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For m < n, any real analytic m-submanifold of complex n-space with a
nondegenerate CR singularity is shown to be locally equivalent, under a
holomorphic coordinate change, to a fixed real algebraic variety defined by
linear and quadratic polynomials. The situation is analogous to Whitney’s
stability theorem for cross-cap singularities of smooth maps. The complex
analyticity of the normalizing transformation is proved using a rapid con-
vergence argument.

1. Introduction

For m ≤ n, if a real m-manifold M is embedded in Cn , then for each point x on M
there are two possibilities: the tangent m-plane at x may contain a complex line,
so M is said to be CR singular at x, or it may not, so M is said to be totally real
at x. This article will consider the local extrinsic geometry of a real analytically
embedded M near a CR singular point, in the case when the CR singularity satisfies
some natural nondegeneracy properties and 2

3(n + 1) ≤ m < n (so (m, n)= (4, 5)
is the case of lowest dimension). The main result is an algebraizability property:
there exists a holomorphic coordinate change in a neighborhood of x so that M is
real algebraic in the new coordinate system. In fact, M will be biholomorphically
equivalent to a fixed normal form variety, so that, unlike the well-known m = n
case, nondegenerate CR singularities have no continuous invariants under biholo-
morphisms.

The analysis of normal forms near CR singular points is part of the program of
studying the local equivalence problem for real m-submanifolds of Cn , as described
in [Baouendi et al. 2000]. Normal forms for CR singular real n-manifolds in Cn ,
where m = n ≥ 2, have been the subject of much study; see, for example, [Bishop
1965; Moser 1985; Moser and Webster 1983; Webster 1985]. Real surfaces in Cn

(m = 2, n ≥ 3) have been considered in [Harris 1981; 1983; Coffman 2004], and
real threefolds in C4 in [Coffman 2006]. A formal normal form for a CR singular
real 4-manifold in C5 was found in [Beloshapka 1997] and [Coffman 1997] — it
was shown that there exists a transformation (not unique) defined by formal power
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series, taking M to the normal form. The new result here is the existence of a
normalizing transformation defined by series that are convergent in a neighborhood
of the singularity.

2. Topological considerations

We briefly recall some topological properties of CR singularities. We could con-
sider real submanifolds of any complex manifold, but since the main result on
the normalization is about the local geometry, we can begin by assuming M is a
smoothly immersed real m-manifold in Cn .

The most basic invariant of a CR singularity at a point x ∈ M is the number
j(x) = dimC Tx ∩ Jx Tx , where Tx is the real tangent space of M at x and Jx is
the complex structure operator corresponding to scalar multiplication by i on the
tangent space of the ambient complex manifold. The number j(x) is the dimension
of the largest complex subspace tangent to M at x, so 0 ≤ j(x)≤ m/2.

One way to keep track of j(x) is the following construction. For m ≤ n, let
G be the grassmannian variety of real m-subspaces in Cn ∼= R2n; see [Garrity
2000; Coffman 1997]. The real m-subspaces T such that dimC T ∩ iT ≥ j form a
subvariety D j of real codimension 2 j (n−m+ j) in G. The occurrence of complex
tangents of an immersion corresponds to the intersection of D j with the image of
the Gauss map M → G : x 7→ Tx , and the immersion could be called “generic” if
the Gauss map meets each stratum D j\D j+1 transversely. So, generic immersions
of M in Cn are totally real outside a subset of M of codimension 2(n−m+1), and if
m< 2

3(n+1), a generic immersion of M is totally real everywhere. This resembles
the bounds in Whitney’s embedding and immersion theorems [1944a; 1944b]. In
the range 2

3(n + 1) ≤ m ≤ n, CR singularities are topologically stable — small
smooth perturbations of a generic immersion with a CR singular point will still
have a CR singular point. For compact real submanifolds of complex manifolds,
there are topological obstructions to the property of being totally real at every point,
and the CR singularities can be enumerated by characteristic class formulas. See
[Domrin 1995a; 1995b; Coffman 1997] and references therein on this topic.

