z B3

bOab.

That is, �/ n/2−2DIC takes values in the factor E1,1[−2] in the composition series
for T2,2

[2−n]. (Note that this factor is a conformally invariant subspace.) Now the
formal adjoint of the tractor-D operator is again the tractor-D operator [Branson
and Gover 2001]. So

D∗X A2 Z A3
a X B2 Z B3

bOab =
9

n(n − 2)
X B1 X A1 DB1 DA1 X A2 Z A3

a X B2 Z B3
bOab.

But a short calculation using (9) and (16) shows that this operation just returns
4(n −4)(n −3)X A2 Z A3

a X B2 Z B3
bOab, and this proves part (iii) of the theorem. All

nonvanishing multiples can be absorbed into the definition of B.
We treat now part (i). We need to show that I∗B has order n−4 and is nontrivial.

Since by construction there is a universal natural expression for the operator L , it
is sufficient to establish this on the standard conformal sphere. Recall that �/ n/2−2

has leading term1n/2−2. Thus �/ n/2−2 is elliptic, since the sphere has Riemannian
signature. From (34) it is clear that DI :E2,2

[2]→T2,2
[−2] is a differential splitting

operator; there is a bundle homomorphism J : T2,2
[−2] → E2,2

[2] such that JDI
is the identity on E2,2

[2]. Thus on any manifold, R(DI : E2,2
[2] → T2,2

[−2]) is
infinite-dimensional, and it follows immediately that �/ n/2−2DI is nontrivial on
the standard conformal sphere. The action of �/ n/2−2DI on E2,2

[2] takes val-
ues in T2,2

[2−n]. The composition series for T2,2
[2−n] is given by (11) with

w = 2 − n. From this we see, for example, that there is a canonical projection
from T2,2

[2−n] to E1,1
[6−n] = E1,1[2] with which one can compose the operator
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�/ n/2−2DI : E2,2
[2] → T2,2

[2−n]. By construction, this is a conformally invariant
operator E2,2

[2] → E1,1[2]. On the other hand, from the classification of operators
on conformally flat structures discussed in Section 2, the only conformally invariant
operators on E2,2

[2] taking values in irreducible bundles are as follows: there is an
operator E2,2

[2] → E3,2
[2] and an operator E2,2

[2] → E2,2[−2]. From elementary
weight considerations, we know the latter has order n−4. Thus the composition de-
scribed must be trivial. Continuing in this fashion and using (8), one concludes that
�/ n/2−2DI takes values in the subspace W2,2 = E2,2[−2]

�� E2,1[−2]
�� E1,1[−2],

and the composition of �/ n/2−2DI with projection to E2,2[−2] is necessarily non-
trivial. This composition is thus up to scale the unique conformally invariant op-
erator between these bundles (on the conformal sphere). To finish, note that on
the one hand, I∗D∗ is the formal adjoint of a splitting operator for E2,2

[2] and
therefore acts as a multiple of the identity on the component E2,2[−2]. On the
other hand, I∗D∗ must annihilate the components E2,1[−2] and E1,1[−2], since
these have higher total order than the target bundle E2,2[−2] for the composition
and a natural differential operator cannot lower order.

Finally, we consider (ii). Let us first consider the case of a flat Riemannian
or pseudo-Riemannian structure. Thus all curvature will vanish, until we note
otherwise. If Fa1a2 is a 2-form, then 1n/2−2 D A0 X A0 Z A1

a1 Z A2
a2 Fa1a2 is well un-

derstood as a special case of [Branson and Gover 2005, Proposition 4.6]. The
nonzero components of this have values in a subbundle of T2

[2−n] with compo-
sition series E2 ⊕ E1. These components are (up to an overall nonzero constant
multiple ((δd)n/2−2 F, aδ(dδ)n/2−2 F), where d is the exterior derivative, δ its for-
mal adjoint, and a is a nonzero constant. Composing these components on the left
with (δd , (1/a) d) yields (δd + dδ)n/2−1 F = (−1)n/2−11n/2−1 F . Now on flat
structures we have the identity

(n − 2)
(
DI(u)

)
A1 A2 B1 B2

= 3D A0 X A0 Z A1
a1 Z A2

a2Ua1a2 B1 B2,

where u ∈ E2,2
[2] and Ua1a2 B1 B2 is the conformally invariant form-tractor given in

scale by letting w equal 2 in the formula

(35) Ua1a2 B1 B2 = (n +w− 5)Z B1
b1 Z B2

b2ua1a2b1b2 + 2X B1 Z B2
b2∇

b1ua1a2b2b1 .

Thus by viewing U as a 2-form with values in a tractor bundle and replacing ∇,
d , and δ with their tractor connection coupled variants in the argument above, we
conclude that there is an operator A such that

A1n/2−2DI(u)=
3

n − 2
A1n/2−2 D A0 X A0 Z A1

a1 Z A2
a2Ua1a2 B1 B2 =1n/2−1U.

We continue with similar considerations, except that now we view ua1 a2b1b2 as a
2-form on the b1b2 index pair that takes values in End(T M). If F now indicates a
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2-form of weight w′, we have

K(F) := (3/(n + 2w′
− 2)) D A0 X A0 Z A1

a1 Z A2
a2 Fa1a2

= (n +w′
− 4)Z A1

a1 Z A2
a2 Fa1a2 + 2X A1 Z A2

a2∇
a1 Fa2a1 .

So if w′
= 1 in particular, then the formula on the right-hand side agrees with

(35) with w = 2. In formally calculating 1n/2−1U a1 a2 B1 B2 using the identities
(9) and the Leibniz rule to obtain a formula polynomial in u, ∇, the metric g,
its inverse, and the projectors X , Y , and Z , we may ignore the a1 and a2. Their
contribution is buried in the meaning of the Levi-Civita connection ∇. Now for a
2-form F of weight 1, we have that on flat structures, 1n/2−1K(F) takes values
in E2[−1]

�� E1[−1] and has the form
(
((3−n)(δd)n/2−1

+ (dδ)n/2−1)F, ∗
)

up
to an overall nonzero multiple [Branson and Gover 2005]. Here ∗ indicates some
term, the details of which will not concern us. We note that the first entry gives
an elliptic operator on F ; we may act on this with the operator δd + (3 − n)dδ to
yield (3 − n)(−1)n/21n/2 F . Thus there is a linear differential operator A2 such
that A21

n/2−1U =1n/2u.
Combining these observations, we see that there is a linear differential operator

A3 such that A31
n/2−2DI(u) =1n/2u. Finally, one can easily verify directly that

D∗ is differentially invertible as a graded differential operator on the subspace W2,2.
(That is, its inverse is also a graded differential operator. The point is that in terms
of a splitting of W2,2 determined by a choice of conformal scale, a straightforward
calculation shows that D∗ takes (u, v, w) to (ku, `v+ δ · u,mw+ δ · v+ δ · δ · u),
where k, `, and m are nonzero integers, δ· indicates a divergence operator, and δ ·δ·
a double divergence operator.) Thus with B defined to be the necessary multiple of
A3(D

∗)−1, we have (ii) for flat structures. But now the result follows in general,
since moving to curved structures yields the same formal calculation, except that
at each stage the differential operators concerned may have additional lower order
terms involving curvature. It is easily checked that these terms can only yield terms
of order lower than n in the final calculation of BB. �

Proof of Proposition 2.2. We treat L first. We already have L = Bi∗Bi in dimension
6, and so we shall assume that n ≥ 8. Let us denote by

U : E2,2
[2] → E2

⊗ T2

the conformally invariant operator given by (35). We write d∇ for the tractor con-
nection coupled exterior derivative and δ∇ for its formal adjoint. Thus for example
for U ∈ E2

⊗ T2 we have (d∇U )a0a1a2 B1 B2 = 3∇a0Ua1a2 B1 B2 . It is straightforward
using (9) to verify that on conformally flat structures, the composition d∇U can
be reexpressed in the form MBi, where M : E3,2

[2] → E3
⊗ T is a conformally

invariant first-order differential splitting operator.
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There are conformally invariant formally self-adjoint operators Lk : Ek
→ Ek ,

0 ≤ k ≤ n, with leading term (δd)k . These are the “long operators” for the de
Rham complex given in [Branson and Gover 2005]. It is shown there that there are
natural linear differential operators Qk+1 such that Lk = δQk+1d .

Now suppose we are on a contractible (conformally flat) manifold. This suffices
for our present purposes. Then the tractor bundle is flat and trivial. It follows that
there are conformally invariant and formally self-adjoint tractor-coupled variants
of the Lk ,

L∇

k : Ek
⊗ T2

→ Ek ⊗ T2.

These are obtained by starting with the natural formulae for Lk = δQk+1d and
formally replacing each instance of d , δ, and the Levi-Civita connection with, re-
spectively, d∇ , δ∇ , and the Levi-Civita tractor-coupled connection. By construction
the result has a factorisation L∇

k = δ∇ Q∇

k+1d∇ for some differential operator Q∇

k+1.
Observe that by composition, we have a formally self-adjoint conformally in-

variant operator U∗L∇

2 U : E2,2
[2] → E2,2[−2], where U∗ is the formal adjoint of

U. We will reexpress this. By taking formal adjoints, we have U∗δ∇ = Bi∗M∗ from
d∇U = MBi. Thus we obtain an operator

Bi∗M∗Q∇

3 MBi : E2,2
[2] → E2,2[−2].

The result follows from the uniqueness of L, provided the displayed operator is
nontrivial. It is clearly sufficient to establish this for Riemannian signature struc-
tures and at a flat metric within the conformal class. We use the alternative ex-
pression U∗δ∇ Q∇

3 d∇U = Bi∗M∗Q∇

3 MBi. On flat structures, Q3 = (dδ)n/2−3,
and so Q∇

3 = (d∇δ∇)n/2−3. It follows that for u ∈ E2,2
[2] of compact support,

δ∇(d∇δ∇)n/2−3d∇U(u) vanishes if and only if d∇U(u) vanishes, since the tractor
connection is flat. (Suppose d∇U(u) 6= 0. Then there exists a parallel T ∈ T2 such
that T B1 B2(d∇U(u))a0a1a2 B1 B2 6= 0. In other words, if fa1a2 := T B1 B2U(u)a1a2 B1 B2 ,
then d f 6=0. But on the other hand, if 0=T B1 B2(δ∇(d∇δ∇)n/2−3d∇U(u))a0a1a2 B1 B2 ,
then (δd)n/2−2 f = 0 which implies d f = 0.) This is equivalent to MBi(u) van-
ishing. Since M is a differential splitting operator, this in turn is equivalent to
Bi(u)= 0. Thus the composition δ∇ Q∇

3 d∇U : E2,2
[2]→ E2⊗T2 is nontrivial. Now

it is easily verified that E2,2[−2] turns up with multiplicity 1 in the composition
series for E2 ⊗ T2. It follows by an exact analogue of the argument used on page
331 that δ∇ Q∇

3 d∇U only takes values in E2,2[−2] and composition factors of higher
total order. Thus on the range of this operator, U∗ acts as a nonzero multiple of
the projection to the component E2,2[−2]. (Recall that U∗ is the formal adjoint
of a differential splitting operator U : E2,2

[2] → E2
⊗ T2, and so it must act as a

nonzero multiple of the identity on the component E2,2[−2]. On the other hand, it
is differential, so it cannot lower total order.)
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Now we consider the situation for B. We require a conformally invariant dif-
ferential splitting operator 0 : E1,1

[2] → E1
⊗ T2 that will in this case play a role

analogous to U above. This is easily constructed explicitly and directly, and can be
obtained from a composition of the related operators in Section 5.1 of [Branson and
Gover 2002], so we omit the details. Since 0 has values in a weight zero adjoint
tractor-valued bundle of 1-forms it is clear that the composition d∇0 is conformally
invariant. This is easily verified nontrivial. On the other hand, in terms of a metric
g, the tractor curvature is given by

Z B1
b1 Z B2

b2Ca1a2b1b2 +
2

n − 3
X B1 Z B2

b2∇
b1Ca1a2b2b1 .

Thus the linearisation, at a conformally flat metric g0, of the tractor curvature
is (1/(n−3))UC. This is manifestly nontrivial, and so via arguments used sev-
eral times already concerning the uniqueness of irreducible conformally invariant
operators, it is straightforward to verify that this operator must agree with d∇0

(on conformally flat structures), at least up to scale. We set the scale of 0 so
that d∇0 = (1/(n−3))UC. On flat manifolds, Q2 = (dδ)n/2−2, and so by almost
the same argument as for L, we conclude that on conformally flat manifolds, the
formally self-adjoint conformally invariant operator C∗U∗Q∇

2 UC is nontrivial. �

The next theorem shows that for n even, if the ambient curvature is formally
Ricci-flat to O(Qn/2−1), then a tensor part of the coefficient of Qn/2−1 is a natural
conformal invariant of the underlying manifold and so is an obstruction to finding
an ambient metric which is Ricci-flat to higher order. For our purposes, the main
point is that this is achieved by Theorem 4.4(iii), which recovers this obstruction
via a tangential operator acting on the ambient curvature.

Theorem 4.4. For a conformal manifold M of even dimension n, let h be an
associated ambient metric satisfying Ric(h)= Qn/2−1 B. Then we have

(i) B|Q is equivalent to a tractor BAB ∈ E(AB)0[−n] such that X A BAB = 0.

(ii) The weighted tensor Z A
a Z B

b BAB =: Oab is a section of E(ab)0[2−n].

(iii) For n ≥ 6, we have

1/ n/2−2 RA1 A2 B1 B2 = k(n)X A1 X B1 B A2 B2 + O(Q),

where k(n) is the dimension dependent nonzero constant given above. In di-
mension 4,

3DA0 X A0 RA1 A2 B1 B2 = 16X A2 X B1 B A1 B2 + O(Q).

(iv) The tensor Oab is divergence-free.

(v) The weighted tensor Oab is a nontrivial natural conformal invariant of the
form 1n/2−2

∇
c
∇

dCcadb + lots = (n − 3)1n/2−2(1Pab − ∇a∇bJ)+ lots (up
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to a constant multiple), and so is an obstruction to finding an ambient metric
which is Ricci-flat modulo O(Qn/2).

Remarks. 1. The statement of the theorem up to the definition of Oab in (ii) is
a characterisation of the Fefferman–Graham obstruction tensor (Graham, private
communication; see also [Fefferman and Graham, in progress]). This gives a com-
plete obstruction to the ambient metric in the sense that if this vanishes, then the
ambient construction may be continued to all orders [Fefferman and Graham 1985].
Hence Oab is the usual obstruction tensor, as claimed in Theorem 4.2. Thus part
(iii), above, gives a new ambient formula for the Fefferman–Graham obstruction
tensor.

2. From (25) it follows easily that Oab may be equally viewed as an obstruction
to obtaining an ambient metric which is harmonic for 1/ in the sense that 1/ R
vanishes to all orders. See also the remark on page 325.

3. It should be pointed out that

(36) 1n/2−31/ RA1 A2 B1 B2 = k(n)X A1 X B1 B A2 B2 + O(Q)

is an alternative ambient formula for the obstruction, and we could replace the
1n/2−3 by 1n/2−3

α in this formula.

Proof of Theorems 4.2 and 4.4. As above, we write Ric for Ric(h). It is im-
mediate that B is symmetric and homogeneous of weight −n. Also from (5) it
follows that X A B AB = 0. So B|Q is equivalent to a tractor field BAB ∈ T(AB)[−n]

satisfying X A BAB = 0. From this last equality and (8), it is clear that Oab is
conformally invariant, while from the weight and symmetry of BAB , it follows that
Oab ∈ E(ab)[2−n]. For parts (i) and (ii), it remains to show that both BAB and Oab

are trace-free.
First we consider the case n 6= 4. Note that since ∇A Q = 2X A, we have

(37) ∇A1∇B1RicA2 B2 = (n − 2)(n − 4)Qn/2−3 X A1 X B1 B A2 B2 + O(Qn/2−2).

From (21) and (25) together with a short computation, it follows that

1/ n/2−2 RA1 A2 B1 B2 = k(n)X A1 X B1 B A2 B2 + O(Q),

as claimed in (iii), where

(38) k(n)= (n − 2)(n − 4)(−1)n/2−32n−4((n/2 − 3)!
)2
.

(Note that (21) and (25) also give the alternative formula in Remark 3, above.)
Since (n−4)R|Q is equivalent to the tractor field W , it follows from Proposition

4.8 that (n − 4)1/ n/2−2 R|Q descends to the natural tractor field �/ n/2−2W . On the
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other hand, using δB
A
= X AYB+Y A X B+Z A

a Z B
bδb

a and the fact that X A BAB =0,
we see that

(39) X A1 X B1 BA2 B2 = X A1 Z A2
a X B1 Z B2

bOab.

Therefore, X A1 X B1 B A2 B2 |Q is equivalent to the tractor field X A1 Z A2
a X B1 Z B2

bOab.
This establishes (32) of Theorem 4.2.

Since the left-hand side of (32) is natural, it follows that X A1 X B1 BA2 B2 is natu-
ral. Hence Oab = Z A2 a Z B2 b BA2 B2 = 4Y A1Y B1 Z A2 a Z B2 b X A1 X B1 BA2 B2 is likewise
natural, as claimed in (v) and Theorem 4.2.

Next we show that BAB and Oab are trace-free. According to Theorem 4.1, the
operators �/ m preserve tensor type. Since WA1 A2 B1 B2 is trace-free, it follows that
�/ n/2−2WA1 A2 B1 B2 is completely trace-free. Thus h A1 B2 X A1 X B1 BB2 A2 = 0, by (32)
and (39). Since BC D is symmetric and X A BAB = 0, it follows that h AB BAB = 0
as claimed. Now using (7) and again that X A BAB = 0, we see that gabOab = 0.

We must obtain the corresponding results in dimension 4. First observe that in
any dimension,

3DA0 X A0 RA1 A2 B1 B2 = (n − 2)
(
(n − 4)RA1 A2 B1 B2 + 2X A1∇

C RA2C B1 B2

)
+ O(Q),

by (15) and (18). From the contracted Bianchi identity, we have for n = 4,

3DA0 X A0 RA1 A2 B1 B2 = 8X A2∇B1RicA1 B2 + O(Q)= 16X A2 X B1 B A1 B2 + O(Q).

Relating W to the left-hand side via (27), we conclude that in dimension 4,

WA1 A2 B1 B2 = −8X A1 X B1 BA2 B2 .

Comparing this with (28), we have −2X A1 X B1 BA2 B2 = X A1 Z A2
a X B1 Z B2

b Bab.
Thus Oab is a scalar multiple of the Bach tensor, Oab = −

1
2 Bab, which is natural

and trace-free, by (1). Also, since W is trace-free and X A BAB = 0, it follows that
BAB is trace-free.

It is well known (and easily verified) that the Bach tensor in dimension 4 is
divergence-free. For (iv) we need the analogous result in other dimensions. First
note that a short calculation using the formula (16) for the tractor-D operator and
the identities (9) for the connection shows that

2D A1 X A1 Z A2
a X B1 Z B2

bOab = (n − 4)X A2 X B1 Z B2
b
∇

aOab.

So in dimensions other than 4, it follows that D A1 X A1 X B1 BA2 B2 and equivalently
(DA1 X A1 X B1 B A2 B2)|Q, vanish if and only if ∇

aOab = 0. On the ambient manifold,
by (36), DA1 X A1 X B1 B A2 B2 is

DA11n/2−31/ RA1 A2 B1 B2 + O(Q),
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up to a nonzero multiple, since D acts tangentially. We ignore terms O(Q) for
much of the remainder of this calculation. The preceding display expands to

(4 − n)∇A11n/2−31/ RA1 A2 B1 B2 − 1X A11n/2−31/ RA1 A2 B1 B2 .

From (5) and (24) we obtain

(40) (4 − n)[∇A1,1]1n/2−41/ RA1 A2 B1 B2

+ (6 − n)1[∇
A1,1]1n/2−51/ RA1 A2 B1 B2

+ · · · − 41n/2−4
[∇

A1,1]1/ RA1 A2 B1 B2

− 21n/2−3(
[∇

A1,1]RA1 A2 B1 B2 +
1
2∇

A1(R]]RA1 A2 B1 B2)
)
,

after some reorganisation. It remains only to observe that all the terms in this sum
are O(Q). First we note that from (21) and (37), it is clear that

1/ RA1 A2 B1 B2 = K Qn/2−3 X A1 X B1 B A2 B2 + O(Qn/2−2),

for some constant K . Thus by (25), each term 1k
[∇

A1,1]1`1/ RA1 A2 B1 B2, for
k + `= n/2 − 4, is some number times

(41) 1k
[∇

A1,1]Qn/2−3−`X A1 X B1 B A2 B2 + O(Q),

since [∇
A1,1] is a first-order operator. Now consider the identity obtained from

(26) by including the O(Qn/2−2) terms which were omitted. From this identity,
(5), and the fact that ∇Q = 2X , it follows that [[∇

A1,1], Q] = 0 identically on
the ambient manifold. Thus (41) is O(Q).

Now consider the last term in (40). By direct calculation, we have

[∇
A1,1]RA1 A2 B1 B2 = −

1
2∇

A1(R]]RA1 A2 B1 B2)+ O(Qn/2−2),

and so as required,

1n/2−3(
[∇

A1,1]RA1 A2 B1 B2 +
1
2∇

A1(R]]RA1 A2 B1 B2)
)
= O(Q).

