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We construct new examples of complete locally conformally flat manifolds
of negative curvature by means of warped product and multiply warped
product structures. Special attention is paid to those spaces with one-dimen-
sional base, thus generalizing the Robertson–Walker spacetimes, and to
those with higher-dimensional base of constant curvature.

1. Introduction

Locally conformally flat structures on Riemannian manifolds are natural general-
izations of isothermal coordinate systems, which are available on Riemann sur-
faces. However, not every higher-dimensional Riemannian manifold admits a lo-
cally conformally flat structure, and it is difficult to provide a classification of those
that do; this is still an open problem. Some partial results are known. A compact
simply connected locally conformally flat manifold must be a Euclidean sphere
[Kuiper 1949; Schoen and Yau 1988]. Locally symmetric manifolds which are lo-
cally conformally flat are either of constant sectional curvature or locally isometric
to a product of two spaces of constant opposite sectional curvature [Lafontaine
1988; Yau 1973]. Complete locally conformally flat manifolds with nonnegative
Ricci curvature have been studied by several authors; Zhu [1994] showed that
their universal cover is in the conformal class of Sn , Rn or R × Sn−1, where Sn

and Sn−1 are spheres of constant sectional curvature. Such conformal equivalence
can be specialized to isometric equivalence under some extra assumptions on the
scalar curvature and the sign of the Ricci curvatures [Cheng 2001; Tani 1967]
(see also [Carron and Herzlich 2004] and the references therein). In spite of the
results on locally conformally flat manifolds of nonnegative curvature, to the best
of our knowledge, there is a lack of information as concerns negative curvature.
Henceforth, our purpose on this work is to construct new examples of complete
locally conformally flat Riemannian manifolds with nonpositive curvature.
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Since their introduction by Bishop and O’Neill [1969], warped products have
been a powerful tool for constructing manifolds of nonpositive curvature (see also
[Bertola and Gouthier 2001]). Our aim, then, is to investigate the existence of
locally conformally flat structures on manifolds equipped with a warped product
structure, or more generally on multiply warped spaces, as being a natural gener-
alization of warped products (see for example [Tojeiro 2004] and the references
therein). Other generalizations of warped product structures, like twisted or multi-
ply quasiwarped [Meumertzheim et al. 1999; Ponge and Reckziegel 1993; Tojeiro
2004] are not of interest for our purposes, since they reduce to warped and multiply
warped spaces, respectively, if they are locally conformally flat [Brozos-Vázquez
et al. 2005]. Another motivation for the consideration of locally conformally flat
structures on manifolds equipped with a warped product metric comes from the
fact that the Schouten tensor is Codazzi for any locally conformally flat manifold.
Moreover, although the local structure of Codazzi tensors is not yet completely
understood, the existence of such a tensor leads to warped product decompositions
of the manifold in many cases [Bivens et al. 1981; Tojeiro 2004].

This paper is organized as follows. In Section 2 we recall basic facts on the
curvature of warped and multiply warped spaces. Locally conformally flat multi-
ply warped spaces are investigated in Section 3. Our approach relies on the fact
that any multiply warped space is in the conformal class of a suitable product, a
fact previously observed for warped product metrics [Lafontaine 1988], which has
several implications on the geometry of the fibers and the base of the multiply
warped space. A local description of locally conformally flat spaces with the un-
derlying structure of a multiply warped product is then obtained from the fact that
any warping function must define a global conformal transformation on the base
which makes it of constant sectional curvature. Then the situation when the base
has dimension 2 or higher reduces to the existence of nontrivial solutions of some
Obata type equations on the base (sometimes called concircular transformations;
see [Kühnel 1988; Tashiro 1965]) together with some compatibility conditions
among the different warping functions. This analysis is carried out in Section 3A.
Conditions become much weaker when the base is assumed to be one-dimensional,
as shown in Section 3B, in accordance with Roberston–Walker type metrics, which
are locally conformally flat independently of the warping function. Some global
consequences are obtained in Section 4, where locally conformally flat warped
product manifolds with complete base of constant curvature are classified, as well
as multiply warped ones if the base is further assumed to be simply connected.

Applications of the results in Section 3 have already been found by R. Tojeiro
in the study of conformal immersions into the Euclidean space [2006]. Moreover,
multiply warped spaces with hyperbolic space as the base are of key interest, pro-
viding some new examples of complete locally conformally flat manifolds with
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nonpositive sectional curvature, and with nonpositive Ricci curvatures but no sign
requirement on the sectional curvature.

2. Preliminaries

Let (B, gB), (F1, g1), . . . , (Fk, gk) be Riemannian manifolds. The product mani-
fold M = B × F1 × · · · × Fk , equipped with the metric

g = gB ⊕ f 2
1 g1 ⊕ · · · ⊕ f 2

k gk,

where f1, . . . , fk : B → R are positive functions, is called a multiply warped
product. B is the base, F1, . . . , Fk are the fibers and f1, . . . , fk are the warp-
ing functions. We will denote a multiply warped product manifold as above by
M = B ×f1 F1 × · · · ×fk Fk .

Remark 2.1. The general form of multiply warped products is slightly flexible, so
we must adopt some criteria to identify multiply warped products with different
form but which are essentially the same. They are:

C1. Warping functions are supposed to be nonconstant and any two warping func-
tions which are multiples one to each other are written as the same function
and the metric of the fiber is multiplied by the constant in order to do not
modify the metric of the multiply warped product.

C2. Fibers with the same warping function are joined in one fiber.