The case addressed by this paper is 2
3(n+1)≤ m< n, and j(x)= 1; that is, only

points x where exactly one complex line is tangent at x will be considered, and only
in dimension cases where the CR singularity is stable under smooth perturbations of
the immersion. As mentioned in the Introduction, the m =n case has a qualitatively
different local geometry than the m < n case and is not considered here. The cases
(m, n) = (2, 3) or (3, 4), considered in [Coffman 2004; 2006], fall outside the
topological stability range. The case (m, n) = (4, 5), considered in [Beloshapka
1997; Domrin 1995a; Coffman 1997; 2002], has the lowest dimensions in the
range, and the generic singularity is isolated (codimension 4 in M).
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3. The quadratic normal form

Let the ambient complex space be Cn , with coordinates (z1, . . . , zn). The real
and imaginary parts of the coordinate functions are labeled z j = x j + iy j for j =

1, . . . , n. Let M be a real analytic m-dimensional submanifold embedded in Cn ,
with m < n, and let x be a point on M at which M is tangent to a complex line but
not to any complex 2-plane — in terms of the previous section, j(x)= 1, which we
regard as a nondegeneracy assumption, since for M in general position, the points
where j(x) > 1 form a subset of higher codimension.

By a translation that moves x to the origin E0, and then a complex linear trans-
formation of Cn , the tangent space T = TE0 of M can be assumed to be the one
spanned by (x1, y1, x2, . . . , xm−1), and thus to contain the z1-axis. Then there is
some neighborhood 1 of the origin in Cn so that the defining equations of M in 1
are in the form of a graph over a neighborhood of the origin in T :

(1)
ys = Hs(z1, z̄1, x2, . . . , xm−1)

zu = hu(z1, z̄1, x2, . . . , xm−1),

where Hs , for s = 2, . . . ,m − 1, is a real-valued real analytic function, and hu ,
for u = m, . . . , n, is a complex-valued real analytic function, with Hs and hu

defined in a neighborhood of the origin in T , and vanishing to second order at
(x1, y1, x2, . . . , xm−1)= (0, . . . , 0). The expression “x2, . . . , xm−1” is abbreviated
as just x . So, the defining functions are of the following form:

Hs(z1, z̄1, x)=αsz2
1+βsz1 z̄1+γs z̄2

1+

∑
δs1

s z1xs1 +

∑
εs1

s z̄1xs1 +

∑
θ s1s2

s xs1 xs2

+ Es(z1, z̄1, x),

hu(z1, z̄1, x)=αuz2
1+βuz1 z̄1+γu z̄2

1+
∑

δs1
u z1xs1 +

∑
εs1

u z̄1xs1 +

∑
θ s1s2

u xs1 xs2

+ eu(z1, z̄1, x),

with Es , eu having terms of degree three or higher. Each of these functions can be
expressed as the restriction to {(z1, ζ, x) ∈ Cm

: ζ = z̄1, x = x̄} of an m-variable
series with complex coefficients:

Hs(z1, ζ, x)= αsz2
1 +βsz1ζ + γsζ

2
+

∑
δs1

s z1xs1 +

∑
εs1

s ζ xs1

+

∑
θ s1s2

s xs1 xs2 +

∑
a+b+I≥3

EabI
s za

1ζ
bx I

hu(z1, ζ, x)= αuz2
1 +βuz1ζ + γuζ

2
+

∑
δs1

u z1xs1 +

∑
εs1

u ζ xs1

+

∑
θ s1s2

u xs1 xs2 +

∑
a+b+I≥3

eabI
u za

1ζ
bx I ,
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where x I abbreviates x i2
2 x i3

3 · · · x im−1
m−1 and a+b+ I abbreviates a+b+i2+. . .+im−1.

Each of the series in (z1, ζ, x) converges on some set of the form

{(z1, ζ, x) : |z1|< r, |ζ |< r, |xs |< r},

with r > 0, to a complex analytic function, with γs = αs , εs1
s = δ

s1
2 , etc., so that

Hs(z1, z̄1, x) and Es(z1, z̄1, x) are real-valued.