Finally, we must show that in general Oab is nontrivial. Up to scale, Oab is
given by 4Y A1Y B1 Z A2 a Z B2 b�/ n/2−2WA1 A2 B1 B2 . From (28) and (31), it is clear that
4Y A1Y B1 Z A2 a Z B2 bWA1 A2 B1 B2 is at leading order a nonzero multiple of ∇

d
∇

cCcadb.
Using that �/ n/2−2 has leading term 1n/2−2 and (9) to verify that the commutator
of 1n/2−2 with 4Y A1Y B1 Z A2 a Z B2 b generates only lower order terms, we conclude
that Oab = `(n)1n/2−2

∇
d
∇

cCcadb + lots, where `(n) is a nonzero constant. Given
the form of the leading term, an elementary exercise shows that this natural tensor
cannot vanish in general. �
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4A. Conformal Laplacian operators on tractor fields. It remains to prove Theo-
rem 4.1. Our strategy is to first define the operators �α

m , which we do via powers
of the ambient Laplacian 1α in Proposition 4.8, and then rewrite each such power
as a combination of compositions of low order tangential operators, each of which
has an immediate interpretation as an operator on a tractor bundle. This leads to a
simple algorithm for rewriting any operator of this form in terms of basic tractor
operators using only the existence of an ambient metric. Two of the key tools
are Theorem 4.7, which explains how ambient derivatives of the ambient curvature
can be reexpressed in terms of low order tangential operators, and Proposition 4.10,
which describes harmonic extensions of tensor fields along Q.

Almost all of the subsequent discussion concerns the ambient manifold M̃ with
metric as discussed in Section 3. Occasionally we pause to interpret results on the
underlying conformal manifold M .

In the generic n-even case, some identities, such as (22) and (26), hold to only
finite order in Q. In many proofs, we will apply the operators ∇ and 1 to both sides
of an identity, and this will reduce the order to which the identity holds. Thus we
must keep track of the number of times that we apply ∇ and 1. In odd dimensions
and in the conformally flat case, this is unnecessary since the identities hold to
all orders. For simplicity, many of the proofs that follow explicitly treat only the
generic n-even case. The proofs in the other cases are essentially the same, except
that they do not require the operator counts. In addition, we have stated some of
the results themselves in the generic n-even case only. All results hold as stated.
Propositions 4.5 and 4.6, Theorem 4.7, and Lemma 4.11 also hold in general; they
hold to all orders in both the odd-dimensional case and the conformally flat case,
where the upper bounds stated in the hypotheses of the results no longer apply.

We will often use abbreviated notations. We may abbreviate (26) by writing
[1,∇]V =

∑
R∇V . It is easily verified that (26) generalises to

(42) [1α,∇]V =
∑

R∇V +α
∑
(∇R)V,

which also holds modulo O(Qn/2−2) in even dimensions and to infinite order in
odd dimensions. For example, let V be any symmetric ambient 2-tensor. In this
case (42) stands for

[1α,∇A]VBC = 2(α− 1)RA
P

B
Q
∇P VQC

+ 2(α− 1)RA
P

C
Q
∇P VB Q − 2α(∇A RB

P
C

Q)VP Q,

which holds to the appropriate order. If the V on the left-hand side of (42) has
any free indices, then in every term of the right-hand side of (42), each such index
either remains attached to V in its original position or moves onto an R. Some
of the proofs in Section 4 will use this fact, which follows immediately from (26)
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and the definition of R]]. The expressions we treat will often involve iterations of
operators. To indicate how many operators we are composing in such an iteration,
we will use exponents. For example, we might indicate ∇A∇B RC DE F by writing
∇

2 R. We will often use the symbol P to denote a partial contraction polynomial.
The same P may denote different polynomials in different parts of a discussion.

We often use the identities (13) and ∇Q = 2X without explicit mention.
The proof of Theorem 4.1 begins with the development of a useful ambient

calculus. This involves a sequence of results.

Proposition 4.5. Suppose that n is even and M is generic. Let an integer ` be
given, and suppose that 0 ≤ `≤ n/2 − 4. Then on the ambient manifold,

(43) 1∇
`R =

∑
(∇ p R)(∇q R)+ O(Qn/2−3−`),

where p+q = `. If the R on the left-hand side of (43) has any free indices, then for
every term in the summation, these indices appear on an R (as opposed to a ∇).

Proof. We use induction. The case ` = 0 follows from (22). Suppose next that
0 ≤ m ≤ n/2 − 5 and that the result holds for ` = m. From this assumption and
(26), we have

1∇
m+1 R = ∇1∇

m R +
∑

R(∇m+1 R)+ O(Qn/2−2)

= ∇

(∑
(∇ p R)(∇q R)+ O(Qn/2−3−m)

)
+

∑
R(∇m+1 R)+ O(Qn/2−2)

=
∑
(∇s R)(∇t R)+ O(Qn/2−3−(m+1)).

Here p + q = m and s + t = m + 1. The use of the inductive assumption and (26)
never moves a free index from an R onto a ∇. �

Proposition 4.6. Suppose that n is even and M is generic. Let an integer ` be
given, and suppose that 0 ≤ `≤ n/2 − 3. Then

1`R =
∑
(∇v1 R) · · · (∇v j R)+ O(Qn/2−2−`).

The number of factors in a term may vary from term to term, but in any case, vi ≤ `

for 1 ≤ i ≤ j . If A, B, C , and D denote the indices of the R on the left-hand side,
then for each term in the sum, these indices are on an R.

Proof. We again use induction. Suppose that 0 ≤ m ≤ n/2 − 4 and that the result
holds for `= m. Then

(44) 1m+1 R = 1
(∑

(∇v1 R) · · · (∇v j R)+ O(Qn/2−2−m)
)
.

By expanding the right-hand side above using the Leibniz rule and the formula
1 = ∇

A
∇A, we obtain an expression

∑
(∇u1 R) · · · (∇uk R) + O(Qn/2−2−(m+1))

plus a sum of the form
∑
(1∇

t0 R)(∇t1 R) · · · (∇ts R). In each case, ui ≤ m + 1
and ti ≤ m. But by Proposition 4.5, 1∇

t0 R =
∑
(∇ p R)(∇q R)+ O(Qn/2−3−t0),
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where p + q = t0 ≤ m. Thus 1∇
t0 R =

∑
(∇ p R)(∇q R)+ O(Qn/2−2−(m+1)). The

use of the inductive assumption and Proposition 4.5 never moves an index from an
R onto a ∇. �

Theorem 4.7. Suppose that n is even and M is generic. Let h be an ambient
metric for a conformal manifold of dimension n. Given t ≥ 0 and u ≥ 0, suppose
that t + u ≤ n/2 − 3. Then there is a partial contraction P, polynomial in DA,
RABC D , X A, hAB , and its inverse hAB , such that

(45) ∇
t1u R = P + O(Qn/2−2−t−u).

Each term of P is of degree at least 1 in RABC D . If , in (45), R has any free indices,
then in P these indices always appear on an R.

Proof. By Proposition 4.6, we may write

∇
t1u R =

∑
(∇v1 R) · · · (∇v j R)+ O(Qn/2−2−u−t),

where vi ≤ t + u for each i . If the R on the left-hand side has any free indices,
then for each term in the sum, these indices always appear on an R; this follows
from Proposition 4.6. To complete the proof, we show that if 0 ≤ `≤ n/2−3, then
∇
`R = P + O(Qn/2−2−`). We use induction. Suppose that 1 ≤ m ≤ n/2 − 3, and

suppose that ∇
`R = P + O(Qn/2−2−`) whenever 0 ≤ `≤ m − 1. By (14) we have

DA∇
m−1 R = (n − 2m − 4)∇A∇

m−1 R − X A1∇
m−1 R.

Note that n − 2m − 4 > 0. Also observe that each R has the same indices. From
this equation and Proposition 4.5, we conclude that

∇
m R = DA∇

m−1 R + X A
( ∑

(∇ p R)(∇q R)+ O(Qn/2−3−(m−1))
)
,

where p + q ≤ m − 1. Also note that if R on the left-hand side of this equation
has any free indices, then in each term of the right-hand side, these indices always
appear on an R. We now see that ∇

m R = P + O(Qn/2−2−m), from our inductive
assumption. �

Remark. Theorem 4.7 shows that when n 6= 4, an ambient partial contraction
∇

t1u R|Q is equivalent to a conformal invariant which is obtained by taking a
partial contraction polynomial in D, W , X , h, and its inverse h−1. Moreover in
each case, via the inductive steps of the proof, one obtains the explicit formula for
the invariant as a partial contraction of these quantities. More generally, this shows
that any “Weyl invariant” [Bailey et al. 1994b; Fefferman 1979] arising from a
complete (partial) contraction of ambient tensors of the form (45) is contained in the
space of invariants generated by complete (partial) contractions of the expressions
polynomial in the tractor operators and fields D, W , X , h, and h−1. Furthermore,
there is an explicit algorithm for finding the tractor formula, given the formula for
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the ambient invariant. This is a slight generalisation of a result along these lines
obtained in [Čap and Gover 2003].

The next proposition is a simple generalisation of results in [Branson and Gover
2005; Graham et al. 1992].

Proposition 4.8. For every integer m ≥ 1 and every ambient homogeneous tensor
space T 8(m − n/2),

1m
α : T 8(m − n/2)→ T 8(−m − n/2)

is tangential and so determines a conformally invariant operator

�α
m : T8

[m − n/2] → T8
[−m − n/2].

Proof. By construction, the operators 1α preserve tensor type (with respect to
pointwise SO(h) tensor decompositions) and lower homogeneity weight by 2.
Hence 1m

α maps T 8(m − n/2) to T 8(−m − n/2).
To show that 1m

α acts tangentially, we calculate 1m
α Q A for A of homogeneity

m − 2 − n/2. Without any homogeneity assumption, we have

[1m
α , Q] =

∑m−1
p=0 1m−1−p

α [1α, Q]1p
α .

Acting on T 8(w), the p-th term on the right acts as 2(2(w−2p)+n +2)1m−1
α by

(25). Hence [1m
α , Q] acts as 2m(2w−2m +n+4)1m−1

α . This vanishes identically
if w = m − 2 − n/2. Thus 1m

α is tangential on T 8(m − n/2) as desired. �

The remainder of this section is concerned with obtaining tractor formulae for
the operators in the previous theorem. A key idea is to assume that the ambient
tensor field being acted on is suitably “harmonic” as in the following lemma. Since
tangential operators do not depend on how the field is extended off Q, this involves
no loss of generality.

Lemma 4.9. Suppose k ≥ 2 is an integer. In the generic n-even case, suppose
k ≤ n/2 − 1 or that α = 0 and k ≤ n/2. Given S ∈ T 8(k − n/2), suppose 1αS is
O(Qk−1). Finally, let v, 0 ≤ v ≤ k − 1, be given. Then there is a linear differential
operator P of order at most 2v given by a partial contraction formula polynomial
in X A, DA, RABC D , hAB , and hAB , such that

(46) ∇
vS = PS + O(Qk−v).

If , on the left-hand side of (46), S has any free indices, then in every term of PS,
each of them appears either on S in its natural position or on R.

Proof. We will assume that n is even and M is generic. For v = 1, observe that by
(14) and (23) we have

2(k − 1)∇S = DS −αX R]]S + X1αS.
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This is in the required form, since 1αS = O(Qk−1).
We now proceed by induction on v. Suppose that 1 ≤ m < k − 1 and that (46)

holds for 1 ≤ v ≤ m. By (14) it follows that

(47) 2(k − m − 1)∇m+1S = D∇
m S −αX R]]∇m S + X1α∇

m S.

If S on the left-hand side has any free indices, then in every term of the right-
hand side, each of these indices appears on an S in its natural position or on an
R. From the inductive assumption and the properties of D, it then follows that
D∇

m S −αX R]]∇m S is of the form PS +O(Qk−(m+1)), where P is as described
in the statement of the lemma. On the other hand, by (42),

(48) 1α∇
m S = ∇

m1αS +
∑
(∇ p R)(∇q S)

+α
∑
(∇ p+1 R)(∇q−1S)+ O(Qn/2−2−(m−1)),

where p + q = m, p ≥ 0, and q ≥ 1. When we use (42) to construct (48), each
index attached to S on the left-hand side of (48) either remains fixed or moves onto
an R. Note that ∇

m1αS is O(Qk−(m+1)) and that n/2−2−(m −1)≥ k −(m +1).
Thus 1α∇

m S =
∑
(∇x R)(∇y S)+ O(Qk−(m+1)). Here x + y = m, x ≤ m, and

y ≤ m. If α = 0, then we have 1 ≤ y and x ≤ m − 1. By Theorem 4.7 and by our
inductive assumption, it follows that 1α∇

m S = PS +O(Qk−(m+1)), where P is as
in the statement of the lemma. �

The usefulness of Lemma 4.9 results from the next proposition, which gener-
alises to ambient tensors and 1α-Laplacians a result of [Graham et al. 1992].

Proposition 4.10. Let k ≥ 1 be an integer. Then for any T ∈ T 8(k −n/2), there is
an S ∈ T 8(k − n/2) such that T − S is O(Q) and 1αS is O(Qk−1).

Proof. Let w := k − n/2. Suppose that Sm−1 ∈ T 8(w) is such that T − Sm−1 is
O(Q) and 1αSm−1 = Qm−1 E . (Then E ∈ T 8(w− 2m).) If A ∈ T 8(w− 2m),
then Sm := Sm−1 + Qm A ∈ T 8(w) and T − Sm is O(Q). We have 1αSm =

Qm−1 E + 1αQm A. Now 1αQm A =
∑m−1

i=0 Qi
[1α, Q]Qm−i−1 A + O(Qm), and

from (25) and the homogeneity of A and Q this becomes

1αQm A =
∑m−1

i=0 2(n + 2w− 4i − 2)Qm−1 A + O(Qm)

= 4m(w+ n/2 − m)Qm−1 A + O(Qm).

Thus if m 6=w+n/2 (i.e. m 6= k), then setting A = −[4m(w+n/2−m)]−1 E gives
1αSm = O(Qm). �

Note that the proof establishes much more than we require in the proposition. It
shows that the 1α-harmonic extension of T |Q only fails at O(Qk), and that past
this the extension continues. Also, if we allow w such that w+ n/2 /∈ {1, 2, . . . },
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then for any T ∈ T 8(w) and any integer `≥ 0, there is S ∈ T 8(w) such that T −S
is O(Q) and 1αS is O(Q`).

Remark. Recall that one of our central aims (at least for n ≥ 6) is to understand
the result of applying 1/ n/2−2 to the ambient curvature R. For this it would appear
that we do not need Proposition 4.10, since by (22), the ambient curvature already
has the property we require of S, namely, that 11/2 R = 1/ R = O(Qn/2−3). On
the other hand, we prefer here to treat 1/ n/2−2 R in two steps. First, we derive a
tractor formula for the conformally invariant operator �/ n/2−2 on T2,2

[−2]. For
this we will use Proposition 4.10. This operator arises from 1/ n/2−2 on T 2,2(−2).
Then finally we may apply the operator �/ n/2−2 to the tractor field W ; see (28).
Proceeding in this way, we can be sure that the tractor formula that we obtain for
the ambient quantity 1/ n/2−2 R|Q is precisely the tractor formula for �/ n/2−2 on
T2,2

[−2] applied to W .

Next, we need to understand how powers of the 1α-Laplacian are related to
iterations of D. We begin with a lemma which indicates the impact of moving
Laplacians to the right of ∇’s.

Lemma 4.11. Suppose that n is even and M is generic. Let α ∈ R, w ∈ R, and
T ∈ T 8(w) be given. Let

(49) S = 1t1
α∇

u1 · · · 1
tp
α ∇

u p T,

where ti + ui ≥ 1 for each i . Suppose that k :=
∑p

i=1(ti + ui )≤ n/2 − 1. Then

(50) S =
∑
(∇v11w1

α R) · · · (∇vq 1
wq
α R)(∇vq+11

wq+1
α T )+ O(Qn/2−k),

where v j +w j ≤ k for each j . If T has any free indices in (49), then in (50) these
indices appear either on T in their original position or on an R.

Proof. We proceed by induction on k. Suppose that 1 ≤ m ≤ n/2 − 2. Suppose
the result holds whenever 1 ≤ k ≤ m, and let S be as in (49) with k = m + 1. If
t1 =0, then by our inductive assumption we see immediately that (50) holds modulo
O(Qn/2−(m+1)). On the other hand, suppose t1 > 0. Then by our inductive as-
sumption, S = 1α

(∑
(∇v11w1

α R) · · · (∇vq 1
wq
α R)(∇vq+11

wq+1
α T )+ O(Qn/2−m)

)
,

where v j + w j ≤ m for each j . Suppose we use the Leibniz rule to expand
1(∇v11w1

α R) · · · (∇vq 1
wq
α R)(∇vq+11

wq+1
α T ). Then each term in the resulting sum

will either contain two factors of the form ∇
v j +11

w j
α P or one factor of the form

1∇
v j 1

w j
α P , where P denotes R or T in each case. But 1∇

v j 1
w j
α P equals

1α∇
v j 1

w j
α P − αR]]∇v j 1

w j
α P , and by (42) we may write 1α∇

v j 1
w j
α P in the

form ∇
v j 1

w j +1
α P +

∑
(∇v′

` R)∇v′′

`1
w j
α P + O(Qn/2−(m+1)). Here v′

` + v′′

` = v j .
When we use (42), any given index attached to P either remains fixed or moves
onto an R. This completes the induction. �
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Lemma 4.12. Suppose ` is an integer and ` ≥ 1. In the generic n-even case,
suppose also that `≤ n/2 − 1. Let T ∈ T 8(`− n/2) be given. Then

(51) 1`−1
α DT = −X1`

αT +
∑
(∇v11w1 R) · · · (∇vp1wp R)(∇vp+11

wp+1
α T )

+αX
∑
(∇r11s1 R) · · · (∇rq 1sq R)(∇rq+11

sq+1
α T )+ O(Q).

Here vi +wi ≤ `−1 for 1 ≤ i ≤ p+1, and ri +si ≤ `−1 for 1 ≤ i ≤ q +1. If α= 0,
then vi +wi ≤ `−2 for 1 ≤ i ≤ p, and vp+1 +wp+1 ≤ `−1. If T on the left-hand
side has any free indices, then on the right-hand side these indices always appear
on R or in their natural positions on T .

Proof. Suppose that n is even and M is generic. If ` = 1, the result follows from
(14). Now suppose that `≥ 2. From (14) and (24) we have

1`−1
α DAT = 2(`− 1)1`−1

α ∇AT − 1`−1
α X A1αT +α1`−1

α X A R]]T
= 2(`− 1)1`−1

α ∇AT − [1`−1
α , X A]1αT − X A1`−1

α 1αT

+α[1`−1
α , X A]R]]T +αX A1`−1

α R]]T

= −X A1`
αT + 2(`−1)1`−1

α ∇AT −
∑`−2

i=0 1`−2−i
α [1α, X A]1i

α1αT

+α
(∑`−2

i=0 1`−2−i
α [1α,X A]1i

α

)
R]]T +αX A1`−1

α R]]T

= −X A1`
αT + 2(`− 1)1`−1

α ∇AT − 2
∑`−2

i=0 1`−2−i
α ∇A1i

α1αT

+ 2α
(∑`−2

i=0 1`−2−i
α ∇A1i

α

)
R]]T +αX A1`−1

α R]]T .

Each of the original indices on T remains fixed in this calculation except in the
terms of R]]T , where it may either remain in its original position on T or move
onto an R. By (42), we may reexpress this in the form

(52) 1`−1
α DT = −X1`

αT +
∑

1
s j
α R∇1

t j
α T +α

∑
1

s j
α (∇R)1t j

α T

+α1`−2
α ∇R]]T +α

∑
1pi
α R∇1qi

α R]]T

+α
∑

1pi
α (∇R)1qi

α R]]T +αX1`−1
α R]]T + O(Q),

where s j + t j = `− 2 for each j and pi + qi = `− 3 for each i . When we use
(42) to construct (52), each index on T or R either remains fixed or moves onto
an R. In the right-hand side of (52) the coefficient of X1`

αT is exact. Otherwise,
no attempt has been made to present the coefficients precisely. At this point we
need only the general form of the expression. Where α appears as a coefficient,
this means as usual that all terms of this form have coefficient a multiple of α.

For ambient tensors U and V ,

1αU V = (1U )V + (∇U )∇V + U1αV + RU V .

Thus by using the definition of 1α together with the Leibniz rule, we may reexpress
the right-hand side of (52) in the form given on the right-hand side of (51), except
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that on each R or T , the operators ∇, 1, and 1α may not be in the order given
in (51). But by Lemma 4.11, we may indeed reexpress the right-hand side of (52)
in the form given on the right-hand side of (51). In doing this, we may move an
index that was originally attached to an R or a T , but we always move the index
onto an R. In the new expression, we have vi +wi ≤ `− 1 for 1 ≤ i ≤ p + 1 and
ri + si ≤ `−1 for 1 ≤ i ≤ q +1; this follows from Lemma 4.11. In the α = 0 case,
the fact that vi +wi ≤ `−2 for 1 ≤ i ≤ p follows from the fact that (52) simplifies
to 1`−1 DT = −X1`T +

∑
1s j R∇1t j T + O(Q) when α = 0. �

We are now ready to show that the powers of the 1α-Laplacian can be reex-
pressed as a sum of compositions of tangential operators.