Moreover, the possible order of the fibers is irrelevant for our purposes.

Next we fix some notation and criteria to be used in what follows. Let (M, g)
be an n-dimensional Riemannian manifold with Levi-Civita connection ∇. The
Riemann curvature tensor R is the (1, 3)-tensor field on M defined by R(X, Y )Z
= ∇[X,Y ]Z −[∇X ,∇Y ]Z , for all vector fields X , Y , Z ∈ L(M). The Ricci tensor is
the contraction of the curvature tensor given by ρ(X, Y ) = trace{U  R(X,U )Y }

and the scalar curvature is obtained by contracting the Ricci tensor, τ = trace(ρ).
For a vector field X on M the divergence of X is defined by div X = trace ∇ X . The
gradient of a function f : (M, g)→ R is determined by g(∇ f, X)= X ( f ) and the
Laplacian of f is defined by1 f = div∇ f . Also, the linear map h f (X)=∇X∇ f is
called the Hessian tensor of f on (M, g), and H f (X, Y )= g(h f (X), Y ) is called
the Hessian form of f . Finally, note that 1 f = trace h f .

In order to study the properties of multiply warped products, we need some
properties of their curvature tensor, obtained essentially in the same way as for
warped products [Bishop and O’Neill 1969]. Therefore proofs are omitted. The
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nonzero components of the curvature tensor are

(1)

RXY Z = RB
XY Z , RVi X Y =

1
fi

H f i (X, Y )Vi ,

RXUi Vi =
〈Ui , Vi 〉

fi
∇X∇ fi , RU j Ui Vi =

〈Ui , Vi 〉

fi f j
〈∇ fi ,∇ f j 〉U j if i 6= j,

RUi Vi Wi = RFi
Ui Vi

Wi −
〈∇ fi ,∇ fi 〉

f 2
i

(
〈Ui ,Wi 〉Vi − 〈Vi ,Wi 〉Ui

)
,

for all X, Y, Z ∈ L(B) and Ui , Vi ,Wi ∈ L(Fi ), where RB and RFi denote the
curvature tensor of (B, gB) and (Fi , gi ), respectively. Here H fi (X, Y ) and ∇ fi

denote the Hessian tensor and the gradient of the warping function fi with respect
to the Riemannian structure of (B, gB). A straightforward calculation from (1)
shows that the sectional curvature of M satisfies

(2)

K XY = K B
XY , K XUi = −

H fi (X, X)
fi‖X‖2 ,

KUi Vi =
1
f 2
i

K Fi
Ui Vi

−
‖∇ fi‖

2

f 2
i

, KUi V j = −
〈∇ fi ,∇ f j 〉

fi f j
if i 6= j,

where K B and K Fi denote the sectional curvatures on the base B and the fiber Fi .
Here the sectional curvature of a plane π is taken with the sign convention K (π)=
R(X, Y, X, Y ), for any orthonormal base {X, Y } of π .

3. Locally conformally flat multiply warped spaces

Recall that a Riemannian manifold (M, g) is locally conformally flat if every
point in M admits a coordinate neighborhood U which is conformal to Euclidean
space Rn; equivalently, if there is a diffeomorphism 8 : V ⊂ Rn

→ U such that
8∗g = 92g

Rs for some positive function 9. Any surface is locally conformally
flat, but not every higher-dimensional Riemannian manifold admits a locally con-
formally flat structure. Necessary and sufficient conditions for the existence of such
a structure are the nullity of the Weyl tensor W = R − C � g when dim M ≥ 4,
and, in dimension three, the condition that the Schouten tensor

C =
1

n − 2

(
ρ−

τ

2(n−1)
g
)

be a Codazzi tensor. Here � represents the Kulkarni–Nomizu product (see [La-
fontaine 1988], for example). A nonflat locally decomposable Riemannian mani-
fold is locally conformally flat if and only if it is locally equivalent to the product
N (c)×R of an interval and a space of constant sectional curvature, or to the product
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N1(c)×N2(−c) of two spaces of opposite constant sectional curvature [Lafontaine
1988; Yau 1973].

Lemma 3.1. Let M = B ×f1 F1 × · · · ×fk Fk be a locally conformally flat multiply
warped space.

(i) (B, gB) is locally conformally flat.
(ii) (Fi , gi ) is a space of constant sectional curvature for all i =1, . . . , k, provided

that dim Fi ≥ 2.

Proof. For any i = 1, . . . , k, write the multiply warped metric as

g = f 2
i

(
1
f 2
i

gB ⊕
f 2
1

f 2
i

g1 ⊕ · · · ⊕ gi ⊕ · · · ⊕
f 2
k

f 2
i

gk

)
.

Since fi maps B to R+, this expression shows that g is in the conformal class
of a suitable product metric tensor. Hence, the multiply warped metric is locally
conformally flat if and only if so is the product metric of (Fi , gi ) and the multiply
warped B̃ ×f1/ fi F1 × · · · × F̂i × · · · ×fk/ fi Fk with base B̃ ≡ (B, f −2

i gB). This
shows that either dim Fi = 1 or otherwise it is of constant sectional curvature, and
moreover that B̃×f1/ fi F1×· · ·× F̂i ×· · ·×fk/ fi Fk is of constant sectional curvature.
Now the result is obtained by iterating this process. �

Remark 3.2. Note from the previous proof that if M = B ×f1 F1 × · · · ×fk Fk is
locally conformally flat, then so is B ×f1 F1 × · · · ×fk−1 Fk−1.