Definition 3.1. A (formal) monomial Cza
1ζ

bx I (with complex coefficient C) has
degree a + b + I . A (convergent or formal) power series in m variables, say
e(z1, ζ, x) =

∑
eabI za

1ζ
bx I , is said to have degree d if eabI

= 0 for all (a, b, I )
such that a +b+ I < d . Sometimes a series of degree d will be abbreviated O(d).
An ordered k-tuple of series (e1, . . . , ek) has degree d if all its components have
degree d .

Definition 3.2. Similarly for n variables, a monomial Cza1
1 · · · zan

n has degree a1 +

· · ·+an , but we will also work with the weight a1 +· · ·+am−1 +2am +· · ·+2an .
A series p(Ez) =

∑
pa1...an za1

1 . . . z
an
n has weight W if pa1...an = 0 when a1 + · · · +

am−1 + 2am + · · · + 2an < W .

We consider two coordinate systems for a neighborhood of the origin in Cn: the
previously mentioned Ez = (z1, . . . , zn), and a new system z̃ = (z̃1, . . . , z̃n), with
z̃ j = x̃ j + ỹ j . The two systems are related by the change of coordinates

(2) z̃ = Ez + Ep(Ez),

where Ep(Ez)= (p1(Ez), . . . , pn(Ez)) and each component p j is a holomorphic function
of z1, . . . , zn whose series expansion has weight 2, and for j ≥ m, also degree 2.
Such a transformation of Cn has invertible linear part, so it is invertible on some
neighborhood of E0. In the calculations of this section, we will neglect considering
the size of that neighborhood, and consider only points close enough to the origin,
but the size of the domain of Ep will be important information in later sections.

The goal of this section is to establish some nondegeneracy conditions on the
defining equations (1), by using complex linear transformations and nonlinear
transformations of the form (2) to put the quadratic terms of (1) into a normal
form. Similar calculations have already been done in the case m = n and the
cases (m, n) = (2, 3), (3, 4), and (4, 5), in [Bishop 1965; Coffman 2004; 2006;
Beloshapka 1997], respectively, so we will skip some of the computational details.

As the first special case of a transformation of the form (2) to be used, let p1 = 0
and let p2, . . . , pn be homogeneous quadratic polynomials in z1, . . . , zm−1. Us-
ing such a transformation, the quadratic terms in hu that are products of z1 and
x only, without a z̄1 factor, can be eliminated in the new coordinate system, or
their coefficients (αu , δs1

u , θ s1s2
u ) can be altered to attain any complex values, by

a suitable choice of Ep. This transformation may also change some higher-degree
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terms but does not alter the coefficients βu , γu , εs1
u . Similarly, the quadratic terms

without z̄1 in each Hs can also be eliminated by a transformation z̃ = Ez + Ep, which
simultaneously eliminates their conjugates (using γs = αs), leaving only the mixed
term βsz1 z̄1.

The result of this preliminary normalization is that for any CR singular sub-
manifold M of the form (1), there exists a quadratic coordinate transformation of
the form (2) with p1 = 0, so that M has the following general normal form. In a
local coordinate system Ez in some neighborhood of the CR singularity, the defining
equations of M are of the form (1), with

ys = Hs(z1, z̄1, x)= βsz1 z̄1 + O(3),

zu = hu(z1, z̄1, x)= βuz1 z̄1 + γu z̄2
1 +

∑
εs1

u z̄1xs1 + O(3).

At this point we consider which invertible complex linear transformations of Cn

fix the tangent plane T with coordinates (z1, x). The matrix representation of such
a transformation must be of the form z̃ = Az, where

A =

 a1 a2 . . . am−1 am . . . an

0 R ∗

0 0 C

 .