Proposition 4.13. Suppose k ≥1 is an integer. Letw= k−n/2, and let V ∈T 8(w)

be given. In the generic n-even case, suppose that k ≤ n/2 − 2, or α = 0 and
k ≤ n/2 − 1, or T 8(w) = T (w) and k ≤ n/2 − 1, or T 8(w) = T 0(w) and
k ≤ n/2. Then

(−1)k−1 X A1 · · · X Ak−11
k
αV = 1DA1 · · · DAk−1 V + PV + O(Q),

where P is a linear differential operator of order less than 2k given as a partial
contraction polynomial in X A, DA, RABC D , hAB , and hAB . If V has any free
indices, then for every term of PV , these indices appear either on R or in their
natural position on V . The indices Ai are not skew-symmetrised.

Proof. The case of V ∈ T 0(w) is treated in [Gover and Peterson 2003]. For the
remaining cases, we assume, as usual, that we are in the generic n-even setting.

We begin with the case k ≤ n/2−2 and the case α = 0 and k ≤ n/2−1; we use
induction on k. Suppose that 1 ≤ m ≤ n/2 − 3 or that α = 0 and 1 ≤ m ≤ n/2 − 2,
and suppose the result holds whenever k = m. Let V ∈ T 8(m + 1 − n/2). By
Proposition 4.10, there exists an S ∈ T 8(m + 1 − n/2) such that V − S is O(Q)
and 1αS is O(Qm). Then by our inductive assumption,

(53) (−1)m−1 X A1 · · ·X Am−11
m
α (DAm S)=1DA1 · · ·DAm−1(DAm S)+PS+O(Q),

where P is of order less than 2m. If S on the left-hand side of (53) has any free
indices, then in each term of PS, these indices appear either on R or in their natural
position on S. Now apply Lemma 4.12 with `= m + 1 and T = S. We find that

(54) 1m
α DAm S = −X Am 1m+1

α S + O(Q)

+
∑
(∇v11w1 R) · · · (∇vp1wp R)(∇vp+11

wp+1
α S)

+αX
∑
(∇r11t1 R) · · · (∇rq 1tq R)(∇rq+11

tq+1
α S).

Here vi +wi ≤ m for 1 ≤ i ≤ p + 1, and ri + ti ≤ m for 1 ≤ i ≤ q + 1. If α = 0,
then vi +wi ≤ m −1 for 1 ≤ i ≤ p and vp+1 +wp+1 ≤ m. If, on the left-hand side
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of (54), S has any free indices, then on the right-hand side of this equation these
indices appear on R or in their natural positions on S. Since 1αS is O(Qm), we
may assume that wp+1 = tq+1 = 0 in (54). Thus by Theorem 4.7 and Lemma 4.9,
we have

(55) 1m
α DAm S = −X Am 1m+1

α S + PS + O(Q).

Since vp+1 ≤ m and rq+1 ≤ m in (54), it follows that the order of P is at most 2m
in (55). If S in (55) has free indices, then in PS these appear either on R or in
their natural positions on S. From (53) and (55) it now follows that

(56) (−1)m X A1 · · · X Am 1m+1
α S = 1DA1 · · · DAm S + PS + O(Q).

But DA acts tangentially along Q, and 1 acts tangentially on fields homogeneous
of degree 1−n/2. Thus 1DA1 · · · DAm +P acts tangentially on S. By Proposition
4.8, 1m+1

α also acts tangentially on S, and so we may replace S with V on both
sides of (56). This completes the induction.

Finally, suppose that T 8(w) = T (w). By the Ricci-flatness of the ambient
metric, it follows that R]]V is O(Qn/2−1). Thus for 1 ≤ k ≤ n/2 − 1 we see that
1k
αV = 1k V + O(Q), and the result follows from the case α = 0. �

We are now ready to prove Theorem 4.1 and at the same time describe tractor
formulae for the operators �α

m . We begin with the tractor formulae.

Theorem 4.14. Via the algorithm implicit in the inductive steps above, the op-
erators �α

m have tractor formulae (for m in the ranges given in Theorem 4.1) as
follows:

(57) (−1)m−1 X A1 · · · X Am−1�
α
mU = �DA1 · · · DAm−1U + P8,m

A1···Am−1
U,

where the differential operator P8,m is a partial contraction polynomial in X , D,
W , h, and h−1. Thus for m 6= n/2,

(58) (m − 1)!
(∏m

i=2(n − 2i)
)
�α

mU

= D Am−1 · · · D A1�DA1 · · · DAm−1U + D Am−1 · · · D A1P8,m
A1···Am−1

U.

The indices attached to U on the left-hand side appear, in each term of P8,mU ,
on U in their original position or on W . The indices Ai in (57) and (58) are not
skew-symmetrised.

Proof of theorems 4.1 and 4.14. Recall that 1 : T 8(1 − n/2) → T 8(−1 − n/2)
descends to the generalised conformal Laplacian operator � and D descends to D;
see (17). Thus (57) is an immediate consequence of Proposition 4.13. From this
the claims of naturality are immediate from the naturality of X , �, D, W , h, and
h−1. That the �α

m have leading term 1m follows easily from the expression (16)
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for D and the identities (9) for the tractor connection. Then note that (58) follows
from (57) and (19). �

4B. Calculating explicit formulae; examples. One can easily compute explicit
formulae for the obstruction tensors in low dimensions. From the proof of theo-
rems 4.2 and 4.4, we know that in dimension 4, Oab is simply −(1/2) Bab, where
Bab is the Bach tensor as given in (1).

In dimension 6, we have m = 1, and the relevant ambient operator from Propo-
sition 4.8 is 1/ : T 2,2(−2)→ T 2,2(−4), which descends to

(59) � +
1
4 W]]=: �/ 1 : T2,2

[−2] → T2,2
[−4].

The left-hand side of (59) is the tractor formula for �/ 1. By Theorem 4.2, applying
this to W yields the obstruction tensor via the identity (32); see (28). That is,
26 X A1 Z A2

a X B1 Z B2
bO6

ab =�W +
1
4 W]]W , where we have used the fact that k(6)=

26. Thus

64Oce X[B ZC]
c Z[E

e X D]

= �WBC DE − W A
C B

F WF ADE − W A
C D

F WB AF E − W A
C E

F WB ADF .

But 4Y BY D ZC
a Z E

b X[B BC][E X D] = Oab. Thus, in any conformal scale, Oab is
given by

(60) 1
16 Y BY D ZC

a Z E
b

× (�WBC DE − W A
C B

F WF ADE − W A
C D

F WB AF E − W A
C E

F WB ADF ).

If one expands using (9), (28) and the definitions of � and the tractor metric, it is an
entirely mechanical process to rewrite (60) in terms of the Levi-Civita connection
and its curvature (with metric contractions). A computation using this process
together with Mathematica and J. Lee’s Ricci software package [Lee 1998] shows
that

(61) O6
ab =

1
161Bab −

1
4 JBab +

1
8 BcdCa

c
b

d
−

1
2 Pcd∇

c A(ab)
d

+
1
4 Acad Ac

b
d
−

1
2 Acad Ad

b
c
−

1
4 A(ab)c∇

cJ +
1
4 PcdPd

eCa
c

b
e,

where A and B are respectively the Cotton and Bach tensors as given in (29) and
(30). This formula for O6

ab agrees up to a constant factor with the formula given in
[Graham and Hirachi 2005].

In dimension 8, we find that Oab = (1/384)T(ab), where Tab is as given on the
next page. To see that O8

ab =T(ab), up to a constant factor, we begin by constructing
a tractor formula for �/ 2 on T2,2

[−2]. Let T ∈ T 8(−2) be an extension of any
element of T2,2

[−2]. By Proposition 4.10 we may assume that 1/ T = O(Q). Thus
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−Bab|c
c

d
d
+ 10Bab|c

cJ − 28Bab|cdPcd
+ 24Bac|bdPcd

− 4Bcd |e
eCa

c
b

d
− 24Bac|dPb

c
|
d
− 24Bcd |aPb

c
|
d
+ 56Bac|dPb

d
|
c

− 6Bab|cJ|
c
+ 12Bac|bJ|

c
+ 24Bcd |aPcd

|b − 32Bac|dPcd
|b

− 4Bcd |eCa
c

b
d
|
e
+ 4BabJ|c

c
− 16BcdPcd

|ab − 40BcdPab|
cd

+ 56BcdPa
c
|b

d
− 8Bac Bb

c
+ 3Bcd Bcd gab − 24BabJ2

− 64BacPbdPcd

+ 76BabPcdPcd
+ 28Bcd gabPc

ePd e
+ 16BcdJCa

c
b

d
+ 32BcdPaeCb

cd e

− 24BcdPc
eCa

d
b

e
+ 4BcdCae

c
i Cb

ed i
− 8BcdCae

c
i Cb

i d e
− 8AacbJ|d

d c

− 32Aacb|d ePcd
|
e
− 16Aacd |e Ab

cd
|
e
+ 16Acd a |e Acd

b|
e
− 32Aacb|dJ|

cd

+ 32Acad |ePb
ePcd

− 64Aabc|dPcdJ − 128Aacd |ePb
dPce

− 128Acad |ePb
dPce

− 608Aacb|dPc
ePd e

− 32Acad |bPc
ePd e

+ 32Aacd |ePe
i Cb

cd i

+ 32Acad |ePe
i Cb

cd i
+ 32Aacd |ePd

i Cb
cei

+ 32Acad |ePd
i Cb

cei

− 64Aabc|dPei Cced i
+ 32PcdPei Ca

c
b

e
|
d i

+ 32PcdJ|eCa
c

b
e
|
d

+ 32Acd ePd
i Ca

c
b

e
|
i
+ 32Acd ePd

i Ca
c

b
i
|
e
+ 64AacdPei Cb

cd e
|
i

+ 64AcadPei Cb
cd e

|
i
+ 8J|cJ|dCa

c
b

d
− 16Pcd |ePc

i |
eCa

d
b

i

+ 32AcadJ|eCb
cd e

− 32AcadJ|eCb
ecd

− 16Acd e Acd
i Ca

i
b

e

+ 32Acd e Ad c
i Ca

i
b

e
− 32Aacd Ae

d
i Cb

eci
− 32Acad Ad

ei Cb
eci

− 32Acad Aei
cCb

i d e
+ 64Acad Aebi Ccd ei

− 32Acad Aebi Cced i
− 64AacdPb

dJ|
c

− 64AcadPb
dJ|

c
− 32AabcJJ|

c
− 16Acd aPcdJ|b − 224AacbPc

dJ|
d

− 96Acad Ae
cdPb

e
− 192Acad Acd

ePb
e
− 224AacbPd ePcd

|
e

− 96Aabc Ad
c

ePd e
− 320Acad Aeb

dPce
+ 736Acad Ad

bePce

− 96AacdPb
d
|ePce

− 96AcadPb
d
|ePce

− 192Acad Ac
bePd e

+ 16PcdPc
eCai

d
j Cb

i e j
− 32PcdPc

eCai
d

j Cb
j ei

− 32PcdPei Ca j b
cCd ei j

+ 4gabPcdPei Cc
j
e

kCd i j k
− 4gabPcdPei Cce

j kCd j i k
− 32PcdPei Pei Ca

c
b

d

+ 32PcdPc
eJCa

d
b

e
− 224PcdPei PceCa

d
b

i
+ 150gabPcdPei Pe

j Cci d j

+ 150gabPcdPei Pc
j Cd ei j

− 32PacPd ePc
i Cb

d ei
− 64PacPd ePd

i Cb
eci

A tensor Tab such that O8
ab =

1
384 T(ab). Here Bab|cd := ∇d∇c Bab, etc.

by (14), (22), and (24), we first obtain

1/ DATBC DE = −X A1/ 2TBC DE + 2[1,∇A]TBC DE + R]]∇ATBC DE

−
1
4 X A(R]]R)]]TBC DE + X A(∇|I | R)]]∇|I |TBC DE + O(Q).

Here the | · | indicates that the enclosed index is not involved in the hash action,
and (R]]R)]]TBC DE denotes the double hash of R]]R with TBC DE . From this
equation together with (5), (14), (22), and (26), it follows that
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1/ DATBC DE = −X A1/ 2TBC DE − 2RA
P

B
Q DP TQC DE − 2RA

P
C

Q DP TB Q DE

− 2RA
P

D
Q DP TBC QE − 2RA

P
E

Q DP TBC DQ

+
1
2 R]]DATBC DE −

1
4 R]]X A R]]TBC DE

−
1
4 X A(R]]R)]]TBC DE +

1
4 X A(D|I | R)]]D|I |TBC DE

−
1
8 X A X I (R]]R)]]D|I |TBC DE

−
1
8 X A X I (D|I | R)]]R]]TBC DE + O(Q).

Since the dimension is 8, it follows from (14) that X A DAV = −4V + O(Q) for
all V ∈ T 8(−2). Thus from the definition of 1/ we see that

X A1/ 2TBC DE = −1DATBC DE − 2RA
P

B
Q DP TQC DE − 2RA

P
C

Q DP TB Q DE

− 2RA
P

D
Q DP TBC QE − 2RA

P
E

Q DP TBC DQ

−
1
4 R]]X A R]]TBC DE +

1
4 X A(R]]R)]]TBC DE

+
1
4 X A(D|I | R)]]D|I |TBC DE +

1
2 X A R]]R]]TBC DE

+ O(Q).

We restrict this to Q and then attach Y A. The result is that for any T ∈ T2,2
[−2],

(62) �/ 2TBC DE = −Y A�DATBC DE −
1
2 Y AWA

P
B

Q DP TQC DE

−
1
2 Y AWA

P
C

Q DP TB Q DE −
1
2 Y AWA

P
D

Q DP TBC QE

−
1
2 Y AWA

P
E

Q DP TBC DQ −
1
64 Y AW]]X AW]]TBC DE

+
1

64(W]]W )]]TBC DE +
1
16(D|I |W )]]D|I |TBC DE

+
1

32 W]]W]]TBC DE .

We use this to construct a tractor formula for O8
ab. From Theorem 4.2 we have

(63) O8
ce = −

1
384 Y B ZC

cY D Z E
e �/ 2WBC DE .

A short computation shows that W]]W]]WBC DE = (W]]W )]]WBC DE . Thus
from (62) and (63) we have

(64) O8
ab =

1
24576 Y B ZC

aY D Z E
b

(
64Y A�DAWBC DE

+ 32Y AWA
P

B
Q DP WQC DE + 32Y AWA

P
C

Q DP WB Q DE

+ 32Y AWA
P

D
Q DP WBC QE + 32Y AWA

P
E

Q DP WBC DQ

+ Y AW]]X AW]]WBC DE − 3W]]W]]WBC DE

− 4(D|I |W )]]D|I |WBC DE

)
.

By using the same techniques as in our derivation of (61), we see that O8
ab = T(ab).
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THE UNITARY DUAL OF THE HERMITIAN QUATERNIONIC
GROUP OF SPLIT RANK 2

MARCELA HANZER

We classify the irreducible noncuspidal representations of the hermitian
quaternionic group of split rank 2. We also find the complete noncuspidal
unitary dual of this nonquasisplit group.

1. Introduction and preliminaries

We are interested in studying the composition series and unitary dual of the p-adic
hermitian quaternionic group of semisimple rank 2, denoted by G2(D). This group
is not quasisplit, so the calculations of the unitary dual cannot be obtained by the
direct application of Shahidi’s methods. The group has an interesting feature: it
has an isolated unitary representation, a phenomenon that occurs, for example, in
the case of the exceptional group G2.

We also calculate the unitary dual supported on the non-Siegel maximal par-
abolic subgroup using global methods similar to those used in [Muić and Savin
2000] for the Siegel case, but resolving some obstacles related to the Langlands
correspondence between the hermitian quaternionic group of semisimple rank 1
and its split form. Similar classifications were obtained for classical split groups by
Sally and Tadić [1993] for p-adic GSp(2,F) and Sp(2,F), and by Konno [2001] for
the quasisplit unitary group. Regarding the exceptional groups, the classification
for the group G2 was done by Muić [1997]. In the classification of the subquotients
of the principal series of the hermitian quaternionic group we use the structure of
the 9-Hopf module on the Grothendieck group of the representations of the finite
length. This structure in the case of the split connected groups with the root system
of types Cn and Bn was observed by Tadić [1995] and then, in the case of O(2n, F),
the similar result was obtained by Ban [1999].

In this section, we recall the structure of the hermitian quaternionic groups,
state a result about the aforementioned structure of the 9-Hopf module on the
Grothendieck group, and state the Langlands’ classification and the criterion for
square integrability. We resolve the questions of the reducibility of the induced
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representations for the hermitian quaternionic group of the semisimple rank 1 and
make some observations about its structure.

In Section 2 we deal with the reducibility and composition series for the principal
series for the group G2(D). Sections 3 and 4 are devoted to the determination of
reducibility in the case of the induction from the maximal parabolic subgroups.
Section 5 is devoted to the classification of the noncuspidal part of the unitary dual
of the group G2(D).

For the admissible representation σ of any group we consider, we denote by ωσ
its central character (if it exists). We will denote the Steinberg representation of
the group G by StG . If H is a subgroup of the group G and g ∈ G normalizes H ,
for the representation σ of the group H , we denote by gσ the representation of the
group H defined by gσ(h)= σ(g−1hg). We denote by {α, β} the basis of the root
system corresponding to the maximal F-split torus in G2(D). The choice of the
maximal F-split torus will be given in the next subsection. Also {α, β} will denote
the basis of the root system with respect to the diagonal subgroup in SO(4, F).

Hermitian quaternionic groups. Let F be a nonarchimedean local field of char-
acteristic zero, having residual field with q elements. We choose a uniformizer of
the field and denote it by ω. Let D be a quaternionic algebra central over F and
let τ be an involution (of the first kind) fixing the center of D. By [Mœglin et al.
1987], the division algebra D defines a reductive group G over F as follows. Let

Vn = e1 D ⊕ · · · ⊕ en D ⊕ en+1 D ⊕ · · · ⊕ e2n D

be a right vector space over D. The relations (ei , e2n− j+1)= δi j for i = 1, 2, . . . , n
define a hermitian form on Vn:

(v, v′)= ετ((v′, v)) for v, v′
∈ Vn, ε ∈ {−1, 1},

(vx, v′x ′)= τ(x)(v, v′)x ′ for x, x ′
∈ D.

We extend the involution τ on M(k, D), denoting it by ∗ :

g∗
= (gi j )

∗
= τ(gi j )

t .

For a smooth representation τ of the group GL(n, D), we define the representation

τ ∗(g)= τ(g−∗).

By the observation in [Muić and Savin 2000], for the irreducible smooth represen-
tation τ of the group GL( · , D), the relation τ ∗ ∼= τ̃ holds. Let Gn(D, ε) be the
group of the isometries of the form ( · , · ). We can also describe Gn(D) as

Gn(D)=

{
g ∈ GL(2n, D) : g∗

(
0 Jn

−Jn 0

)
g =

(
0 Jn

−Jn 0

)}
,
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where Jn =


1

1
. ..

1

. Using this characterization, the isomorphism

D ⊗F F ∼= M(2, F),

and the well-known explicit matrix realization of the algebra D, it is easy to see
that Gn(D, ε) is the group of F-rational points of a reductive algebraic group, an
inner form of the split group SO(4n) or Sp(4n), if ε = −1 or ε = 1, respectively.
In this paper, we will do explicit calculations for the case ε = −1, so we drop
ε from the notation and, unless otherwise specified, assume ε = −1. Having in
mind a matrix representation of the group of F-rational points, there is a maximal
(diagonal) split torus A0 which has the following set of F-rational points:

A0(F)=





λ1
λ2

. . .

λn

λ−1
n

. . .

λ−1
2

λ−1
1


: λi ∈ F∗


.

The element of A0(F) shown is denoted by diag(λ1, . . . , λn). X (A0) denotes
the group of F-rational characters on A0, which can be identified with characters
on A0(F). The root system corresponding to the maximal F-split torus is of type
Cn , with the set of simple roots {αi , i = 1, . . . , n}, where

αi (diag(λ1, . . . , λn))= λiλ
−1
i+1, for i = 1, . . . , n − 1,

αn(diag(λ1, . . . , λn))= λ2
n.

The standard Levi F-subgroups correspond to the subsets θ of the set of simple
roots 1 = 1(Gn(D), A0) in the root system and we denote them by Mθ . To
describe the Levi subgroups Mθ (F), we set Bl = Jl(A−1

l )∗ Jl if Al is a quadratic
matrix of order l.

(i) If αn /∈ θ there are positive integers n1, n2, . . . , nk such that
∑

ni = n and

Mθ (F)=





An1

. . .

Ank
Bnk

. . .

Bn1


: Ani ∈ GL(ni , D)


.
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(ii) If αn ∈ θ there are positive integers n1, n2, . . . , nk, r such that
∑

ni + r = n
and

Mθ (F)=





An1

. . .

Ank
Gr (D)

Bnk

. . .

Bn1


: Ani ∈ GL(ni , D)


.