3A. Locally conformally flat multiply warped spaces with base of dimension at
least 2. Although the fibers of any locally conformally flat multiply warped space
are of constant curvature, this necessary condition does not suffice for local con-
formal flatness since it strongly depends on the warping functions. In this section
we obtain a local description of such warping functions. As a consequence, we
will show the existence of some limitations on the number of fibers of a locally
conformally flat multiply warped space and also on their geometries. Assuming
that the base (B, gB) is of constant sectional curvature, the necessary and sufficient
conditions for local conformal flatness are as follows.

Theorem 3.3. Let M = B ×f1 F1 × · · · ×fk Fk be a multiply warped space with
s-dimensional base B of constant sectional curvature, where s ≥ 2. Then M is
locally conformally flat if and only if the warping functions satisfy

H fi =
1 fi

s
gB,(3)

1 fi

fi
+
1 f j

f j
= s

〈∇ fi ,∇ f j 〉

fi f j
− sK B if i 6= j,(4)

K Fi = ‖∇ fi‖
2
−

2
s

fi1 fi − f 2
i K B if dim Fi ≥ 2,(5)
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where i, j = 1, . . . , k and K B and K Fi denote the sectional curvatures of the base
(B, gB) and the fibers (Fi , gi ).

Proof. Condition (3) is equivalent to the constancy of the sectional curvature of
the base of a locally conformally flat multiply warped space. Since (B, gB) is
locally conformally flat and (B, f −2

i gB) is a space of constant sectional curvature
by Lemma 3.1, we see that (B, gB) is of constant sectional curvature if and only if
the conformal deformation gB 7→ f −2

i gB preserves the (unique) eigenspaces of the
Ricci tensor, and this occurs if and only if f is a solution of the Möbius equation;
this proves (3) (see [Kühnel 1988; Osgood and Stowe 1992]).

Next, consider the Weyl curvature tensor given by

W (X, Y, Z , T )= R(X, Y, Z , T )+
τ

(n−1)(n−2)

(
〈X, Z〉〈Y, T 〉 − 〈Y, Z〉〈X, T 〉

)
−

1
n−2

(
ρ(X, Z)〈Y, T 〉 − ρ(Y, Z)〈X, T 〉 + 〈X, Z〉ρ(Y, T )− 〈Y, Z〉ρ(X, T )

)
.

Also note from (1) that the nonzero components of the Ricci tensor of a multiply
warped space M = B ×f1 F1 × · · · ×fk Fk are given by

(6)
ρ(X, Y )= ρB(X, Y )−

∑
i

di
H fi (X, Y )

fi
,

ρ(Ua, Va)= ρFa (Ua, Va)

−〈Ua, Va〉

(
1 fa

fa
+ (da − 1)

〈∇ fa,∇ fa〉

f 2
a

+

∑
i 6=a

di
〈∇ fa,∇ fi 〉

fa fi

)
for all X, Y ∈ L(B) and Ua, Va ∈ L(Fa), where di = dim Fi and ρB and ρFi denote
the Ricci tensor of the base (B, gB) and the fibers (Fi , gi ). The scalar curvature of
M satisfies

(7) τ = τ B
+

∑
i

1
f 2
i
τ Fi

− 2
∑

i
di
1 fi

fi
−

∑
i

di (di − 1)
〈∇ fi ,∇ fi 〉

f 2
i

−
∑

i

∑
j 6=i

di d j
〈∇ fi ,∇ f j 〉

fi f j
,

where τ B and τ Fi denote the scalar curvatures of the base and the fibers.
Now, in order to show the necessity of (4) and (5), note that if M is locally

conformally flat, then it follows from Remark 3.2 that the warped product space
B ×fa Fa is also locally conformally flat, for all a = 1, . . . , k, and thus its Weyl
tensor vanishes. A straightforward calculation from (6) and (7) using that H fa =

(1 fa/s) gB shows that

W (X, Y, X, Y )=
da(da − 1)

(s+da−1)(s+da−2)

(
K B

+
2
s
1 fa

fa
+

K Fa

f 2
a

−
〈∇ fa,∇ fa〉

f 2
a

)
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for all orthogonal unit vectors X, Y ∈ L(B), whence (5). We proceed in an analo-
gous way to show the necessity of (4), just considering the multiply warped space
B ×fa Fa ×fb Fb, which is also locally conformally flat for all a 6= b ∈ {1, . . . , k}.
After some calculations from (6) and (7) and using the already proved Equation
(5), we have

W (X, Y, X, Y )=

2dadb

(s+da+db−1)(s+da+db−2)

(
K B

+
1
s
1 fa

fa
+

1
s
1 fb

fb
−

〈∇ fa,∇ fb〉

fa fb

)

for all orthogonal unit vectors X, Y ∈ L(B), which proves (4).
Next we show that conditions (3)–(5) are indeed sufficient for M to be lo-

cally conformally flat. Note first that the a-priori nonzero components of the
Weyl tensor in a local orthonormal frame {X, Y, . . . ,U1, V1, . . . ,Ua, Va, . . . } with
X, Y, . . . in L(B) and Ua, Va, . . . in L(Fa) are those given by W (X, Y, X, Y ),
W (X,Ua, X,Ua), W (Ua,Ub,Ua,Ub) and W (Ua, Va,Ua, Va). Now, a long but
straightforward calculation from (6) and (7), using the equalities H fi = (1 fi/s) gB ,
shows that

W (X, Y, X, Y )=

∑
i

di (di − 1)
(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ fi 〉

f 2
i

+
K Fi

f 2
i

+
21 fi

s fi

)
+

∑
i

∑
j 6=i

di d j

(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ f j 〉

fi f j
+
1 fi

s fi
+
1 f j

s f j

)
,

for all X, Y ∈ L(B). Also, for X ∈ L(B) and Ua ∈ L(Fa), one has

W (X,Ua, X,Ua)=

∑
i

di (di − 1)
(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ fi 〉

f 2
i

+
K Fi

f 2
i

+
21 fi

s fi

)

+

∑
i

∑
j 6=i

di d j

(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ f j 〉

fi f j
+
1 fi

s fi
+
1 f j

s f j

)

+

∑
i 6=a

di

n − 2

(
〈∇ fa,∇ fi 〉

fa fi
−
1 fa

s fa
−
1 fi

s fi
− K B

)

+
da − 1
n − 2

(
〈∇ fa,∇ fa〉

f 2
a

−
K Fa

f 2
a

−
21 fa

s fa
− K B

)
.

Next, given Ua ∈ L(Fa) and Ub ∈ L(Fb), where a 6= b, we get
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W (Ua,Ub,Ua,Ub)=

∑
i

di (di −1)
(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ fi 〉

f 2
i

+
K Fi

f 2
i

+
21 fi

s fi

)

+

∑
i

∑
j 6=i

di d j

(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ f j 〉

fi f j
+
1 fi

s fi
+
1 f j

s f j

)

+

∑
i 6=a

di

n −2

(
〈∇ fa,∇ fi 〉

fa fi
−
1 fa

s fa
−
1 fi

s fi
− K B

)

+

∑
i 6=b

di

n −2

(
〈∇ fb,∇ fi 〉

fb fi
−
1 fb

s fb
−
1 fi

s fi
− K B

)

+
da −1
n −2

(
〈∇ fa,∇ fa〉

f 2
a

−
K Fa

f 2
a

−
21 fa

s fa
− K B

)
+

db −1
n −2

(
〈∇ fb,∇ fb〉

f 2
b

−
K Fb

f 2
b

−
21 fb

s fb
− K B

)
+

(
K B

−
〈∇ fa,∇ fb〉

fa fb
+
1 fa

s fa
+
1 fb

s fb

)
,

W (Ua, Va,Ua, Va)=

∑
i

di (di −1)
(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ fi 〉

f 2
i

+
K Fi

f 2
i

+
21 fi

s fi

)

+

∑
i

∑
j 6=i

di d j

(n−1)(n−2)

(
K B

−
〈∇ fi ,∇ f j 〉

fi f j
+
1 fi

s fi
+
1 f j

s f j

)

+

∑
i 6=a

2di

n −2

(
〈∇ fa,∇ fi 〉

fa fi
−
1 fa

s fa
−
1 fi

s fi
− K B

)

+
2(da −1)

n −2

(
〈∇ fa,∇ fa〉

f 2
a

−
K Fa

f 2
a

−
21 fa

s fa
− K B

)
+

(
K B

−
〈∇ fa,∇ fa〉

f 2
a

+
K Fa

f 2
a

+
21 fa

s fa

)
,

for all Ua, Va ∈ L(Fa).
It follows from these expressions that the compatibility conditions (4) and (5)

suffice to show the local conformal flatness of the multiply warped space M . �

Although Equations (3)–(5) characterize the warping functions of a locally con-
formally flat multiply warped space with base of constant curvature, they are dif-
ficult to deal with. However, they become simpler if the base is assumed to be
locally Euclidean:
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Theorem 3.4. Let M = Us
×f1 F1 × · · · ×fk Fk be a multiply warped space, where

Us
⊂ Rs with s ≥ 2. Then M is locally conformally flat if and only if the warping

functions satisfy

(8) fi (Ex)= ai‖Ex‖
2
+ 〈Ebi , Ex〉 + ci

for all Ex ∈ Us , where ai > 0, ci ∈ R and Ebi ∈ Rs . Moreover the warping functions
are compatible in the sense that

(9) 〈Ebi , Eb j 〉 = 2(ai c j + a j ci ), i 6= j

and the sectional curvature of each fiber of dim Fi ≥ 2 is given by

(10) K Fi = ‖Ebi‖
2
− 4ai ci , i, j = 1, . . . , k.

Proof. It follows from [Osgood and Stowe 1992] that the solutions of the Möbius
equation in Euclidean space are given by fi (Ex) = ai‖Ex‖

2
+ 〈Ebi , Ex〉 + ci for some

ai , ci ∈ R and Ebi ∈ Rs . The result follows by observing the equivalence between
(4) and (5) in Theorem 3.3 and (9) and (10) in Theorem 3.4. �

Remark 3.5. We explain how the previous theorem can be extended for not neces-
sarily flat locally conformally flat bases to get a local description of locally confor-
mally flat multiply warped spaces. Since (B, gB) is locally conformally flat, there
exist local coordinates such that gB = 92gUs . In such coordinates, the multiply
warped metric satisfies

gB ⊕ f 2
1 g1 ⊕ · · · ⊕ f 2

k gk = 92
(

gUs ⊕

( f1

9

)2
g1 ⊕ · · · ⊕

( fk

9

)2
gk

)
.