We describe the Langlands classification, following [Borel and Wallach 2000].
Let ν(x) = |x |F if x ∈ F and ν(x) = |det x |F if x ∈ D; here det is the norm
homomorphism. For any essentially square integrable representation (mod center)
δ of the group GL(m, D), there exists a unique real number e(δ) and a unique
square-integrable representation δu such that δ = νe(δ)δu . We say that an (ordered)
multiset (δ1, δ2, . . . , δk) of irreducible essentially square-integrable representations
of GL( · , D)-groups is in standard order if e(δ1) ≥ e(δ2) ≥ · · · ≥ e(δk). For the
representations δi of GL( · , D) groups and representation τ of the group Gr (D),
we write

δ1 × δ2 × · · · × δk o τ = IndGn(D)
P (δ1 ⊗ δ2 ⊗ · · · ⊗ δk ⊗ τ),

where P is a corresponding standard parabolic subgroup of Gn(D). Suppose
(δ1, δ2, . . . , δk) is a multiset of irreducible essentially square-integrable representa-
tions of GL( · , D)-groups which is in the standard order, and assume that e(δk)>0.
If τ is an irreducible tempered representation of Gr (D), we consider the represen-
tation δ = δ1 ⊗ δ2 ⊗· · ·⊗ δk ⊗ τ of the corresponding standard Levi subgroup and
let

e(δ)=
(
e(δ1), e(δ1), . . . , e(δk), e(δk), 0, . . . , 0

)
∈ X (A0)⊗Z R ∼= Rn.

Here the number e(δi ) appears in e(δ) exactly ni times if δi is a representation of the
group GL(ni , D), and 0 appears r times. We introduce a partial order on X (A0)⊗Z

R ∼= Rn related to the root system of type Cn. We say that (x1, x2, . . . , xn) ≤

(y1, y2, . . . , yn) if and only if
∑k

i=1 xi ≤
∑k

i=1 yi for k = 1, . . . , n. This order is
the one obtained in general as follows. Let ( · , · ) be the Weyl group-invariant scalar
product on X (A0)⊗R and let (β1, β2, . . . , βn) be the basis bidual to (α1, . . . , αn).
Then for ν1, ν2 ∈ X (A0)⊗Z R we say ν1 ≤ ν2 if and only if (ν1, βi )≤ (ν2, βi ) for
all i = 1, . . . , n.

Lemma 1.1 (Langlands’ classification [Borel and Wallach 2000]). The induced
(standard) representation δ1 × δ2 × · · ·× δk o τ , where the irreducible essentially
square-integrable representations (δ1, δ2, . . . , δk) are in the standard order with
e(δk) > 0 and where τ is an irreducible tempered representation of the group
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Gr (D), has a unique irreducible quotient, denoted L(δ1, δ2, . . . , δk; τ), which is
of the multiplicity one in the induced representation. In this way, we obtain ev-
ery irreducible representation of the group Gn(D). If the standard representation
δ1 × δ2 × · · · × δk o τ has an irreducible subquotient σ = L(δ′1, . . . , δk′; τ ′) other
than its Langlands quotient, then e(δ′1⊗δ′2⊗· · ·⊗δ′k′ ⊗τ

′)< e(δ1⊗δ2⊗· · · δk ⊗τ).

Given an admissible irreducible representation π of Gn(D) and an ordered par-
tition α = (n1, n2, . . . , nk) of n − r , let s(α)(π) denote the normalized Jacquet
module of π with respect to the standard parabolic subgroup Pα with Levi subgroup
isomorphic to GL(n1, D)×GL(n2, D)×· · ·×GL(nk, D)×Gr (D). Let Pα denote
a standard parabolic subgroup minimal with the property that s(α)(π) 6= 0. Each
irreducible subquotient of s(α)(π) is necessarily cuspidal. The square integrabil-
ity criterion from [Casselman 1995] for general p-adic reductive groups readily
applies, and we obtain:

Lemma 1.2 (Square integrability criterion). A necessary and sufficient condition
for an irreducible admissible representation π to be square-integrable is that, for
every ordered partition α = (n1, n2, . . . , nk) of n − r minimal with the property
sα(π) 6= 0 and every irreducible subquotient subquotient σ of s(α)(π), we have

(e(σ ), βn1+···+ni ) > 0 for all i = 1, . . . , k.

Given an admissible representation σ of the standard Levi subgroup Mθ and an
element w of the Weyl group such that w(θ)= θ ′ is subset of the set of the simple
roots, we set Nw = N0 ∩wN θw

−1, where N θ is the unipotent radical of the par-
abolic subgroup opposite to Pθ . For m ∈ Mθ ′ we define the representation of Mθ ′

by wσ(m)= σ(w−1mw). We define (formally), for f ∈ IndGn(D)
Mθ

(σ ),

Aw(σ ) f (g)=

∫
Nw

f (w−1ng) dn.

If this integral converges for every f , it defines the intertwining operator

Aw(σ ) : IndGn(D)
Mθ

(σ )→ IndGn(D)
Mθ ′

(wσ).

Often, the operator Aw will have some additional (complex) arguments, usually
denoting the action of the family of intertwining operators on the family of the
representations, which depends on these complex numbers in an obvious way. If
w is the longest element in the relative Weyl group, we call the operator Aw the
long intertwining operator. Sometimes we use a different definition for the long
intertwining operator: we denote by δ1 × δ2 × · · · × δk o τ the representation of
Mθ induced from the opposite (lower-triangular) parabolic subgroup. The long-
intertwining operator from the representation space of the standard representation
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δ1 × δ2 × · · · × δk o τ to the representation space of the representation δ1 × δ2 ×

· · · × δk o τ is denoted by R and defined (formally) by

R(δ1 ⊗ δ2 ⊗ · · · ⊗ δk ⊗ τ, Nθ , N θ ) f (g)=

∫
N θ

f (n̄g) dn̄.

If this operator is injective or surjective (for the standard representation δ1 × δ2 ×

· · · × δk o τ ), the representation δ1 × δ2 × · · · × δk o τ is irreducible.

Reducibility of the induced representations. We recall briefly some results from
[Bernstein et al. 1984; Tadić 1990] about the reducibility of the induced repre-
sentations of GL(n, D). To the irreducible cuspidal representation σ of the group
GL(n, D), Jacquet–Langlands correspondence attaches an irreducible essentially
square-integrable representation σ ′ of the group GL(2n, F). If σ ′ is a cuspidal
representation, we set s(σ )= 1, and if σ ′ is a subquotient of the induced represen-
tation τ×τν for some irreducible cuspidal representation τ of the group GL(n, F),
we set s(σ ) = 2. These are the only possibilities. We then set νσ = νs(σ ). Then,
for the irreducible cuspidal representations σi of GL(n1, D) and GL(n2, D), the
representation σ1 × σ2 is reducible if and only if n1 = n2, s(σ1) = s(σ2) and
σ1 = ν±1

σ2
σ2.

Using the factorization of the long intertwining operator [Speh and Vogan 1980]
we obtain the following lemma, for which see also [Tadić 1994].

Lemma 1.3 (Reducibility of the principal series). For the irreducible admissible
representations τi of the D∗ the principal series representation τ1 ×· · ·× τn o1 of
the group Gn(D) reduces if and only if

(i) there exists i such that τi o 1 or τ̃i o 1 reduces in G1(D), or

(ii) there exist distinct i and j such that τi × τ j or τ̃i × τ j or τi × τ̃ j or τ̃i × τ̃ j

reduce in GL(2, D).

We will describe reducibility in G1(D) shortly.

We recall from [Zelevinsky 1981; Tadić 1990] the Hopf algebra structure on
the Grothendieck group Rn of smooth representations of finite length of the group
GL(n, D). Let R(∗) be the Grothendieck group related to the corresponding re-
ductive group, and R =

⊕
n≥0 Rn . The multiplication m : R ⊗ R → R is defined

by induction, and comultiplication m∗
: R → R ⊗ R by Jacquet modules:

m∗(π)=

n∑
k=0

s.s(r(k,n−k),(n)(π)) ∈ R ⊗ R.

Here π is a smooth representation of finite length of GL(n, D), and r(k,n−k),(n)(π)∈

Rk ⊗ Rn−k is the normalized Jacquet module with respect to the maximal standard
parabolic subgroup with Levi subgroup GL(k, D)×GL(n−k, D). By linearity, we
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extend the definition of m and m∗ to R. The tensor product R ⊗ R has an algebra
structure in the usual way. The comultiplication m∗ is a ring homomorphism; the
proof can be found in [Zelevinsky 1981] for the case of general linear groups over
the field F .

Set R(G) =
⊕

n≥0 R(Gn(D)). This is obviously and R-module, and a comod-
ule structure is defined like the one in the GL-case: for a smooth, finite length
representation π of the group Gn(D) we put

µ∗(σ )=

n∑
k=0

s.s(s(k)(σ )).

Denote by s : R ⊗ R → R ⊗ R the linear map such that s(π1 ⊗π2)= π2 ⊗π1 for
representations π1 and π2. Define the ring homomorphism 9 : R → R ⊗ R by

9 = (m ⊗ 1) ◦ (∼ ⊗m∗) ◦ s ◦ m∗.

Proposition 1.4 (The 9-Hopf module structure on R(G)). For the smooth, finite
length representation π of the group GL(m, D), and smooth, finite length repre-
sentation σ of the group Gk(D) we have

µ∗(π o σ)=9∗(π)oµ∗(σ ).

Proof. As in the split case in [Tadić 1995]. �

Proposition 1.5 (R-groups). Let σ1, σ2, . . . , σk denote discrete series representa-
tions of general linear groups over the division algebra D, and τ a discrete series
representation of Gr (D). The representation

σ1 × σ2 × · · · × σk o τ

is multiplicity-free and has length 2d , where d is the number of mutually nonequiv-
alent σi such that σi o τ reduces.

Proof. This is proved in [Hanzer 2004]. �

Structure and reducibility results for G1(D). It is easy to see that

(1) G1(D)=

{[
ad1 bd1

cd1 dd1

]
; a, b, c, d ∈ F, d1 ∈ D, (ad − bc)d1τ(d1)= 1

}
.

So there is an epimorphism

φ : G1(D)→ F∗/(F∗)2, φ(g)= (ad − bc)(F∗)2

whose kernel is isomorphic to SL(2,F)D1, where D1 denotes the subgroup of
elements of norm 1 in D∗, and is realized as a subgroup of diagonal matrices in
G1(D). Also SL(2,F)∩ D1 = {±I }.
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From now on, for irreducible smooth representations of D∗ (which are always
finite-dimensional) we will use χ to denote (unitary) characters and τ to denote
(unitary) higher-dimensional representations. The distinction is important, be-
cause, by the Jacquet–Langlands correspondence, characters correspond to twists
of the Steinberg representation of GL(2,F), and higher-dimensional representa-
tions of D∗ correspond to the cuspidal representations of GL(2,F) [Bernstein et al.
1984]. Each (continuous) character χ of D∗ is of the form χ = χ ′

◦ det, for some
character χ ′ of the field F .

Proposition 1.6. Assume τ and χ are irreducible admissible representations of D∗.

(i) If τ � τ̃ , then τνs o 1 is irreducible for all s ∈ R.

(ii) If χ2
6= 1, then χνs o 1 is irreducible for all s ∈ R

(iii) Assume τ ∼= τ̃ . Then τνs o 1 reduces if and only if s = ±
1
2 and ωτ = 1 or

s = 0 and ωτ 6= 1.

(iv) If χ2
= 1, χνs o 1 reduces if and only if s = ±

1
2 .

In both cases, when we have reducibility at s = ±
1
2 , the induced representation

has length 2 and one of the subquotients is a square-integrable representation,
denoted by δ[χν1/2

; 1] (or δ[τν1/2
; 1]). When the representation τ o 1 reduces,

it is a direct sum of the two nonequivalent tempered representations. The square-
integrable representations obtained this way are mutually inequivalent.

Proof. Let w0 be the unique nontrivial element of the Weyl group of G1(D). Ap-
plying the standard result of Harish-Chandra [Ban 1999], and taking into account
the action of the Weyl group, the representation τνs o1 of G1(D) reduces for some
s ∈ R only if τ ∗ ∼= τ̃ ∼= τ . So we assume that τ ∼= τ̃ . Let

Aw0(τ, s) fs(e)=

∫
U

fs(w
−1
0 u) du

be the action of the standard intertwining operator, where f denotes a function in
the “compact” picture of the representation τ o 1 and fs is its analytic section.
Make the identification U ∼= F . We have the explicit calculation:

Aw0(τ, s) fs(e)=

∫
|n|≤1

fs(w
−1
0 n) dn +

∞∑
k=1

q−2ksωτ (ω
k)

∫
O∗

f
([

u−1 0
ωk u

])
du.

We denote by Km the m-th congruence subgroup in GL(2, D). If we denote the
first integral above, which always converges, by I1, and if f is (Km ∩ G1(D))-
right-invariant, we get
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Aw0(τ, s) fs(e)= I1 +

m−1∑
k=1

q−2ksωτ (ω
k)

∫
O∗

ωτ (u) f
([

1 0
u−1ωk 1

])
du

+

∞∑
k=m

q−2ksωτ (ω
k) f (e)

∫
O∗

ωτ (u) du.

We conclude that the operator Aw0(τ, s) is holomorphic at s = 0 if and only
if the central character ωτ of the representation τ is nontrivial. By the results of
Harish-Chandra, in this situation the induced representation is reducible at s = 0,
and this is the only point of the reducibility [Silberger 1980].

Now consider the self-contragredient representations τ (or χ ) with trivial central
character so the induced representation is irreducible at s = 0.

We determine the poles of the Plancherel measure by computing the composition
of the intertwining operators Aw0(τ, s)Aw0(τ,−s). Set f̃s = Aw0(τ,−s) f−s . Then

Aw0(τ, s) f̃s(e)=

∫
F

|ξ0|
−2s−1 f̃s

([
1 0
ξ−1

0 1

])
dξ0

=

∫
F

|ξ0|
−2s−1

∫
F

|ξ |2s−1 f−s

([
1 0

ξ−1
+ ξ−1

0 1

])
dξ dξ0.

To detect the poles of the Plancherel measure, it is enough to consider an f such
that supp f−s ⊂ P0U 0 and such that

f−s |U 0

([
1 0
ξ 1

])
=

{
0 if |ξ |> 1,

v0 if |ξ | ≤ 1.

The vector v0 belongs to the representation space of τ . After some simple calcu-
lations, we conclude that the composition of those intertwining operators is trivial
only for s = ±

1
2 . (Note that the characters of D∗ having order at most 2 are

necessarily trivial on F∗.) �

2. The principal series representations

In this section we write down all the composition factors for the principal series
representations, identifying the occurrence of square-integrable and tempered irre-
ducible subquotients.

Recall that to each square-integrable representation of GL(n, D) is attached a
segment of cuspidal representations [Tadić 1990]. So, the (essentially) unique
square-integrable subquotient of the representation ρνk

ρ×ρν
k−1
ρ ×· · ·×ρ is denoted

by δ(ρνk
ρ, ρ). Here ρ denotes the cuspidal representation of some GL(m, D). In

our case, νχ = ν2 for segments of characters of D∗ and ντ = ν for segments of
higher dimensional irreducible cuspidal representations of D∗.
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The next two propositions describe the composition series of all principal series
induced from the characters. Lemma 1.3 and Proposition 1.6 give the reducibility
points.

Proposition 2.1. Let χ1 be a unitary character of D∗ and take α ∈ R. In the
Grothendieck group R(G2(D)), we have

χ1ν
α
×χ1ν

α+2 o 1 =

L(χ1ν
3/2δ(ν, ν−1); 1)+π1 + L(χ1ν

5/2
; δ[χ1ν

1/2
; 1])+ L(χ1ν

5/2, χ1ν
1/2

; 1)

if χ2
1 = 1, α =

1
2 ,

L(χ1ν
1/2δ(ν, ν−1); 1)+π2 + L(χ1ν

3/2
; δ[χ1ν

1/2
; 1])+ L(χ1ν

3/2, χ1ν
1/2

; 1)

if χ2
1 = 1, α = −

1
2 ,

L(χ1ν
α+1δ(ν, ν−1); 1)+ L(χ1ν

α+2, χ1ν
α
; 1) if α ∈ R+

\ {
1
2},

L(χ1ν
1δ(ν, ν−1); 1)+ L(χ1ν

2
;χ1 o 1) if α = 0,

L(χ1ν
α+1δ(ν, ν−1); 1)+ L(χ1ν

α+2, χ−1
1 ν−α

; 1) if α ∈ (−1, 0) \ {−
1
2},

L(χ1δ(ν, ν
−1)o 1)+ L(χ1ν, χ

−1
1 ν; 1) if α = −1,

L(χ−1
1 ν−1−αδ(ν, ν−1); 1)+ L(χ−1

1 ν−α, χ1ν
α+2

; 1) if α ∈ (−2,−1),

L(χ−1
1 νδ(ν, ν−1); 1)+ L(χ−1

1 ν2
;χ1 o 1) if α = −2,

L(χ−1
1 ν−1−αδ(ν, ν−1);1)+ L(χ−1

1 ν−α, χ−1
1 ν−α−2

;1) if α <−2.

The representations π1 and π2 are square-integrable and mutually inequivalent.

Proof. In the course of the proof we will make extensive use of [Tadić 1998,
Remark 3.2 and Lemma 3.7]. We have

χ1ν
α
×χ1ν

α+2 o 1 = χ1ν
α+1δ(ν, ν−1)o 1 + L(χ1ν

α+2, χ1ν
α)o 1.

Using the 9-Hopf module structure (Proposition 1.4) we obtain

s(2)(χ1ν
α+1δ(ν, ν−1)o 1)

χ1ν
α+1δ(ν, ν−1)⊗ 1 +χ−1

1 ν−(α+1)(δ(ν, ν−1)
)∼

⊗ 1 +χ−1
1 ν−α

×χ1ν
α+2

⊗ 1

and

s(1)(χ1ν
α+1δ(ν, ν−1)o 1)= χ1ν

α+2
⊗χνα o 1 +χ−1

1 ν−α
⊗χνα+2 o 1.

First, assume that all three expressions χ−1
1 ν−α

×χ1ν
α+2

⊗1, χναo1 and χνα+2o1
are irreducible. Then, applying [Tadić 1998, Lemma 3.7] on Jacquet subquotients,
we see that, in that case, the representation χ1ν

α+1δ(ν, ν−1)o 1 is irreducible. In
general (without assumptions on the reducibility of those three expressions), with
the aid of the Aubert involution [1995], we conclude that χ1ν

α+1δ(ν, ν−1)o1 and
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L(χ1ν
α+2, χ1ν

α)o 1 have the same length. So with the previous assumption, the
representation χ1ν

α
×χ1ν

α+2 o 1 has length 2.
Second, assume χ−1

1 ν−α
× χ1ν

α+2 is reducible. This implies χ2
1 = 1 and α ∈

{0,−2}. For each choice of α from this set, we get representations which are the
same in the Grothendieck group. We have

χ1ν
2
×χ1 o 1 = χ1νδ(ν, ν

−1)o 1 +χ1ν1GL(2,D) o 1.

Lemma 2.2. The representation χ1νδ(ν, ν
−1)o 1 is irreducible.

Proof. We can apply ideas from [Tadić 1998, Section 6]. �

Third, assume that χνα o1 is reducible. It follows that χ2
1 = 1 and α ∈ {±

1
2}. The

case α =
1
2 will be addressed first. We have (in the Grothendieck group)

χ1ν
5/2

×χ1ν
1/2 o 1 = χ1ν

3/2δ(ν, ν−1)o 1 +χ1ν
3/21GL(2,D) o 1(2)

= χ1ν
5/2 o δ[χ1ν

1/2
; 1] +χ1ν

5/2 o L(χ1ν
1/2

; 1).

We have

(3) s(2)(χ1ν
3/2δ(ν, ν−1)o 1)=

χ1ν
3/2δ(ν, ν−1)⊗ 1 +χ1ν

−3/2δ(ν, ν−1)⊗ 1 +χ1ν
5/2

×χ1ν
−1/2

⊗ 1,

(4) s(2)(χ1ν
5/2 o δ[χ1ν

1/2
; 1]) = χ1ν

1/2
× χ1ν

5/2
⊗ 1 + χ1ν

−5/2
× χ1ν

1/2
⊗ 1.

From this, applying [Tadić 1998, Remark 3.2], it follows that both

χ1ν
3/2δ(ν, ν−1)o 1 and χ1ν

5/2 o δ[χ1ν
1/2

; 1]

are reducible representations and that they have an irreducible subquotient in com-
mon. Examining Jacquet modules in (3) and (4), we conclude that there is only
one such subquotient, denoted π1, and it is a square-integrable representation.
Analogously we conclude that χ1ν

3/21GL(2,D) o 1 and χ1ν
5/2 o δ[χ1ν

1/2
; 1] have

a common irreducible subquotient. We also conclude that each of the represen-
tations which appear on the right-hand side of (2) has length at most 3. If we
explore Jacquet modules of the representation χ1ν

5/2 o δ[χ1ν
1/2

; 1] with respect
to the minimal parabolic subgroup, we see that this is impossible. So we obtain
the decomposition of the principal series into 4 irreducible subquotients.

In the case α=−
1
2 , the discussion is similar, but here we find a common square-

integrable subquotient π2 in χ1ν
1/2δ(ν, ν−1)o 1 and χ1ν

3/2 o L(χ1ν
1/2

; 1). Ex-
amining the Jacquet modules with respect to the minimal parabolic subgroup, we
find that the principal series has length 4.

Finally, the reducibility of χ1ν
α+2 o 1 leads to the representations already seen

above. �
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Proposition 2.3. We assume χ2
1 = 1. Then

χ2ν
α
×χ1ν

1/2 o 1 =

L(χ1ν
3/2δ(ν,ν−1);1)+π1 + L(χ1ν

5/2
;δ[χ1ν

1/2
;1])+ L(χ1ν

5/2,χ1ν
1/2

;1)
if χ2 = χ1, α =

5
2 ,

L(χ1ν
1/2δ(ν,ν−1);1)+π2 + L(χ1ν

3/2
;δ[χ1ν

1/2
;1])+ L(χ1ν

3/2,χ1ν
1/2

;1)
if χ2 = χ1, α =

3
2 ,

L(χ2ν
1/2

;δ[χ1ν
1/2

;1])+π3 + L(χ1ν
1/2,χ2ν

1/2
;1)+ L(χ1ν

1/2
;δ[χ2ν

1/2
;1])

if χ2
2 =1, χ2 6=χ1, α=

1
2 ,

χ2 o δ[χ1ν
1/2

;1] + L(χ1ν
1/2

;χ2 o 1) if α = 0,

and in other cases:

L(χ2ν
α
;δ[χ1ν

1/2
;1])+ L(χ2ν

α,χ1ν
1/2

;1) if α > 0,

L(χ−1
2 ν−α

;δ[χ1ν
1/2

;1])+ L(χ−1
2 ν−α,χ1ν

1/2
;1) if α < 0.

Moreover, π1, π2, π3 are mutually inequivalent, square-integrable representations.

Proof. We have χ2ν
α

×χ1ν
1/2 o 1 = χ2ν

α o δ[χ1ν
1/2

; 1] + χ2ν
α o L(χ1ν

1/2
; 1).

Also s(2)(χ2ν
α o δ[χ1ν

1/2
; 1])= χ2ν

α
×χ1ν

1/2
+χ−1

2 ν−α
×χ1ν

1/2 and

s(1)(χ2ν
α o δ[χ1ν

1/2
; 1])

= χ1ν
1/2

⊗χ2ν
α o 1 +χ2ν

α
⊗ δ[χ1ν

1/2
; 1] +χ−1

2 ν−α
⊗ δ[χ1ν

1/2
; 1].

The assumption that χ2ν
α

× χ1ν
1/2, χ−1

2 ν−α
× χ1ν

1/2 and χ2ν
α o 1 are irre-

ducible, together with [Tadić 1998, Lemma 3.7], lead to the conclusion that χ2ν
αo

δ[χ1ν
1/2

; 1] and χ2ν
αoL(χ1ν

1/2
; 1) are irreducible. If we drop these assumptions,

the only new case to consider is χ2ν
1/2

×χ1ν
1/2 o 1, with χ2

2 = 1.
First, suppose that χ2 = χ1. The representations χ1ν

1/2 o δ[χ1ν
1/2

; 1] and
χ1ν

1/2oL(χ1ν
1/2

; 1) are irreducible. Namely, the representation χ1ν
1/2

×χ1ν
−1/2

is an irreducible unitarizable representation of GL(2, D), so the representation
χ1ν

1/2
×χ1ν

−1/2 o 1 is also unitarizable and χ1ν
1/2 o δ[χ1ν

1/2
; 1] is its quotient.

But the latter is also a standard representation, so it is irreducible.
Next suppose that χ2 6= χ1. By examining s(2)(χ2ν

1/2 o δ[χ1ν
1/2

; 1]) we see
that χ2ν

1/2 o δ[χ1ν
1/2

; 1] has length at most 2. Also we see from [Tadić 1998,
Remark 3.2] that this representation and χ1ν

1/2 o L(χ2ν
1/2

; 1) have one common
subquotient, a square-integrable representation denoted π3. �

Now, we describe the composition factors of all principal series induced from
higher-dimensional representations. The principal series representation of the form
τ1ν

α
× τ2ν

β o 1 where τ1, τ2 have dimension greater than 1, are reducible only in
the situations covered by the next four propositions.
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Proposition 2.4. Let τ1 denote an irreducible, admissible, unitary representation
of D∗ of dimension greater than 1. If τ1 is not a selfdual representation, we have

τ1ν
α+1

× τ1ν
α o 1 =

L(να+
1
2 δ(τ1ν

1/2, τ1ν
−1/2); 1)+ L(τ1ν

α+1, τ1ν
α
; 1) if α > 0,

L(ν1/2δ(τ1ν
1/2, τ1ν

−1/2); 1)+ L(τ1ν; τ1 o 1) if α = 0,

L(να+
1
2 δ(τ1ν

1/2, τ1ν
−1/2); 1)+ L(τ1ν

α+1, τ̃1ν
−α

; 1) if α ∈ (− 1
2 , 0),

δ(τ1ν
1/2, τ1ν

−1/2)o 1 + L(τ1ν
1/2, τ̃1ν

−1/2
; 1) if α = −

1
2 ,

L(ν−α−
1
2 δ(τ̃1ν

1/2, τ̃1ν
−1/2); 1)+ L(τ̃1ν

−α, τ1ν
α+1

; 1) if α ∈ (−1,−1
2),

L(ν−α−
1
2 δ(τ̃1ν

1/2, τ̃1ν
−1/2); 1)+ L(τ̃1ν

−α, τ̃−α−1
1 ; 1) if α <−1.

Proof. We have

τ1ν
α+1

× τ1νo 1 = ν1/2δ(τ1ν
1/2, τ1ν

−1/2))o 1 + ν1/2L(τ1ν
1/2, τ1ν

−1/2)o 1.

Analogously to the proof of the previous proposition, we examine

s(2)(ν1/2+αδ(τ1ν
1/2, τ1ν

−1/2))o 1)= ν1/2+αδ(τ1ν
1/2, τ1ν

−1/2)⊗ 1

+ ν−1/2−α
(
δ(τ1ν

1/2, τ1ν
−1/2)

)∼
⊗ 1 + τ̃1ν

−α
× τ1ν

α+1
⊗ 1.

Also s(1)(ν1/2+αδ(τ1ν
1/2, τ1ν

−1/2)) = τ1ν
α+1

⊗ τ1ν
α o 1 + τ̃1ν

−α
⊗ τ1ν

α+1 o 1.
With the assumptions that τ̃1ν

−α
× τ1ν

α+1, τ1ν
α o 1, and τ1ν

α+1 o 1 are irre-
ducible, and applying [Tadić 1998, Lemma 3.7], we obtain that the representation
(ν1/2+αδ(τ1ν

1/2, τ1ν
−1/2)o 1 is irreducible. By the properties of the Aubert invo-

lution, also that the representation ν1/2L(τ1ν
1/2, τ1ν

−1/2)o1 is irreducible. These
assumptions are met when τ1 � τ̃1. �

Proposition 2.5. Let τ1 denote an irreducible, unitary, selfdual representation of
D∗ of dimension greater than 1. Without loss of generality we can assume α≥ −

1
2 .

(i) If χτ1 = 1 we have

τ1ν
α+1

× τ1ν
α o 1 =

L(ν1/2δ(τ1ν
1/2,τ1ν

−1/2);1)+ L(τ1ν;τ1 o 1) if α = 0,

L(νδ(τ1ν
1/2,τ1ν

−1/2);1)+ L(τ1ν
3/2

;δ[τν1/2
;1])+π4 + L(τ1ν

3/2,τ1ν
1/2

;1)
if α =

1
2 ,

L(τ1ν
1/2

;δ[τ1ν
1/2

;1])+ L(τν1/2
1 ,τν

1/2
1 ;1)+ T1 + T2 if α = −

1
2 ,

L(να+
1
2 δ(τ1ν

1/2,τ1ν
−1/2);1)+ L(τ1ν

α+1,τ1ν
−α

;1) if α ∈ (− 1
2 ,0),

L(να+
1
2 δ(τ1ν

1/2,τ1ν
−1/2);1)+ L(τ1ν

α+1,τ1ν
α
;1) if α ∈ R+

\ {
1
2}.
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(ii) If χτ1 6= 1 and τ1 o 1 = T ′

3 + T ′

4 we have

τ1ν
α+1

× τ1ν
α o 1 =

L(τ1ν;T ′

3)+L(τ1ν;T ′

4)+2L(ν1/2δ(τ1ν
1/2,τ1ν

−1/2);1)+π5+π6 if α = 0,

L(να+
1
2 δ(τ1ν

1/2,τ1ν
−1/2);1)+ L(τ1ν

α+1,τ1ν
α
;1) if α > 0,

δ(τ1ν
1/2,τ1ν

−1/2)o 1 + L(τ1ν
1/2,τ1ν

1/2
;1) if α = −

1
2 ,

L(να+
1
2 δ(τ1ν

1/2,τ1ν
−1/2);1)+ L(τ1ν

α+1,τ1ν
−α

;1) if α ∈ (− 1
2 ,0).

Moreover, π4, π5 and π6 are mutually inequivalent square-integrable represen-
tations, and T1, T2 and δ(τ1ν

1/2, τ1ν
−1/2) o 1 in the second case are mutually

inequivalent tempered (not square-integrable) representations.

Proof. Dropping the assumptions that τ̃1ν
−α

× τ1ν
α+1, τ1ν

α o 1, and τ1ν
α+1 o 1

are irreducible (see proof of the previous proposition), we are left to deal with the
following families of representations in (5)–(8) below:

τ1ν× τ1 o 1, when χτ1 = 1.(5)

Analogously to Lemma 2.2 we conclude that ν1/2δ(τ1ν
1/2, τ1ν

−1/2) o 1 is irre-
ducible. Another representation to consider is

τ1ν× τ1 o 1, when χτ1 6= 1.(6)

Here we obtain a single case where multiplicity one fails; this is also the only
induced representation of length 6. Examining the Jacquet modules we learn that
the representation τ1 o T ′

3 has length at most 3 and that it is reducible (because it
has the same length as τ1 o T ′

4). If we assume that it has length 2, then also

ν1/2δ(τ1ν
1/2, τ1ν

−1/2)o 1 = L(ν1/2δ(τ1ν
1/2, τ1ν

−1/2); 1)+π, (in R(G2(D))),

where π is some subrepresentation. We see that then L(ν1/2δ(τ1ν
1/2, τ1ν

−1/2); 1)
has to be a subrepresentation of τ1ν × τ1 o 1, but ν1/2δ(τ1ν

1/2, τ1ν
−1/2) o 1 is

also a subrepresentation of τ1ν × τ1 o 1. This leads to conclusion that either
L(ν1/2δ(τ1ν

1/2, τ1ν
−1/2); 1) is a subrepresentation of ν1/2δ(τ1ν

1/2, τ1ν
−1/2)o 1,

or the multiplicity of L(ν1/2δ(τ1ν
1/2, τ1ν

−1/2); 1) in τ1ν×τ1 o1 is greater then 1;
both of them false (in this situation). So we conclude that τ1 o T ′

3 and τ1 o T ′

4 both
have length 3, and both have unique subrepresentations which are square-integrable
(denoted π5 and π6). By careful examination of the composition sequences of the
Jacquet modules, we conclude that the representations ν1/2δ(τ1ν

1/2, τ1ν
−1/2)o 1

and ν1/2L(τ1ν
1/2, τ1ν

−1/2)o 1 have one irreducible quotient in common. In the
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Grothendieck group we have

ν1/2δ(τ1ν
1/2, τ1ν

−1/2)o 1 = L(ν1/2δ(τ1ν
1/2, τ1ν

−1/2); 1)+π5 +π6,

τ1νo T ′

3 = L(τ1ν; T ′

3)+π5 + L(ν1/2δ(τ1ν
1/2, τ1ν

−1/2); 1).

The next case is

(7) τ1ν
3/2

× τ1ν
1/2 o 1 if χτ1 = 1.

Examining the length of Jacquet modules, similarly to the case of inducing from
the characters, we see that the length of νδ(τ1ν

1/2, τ1ν
−1/2)o1 can’t be 3, because

that’s inconsistent with the associativity of Jacquet modules. The rest is straight-
forward. We use a similar analysis to deal with

(8) τ1ν
1/2

× τ1ν
1/2 o 1 if χτ1 = 1. �

Proposition 2.6. Let τ2 be a unitary, irreducible selfdual representation of D∗ of
dimension greater than 1, with trivial central character, and let τ1 denote a unitary
irreducible representation of D∗ of dimension greater than 1.

(a) If τ1 � τ̃1, we have

τ1ν
α
× τ2ν

1/2 o 1 =

{
L(τ1ν

α
; δ[τ2ν

1/2
; 1])+ L(τ1ν

α, τ2ν
1/2

; 1) ifα > 0,

T3 + L(τ2ν
1/2

; τ1 o 1) ifα = 0,

where T3 = τ1 o δ[τ2ν
1/2

; 1] is an irreducible tempered representation.

(b) If τ1 ∼= τ̃1, we consider two cases:

(i) If χτ1 = 1, then τ1ν
α+1

× τ1ν
α o 1 =

L(τ1ν
α
;δ[τ2ν

1/2
;1])+ L(τ1ν

α,τ2ν
1/2

;1) if |α| /∈R+

0 \ {0, 1
2 ,

3
2},

L(τ1ν
1/2

;δ[τ2ν
1/2

;1])+L(τ2ν
1/2

;δ[τ1ν
1/2

;1])+L(τ1ν
1/2,τ2ν

1/2
;1)+π7

if |α|=
1
2 and τ1 �τ2,

L(τ1ν
1/2

;δ[τ1ν
1/2

;1])+L(τν1/2
1 ,τν

1/2
1 ;1)+T1+T2 if |α|=

1
2 and τ1 ∼=τ2,

τ1 × δ[τ2ν
1/2

;1] + L(τ2ν
1/2

;τ1 o 1) if α=0,

L(νδ(τ1ν
1/2,τ1ν

−1/2);1)+L(τ1ν
3/2

;δ[τν1/2
;1])+π4+L(τ1ν

3/2,τ1ν
1/2

;1)
if |α|=

3
2 and τ1 ∼=τ2,

L(τ1ν
3/2

;δ[τ2ν
1/2

;1])+ L(τ1ν
3/2,τ2ν

1/2
;1) if |α|=

3
2 and τ1 �τ2.

The representation π7 is square-integrable, and τ1 × δ[τ2ν
1/2

; 1] is an
irreducible tempered representation.
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(ii) If χτ1 6= 1 and τ1 o 1 = T ′

3 + T ′

4, then

τ1ν
α
× τ2ν

1/2 o 1 =

{
L(τ1ν

α
; δ[τ2ν

1/2
; 1])+ L(τ1ν

α, τ2ν
1/2

; 1) if α > 0,

L(τ2ν
1/2

; T ′

3)+ L(τ2ν
1/2

; T ′

4)+ T5 + T4 if α = 0.

T4 and T5 are irreducible tempered representations.

Proof. The only new case left to check, after dealing with ones which are covered
by [Tadić 1998, Lemma 3.7], is

(9) τ1ν
1/2

× τ2ν
1/2 o 1 if τ1 � τ2, χτ1 = χτ2 = 1.

This case is resolved in the same way as for the characters. �

Proposition 2.7. Let τ2 be a unitary, irreducible, self-dual representation of D∗

such that χτ2 6= 1, so that τ2 o 1 = T ′

3 ⊕ T ′

4, and let τ1 be an irreducible unitary
representation of D∗.

(a) If α > 0, then τ1ν
α
× τ2 o 1 =

L(τ1ν
1/2

;T ′

3)+ L(τ1ν
1/2

;T ′

4)+ T4 + T5 if α =
1
2 , τ1 ∼= τ̃1, ωτ1 = 1,

L(τ2ν;T ′

3)+L(τ2ν;T ′

4)+2L(ν1/2δ(τ2ν
1/2,τ2ν

−1/2);1)+π5+π6

if τ1 ∼= τ2 and α = 1,

L(τ1ν
α
;T ′

3)+ L(τ1ν
α
;T ′

4) in other cases.

(b) If α = 0, then

τ1 × τ2 o 1 =

{
T6 + T7 + T8 + T9 if τ1 ∼= τ̃1, ωτ1 6= 1, τ1 � τ2,

T10 + T11 in other cases.

The representations Ti , i = 6, . . . , 11, are mutually inequivalent, tempered (not
square-integrable) representations.

Proof. The cases in the first part of this Proposition were already covered, and the
statements of the second part follow from [Hanzer 2004]. �

We now settle the mixed case of the principal series representations.

Proposition 2.8. Let χ be a unitary character of D∗, and let τ be irreducible,
admissible unitary representation of D∗ of dimension greater than 1. Then the
principal series representation χνα × τνβ o 1 (for α, β ∈ R) reduces only in the
following cases:
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(i) If χ2
= 1, then τνβ ×χ1/2 o 1 =

L(τνβ;δ[χν1/2
;1])+ L(τνβ,χν1/2

;1) if β>0 and τνβ o 1 is irreducible,

τ o δ[χν1/2
;1] + L(χν1/2

;τ o 1) if β=0 and τ o 1 is irreducible,

T7 + T8 + L(χν1/2,T ′

3)+ L(χν1/2,T ′

4) if τ∼= τ̃ , ωτ 6=1, β=0,

L(τν1/2
;δ[χν1/2

;1])+π8 + L(χν1/2
;δ[τν1/2

;1])+ L(τν1/2,χν1/2
;1)

if τ∼= τ̃ , ωτ =1, |β|=
1
2 ,

where, in the third case, τ o 1 = T ′

3 + T ′

4. The tempered representation τ o
δ[χν1/2

; 1] from the second case is irreducible, and the representation π8 is
square-integrable.

(ii) If τν1/2 o 1 reduces, then χνα × τν1/2 o 1 =
L(χνα;δ[τν1/2

;1])+ L(χνα,τν1/2
;1) if α>0 and χνα o 1 is irreducible,

L(τν1/2
;δ[χν1/2

;1])+L(χν1/2
;δ[τν1/2

;1])+L(τν1/2,χν1/2
;1)+π8

if χ2
=1 and α=

1
2 ,

χ o δ[τν1/2
;1] + L(τν1/2

;χ o 1) if α=0.

The tempered representation χ o δ[τν1/2
; 1] in the third case is irreducible.

(iii) If τ o 1 = T ′

3 ⊕ T ′

4, then χνα × τ o 1 =
L(χνα;T ′

3)+ L(χνα;T ′

4) if α>0 and χνα o 1 is irreducible,

χ o T ′

3 +χ o T ′

4 if α=0,

T7 + T8 + L(χν1/2,T ′

3)+ L(χν1/2,T ′

4) if χ2
=1, |α|=

1
2 .

Proof. Use [Tadić 1998, Lemma 3.7]. �

3. Induced representations of the group G2(D); the Siegel case

We now consider the reducibility of the representations of the form

σνs o 1,

where σ is an irreducible admissible cuspidal representation of GL(2, D) and s is
a real number. By a result of Harish-Chandra [Ban 1999], if this induced repre-
sentation is reducible for some s, σ must be self-contragredient. So, from now on,
we assume that σ ∼= σ̃ . Let σ ′ be the square-integrable representation of GL(4, F)
corresponding to σ by the Jacquet–Langlands correspondence. It is actually a
cuspidal representation as well [Bernstein et al. 1984].

Proposition 3.1. Let σ be an irreducible, admissible, selfdual cuspidal represen-
tation of the group GL(2, D). The representation σ o1 is irreducible if and only if



370 MARCELA HANZER

L(s, σ ′,32ρ4) has a pole at s = 0. If this is so, the representation σνs o 1, where
s ∈ R, reduces only for s = ±

1
2 .

Proof. Recall that the Plancherel measure is defined as

R(s, σ, N (F), N (F))R(s, σ, N (F), N (F))= µ−1(s, σ ).

Our notation is as in [Muić and Savin 2000]. From that paper we know that

µ(s, σ )= µ(s, σ ′),

where on the left-hand side we have the Plancherel measure in the group G2(D),
and on the right-hand side the Plancherel measure corresponding to the represen-
tation induced from σ ′ in SO(8, F). Because σ ′ is cuspidal, the reducibility of
σ ′νs o 1 can be obtained directly from the Plancherel measure: there exists a
unique s0 ≥ 0 such that σ ′νs0 o 1 reduces [Silberger 1980] and

s0 = 0 if and only if µ(0, σ ′) 6= 0,

s0 > 0 if and only if µ(s, σ ′) has a pole at s = s0.

So, σνs o 1 is reducible if and only if σ ′νs o 1 is reducible, and s0 ∈ {
1
2 , 0}, by

the results in [Shahidi 1990b]. Because σ ′ is generic, the Plancherel measure is
expressible in terms of L-functions. To conclude, σ ′ o 1 is irreducible if and only
if L(s, σ ′,32ρ4) has a pole at s = 0; see [Shahidi 1992]. �

4. Induced representations of the group G2(D); the non-Siegel case

We now consider the representations of the form

τνs o δ,

where τ is an irreducible admissible unitary representation of D∗, δ is an irreducible
cuspidal representation of G1(D), and s ∈R. As in the previous section, to examine
the reducibility, it is enough to assume that τ ∼= τ̃ , and s ≥ 0. Throughout this
section we keep this assumption. For an algebraic number field k, we denote its
ring of adeles by Ak . We consider the restriction

δ|SL(2,F)D1 =

k∑
i=1

τi ⊗ δi ,

according to the observation about the structure of G1(D)— see Equation (1).
The procedure we use is this: we choose a summand in the restriction above, such
as τ1 ⊗ δ1, and lift it to the discrete series representation τ1 ⊗ δ′1 of the group
SL(2,F)×SL(2,F). Then we find representations δ′ and δ′′ of SO(4, F) such that
the representation τ1 ⊗ δ′1 is a component in the restrictions of the representations
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δ′ and δ′′ to SL(2,F) · SL(2,F). Then, using global methods, we will prove that
µ(s, τ ⊗ δ)2 = µ(s, τ ′

⊗ δ′)µ(s, τ ′
⊗ δ′′). The difficulty in applying the global

methods lies in that there are global L-packets for the group SL(2, Ak) includ-
ing both automorphic and nonautomorphic global representations [Labesse and
Langlands 1979], so we have to make some adjustments. Also, in order to ensure
that the representations δ′ and δ′′ differ only in quadratic character, i.e., they have
the same restriction to SL(2,F) · SL(2,F), we have to be careful when varying
representations in the local L-packets of τ1 and δ1. Before we proceed with the
detailed exposition, briefly remind the reader how the group SL(2,F) · SL(2,F)
sits in SO(4, F). Let {α, β} denote the basis of the root system 8(SO(4, F), T ),
where T is a diagonal subgroup in the standard matrix realization of SO(4, F).
So, with the obvious meaning, we choose α = e1 − e2 and β = e1 + e2. The Levi
subgroup Mα corresponding to the root α is isomorphic to GL(2,F); the same is
true for Mβ . One copy of SL(2,F) is standardly embedded in Mα and the other in
Mβ ; one is block-diagonal, and the other is not.