Therefore the multiply warped product gB ⊕ f 2
1 g1 ⊕ · · · ⊕ f 2

k gk is locally con-
formally flat if and only if gUs ⊕ ( f1/9)

2g1 ⊕ · · · ⊕ ( fk/9)
2gk is. Hence the

warping functions are determined locally by Theorem 3.3 up to a conformal factor
9, since the warping functions, in local coordinates where gB = 92gUs , are given
by fi (x)=

(
ai‖Ex‖

2
+ 〈Ebi , Ex〉 + ci

)
9 for all i = 1, . . . , k.

Remark 3.6. Locally conformally flat multiply warped spaces can now be easily
constructed as follows. Since any warping function of a locally conformally flat
multiply warped space M = Us

×f1 F1 × · · · ×fk Fk is completely determined by
scalars ai , ci ∈ R and vectors Ebi = (bi1, . . . , bis) ∈ Rs , consider the vectors Eξi =

(bi1, . . . , bis, ai , ci ) in Rs+2. Next, define a Lorentzian inner product in Rs+2 by
1
. . .

s

1
0 −2

−2 0
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and note that equations (9) and (10) of Theorem 3.4 are interpreted in terms of
the orthogonality Eξi ⊥ Eξ j (for all i 6= j) and K Fi = ‖Eξi‖

2 (whenever dim Fi ≥ 2),
respectively. Thus Remark 3.5 has the following consequences:

(i) A locally conformally flat space M = B ×f1 F1 ×· · ·×fk Fk has, at most, s+2
different fibers, where s = dim B.

(i) For the sectional curvatures of the fibers (Fi , gi ) of a locally conformally flat
multiply warped space, we have, whenever dim Fi ≥ 2:

(ii.1) At most dim B + 1 fibers have positive curvature.
(ii.2) At most one fiber has nonpositive curvature.

(iii) For any locally conformally flat manifold (Bs, gB), there exists s+2 locally
defined warping functions fi : U ⊂ B → R+ and (Fi , gi ) spaces of constant
curvature such that M = U×f1 F1 ×· · ·×fs+2 Fs+2 is locally conformally flat.

3B. Multiply warped spaces with one-dimensional base. Recall that a warped
product I × f F with one-dimensional base is locally conformally flat if and only
if the fiber is a space of constant sectional curvature. Local conformal flatness
is independent of the warping function f [Lafontaine 1988], in opposition to the
case of higher-dimensional base just considered. In what remains of this section
we look at the local structure of a locally conformally flat multiply warped space
with one-dimensional base.

The characterization in the next theorem is essentially independent of the last
warping function, as in the case of metrics of Robertson–Walker type.

Theorem 3.7. Let M = I ×f1 F1 · · · ×fk Fk be a multiply warped space with one-
dimensional base I . Then M is locally conformally flat if and only if , up to a
reparametrization of I , one of the following conditions holds:

(i) M = I ×f F is a warped product with fiber F of constant sectional curvature
(if dim F ≥ 2) and any (positive) warping function f .

(ii) M = I ×f1 F1 ×f2 F2 is a multiply warped product with two fibers of constant
sectional curvature (if dim Fi ≥ 2) and warping functions

f1 = (ξ ◦ f )
1
f ′
, f2 =

1
f ′

where f is a strictly increasing function and ξ is a warping function making
I ×ξ F1 of constant sectional curvature and (ξ ◦ f ) > 0.

(iii) M = I ×f1 F1 ×f2 F2 ×f3 F3 is a multiply warped product with three fibers of
constant sectional curvature (if dim Fi ≥ 2) and warping functions

f1 = (ξ1 ◦ f )
1
f ′
, f2 = (ξ2 ◦ f )

1
f ′
, f3 =

1
f ′
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where f is a strictly increasing function and ξi are warping functions making
I ×ξ1 F1×ξ2 F2 of constant sectional curvature such that ξi ◦ f > 0 for i = 1, 2.

Proof. This is a local consideration. Proceeding as in Lemma 3.1 it follows that
M is locally conformally flat if and only if

1
f 2
k

gI ⊕
f 2
1

f 2
k

g1 ⊕ · · · ⊕
f 2
k−1

f 2
k

gk−1

is of constant sectional curvature opposite to K Fk (if dim Fk ≥ 2), and hence k ≤ 3
(see Remark 3.8). Now, since fk is strictly positive, it defines a reparametrization
on I by τ =

∫
1/ fk to obtain a multiply warped metric dτ 2

⊕ ξ1(τ )
2g1 ⊕ · · · ⊕

ξk−1(τ )
2gk−1 of constant sectional curvature, where the warping functions ξi are

given in Remark 3.8. Hence fi (t)= ξi
(∫

1/ fk
)

fk(t) for i = 1, . . . , k−1, and there
are no constraints on the last warping function fk . �

Remark 3.8. Observe from (2) that, if a multiply warped space M with one-
dimensional base is of constant sectional curvature κ , then the warping functions
satisfy f ′′

i + κ fi = 0 and f ′2
i + κ f 2

i = K Fi , which is just an adjustment of the
sectional curvatures of the fibers since f ′2

i +κ f 2
i is necessarily constant. Moreover,

the necessary compatibility conditions among the different warping functions are
given by f ′

i f ′

j + κ fi f j = 0, (i 6= j), from where it follows that no more than
two fibers are admissible. As a consequence, one obtains the following (see also
[Mignemi and Schmidt 1998]):

(i) If K M
= 0, then M = I ×ξ1 F1 or M = I ×ξ1 F1 ×ξ2 F2, with warping functions

given by ξi (t) = ai t + bi and K Fi = a2
i whenever dim Fi ≥ 2 for i = 1, 2. If

the two fibers are different we have a1a2 = 0.