We can choose a number field k having two places v1 and v2 such that kv1
∼=

kv2
∼= F , and a division algebra D of rank 4 over k that it splits only at v1 and

v2, with Dv1
∼= D ∼= Dv1 . Then we can define the reductive group G1 over k such

that G1(kv) ∼= SO(4, kv) for all v /∈ {v1, v2} and G1(kv1)
∼= G1(D) ∼= G1(kv2).

Analogously, we define G2 over k. Also, we can define D1, the subgroup of
elements of norm 1 in D∗ such that D1(kv) ∼= SL(2, kv) for v /∈ {v1, v2} and
D1(kv1)

∼= D1 ∼= D1(kv2). We choose any of the summands from the restriction
of δ, e.g., τ1 ⊗ δ1.

First assume that dim δ1 > 1. Consider the set of ideles ((±I )v) that can be
observed as a subgroup of D1. We can form the character ω =

∏
ωv on that set

such that ωv1 =ωδ1 , ωv2 =ωδ1 , and ωv are almost everywhere trivial. Then we can
introduce the space L(D1(Ak)) (and other notation) as in [Flicker 1987], and study
the representations of the functions from C(D1(Ak)) on the space L(D1(Ak)). We
choose a full tensor f = ⊗ fv from the space C(D1(Ak)). We can choose f in
such a way that fv1 and fv2 are the coefficients of the representation δ1, and at
all other nonarchimedean places fv are spherical. Then we can adjust the support
of fv at the archimedean places in such way that we can reason analogously to
[Flicker 1987, Proposition §3.3 and Theorem §4.3]. We obtain the existence of
an automorphic cuspidal representation π ′

1 =
⊗

v π
′

1,v of the group D1(Ak) with
central character ω such that π ′

1,v1
∼= δ1 ∼=π ′

1,v2
Then there exists a grossencharacter

ω′
=

⊗
v ω

′
v such that ω′

|((±Iv)) = ω. Also, we can find an automorphic cuspidal
representation π ′

=
⊗

v π
′
v of the group D∗(Ak) with central character ω′ such that

π ′

1 embeds in π ′; the proof is analogous to one in [Flicker 1992]. Note that π ′
v1

and πv2 are cuspidal representations of D∗ of dimension greater then 1, so by the
Jacquet–Langlands correspondence, they correspond to cuspidal representations of
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GL(2,F). This enables us to use results of [Flicker and Kazhdan 1988] about lifts
of representations of D∗(Ak) to the representations of GL(2, Ak) with one fixed
cuspidal place. So there exists an automorphic cuspidal representation π =

⊗
v πv

of GL(2, Ak) such that πv ∼= π ′
v for all v /∈ {v1, v2}, and πvi and π ′

vi
correspond.

Let π1 =
⊗

v π1,v denote some automorphic cuspidal representation of SL(2, Ak)

embedded in the representation π |SL(2, Ak). We can arrange that π1,v ∼= π ′

1,v for
every place v different from v1, v2. Indeed, let {φ} be an admissible homomorphism
{φ} : WK/k → PGL(2)×WK/k defined by the representation Ind(WK/k,WK/E , θ),
where K is some large, but finite Galois extension of k, E a quadratic extension
of k contained in K , and θ a Grossencharacter of E that doesn’t factor through
Nm E/k . Let π2 be some automorphic cuspidal representation of SL(2, Ak) em-
bedded in π . If π2 does not belong to the L-packet parameterized by {φ}, we
define a representation π1 of SL(2, Ak) in the following way:

π1,v = π ′

1,v for all v /∈ {v1, v2},

π1,vi = π2,vi for i = 1, 2.

The representation π1 is in the same L-packet as π2 and it is automorphic; see
[Labesse and Langlands 1979]. If π2 corresponds to {φ} as above, we can form π1

as above at split places, but at v1 and v2 we must adjust representations to obtain a
representation which is in the same L-packet as π2 but is also automorphic. We can
do so because the multiplicity with which π1 occurs in the space of cusp forms is

1
[S◦

φ \ Sφ]

∑
s∈S◦

φ\Sφ

〈s, π1〉,

with notation as in [Labesse and Langlands 1979]. So we want to make

〈s, π1〉 =
∏

〈s, π1,v〉

a trivial character. But we can easily do that fixing at the place v1 the representation
which defines the trivial character on the local group S◦

φv1
\ Sφv1 , and adjusting

accordingly at the place v2.
Second, if dim δ1 = 1, i.e., δ1 = 1, we fix a nonarchimedean place u outside

{v1, v2} and fix some cuspidal representation πu of SL(2, ku) at that place. As
before, we can choose an automorphic cuspidal representation π ′

1 of D1 which
has that component on the place u, and which is unramified at the places v1 and
v2, i.e., equal to δ1 = 1. Now there exists a lift from the automorphic cuspidal
representations of D∗ to such representations of GL(2, Ak), with fixed place u
with cuspidal component, and, as before, we obtain the representation of SL(2, Ak)

having properties as in the previous case.
If the finite set

{
gi =

[ 1 0
0 xi

]}
is a set of representatives of GL(2,F)/SL(2,F)F∗,
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then the set

g′

i =




1 0 0 0
0 xi 0 0
0 0 x−1

i 0
0 0 0 1




is a set of representatives (in our realization) of SO(4, F)/
(
SL(2,F) · SL(2,F)

)
.

Now, with the same character ω as before, we can find an automorphic cuspidal
representation ε =

⊗
v εv of SL(2, Ak) with the central character ω such that

εv1
∼= εv2

∼= τ1 if π1,v1
∼= π1,v2,

εv1
∼= τ1, εv2

∼=
giτ1 if π1,v2

∼=
giπ1,v1 .

There exists an automorphic cuspidal representation σ ′ of the group G1(Ak) in
which ε ⊗ π ′

1 embeds as a representation of the group SL(2, Ak)D1(Ak). Anal-
ogously, there exists an automorphic cuspidal representation σ of SO(4, Ak) in
which ε⊗π1 embeds as a representation of SL(2, Ak) ·SL(2, Ak). We can arrange
that

σ ′

v1
∼= σ ′

v2
∼= δ and σ ′

v
∼= σv for all v /∈ {v1, v2}.

Let γ ′
=

⊗
v γ

′
v be an automorphic cuspidal representation of D∗(Ak) such that

γ ′
v1

∼= γ ′
v2

∼= τ and let γ be its lift to GL(2; Ak) such that γ ′
v

∼= γv for all v /∈
{v1, v2} and γv1

∼= γv2
∼= τ ′, where τ ′ corresponds to τ by Jacquet–Langlands

correspondence. This can be arranged; see [Flicker and Kazhdan 1988].
We have to normalize measures on the unipotent radicals of the groups consid-

ered in order to get the global functional equation right. We can decompose D as
F ⊕ D−, looking at the center F of the algebra D as the τ -hermitian part of D
and D− as the τ -antihermitian part. Now, the unipotent radical of the non-Siegel
parabolic subgroup in the group G2(D) in the case ε = −1 (the case we are now
considering) is N (F)∼= D⊕D⊕F , and in the case ε=1 it is N ′(F)∼= D⊕D⊕D−.
Let ψF denote a nontrivial additive character of F . Introduce self-dual measures
on N (F) and N ′(F) by the use of the F-form 〈x, y〉 =

∑5
i=1 xi yi +τ(xi yi ) on D5,

and a character ψF so that the self-dual measure on D5 is the product of a self-dual
measure αF on N (F) and α′

F on N ′(F). Fix a nontrivial character ψ =
⊗

v ψv

of Ak trivial on k and such that ψv1 = ψv2 = ψF . As above, at each split place
we can get a self-dual measure αv on N (kv) with respect to ψv, and a self-dual
measure α on N (Ak). In this way, we get a coherent family of measures {αv}

such that α =
∏
αv and α is actually the Tamagawa measure [Weil 1973, §VII.2,

Corollary 1], meaning that α(N (Ak)/N (k))=1. The Plancherel measure is defined
analogously to the Siegel case.

Proposition 4.1. µ(s, τ ⊗ δ)2 = µ(s, τ ′
⊗ σv1)µ(s, τ

′
⊗ σv2).
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Proof. Denote by S a finite set of places containing v1 and v2, all the places of
residual characteristic 2, and all the places where γv, σv, and ψv are ramified. For
every v /∈ S, let fv,s denote the unique unramified vector in γ ′

vν
s oσ ′

v, normalized
to be equal to 1 on the maximal compact subgroup Kv. Analogously, define f v,s
in γ ′

vν
s oσ ′

v. In the L-group SO(8,C) of SO(8, kv), the action (representation) of
the GL(2,C)×SO(4,C) on the unipotent radical is equal to 32(C2)⊕ (C2

⊗ C4).
So, for v /∈ S we can explicitly calculate the constants c(v, s, γ ′

v ⊗ σ ′
v) in terms of

L-functions, where

R(s, γ ′

v ⊗ σ ′

v, N (kv), N (kv)) fv,s = c(v, s, γ ′

v ⊗ σ ′

v) f v,s .

We then have

c(v, s, γ ′

v ⊗ σ ′

v)=
L(s, γ ′

v ⊗ σ ′
v, ρ2 ⊗ ρ4)(1 −χγ ′

v
(ω)q−s

v )−1

L(1 + s, γ ′
v ⊗ σ ′

v, ρ2 ⊗ ρ4))(1 −χγ ′
v
(ω)q−s−1

v )−1
.

It is easily seen that the product

cS(s, γ ′
⊗ σ ′)=

∏
v /∈S

c(v, s, γ ′

v ⊗ σ ′

v)

converges in some right half-plane, and it continues to a meromorphic function on
C. Analogously we have

R(s, γ ′

v ⊗ σ ′

v, N (kv), N (kv)) f v,s = c(v,−s, γ̃ ′

v ⊗ σ ′

v) fv,s .

We now take fs =
⊗

v fv,s ∈ γ ′νs o σ ′, where for each v /∈ S we have chosen
spherical fv,s as above. Because we have chosen the Tamagawa measure on the
(global) unipotent radical we have the global functional equation

R(s, γ ′
⊗ σ ′, N (Ak), N (Ak))R(s, γ ′

⊗ σ ′, N (Ak), N (Ak)) fs = fs;

see [Mœglin and Waldspurger 1995, Theorem IV.1.10]. When the right-hand side
of this equation is written as a product of local intertwining operators, the local
Plancherel measures appear. So we have∏

v∈S

µ(s, γ ′

v ⊗ σ ′

v)cS(s, γ ′
⊗ σ ′)cS(−s, γ̃ ′

⊗ σ ′)= 1.

By analogy with the previous equation for G2(Ak), we have the equation∏
v∈S

µ(s, γv ⊗ σv)cS(s, γ ⊗ σ)cS(−s, γ̃ ⊗ σ)= 1

in SO(8, Ak). But at each split place we have an isomorphism G2(kv)∼= SO(8, kv)
that preserves unipotent radicals, and we have isomorphic representations, so we
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have equality of the Plancherel measures. From this, it follows that

µ(s, τ ⊗ δ)2 = µ(s, τ ′
⊗ σv1)µ(s, τ

′
⊗ σv2). �

Remark. Because of our adjustment of the representation ε, we conclude that
the representations σv1 and σv2 differ in the quadratic character that is trivial on
SL(2,F) · SL(2,F).

We now compute the Plancherel measure above. Because τ1 is a generic rep-
resentation for some nontrivial character of F and πv1 is a generic representation
for some nontrivial character, we conclude that σv1 is a generic representation of
the group SO(4, F). We can now use [Shahidi 1990b] and express the Plancherel
measure in terms of γ -factors. We fix a nontrivial additive character ψ of F and
obtain, up to the exponential factor,

µ(s, τ ′
⊗ σv1)≈

γ (2s, τ ′,32ρ2, ψ)γ (s, τ ′
× σv1)

γ (1 + 2s, τ ′,32ρ2, ψ)γ (1 + s, τ ′ × σv1)
.

The only difficulty appears in the calculation of the Rankin–Selberg γ -factor of the
groups GL(2,F)× SO(4, F). If σv1 is noncuspidal, the computation is straight-
forward, using the multiplicativity of γ -factors [Shahidi 1990a]. So, assume that
the representations σvi appearing in the previous proposition are square-integrable,
noncuspidal representations. This is the case when, with the previous notations,
δ1 = 1. Let π denote the cuspidal unitary representation of GL(2,F) with trivial
central character such that τ1 ↪→ π |SL(2,F). Then π is a self-contragredient repre-
sentation. Such π ’s differ mutually by a quadratic character. We denote the basis
of the root system for SO(4, F) by {α, β}. Now, the standard Levi subgroup Mα is
diagonally embedded in SO(4, F) and contains the diagonal version of SL(2,F),
and Mβ isn’t diagonal and also contains the other copy of SL(2,F). Consider the
representation IndSO(4,F)

Mβ
πν1/2. It is easy to see that this representation restricted

to SL(2,F) · SL(2,F) decomposes as

IndSO(4,F)
Mβ

πν1/2
|SL(2,F)SL(2,F) =

∑
νo 1 ⊗ τi ,

where the τi are components of the restriction of π to SL(2,F). Let δ′ denote
the unique square-integrable subquotient of IndSO(4,F)

Mβ
πν1/2. Then StSL(2,F) ⊗ τ1

injects in δ′, so σv1 and σv2 differ from δ′ by a quadratic character. We can conclude:

Corollary 4.2. Assume that the representations σvi are not cuspidal and that σv1

injects in IndSO(4,F)
Pβ πν1/2.

(i) If dim τ > 1 then

(a) if χτ ′(ω) 6= 1 the representation τνs o δ reduces only for s = 0, and
(b) if χτ ′(ω)= 1 then τ o δ is irreducible, and τνs o δ reduces at s =

1
2 or at

s =
3
2 , depending on whether τ ′ � π or τ ′ ∼= π , respectively.
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(ii) If τ = χ is a quadratic character, the representation χνs o δ reduces only at
s =

1
2 .

Proof. In the formula for Plancherel measure we include the expression for the
Rankin–Selberg factor

γ (s, τ ′
× σv1, ψ)= γ (s, τ ′

×πν1/2, ψ)γ (s, τ ′
×πν−1/2, ψ).

If τ ′ is cuspidal, we obtain the claim, and if τ ′
= χStGL(2,F) we have

γ (s, χStGL(2,F)×πν
1
2 , ψ)= γ (s, χν1/2

×πν1/2, ψ)γ (s, χν−1/2
×πν1/2, ψ)= 1.

�

We denote by ε the conjugation in SO(4, F) by the element

ε =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0


of O(4, F) \ SO(4, F), and, accordingly, if π is the representation of SO(4, F)
we denote the representation of SO(4, F) obtained using the involution ε by επ .
Keeping the assumptions from the proposition, in the case of cuspidal σvi ’s we
have

Corollary 4.3. (i) Suppose τ = χ is a quadratic character of D∗.

(a) If εσv1 � σv1 the representation χνs o δ reduces only at s =
1
2 .

(b) If εσv1
∼= σv1 (so that also εσv2

∼= σv2) then if at least one of the represen-
tations χ o σ̃vi , i = 1, 2, of the group SO(6, F) is irreducible, χνs o δ

reduces (only) for s =
3
2 . On the other hand, if both of the representations

χ o σ̃vi , i = 1, 2, reduce, χνs o δ reduces for s =
1
2 .

(ii) Suppose dim τ > 1.

(a) If χτ (ω)= 1 the representation τν1/2 o δ reduces.
(b) If χτ (ω) = −1 then the points of reducibility are at s = 0 or s = 1. We

have reducibility at s = 1 if at least one of the representations τ ′ o σvi of
the group SO(8, F) is irreducible.

Proof. We prove (i). Using the multiplicativity of γ -factors, we come to γ -factors
γ (s, χν1/2

×σvi ), which leads us to consider the reducibility of the representations
χνs oσvi of the group SO(6, F). It is well known that in order to have reducibility
for some real number s, the nontrivial element of the Weyl group has to fix the
representation χ ⊗ σvi , which amounts to the statement that εσv1

∼= σv1 . If it isn’t
so, the aforementioned L-functions and γ -factors appearing in the case of SO(6, F)
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are trivial, so the only pole of the Plancherel measure comes from the Hecke L-
function for τ ′. If εσv1

∼= σv1 , the irreducibility of χoσ̃v1 implies that L(s, χ×σv1)

has a pole at s = 0. This implies that µ(s, τ ⊗ δ) has a pole at s =
3
2 , no matter the

situation with χ o σ̃v2 . On the other hand, if both of the representations χ o σ̃vi

reduce, the Rankin–Selberg L-functions are holomorphic for real s and the only
poles of µ(s, τ ⊗ δ) come from the Hecke L-function for χStGL(2,F).

The proof of (ii) follows from [Goldberg and Shahidi 2001, Theorem 4.8]. �

5. Unitary dual of the group G2(D)

We are interested in finding the hermitian, and especially irreducible unitarizable
representations of G2(D). We will list them by grouping together the ones with
the same cuspidal support.

5.1. Unitary subquotients of the principal series. Let χ1 and χ2 denote unitary
characters of D∗. Let π = χ1ν

s1 × χ2ν
s2 o 1. Without loss of generality we can

assume that s1 ≥ s2 ≥ 0.

Proposition 5.1. Assume that we have unitary characters χ1 and χ2 such that
χ2

1 6= 1 and χ2
2 6= 1.

(i) If χ1 6= χ±1
2 then the representation π has a hermitian subquotient if and only

if s1 = s2 = 0 and then it is an irreducible tempered representation.

(ii) If χ1 = χ2 then the representation π has a hermitian subquotient if and only
if s1 = s2 = 0 and then it is an irreducible tempered representation.

(iii) Suppose if χ1 = χ−1
2 . If s2 = 0 the representation π has a hermitian sub-

quotient only if s1 = 0 and we obtain an irreducible tempered representation
(isomorphic to one obtained in the previous case for the same χ1).

If s2 > 0 the representation π has a hermitian subquotient only if s1 = s2;
then for all s1 > 0 all the subquotients of the representation π are hermitian.
For s1 ∈ (0, 1) we have π = χ1ν

s1 ×χ−1
1 νs1 o 1 = L(χ1ν

s1, χ−1
1 νs1; 1) and π

is a unitary representation. For s1 > 1, π is not a unitary representation. For
s1 = 1 we have

π = χ1δ(ν, ν
−1)o 1 + L(χ1ν, χ

−1
1 ν; 1),

where the first subquotient is a tempered representation, and the other is uni-
tary (nontempered).

Proof. The first two cases follow from the criterion for the hermiticity of the
Langlands quotient. For the third case we observe that χ1ν

s1 × χ1ν
−s1 is the

complementary series of the group GL(2, D) for α ∈ (0, 1). From this, it follows
that χ1ν

s1 × χ1ν
−s1 o 1 has exclusively unitarizable subquotients for s1 ∈ (0, 1].

�
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Proposition 5.2. Let χ1 and χ2 be unitary characters such that χ2
1 = 1 and χ2

2 6= 1.
Again, let π = χ1ν

s1 × χ2ν
s2 o 1. The representation π has a hermitian subquo-

tient only if s2 = 0; then all of its subquotients are hermitian representations. In
this case, for s1 = 0, π is an irreducible tempered representation; for s1 =

1
2 ,

the representation π has an irreducible tempered subquotient; for s1 ∈ (0, 1
2 ], the

representation L(χ1ν
s1;χ2 o 1) is unitarizable; and for s1 >

1
2 , the representation

π is irreducible and nonunitarizable.

Proof. We just comment on the case s2 = 0. We have the standard intertwining
operators Aw2α+β

(s1) : χ1ν
s1 × χ2 o 1 → χ1ν

−s1 × χ2 o 1, which converge for
s1 > 0. These operators define, for s1 >

1
2 , a continuous family, indexed by s1,

of nondegenerate hermitian forms on the compact picture X of the representation
χ1 ×χ2 o 1 by means of

( f1, f2)s1 =

∫
K

〈
f1,s1(k), Aw2α+β

(s1) f2,s1(k)
〉

dk.

Here f1 and f2 belong to X and f1,s1 , f2,s1 denote their holomorphic sections,
which are identified with elements from χ1ν

s1 × χ2 o 1. If one of these forms
were unitarizable, meaning that the irreducible representation χ1ν

s1 × χ2 o 1 is
unitarizable, all the other forms would have to be unitarizable, too, because of the
connectedness of the indexing set. But for s1 >

5
2 the representation χ1ν

s1 ×χ2 o1
has unbounded matrix coefficients, which implies nonunitarizability. The oper-
ator Aw2α+β

(s1) has a pole at s1 = 0, but we can normalize it by multiplying it
by an appropriate real polynomial; we obtain, for s1 ∈ [0, 1

2), a family of (nor-
malized) intertwining operators A′

w2α+β
(s1) which also define a continuous family

of nondegenerate hermitian forms on X . By the same argument, we obtain the
unitarizability of the representations considered for s1 ∈ [0, 1

2). In this way, we
obtain the complementary series representations, and, by the results in [Miličić
1973], the subquotients of the representation on the edge of the complementary
series (s1 =

1
2 ) are unitarizable. �

Proposition 5.3. With notation as before, assume that χ2
1 6= 1 and χ2

2 = 1. Then
the representation π has a hermitian subquotient only if s1 = s2 = 0, and π is then
irreducible and tempered. This representation is already described in the previous
proposition.

The proof is left to the reader.

Proposition 5.4. Assume that we have unitary characters χ1 and χ2 such that
χ2

1 = χ2
2 = 1 and χ1 6= χ2. Let π = χ1ν

s1 ×χ2ν
s2 o1. Consider the regions defined

on the s1s2 plane in Figure 1 (which also includes points that do not have s1 ≥ s2).

(i) The representation π for (s1, s2) from the closed region I has all its subquo-
tients unitarizable. The composition factors are given in Proposition 2.3.
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(ii) For (s1, s2) in each of the open regions II, III, IV we obtain representations
all of whose subquotients are hermitian, but none unitarizable.

Proof. For (s1, s2) with s1 ≥ s2 > 0 from open region I we have the family of
standard long intertwining operators A(s1, s2) : χ1ν

s1 × χ2ν
s2 o 1 → χ1ν

−s1 ×

χ2ν
−s2 o1 which defines a continuous family of nondegenerate hermitian forms on

the compact picture. So, we can fix such a pair (s1, s2) and form the one-parameter
family t → (ts1, ts2) for t ≥ 0. Because χ1 ×χ2 o 1 is irreducible, we can assume
that we have unitarizable representations for t ≥ 0, until χ1ν

ts1 ×χ2ν
ts2 o 1 starts

being reducible. An analogous reasoning and the unboundedness of the matrix
coefficients ensures the nonunitarizability of the representations on the unbounded
regions. We, of course, could apply immediately [Tadić 1983] to conclude that. �

Proposition 5.5. Given a quadratic character χ1 of D∗, set π = χ1ν
s1 ×χ1ν

s2 o1.
All subquotients of π are hermitian representations. Let the notation be as in
Figure 2.
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(i) First we consider the open regions in the figure. Only for (s1, s2) lying in
the (open) regions I or III is it the case that π is unitarizable (irreducible)
nontempered representation.

(ii) Now we consider the boundaries. Besides the square-integrable and tempered
subquotients, the other unitarizable subquotients that appear for (s1, s2) lying
on the boundaries are the subquotients of π for (s1, s2) on the boundary of
regions I and III and L(χ1ν

5/2, χ1ν
1/2

; 1).

Proof. As in the previous proposition, we obtain the unitarizability of region I.
Consider χ1ν

s1 ×χ1ν
−s1 in GL(2, D) for s1 ∈ (0, 1). These (irreducible) represen-

tations belong to the complementary series of GL(2, D), so all the subquotients of
the representation χ1ν

s1 × χ1ν
s1 o 1 are unitarizable. In the open region III this

gives unitarizability of some representations and the unitarizability on the entire
region then follows. This gives, by [Miličić 1973], the unitarizability of all sub-
quotients for π from the boundaries of I and III. Now, consider the representation
χ1ν

5/2
×χ1ν

1/2 o1. If we prove that it has some nonunitarizable subquotients, this
would imply the nonunitarizability in the open region V I (and, symmetrically, in
V ). We have

χ1ν
5/2

×χ1ν
1/2 o 1 = L(χ1ν

3/2δ(ν, ν−1); 1)+π1

+L(χ1ν
5/2

; δ[χ1ν
1/2

; 1])+ L(χ1ν
5/2, χ1ν

1/2
; 1).

The unitarizability of L(χ1ν
5/2, χ1ν

1/2
; 1) is proved using global methods [Grbac

2004]. In the case χ1 = 1, L(χ1ν
5/2, χ1ν

1/2
; 1) is a trivial character, so we know

from [Casselman 1981] that the only unitarizable subquotients of ν5/2
×ν1/2o1 are

the Steinberg representation and the trivial one. In general, the nonunitarizability of
L(χ1ν

3/2δ(ν, ν−1); 1) and L(χ1ν
5/2

; δ[χ1ν
1/2

; 1]) can be proved using the Howe–
Moore theorem [Borel and Wallach 2000]. Denote L(χ1ν

3/2δ(ν, ν−1); 1) by π .
Consider the unbounded set S = {a0 ∈ A0 : |α1(a0)|F ≤ 1, |α2(a0)| = 1}. We have

s(1,1)(π)= χ1ν
1/2

⊗χ1ν
5/2

+χ1ν
1/2

⊗χ1ν
−5/2

+χ1ν
−5/2

⊗χ1ν
1/2.

Let v and ṽ be the canonical lifts of the vectors in Jacquet modules corresponding
to the last summand in this sum. There exists ε > 0 such that for every a0 from
A0(ε) we have

〈π(a0)v, ṽ〉 = δ
1/2
P0
(a0)(χ1ν

−5/2
⊗χ1ν

1/2)(a0)〈 jP0(v), j̃P0(ṽ)〉.

Here A0(ε) = {a0 ∈ A0 : |α1(a0)|F ≤ ε, |α2(a0)|F ≤ ε}. The vectors jP0(v)

and j̃P0(ṽ) denote the projection on the corresponding Jacquet module. We fix
an element a0 from A0(ε). Then a0S is a subset of A0(ε). So, we can find an un-
bounded sequence of elements in a0S that defines a sequence of matrix coefficients
of π not vanishing at infinity. By the Howe–Moore theorem π is not a uniformly
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bounded representation, hence is not unitarizable. Quite analogously we prove the
nonunitarizability of L(χ1ν

5/2
; δ[χ1ν

1/2
; 1]).

Now, consider the representation

χ1ν
2
×χ1 o 1 = L(χ1νδ(ν, ν

−1); 1)+ L(χ1ν
2, χ1 o 1).

We prove that both subquotients on the right are nonunitarizable. We have a holo-
morphic family of the irreducible hermitian representations χ1ν

sδ(ν, ν−1)o 1 for
s ∈ [1, 3

2), because we have a holomorphic family of nondegenerate hermitian
forms obtained by standard intertwining operators on the compact picture of the
representation χ1δ(ν, ν

−1)o 1. If we assume unitarizability at s = 1, this would
imply unitarizability on the whole interval, and the unitarizability of all the sub-
quotients on the edge of the interval, at s =

3
2 , which is false by the preceding

reasoning. Analogously, the unitarizability of L(χ1ν
2
;χ1 o1)= χ1νL(ν, ν−1)o1

would imply the unitarizability of all the subquotients of χ1ν
3/2L(ν, ν−1)o1; but

we have shown that this is not the case. This proves nonunitarizability on the region
IV and on the remaining boundaries. �

We continue with the examination of the principal series representations induced
by the higher-dimensional representations of D∗. Let τ1 and τ2 be unitarizable
representations of D∗ of dimension greater then 1. Let π = τ1ν

s1 × τ2ν
s2 o 1. We

can assume that s1 ≥ s2 ≥ 0. The next four propositions are completely analogous
to the first four propositions in the previous subsection, so we just note them.

Proposition 5.6. With the notation as above, assume that τ1 � τ̃1 and τ2 � τ̃2.

(i) If τ1 � τ2 and τ1 � τ̃2, then the representation π has a hermitian subquotient if
and only if s1 = s2 = 0, and then π is an irreducible tempered representation.

(ii) If τ1 ∼= τ2 then π has a hermitian subquotient if and only if s1 = s2 = 0, and
then π is an irreducible tempered representation.

(iii) If τ1 ∼= τ̃2 the representation π has a hermitian subquotient if and only if
s1 = s2. In that case all of its subquotients are hermitian. For s1 ∈

(
0, 1

2

)
the

representation L(τ1ν
s1, τ̃1ν

s1; 1) is unitarizable, for s1 >
1
2 nonunitarizable.

We also get tempered subquotients for s1 ∈
{
0, 1

2

}
.

Proposition 5.7. Assume that τ1 ∼= τ̃1 and τ2 � τ̃2. Then the representation π
has a hermitian subquotient only if s2 = 0. In that case, if ωτ1 = 1, π has a
tempered subquotient only if s1 =

1
2 or s1 = 0. On the other hand, L(τ1ν

s1, τ2 o 1)
is unitarizable for s1 ∈

(
0, 1

2

]
, and for s1 >

1
2 it is a hermitian nonunitarizable

representation. If ωτ1 6= 1, π has a tempered subquotient only if s1 = 0; in that case
π is a sum of two nonequivalent tempered representations and L(τ1ν

s1, τ2 o 1) is
hermitian nonunitarizable representation for every positive s1.
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Proposition 5.8. Assume that τ1 � τ̃1 and τ2 ∼= τ̃2. Then π has a hermitian subquo-
tient only if s1 = s2 = 0. In this case π is an irreducible tempered representation
or a sum of two nonequivalent tempered representations, depending on the central
character of τ1. These tempered representations are those described in the previous
proposition.

Proposition 5.9. Assume that τ1 and τ2 are nonisomorphic, unitary, self-contra-
gredient representations. We keep our assumption s1 ≥ s2 ≥ 0. Then all the sub-
quotients of the representation π are hermitian and

(i) If ωτ1 =ωτ2 = 1, we have the same situation as in Figure 1, π has unitarizable
subquotients only inside closed region I, the tempered (not square-integrable)
subquotients appear for (s1, s2) ∈

{
( 1

2 , 0), (0, 0)
}
, and square-integrable rep-

resentation appears for (s1, s2)=
( 1

2 ,
1
2

)
.

(ii) If ωτ1 = 1 and ωτ2 6= 1 π has unitarizable subquotients only for s2 = 0 and s1 ∈

[0, 1
2 ]. Tempered (not square-integrable) representations appear for (s1, s2) ∈{

(1
2 , 0), (0, 0)

}
.

(iii) If χτ1 6= 1 and χτ2 6= 1 π is unitarizable only for s1 = s2 = 0 and π (as we
have already seen) is a sum of 4 nonequivalent tempered representations.

Proposition 5.10. Assume that τ1 ∼= τ2 and τ1 is self-contragredient, such that
ωτ1 6= 1. Then all the irreducible subquotients of the representation π are her-
mitian, and the unitarizable subquotients appear only for (s1, s2) from the closed
region I on Figure 3 (when all of them are unitarizable). The square-integrable
subquotients appear for (s1, s2)= (1, 0) and the tempered (not square-integrable)
subquotients appear for (s1, s2)= (0, 0).

In the next proposition, we note an occurrence of the isolated unitary represen-
tation in the unitary dual, namely, the representation L(τ1ν

3/2, τ1ν
1/2

; 1).
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Proposition 5.11. We keep all the assumptions of the previous proposition, except
now ωτ1 = 1. In Figure 4, considering the open regions, we have unitarizability
only on region I, where we have nontempered representations. On the boundaries,
we have a square-integrable subquotient for (s1, s2) =

( 3
2 ,

1
2

)
, and tempered sub-

quotients for (s1, s2)∈
{(1

2 , 0
)
,
( 1

2 ,
1
2

)
, (0, 0)

}
. We have other unitary subquotients

on the boundary of region I, and L(τ1ν
3/2, τ1ν

1/2
; 1) is a unitarizable subquotient.

Proof. We discuss only the more difficult cases. Consider the representation

τ1ν
3/2

× τ1ν
1/2 o 1

= L(νδ(τ1ν
1/2, τ1ν

−1/2); 1)+π4+L(τν3/2
; δ[τ1ν

1/2
; 1])+L(τ1ν

3/2, τ1ν
1/2

; 1).

The unitarizability of the representation L(τ1ν
3/2, τ1ν

1/2
; 1) is proved by global

methods [Grbac 2004]. This is an isolated unitary representation in the unitary
dual. We will prove the nonunitarizability of L(νδ(τ1ν

1/2, τ1ν
−1/2); 1) and of

L(τν3/2
; δ[τ1ν

1/2
; 1]). We will do that in the following way: we will calculate

the Plancherel measure µ(s, δ(τ1ν
1/2, τ1ν

−1/2)). Let us again denote by A(s) the
standard intertwining operator such that

A(s) : δ(τ1ν
1/2, τ1ν

−1/2)νs o 1 → δ(τ1ν
1/2, τ1ν

−1/2)ν−s o 1.

We will prove that the Plancherel measure has a simple pole at s = 1 and that
A(s) has no pole at s = −1. We will apply these observations to the calcula-
tion of Jantzen filtrations near s = 1. This will give us nonunitarizability. Let
δ = δ(τ1ν

1/2, τ1ν
−1/2). First, we use the previously mentioned result stating that

µ(s, δ)=µ(s, δ′). The representation δ′ is generic, so we can apply the results from
[Shahidi 1990b] to compute the Plancherel measure in terms of the γ -factors. Up
to an exponential factor, we have

µ
( s

2
, δ′

)
≈

γ (s, δ′,32ρ4, ψ)

γ (1 + s, δ′,32ρ4, ψ)
,
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where ψ is a nontrivial additive character of F , given in advance. By multiplica-
tivity of γ -factors [Shahidi 1990a] we have

γ (s, δ′,32ρ4, ψ)

= γ (s, τ1ν
1/2, det, ψ)γ (s, τ1ν

−1/2, det, ψ)γ (s, τ1ν
1/2

× τ1ν
1/2, ψ).

The last factor is a Rankin–Selberg γ -factor. When a γ -factor is expressed in terms
of L-functions, we obtain, up to an exponential factor,

µ(
s
2
, δ′)≈

(1 − q−1−s)(1 − q1−s)(1 − q1+s)(1 − q−1+s)(1 − q−rs)(1 − qrs)

(1 − qs)(1 − q−s)(1 − q−2+s)(1 − q−2−s)(1 − q−r+rs)(1 − q−r−rs)
,

where r is a natural number satisfying L(s, τ1 ×τ1)= (1−qrs)−1. Indeed µ(s, δ′)
has a simple pole at s = 1. Denote by wε the reflection in the Weyl group with
respect to the root ε. Then consider the intertwining operator

Awα+β
(s) : τ1ν

s+ 1
2 × τ1ν

s− 1
2 o 1 → τ1ν

−s+ 1
2 × τ1ν

−s− 1
2 o 1.

The poles of the operator A(s) are among the poles of the operator Awα+β
(s)

and Awα+β
(s)|δνso1 = A(s). But using the factorization of the operator Awα+β

(s)
[Shahidi 1981], we see that it has no poles at s = −1. Let X denotes the compact
picture of the representation δνs o1. We will consider the Jantzen filtrations of the
space X , for s ∈[0, 1]. For s ∈ (0, 1) the representations δνs o1 are irreducible, and
the mentioned interval parameterizes a nondegenerate family of hermitian forms in
the compact picture X . For s=0, A(s) is holomorphic, and, normalized, generates
the intertwining algebra of the representation δo1= T1+T2 (follows from the proof
of the Proposition 2.5). The operator A(0) endows the space of this representation
with the hermitian form which is of a different sign on each of the Ti ’s. This
gives us the nonunitarizability of δνs o 1 for s ∈ (0, 1). By the theory of Jantzen
filtrations [Vogan 1984], at s = 1 we consider filtrations X = X0

1 ⊃ X1
1 ⊃ · · · ⊃ 0.

Because we have a standard representation, we have X1
1 = π4, a square-integrable

representation. We will prove that X2
1 = {0}, i.e., that a hermitian form defined on

X1
1 by

< v, v′ >1= lims→1

∫
K
< v(k),

1
s − 1

A(s)v′

s(k) > dk

is nondegenerate, so its radical, namely X2
1 , is trivial. Because of the simplicity of

the pole of the Plancherel measure at s = 1, we have

A(−s)
1

s − 1
A(s)= h(s),

where h is holomorphic function in the neighborhood of s =1, and h(1) 6=0. Hence,
for nonzero v′

∈ X such that v′

1 ∈ π4, we have lims→1 A(s)v′
s/(s−1) /∈ L(δν, 1).
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Now, we can choose v ∈ X1
1 such that

〈v, v′
〉1 = lims→1

∫
K

〈
v(k),

A(s)v′
s(k)

s − 1

〉
dk 6= 0.

We can obtain the signature of δνs o1 for s> 1 and for s< 1 in terms of signatures
(p0, q0) and (p1, q1). But we know that on these segments we have nonunitarizable
representations. We conclude that p0 6= 0 and q0 6= 0, which is equivalent to
nonunitarizability.

The proof of the nonunitarizability of L(τ1ν
3/2

; δ[τ1ν
1/2

; 1]) follows the same
pattern: We will compute the Plancherel measure of µ(s, τ1 ⊗ δ[τ1ν

s
; 1]). We

can easily extend the results from the fourth section to the case when we consider
square-integrable representations instead of cuspidal ones. So we have

µ(s, τ1 ⊗ δ[τ1ν
s
; 1])2 = µ(s, τ ′

1 ⊗ σ1)µ(s, τ ′

1 ⊗ σ2).

The representations σi , i = 1, 2, from the above equation are obtained originally
by considering the restrictions of the representations to the groups SL(2,F)D1 or
SL(2,F) · SL(2,F). It is not hard to see that, in this case, σi ↪→ IndSO(4,F)

Mα
(τ ′

1χi ),
where χi is a quadratic character on F∗. Here Mα is the standard Levi subgroup,
which is diagonally positioned in SO(4, F), and τ ′

1 is a Langlands’ lift of the repre-
sentation τ1. Because of the genericity of the representations σi , we can apply the
results of Shahidi about multiplicativity of γ -factors. We obtain that the Plancherel
measure µ(s, τ ′

1 ⊗σi ) can have a pole of order one at s =
3
2 . We obtain a pole there

if and only if, τ ′

1
∼= τ ′

1χi . But µ(s, τ1 ⊗ δ[τ1ν
1/2

; 1]) must have a pole there, so it
is a pole of order one. As in the previous case, we conclude that the intertwining
operators appearing in the definition of the Plancherel measureµ(s, τ1⊗δ[τ1ν

s
; 1])

are holomorphic near s = ±
3
2 . Now we can conclude, as in the previous dis-

cussion, that L(τ1ν
3/2

; δ[τ1ν
1/2

; 1]) is a nonunitarizable representation. The only
Langlands quotient left to settle is L(τ1ν; τ1 o 1) = ν1/2L(τ1ν

1/2, τ1ν
−1/2)o 1.

We obtain the hermiticity of the representations πs = νs L(τ1ν
1/2, τ1ν

−1/2)o 1 for
s ∈ (0, 1) using the action of the long intertwining operator acting on the space
τ1ν

s+ 1
2 × τ1ν

s− 1
2 o 1. But unitarity of the representation πs at s =

1
2 would imply

unitarizability of all the subquotients at s = 1, which contradicts what we have just
proved. �

Again, let π = τ1ν
s1 × χ1ν

s2 o 1. We can assume s1, s2 ≥ 0. The proof of the
next result is straightforward.

Proposition 5.12. (i) If τ1 is not a self-contragredient representation and χ2
1 6= 1,

π has a hermitian quotient only if (s1, s2) = (0, 0), and then π is an irre-
ducible, tempered representation.
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(ii) If τ1 is selfdual, but χ2
1 6= 1 π has a hermitian quotient only if s2 = 0 (then all

the subquotients are hermitian), and has unitarizable subquotients for s1 from
the segment [0, 1

2 ] if ωτ1 = 1 and only in the origin if ωτ1 6= 1. If ωτ1 = 1, π is
irreducible tempered for s1 = 0, and has a tempered subquotient for s1 =

1
2 . If

ωτ1 6= 1, we obtain a tempered representation for s1 = s2 = 0.

(iii) If χ2
1 =1 and τ1 is not a selfdual representation, π has a hermitian subquotient

only for s1 = 0 (then all quotients are hermitian). For s2 = 0 representation π
is irreducible tempered, for s2 =

1
2 it has a tempered subquotient, and unita-

rizable subquotients appear for {(0, s2) : s2 ∈ [0, 1
2 ]}.

(iv) If χ2
1 = 1 and τ1 o 1 reduces, every subquotient of π is hermitian. For

s1 = s2 = 0 representation π is a sum of two-nonequivalent tempered rep-
resentations, and for (s1, s2) = (0, 1

2) has a tempered subquotient. Other
unitarizable subquotients appear for s1 = 0 and s2 ∈

[
0, 1

2

]
.

(iv) If χ2
1 = 1 and τ1ν

1/2 o 1 reduces, we have the analogous situation as for the
characters; unitarizability of all subquotients of π on the closed region I in
Figure 1.

5.2. The unitary dual supported on the nonminimal parabolic subgroups. Once
we have handled the reducibility questions in this case, the rest is straightforward.
Assume that s ≥ 0.