(ii) If K M
= c2, then M = I ×ξ1 F1 or M = I ×ξ1 F1 ×ξ2 F2, with warping

functions given by ξi (t)=ai sin ct+bi cos ct and K Fi = c2(a2
i +b2

i ), whenever
dim Fi ≥ 2 for i = 1, 2. If the two fibers are different we have a1a2+b1b2 = 0.

(iii) If K M
=−c2, then M = I×ξ1 F1 or M = I×ξ1 F1×ξ2 F2, with warping functions

given by ξi (t) = ai sinh ct + bi cosh ct and K Fi = c2(a2
i − b2

i ), provided that
dim Fi ≥ 2 for i = 1, 2. If the two fibers are different we have a1a2−b1b2 = 0.

Remark 3.9. A generalization of the notion of warped product structures B × f F
to warped bundles has been developed in [Bishop and O’Neill 1969], where it is
shown that those results which are local on B remain valid in the warped bundle
framework. Therefore, previous results in this section can be generalized to warped
bundles.
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4. Some global considerations

The existence of nontrivial globally defined solutions of (3) on complete manifolds
has significant geometrical consequences [Kühnel 1988]. They leads to:

Theorem 4.1. Let M = B ×f F be a locally conformally flat warped product
space with complete base (B, gB) of constant curvature. Then one of the following
occurs:

(i) B is isometric to the Euclidean space Rs and the warping function is given by
f (Ex)= a‖Ex‖

2
+〈Eb, Ex〉+ c. Moreover 4ac −‖Eb‖

2 > 0, a > 0 and the fiber F
is either one-dimensional or K F

= ‖Eb‖
2
− 4ac < 0.

(ii) B is isometric to a Euclidean sphere Ss and the warping function is given by

f = −
s − 1
τ

ψ + κ,

where τ denotes the scalar curvature of Ss , ψ is the restriction to the sphere
of a function 9 on Rs+1 defined by 9(Ex)= 〈Ea, Ex〉 for any Ea ∈ Rs+1, and κ is
a constant greater than (s−1)‖Ea‖/τ . Moreover F is either one-dimensional
or of constant negative curvature

K F
=
(s − 1)2

τ 2 ‖Ea‖
2
− κ2.

(iii) B is isometric to a warped product R ×αeβt+γ N , where N is a complete flat
manifold and the warping function is given by f (t) =

α
β

eβt+γ
+ c for some

constants β, c > 0. Moreover F is either one-dimensional or K F
= c2β2.

(iv) B is isometric to the hyperbolic space Hs and the warping function is given by

f (Ex)=
a‖Ex‖

2
+ 〈Eb, Ex〉 + c

xs
,

for some Eb ∈ Rs , where a > 0 and either 4ac − (b2
1 + b2

2 + · · · + b2
s ) > 0 or

4ac − (b2
1 + b2

2 + · · · + b2
s−1) ≥ 0 and bs ≥ 0. Moreover the fiber F is either

one-dimensional or K F
= ‖Eb‖

2
− 4ac.

Proof. Since any warping function f defines a global conformal transformation
that makes (B, f −2gB) have constant curvature, it follows from [Kühnel 1988]
that B is either a complete and simply connected space form or a warped product
R ×αeβt+γ N , where N is complete Ricci flat, and thus flat since B is necessarily
locally conformally flat. Now the result will follow after a case by case consid-
eration of the possible warping functions and the curvature of the induced metric
f −2gB .



COMPLETE LOCALLY CONFORMALLY FLAT MANIFOLDS 213

Next, observe that a solution of the Möbius equation in Rs , f (Ex) = a‖Ex‖
2
+

〈Eb, Ex〉 + c, is everywhere positive if and only if 4ac − ‖Eb‖
2 > 0, a > 0, and (i) is

obtained since the conformal metric f −2g
Rs has constant curvature 4ac−‖Eb‖

2>0.
If B ≡ Ss , it follows from [Brozos-Vázquez et al. 2005; Xu 1993] that any

warping function is given by

f = −
s − 1
τ

ψ + κ,

where τ is as in the theorem’s statement, ψ is a first eigenfunction of the Laplacian
and κ is a constant making f positive. Hence ψ is the restriction to the sphere of
a function 9 on Rs+1 defined by

9(Ex)= 〈Ea, Ex〉

for 0 6= Ea ∈ Rs+1, [Berger et al. 1971] and the sectional curvature of (Ss, f −2g
S
)

is the constant κ2
−

(
(s − 1)2/τ 2

)
‖Ea‖

2 > 0, proving (ii).
In case (iii) the warping function f gives rise to a warped product decompo-

sition of B as R ×αeβt+γ N , where the warping function is of the form f (t) =

(α/β) eβt+γ
+c for some positive constant c [Kühnel 1988]. This defines a global

conformal transformation such that (B, f −2gB) has constant curvature −c2β2;
hence the result.

Finally, assume B to be hyperbolic space. We work in the half-space model, with
domain {xs < 0} and metric obtained by a conformal deformation of the Euclidean
metric: (Hs, x−2

s g
Rs ). The general form of the warping functions then arises from

Remark 3.5. Next note that a‖Ex‖
2
+ 〈Eb, Ex〉 + c is positive in hyperbolic space if

and only if a > 0 and the minimum of the paraboloid is positive (4ac −‖Eb‖
2 > 0)

or occurs on the lower half-space (so −bs/(2a) ≤ 0) and the intersection of the
paraboloid and the hyperplane xs = 0 is positive, which gives

4ac − (b2
1 + b2

2 + · · · + b2
s−1)≥ 0.