Proposition 5.13. (i) We consider induction from the Siegel parabolic subgroup:
If τ is an irreducible cuspidal representation of GL(2, D), let πs = τνs o 1.
If τ is not self-dual, πs is hermitian only when s = 0; then it is a tempered
representation. If τ is self-dual, πs reduces for some s0 ∈ {0, 1

2}, and all of
it subquotients are always hermitian. In this case, if s0 = 0, π0 is the sum of
two nonequivalent tempered representations, and otherwise, πs are nonunita-
rizable. If s0 =

1
2 , πs is a nontempered irreducible unitary representation for

s ∈ (0, 1
2), tempered for s = 0, and for s =

1
2 the representation π 1

2
has two

irreducible unitary subquotients; one of them is nontempered and the other is
a square-integrable representation.

(ii) We consider induction from the non-Siegel parabolic subgroup: the represen-
tation τνs oδ for irreducible representation τ of the group D∗ and irreducible
cuspidal representation δ of the group G1(D) is unitarizable for nonselfdual τ
only for s = 0, and then it is irreducible tempered representation. Otherwise,
it reduces for some s0 ∈ {0, 1

2 , 1, 3
2} (Corollaries 4.2 and 4.3). If s0 = 0, π0 is a

sum of two nonequivalent tempered representations, otherwise πs is nonuni-
tarizable. If s0 ∈

{1
2 , 1, 3

2

}
, the representation π0 is tempered, nontempered

unitarizable for s ∈ (0, s0) and for s = s0 it has a nontempered unitarizable
Langlands quotient, and a square-integrable subrepresentation.
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LOWER BOUNDARY HYPERPLANES OF THE CANONICAL
LEFT CELLS IN THE AFFINE WEYL GROUP Wa( Ãn−1)

JIAN-YI SHI

Dedicated to Professor George Lusztig on his sixtieth birthday.

Let 0 be any canonical left cell of the affine Weyl group Wa of type Ãn−1 for
n > 1. We describe the lower boundary hyperplanes for 0, answering two
questions of Humphreys.

Let Wa be an affine Weyl group and let8 be the root system of the corresponding
Weyl group. Fix a positive root system 8+ of 8. There is a bijection from Wa

to the set of alcoves in the euclidean space E spanned by 8. We identify the
elements of Wa with the alcoves (also with the topological closure of the alcoves)
of E . According to a result of Lusztig and Xi [1988], we know that the intersection
of any two-sided cell of Wa with the dominant chamber of E is exactly a single
left cell of Wa , called a canonical left cell. When Wa is of type Ãn−1, with n > 1,
there is a bijection φ from the set of two-sided cells of Wa to the set of partitions
of n; see Remark 2.1 and subsequent paragraphs, as well as [Shi 1986].

From now on, unless otherwise specified, we always assume that Wa is an affine
Weyl group of type Ãn−1, where n > 1. This article answers two questions posed
recently by J. E. Humphreys (private communication):

(1) Can one find the set B(L) of all the lower boundary hyperplanes for any
canonical left cell L of Wa?

(2) How does the partition φ(L) determine the set B(L), and in which case does
the set B(L) determine the partition φ(L) also?

In the first two sections, we collect some concepts and known results for later
use. In Section 3, we give criteria for a hyperplane to be the lower boundary of a
canonical left cell of Wa . Then we prove our main results in Section 4.
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Keywords: affine Weyl groups, canonical left cells, hyperplanes, alcoves, sign types.
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1. Sign types

Let n = {1, 2, . . . , n} for n ∈ N. An n-sign type (or just a sign type) is by definition
a matrix X = (X i j )i, j∈n over the symbol set {+,©,−}, with

{X i j , X j i } ∈ {{+,−}, {©,©}} for i, j ∈ n.

X is determined entirely by its “upper unitriangular” part X1
= (X i j )i< j . We

identify X with X1. X is dominant, if X i j ∈ {+,©} for any i < j in n, and is
admissible, if

(1–1)
− ∈ {X i j , X jk} H⇒ X ik 6max{X i j , X jk},

− /∈ {X i j , X jk} H⇒ X ik >max{X i j , X jk}

for any i < j < k in n, where we set a total ordering: −< ©<+ .

Lemma 1.1 ([Shi 1987b, Lemma 3.1; Shi 1999, Corollary 2.8]). (1) A dominant
sign type X = (X i j ) is admissible if and only if for any i 6h< k6 j , condition
X i j = © implies Xhk = ©.

(2) If an admissible sign type X = (X i j ) is not dominant, then there exists at least
one k with 16 k < n and Xk,k+1 = −.

Proof. This is an easy consequence of conditions (1–1). �

Let E = {(a1, . . . , an) ∈ Rn
|
∑n

i=1 ai = 0}. This is a euclidean space of dimen-
sion n−1 with inner product 〈(a1, . . . , an), (b1, . . . , bn)〉 =

∑n
i=1 ai bi . For i 6= j

in n, let αi j = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0), with 1 and −1 at the i-th and
j-th positions, respectively. Then 8 = {αi j | 1 6 i 6= j 6 n} is the root system of
type An−1, which spans E . 8+

= {αi j ∈8 | i < j} is a positive root system of 8
with corresponding simple root system 5= {αi,i+1 | 16 i < n}. For any ε ∈ Z and
i < j in n, define a hyperplane

(1–2) Hi j;ε = {(a1, . . . , an) ∈ E | ai − a j = ε}.

Encode a connected component C of E \
⋃

16i< j6n, ε∈{0,1}
Hi j;ε by a sign type

X = (X i j )i< j as follows. Take any v = (a1, . . . , an) ∈ C and, for i < j in n, set

X i j =


+ if ai − a j > 1,

− if ai − a j < 0,
© if 0< ai − a j < 1.

X only depends on C , but not on the choice of v; see [Shi 1986, Chapter 5]. Note
that not all sign types can be obtained in this way.

Proposition 1.2 ([Shi 1986, Proposition 7.1.1 and §2]). A sign type X = (X i j ) can
be obtained in the above way if and only if it is admissible.
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Lemma 1.3. Let X = (X i j ) be a dominant admissible sign type with X p,p+1 = ©

for some p with 16 p < n. Let X ′
= (X ′

i j ) be the sign type given by

X ′

i j =

{
X i j if (i, j) 6= (p, p+1),

− if (i, j)= (p, p + 1)

for i < j in n. Then X ′ is admissible if and only if X ph = X p+1,h for all h ∈ n.

Proof. This is an easy consequence of (1–1). �

For α ∈8, let sα be the reflection in α:

sα(v)= v− 2
〈v, α〉

〈α, α〉
α.

Let Tα be the translation by α: T (v)= v+α. Define si = sαi,i+1 for 16 i < n, and
s0 = Tα1n sα1n . Then S = {si | 06 i < n} forms a distinguished generator set of the
affine Weyl group Wa of type Ãn−1.

A connected component in

E \
⋃

16i< j6n
k∈Z

Hi j;k

is called an alcove. The (right) action of Wa on E induces a simply transitive
permutation on the set A of alcoves in E . There exists a bijection w 7→ Aw from
Wa to A such that A1 (where 1 is the identity element of Wa) is the unique alcove
in the dominant chamber of E whose closure contains the origin and such that
(Ay)w= Ayw for y, w ∈ Wa; see [Shi 1987a, Proposition 4.2]. To each w ∈ Wa we
associate an admissible sign type X (w) that contains the alcove Aw. An admissible
sign type X can be identified with the set {w ∈ Wa | X (w)= X}.

2. Partitions and Kazhdan–Luzstig cells

Let (P,�) be a finite poset. By a chain of P , we mean a totally ordered subset
of P (allow to be an empty set). Also, a cochain of P is a subset K of P whose
elements are pairwise incomparable. A k-(co)chain family in P (k > 1) is a subset
J of P which is a disjoint union of k (co)chains Ji (1 6 i 6 k). We usually write
J = J1 ∪ · · · ∪ Jk .

A partition of n ∈ N is a sequence λ= (λ1, λ2, . . . , λr ) of positive integers such
that λ1 > λ2 > · · · > λr and

∑r
i=1 λi = n. In particular, when λ1 = · · · = λr = a,

we also write λ= (ar ), and call it a rectangular partition. Let 3n be the set of all
partitions of n.

Let λ= (λ1, λ2, . . . , λr ) and µ= (µ1, µ2, . . . , µt) be in 3n . Write λ6µ if the
inequalities

∑i
j=1 λ j 6

∑i
j=1 µ j hold for i > 1. We say that µ is conjugate to λ
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if µi = |{ j | λ j > i, 16 j 6 r}| for 16 i 6 t , where |X | stands for the cardinality
of the set X .

Let dk be the maximal cardinality of a k-chain family in P for k > 1. Then
d1 < d2 < · · · < dr = n = |P| for some r > 1. Let λ1 = d1 and λi = di − di−1

for 1 < i 6 r . Then λ1 > λ2 > · · · > λr > 0 by [Greene 1976, Theorem 1.6].
We get φ(P) = (λ1, . . . , λr ) ∈ 3n , called the partition associated to chains in P .
Replacing the word “k-chain family” by “k-cochain family”, we can also define
ψ(P) = (µ1, . . . , µt) ∈ 3n , again by [Greene 1976, Theorem 1.6], called the
partition associated to cochains in P . Moreover, ψ(P) is conjugate to φ(P).

Remark 2.1. Let (P,�) be a finite poset with ψ(P)= (µ1, . . . , µt). For 16 k6 t ,
let P (k) = P1 ∪ · · · ∪ Pk be a k-cochain family of P with |P (k)| =

∑k
h=1 µh . Then

µ1 > |Pi | > µk for 1 6 i 6 k. In particular, when ψ(P)= (at) is rectangular, we
have |P1| = · · · = |Pk | = a. This fact will be used in the proof of Lemma 4.2.

For each admissible sign type X = (X i j ), we write i 6X j in n if either i = j
or X i j = + . By [Shi 1999, Lemma 2.2], the order 6X is a partial order on n. We
associate to X two partitions φ(X) and ψ(X) of n defined above.

Kazhdan and Lusztig [1979] defined certain equivalence classes in a Coxeter
system (W, S), called a left cell, a right cell and a two-sided cell.

Let Wa be the affine Weyl group of type Ãn−1 for n > 1. Each element w of
Wa determines a sign type X (w), and hence it in turn determines two partitions
φ(w) := φ(X (w)) and ψ(w) := ψ(X (w)). This defines two maps φ,ψ : Wa −→

3n , each of which induces, by [Shi 1986, Theorem 17.4], a bijection from the set
of two-sided cells of Wa to the set 3n .

To each w ∈ Wa , we associate a set R(w) = {s ∈ S | ws < w}, where 6 is the
Bruhat order in the Coxeter system (Wa, S). Define

Y0 = {w ∈ Wa | R(w)⊆ {s0}}.

By [Lusztig and Xi 1988, Theorem 1.2], the intersection of Y0 with any two-sided
cell φ−1(λ) (λ ∈3n) is a single left cell of Wa , written 0λ and called a canonical
left cell.

3. Lower boundary of a canonical left cell

We now define a lower boundary hyperplane for any F ⊂ Wa , and give criteria for
a hyperplane of E to be lower boundary for a canonical left cell of Wa .

For i < j in n and k ∈ Z, the hyperplane Hi j;k divides the space E into three
parts: H+

i j;k = {v ∈ E | 〈v, αi j 〉 > k}, H−

i j;k = {v ∈ E | 〈v, αi j 〉 < k}, and Hi j;k .
For any set F of alcoves in E , call Hi j;k a lower boundary hyperplane of F if⋃

A∈F A ⊂ H+

i j;k and if there exists some alcove C in F such that C ∩ Hi j;k is a
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facet of C of dimension n −2, where C stands for the closure of C in E under the
usual topology.

Let 0 be a canonical left cell of Wa . As a subset in Wa , 0 is a union of some
dominant sign types, by [Shi 1986, Proposition 18.2.2]; denote by S(0) the set
of these sign types. Regarded as a union of alcoves, the topological closure of 0
in E is connected [Shi 1986, Theorem18.2.1] and is bounded by a certain set of
hyperplanes in E of the form Hi j;ε , for 1 6 i < j 6 n and ε = 0, 1, defined in
(1–2). Then a lower boundary hyperplane of 0 must be one of such hyperplanes.
Let B(0) be the set of all the lower boundary hyperplanes of 0. Given a hyperplane
Hi j;ε with 16 i < j 6 n and ε = 0, 1, we see that Hi j;ε ∈ B(0) if and only if one
of the following conditions holds.

Condition 3.1. ε = 1, X i j = + for all X = (Xab) ∈ S(0), and there exists some
Y = (Yab) ∈ S(0) such that the sign type Y ′

= (Y ′

ab) defined below is admissible:

Y ′

ab =

{
Yab if (a, b) 6= (i, j),
© if (a, b)= (i, j).

Condition 3.2. ε = 0, and there exists some X = (Xab) ∈ S(0) with X i j = © such
that the sign type X ′

= (X ′

ab) defined by

X ′

ab =

{
Xab if (a, b) 6= (i, j),

− if (a, b)= (i, j)

is admissible.

Remark 3.3. By Lemma 1.1(2), Condition 3.2 happens only if j = i + 1.

Proposition 3.4. (1) Hi,i+1;0 ∈ B(0) if and only if there exists some X = (Xab) ∈

S(0) such that X i,h = X i+1,h for all h ∈n. In particular, when these conditions
hold, we have X i,i+1 = ©.

(2) If Hi j;1 ∈ B(0) and if either i 6 k < l 6 j or k 6 i < j 6 l, then Hkl;1 ∈ B(0)
if and only if (i, j)= (k, l).

Proof. Part (1) follows from Condition 3.2 and Lemma 1.3. Then part (2) is a
direct consequence of Condition 3.1 and Lemma 1.1(1). �

4. Description of the sets B0(0λ) and B1(0λ)

We now answer the two questions of Humphreys.
Let 0λ be the canonical left cell of Wa corresponding to λ ∈3n . Let Bε(0λ)=

{Hi j;ε | Hi j;ε ∈ B(0λ)} for ε = 0, 1.

Lemma 4.1. Suppose that λ = (λ1, . . . , λr ) ∈ 3n contains at least two different
parts. Then B0(0λ)= {Hi,i+1;0 | 16 i < n}.
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Proof. Let µ= (µ1, . . . , µt) be the conjugate partition of λ. Then µ also contains
at least two different parts. Given any p with 16 p< n, there exists a permutation
a1, a2, . . . , at of 1, 2, . . . , t such that ms < p and ms+1 > p for some s with
06 s < t , where mu :=

∑u
k=1 µak for 06 u 6 t with the convention that m0 = 0.

Define a dominant sign type X = (X i j ) such that for any i, j with 1 6 i < j 6 n,
X i j = © if and only if mh < i < j 6mh+1 for some h with 06 h < t . Clearly, X is
admissible with ψ(X)=µ. Hence X ∈ S(0λ). We see also that X ph = X p+1,h for
all h such that 16 h 6 n. So we conclude that Hp,p+1;0 ∈ B0(0λ) by Proposition
3.4(1). Our result follows by Remark 3.3. �

Lemma 4.2. For a rectangular partition (ka) ∈3 with a, k ∈ N, we have

B0(0(ka))= {Hp,p+1;0 | 16 p < n, a - p}.

Proof. Let X = (X i j ) be a dominant admissible sign type. Then a maximal cochain
in n with respect to 6X must consist of consecutive numbers. Now suppose
ψ(X) = (ak). Then by Remark 2.1, we can take a maximal k-cochain family
n = P1 ∪· · ·∪ Pk such that Ph = {a(h−1)+1, a(h−1)+2, . . . , ah} with 16 h6 k
are the maximal cochains in n with respect to 6X . We have Xa(h−1)+1,ah = ©

and Xa(h−1)+1,ah+1 = +, which are different. So by the arbitrariness of X and by
Proposition 3.4(1), we see that

(4–1) Hah,ah+1;0 /∈ B0(0(ka)) for 16 h < k.

On the other hand, let Y = (Yi j ) be a sign type defined by

Yi j =

{
© if a(h − 1) < i < j 6 ah for some 16 h 6 k,

+ otherwise

for 16 i < j 6 n. Then it is clear that Y is dominant admissible with ψ(Y )= (ak).
Suppose a(h−1) < p < ah for some h ∈ [1, k]. Then Yp,p+1 = ©. We see also
that Yph = Yp+1,h for all h ∈ [1, n]. By Proposition 3.4(1), we have

Hp,p+1;0 ∈ B0(0(ka)) for all p with 16 p < n and a - p.

The result follows from this, (4–1), and Remark 3.3. �

Theorem 4.3. B0(0λ)={Hi,i+1;0 |16 i<n} for all λ∈3n unless λ is a rectangular
partition. In the latter case, say λ = (ka) for k, a ∈ N, we have B0(0(ka)) =

{Hp,p+1;0 | 16 p < n, a - p}.

Proof. We see that a partition is nonrectangular if and only if it contains at least two
different parts. So our result follows immediately from Lemmas 4.1 and 4.2. �

Theorem 4.4. B1(0λ)= {Hi,i+r;1 | 16 i 6 n − r} for λ= (λ1, . . . , λr ) ∈3n .
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Proof. Let µ = (µ1, . . . , µt) ∈ 3n be conjugate to λ. First we claim that, for any
X = (X i j ) ∈ S(0λ),

(4–2) X i,i+r = + for i = 1, . . . , n−r.

Otherwise, there would exist some X = (X i j ) ∈ S(0λ) with X i,i+r = © for some i ,
1 6 i 6 n − r . By Lemma 1.1(1), we would have Xhk = © for all h, k such that
i 6 h < k 6 i + r . Then {i, i + 1, . . . , i + r} would be a cochain in n with respect
to the partial order 6X , whose cardinality is r + 1 > µ1 = r , contradicting the
assumption ψ(0λ)= (µ1, µ2, . . . , µt).

Next we want to find, for any p with 1 6 p 6 n − r , some Y = (Yi j ) ∈ S(0λ)
such that the sign type Y ′

= (Y ′

i j ) defined by

(4–3) Y ′

i j =

{
Yi j if (i, j) 6= (p, p + r),
© if (i, j)= (p, p + r)

for 16 i < j 6 n, is admissible. If this happens, we automatically have ψ(Y ′)	µ

by the proof of (4–2).
Take a permutation a1, a2, . . . , at of 1, 2, . . . , t satisfying two conditions:

(1) Let mu =
∑u

k=1 µak for 06 u6 t with the convention that m0 = 0. Then there
exists some s ∈ [0, t) such that as+1 = 1, ms < p and ms+1 > p.

(2) s is the largest possible number with the property (1) when a1, a2, . . . , at

ranges over all the permutations of 1, 2, . . . , t .

Then we have t −s> 2, p6ms+1< p+r and ms+2> p+r . Define a dominant
sign type Y = (Yi j ) such that Yi j = © if and only if either

mu < i < j 6mu+1 for 06 u< t, or p6 i < j 6 p+r with (i, j) 6= (p, p+r).

By Lemma 1.1(1), Y is admissible with ψ(Y )=µ, i.e., Y ∈ S(0λ). Clearly, the
sign type Y ′ obtained from Y as in (4–3) is also dominant admissible by Lemma
1.1(1). This implies by Condition 3.1 that Hp,p+r;1 belongs to B1(0λ) for any
p = 1, . . . , n − r . The result follows by Proposition 3.4(2). �

Remark 4.5. Theorems 4.3 and 4.4 answer the two questions of Humphreys. In
particular, the canonical left cells of Wa associated to the rectangular partitions
are determined entirely by the corresponding B1-set of hyperplanes. From the
above description of B0-sets of hyperplanes, we see that compared with the other
canonical left cells of Wa , the positions of the canonical left cells associated to
rectangular partitions are farther from the walls of the dominant chamber.

Remark 4.6. When λ= (n), we have B0(0λ)= ∅ and

B1(0λ)= {Hi,i+1;1 | 16 i < n}.
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Actually, this is the unique canonical left cell whose B1-set contains a hyperplane
of the form Hi,i+1;1. Also, this is the unique canonical left cell whose B0-set is
empty. On the other hand, B0(0(1n)) = {Hi,i+1;0 | 1 6 i < n} and B1(0(1n)) = ∅.
0(1n) is the unique canonical left cell whose B1-set is empty.

Remark 4.7. When n ∈ N is a prime number, the B0-sets of all the canonical left
cells 0λ of Wa are {Hi,i+1;0 | 16 i < n}, except for the case where λ= (n).

Remark 4.8. Now assume that (Wa, S) is an irreducible affine Weyl group of
arbitrary type with 1 a choice of simple roots system of 8. We are unable to de-
scribe the lower boundary hyperplanes for a canonical left cell L of Wa in general.
This is because L is not always a union of some sign types (as in the case of type
B̃2). But we know that L is a single sign type when L is in either the lowest or the
highest two-sided cell of Wa (see [Shi 1987c; Shi 1988]) for which we can describe
its lower boundary hyperplanes: if L is in the lowest two-sided cell of Wa , then
B1(L)= {Hα;1 | α ∈1} and B0(L)= ∅, where Hα;1 := {v ∈ E | 〈v, α∨

〉 = 1} and
α∨

= 2α/〈α, α〉; if L is in the highest two-sided cell of Wa , then B1(L) = ∅ and
B0(L) = {Hα;0 | α ∈ 1}. This extends the result in Remark 4.6. We conjecture
that any canonical left cell of Wa is a union of some sign types whenever Wa has a
simply-laced type, namely Ã, D̃ or Ẽ . If this is true, one would be able to describe
the lower boundary hyperplanes for the canonical left cells of these groups.
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