Further note that the induced metric f −2gB is of constant curvature 4ac−‖Eb‖
2> 0

but it has no preferred sign in opposition to case (i). �

Theorem 4.2. Let M = B ×f1 F1 × · · · ×fk Fk , k ≥ 2, be a locally conformally flat
multiply warped product space with complete and simply connected base (B, gB)

of constant curvature. Then B is isometric to the hyperbolic space Hs and for
each k ≤ s + 2 there exists locally conformally flat multiply warped spaces M =

Hs
×f1 F1 × · · · ×fk Fk .

Proof. First of all, note that since B is assumed to be simply connected, the possibly
warping functions reduce to cases (i), (ii) and (iv) in Theorem 4.1. Next, in order
to show that a locally conformally flat multiply warped space whose base is the
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Euclidean space or the sphere reduces to a warped product, an analysis of the
curvature of the induced metric (B, f −2gB) is needed. Assuming that the space
M = B ×f1 F1 ×· · ·×fk Fk is locally conformally flat, so is Mi j = B ×fi Fi ×f j F j ,
whose metric tensor can be expressed as

gMi j ≡ f 2
j

(
1
f 2

j
gB ⊕

1
f 2

j
f 2
i gi ⊕ g j

)
.

This shows that M ̂ i = B × Fi , equipped with the metric (1/ f 2
j ) gB ⊕ ( f 2

i / f 2
j ) gi ,

has constant sectional curvature K M ̂ i . Since M ̂ i can be viewed as a warped
product, it follows from (2) that

K M ̂ i (X ∧ U )= −
f 3

j

fi
Ĥ fi/ f j (X, X)

for all unit vectors X ∈ L(B), U ∈ L(Fi ), where Ĥ fi/ f j denotes the Hessian of
fi/ f j with respect to the conformal metric f −2

j gB . Now, since

Ĥ fi/ f j =
1
f j

(
H fi −

fi

f j
H f j −

1
f j

gB(∇ f j ,∇ fi )gB +
fi

f 2
j

gB(∇ f j ,∇ f j )gB

)
(see [Garcı́a-Rı́o and Kupeli 1999]), one gets

(11) −K M ̂ i
fi

f j
gB = f j H fi − fi H f j − gB(∇ f j ,∇ fi )gB +

fi

f j
gB(∇ f j ,∇ f j )gB .

Proceeding similarly, and expressing the metric tensor of Mi j = B ×fi Fi ×f j F j as

gMi j ≡ f 2
i

(
1
f 2
i

gB ⊕
1
f 2
i

f 2
j g j ⊕ gi

)
,

one also gets

(12) −K M ı̂ j
f j

fi
gB = fi H f j − f j H fi − gB(∇ fi ,∇ f j )gB +

f j

fi
gB(∇ fi ,∇ fi )gB .

Now it follows from (11) and (12) that

(13) −K M ̂ i f 2
i − K M ı̂ j f 2

j = ‖ f j∇ fi − fi∇ f j‖
2.

As an immediate application of this equality we have:

Proposition 4.3. If M = B ×f1 F1 ×· · ·×fk Fk is a locally conformally flat multiply
warped space, then the (constant) sectional curvature of (B, f −2

i gB) cannot be
nonnegative for two different warping functions.

Proof. If ‖ f j∇ fi − fi∇ f j‖
2
= 0, then ∇ ln( fi/ f j ) = 0, implying fi is a multiple

of f j in opposition to Remark 2.1. This shows there exist no nontrivial locally
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conformally flat multiply warped metrics having Euclidean space or the sphere for
base. �

Finally, in order to show the existence of complete locally conformally flat multi-
ply warped products with base Hs and the maximum number of fibers, just consider
the set of functions

f 1(Ex)=
1
4(s + 4)‖Ex‖

2
+ x1 + · · · + xs−1 + (s + 2)xs + s + 1,

f 2(Ex)=
1
4(s + 4)‖Ex‖

2
+ x1 + · · · + xs−1 + sxs + s − 1,

f 3(Ex)= ‖Ex‖
2
+ 3xs + 2,

f 4(Ex)= ‖Ex‖
2
+ xs−1 + 2xs + 2,

f 5(Ex)= ‖Ex‖
2
+ xs−2 + 2xs + 2,

...

f s+2(Ex)= ‖Ex‖
2
+ x1 + 2xs + 2.

These functions are positive in hyperbolic space and satisfy the compatibility con-
ditions in Theorem 3.4. Hence, proceeding as in Remark 3.5, one sees that fi (Ex)=
f i (Ex)/xs are positive warping functions on Hs that define a locally conformally
flat multiply warped space for either one- or higher-dimensional fibers of suitable
constant curvature as in Remark 3.6. This completes the proof of the theorem. �

Remark 4.4. If M = B ×f1 F1 × · · · ×fk Fk is locally conformally flat with com-
pact base B, then k = 1. Indeed, let fi , f j be two distinct warping functions.
Proceeding as in Lemma 3.1, we conclude that (B, f −2

i gB) and (B, f −2
i gB) are of

constant sectional curvature. Since fi/ f j is not constant it follows that (B, f −2
i gB)

and (B, f −2
i gB) are conformal metrics of constant curvature, and thus Euclidean

spheres [Kühnel 1988], from which the result follows.

Examples of complete locally conformally flat manifolds of nonpositive curva-
ture. Proceeding as in [Bishop and O’Neill 1969], note that a multiply warped
manifold M = B ×f1 F1 ×· · ·×fk Fk is complete if and only if the base and all the
fibers are so. In such a case, the sectional curvature is nonpositive if and only if
the following conditions are satisfied:

(a) the sectional curvatures of the base and the fibers are nonpositive: K B
≤ 0

and K Fi ≤ 0.

(b) The warping functions are convex, i.e., H fi is positive semidefinite.

(c) 〈∇ fi ,∇ f j 〉 ≥ 0 for all i 6= j .

Condition (a) can be omitted whenever the base and the corresponding fiber are
one-dimensional.
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A complete locally conformally flat multiply warped space with simply con-
nected base of constant curvature is of nonpositive sectional curvature if and only
if one of the following conditions holds:

(i) B ≡Rs , and then Rs
× f F is of nonpositive sectional curvature for any warping

function f as in Theorem 4.1.

(ii) B ≡ Hs , and then Hs
×f1 F1 ×· · ·×fk Fk is of nonpositive sectional curvature

if and only if the warping functions

fi (Ex)=
ai‖Ex‖

2
+ 〈 Ebi , Ex〉 + ci

xs

satisfy

fi ≥ 2bis if dim Fi ≥ 2 and 1 ≥
bis

fi
+

b js

f j
for all i 6= j .

The simplest examples illustrating this situation are as follows.

(a) Let M be the product manifold M = H2
× Fd

1 × F2 equipped with the multiply
warped metric tensor defined by the warping functions

f1(Ex)= κ

1
2‖Ex‖

2
+ x2 + 1
x2

, f2(Ex)=

1
4‖Ex‖

2
+ x2 +

1
2

x2
,

where F2 is one-dimensional and F1 is either one-dimensional or of negative
sectional curvature K F1 = −κ2.

(b) Let M be the product manifold M = H2
×F1

d
×F2 equipped with the multiply

warped metric tensor defined by the warping functions

f1(Ex)=

1
4‖Ex‖

2
+ x1 + 1
x2

, f2(Ex)=

1
2‖Ex‖

2
+ 2x1 + x2 + 2

x2
.

where F2 is one-dimensional and F1 is either one-dimensional or flat.

Further, if M = B ×f1 F1 ×· · ·×fk Fk is a locally conformally flat multiply warped
space with base of constant sectional curvature, then it follows from (3)–(5) that
M has at most (k + 1)-different Ricci curvatures given by

(14)

λB = (s − 1)K B
−

1
s

∑
i

di
1 fi

fi
,

λFa = (s − 1)K B
−

1
s

∑
i

di
1 fi

fi
− (n−2)

(
K B

+
1
s
1 fa

fa

)
.

A straightforward calculation shows that examples (a) have exactly three different
Ricci curvatures, but only two occur in case (b).
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Remark 4.5. Observe that the base and the fibers of a multiply warped prod-
uct play completely different roles. For instance, if M is a warped product with
compact base and nonpositive sectional curvature, then it follows from (2) that
the warping function satisfies H f ≥ 0, and thus f is constant, which shows that
M must be a direct product. In opposition, one can easily construct examples of
locally conformally flat multiply warped spaces of nonpositive sectional curvature
with compact fibers. In addition to examples (b) above, those metrics in Theorem
4.1(iii) can also be viewed as multiply warped metrics with one-dimensional base.
A straightforward calculation shows that R×αeβt+γ N × α

β
eβt+γ+c F is of nonpositive

sectional curvature if and only if F is one-dimensional. Further note that both N
and F can be chosen to be compact. Further, R×αeβt+γ N ×(α/β) eβt+γ+c F has three
distinct Ricci curvatures and therefore is not isometric to example (b), where only
two distinct Ricci curvatures occur.

Remark 4.6. As an immediate application of (14), a locally conformally flat multi-
ply warped space M =Hs

×f1 F1×· · ·×fk Fk (s ≥2) has nonpositive Ricci curvature
if and only if the warping functions

fi (Ex)=
ai‖Ex‖

2
+ 〈 Ebi , Ex〉 + ci

xs
satisfy ∑

i

di
bis

fi
≤ n − 1 for all i = 1, . . . , k,

(n−2)
bis

fi
+

∑
j

d j
b js

f j
≤ n − 1 for all i 6= j ∈ {1, . . . , k}.

The simplest examples of complete locally conformally flat manifolds with non-
positive Ricci curvature consist of

H2
×f1 S2

×f2 S2
×f3 S2

×f4 H2

with warping functions

f1(Ex)=

3
2‖Ex‖

2
+ x1 + 4x2 + 3

x2
, f2(Ex)=

‖Ex‖
2
+ 3x2 + 2
x2

,

f3(Ex)=

1
2‖Ex‖

2
+ x1 + 2x2 + 2

x2
, f4(Ex)=

‖Ex‖
2
+ x1 + 2x2 + 1

x2
.

The same conclusions hold for the multiply warped spaces H2
×f1 S2

×f2 S2
×f3 S2,

H2
×f1 S2

×f2 S2 and H2
×f1 S2. Also note from (13) that if Hs

×f1 F1×· · ·×fk Fk is
a locally conformally flat space of nonpositive sectional curvature, there is at most
one fiber Fa with dim Fa ≥ 2, which must necessarily be of nonpositive sectional
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curvature. This shows that none of the examples above has nonpositive sectional
curvature.
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