The entries a1, . . . , an are complex, with a1 6= 0, the (m−2)× (m−2) block R has
real entries and a nonzero determinant, and the (n−m+1)× (n−m+1) block C
has complex entries and a nonzero determinant.

The first nondegeneracy condition is that the (n−m+1)×2 block of coefficients
βu , γu in the functions hu satisfies

(3) rank

 βm γm
...

...

βn γn

 = 2.

In particular, this requires m < n. In this nondegenerate case, there is a linear
transformation of Cn which uses the block C in the complex matrix above to put
these coefficients into a row echelon form:

zt = ht(z1, z̄1, x)=

∑
ε

s1
t z̄1xs1 + O(3),

zn−1 = hn−1(z1, z̄1, x)= z̄2
1 +

∑
ε

s1
n−1 z̄1xs1 + O(3),

zn = hn(z1, z̄1, x)= z1 z̄1 +

∑
εs1

n z̄1xs1 + O(3),

for t = m . . . , n − 2, or there are no ht expressions if m = n − 1.
As a consequence of the first nondegeneracy condition on the functions hu ,

the functions Hs can also be simplified. There is a linear transformation with
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components z̃s = zs − iβszn (where for s = 2, . . . ,m −1, the complex coefficients
−iβs are entries from the ∗ block of the matrix A) that eliminates the βsz1 z̄1 terms
from each function Hs . This may introduce more terms of the form z1xs1 or z̄1xs1 in
the Hs functions, which can be eliminated by z̃s = zs+ ps quadratic transformations
as done previously, without reintroducing any z1 z̄1 terms.

A linear transformation of the form z̃1 = z1 +
∑

aszs , using the block a2, . . . ,

am−1 from the matrix A, can eliminate the terms of the form z̄1xs1 from either the
hn−1 quantity or the hn quantity, but generally not both at once — we make the
choice to eliminate the terms

∑
ε

s1
n−1 z̄1xs1 from hn−1. This may introduce more

terms of the form z1xs1 or xs1 xs2 in the other hu functions, which can be eliminated
by z̃u = zu + pu quadratic transformations as done previously.

The real and imaginary parts of the coefficients εs1
u , for u = m, . . . , n − 2 and

u = n, on the terms z̄1xs1 , s1 = 2, . . . ,m −1, form a real 2(n−m)×(m−2) matrix,
in this expression where the left-hand side is a column (n − m)-vector:

(4)
(∑

εs1
u z̄1xs1

)
u=m,...,n−2,n

=

 1 i · · · 0 0
...

...

0 0 · · · 1 i





Re ε2
m Re ε3

m . . . Re εm−1
m

Im ε2
m Im ε3

m . . . Im εm−1
m

...
...

Re ε2
n−2 Re ε3

n−2 . . . Re εm−1
n−2

Im ε2
n−2 Im ε3

n−2 . . . Im εm−1
n−2

Re ε2
n Re ε3

n . . . Re εm−1
n

Im ε2
n Im ε3

n . . . Im εm−1
n



 x2
...

xm−1

z̄1.

The second nondegeneracy condition is that this real matrix has rank 2(n − m).
It follows that the number of xs directions, m − 2, must be greater than or equal
to the number 2(n − m), and this is equivalent to m ≥

2
3(n + 1), exactly the lower

bound of the dimensions of topological stability, as discussed in Section 2.
When the second nondegeneracy condition holds, the real R block of the matrix

A can transform the xs variables to put the real matrix above into echelon form,
transforming the real and imaginary parts of the εs1

u coefficients, without altering
the z̄2

1 and z1 z̄1 terms. We get the following quadratic normal form for a non-
degenerate CR singularity:

(5) ys = Hs(z1, z̄1, x)= Es(z1, z̄1, x)= O(3),

zt = ht(z1, z̄1, x)= z̄1x2(t−m+2) + i z̄1x2(t−m+2)+1 + et(z1, z̄1, x),

zn−1 = hn−1(z1, z̄1, x)= z̄2
1 + en−1(z1, z̄1, x),

zn = hn(z1, z̄1, x)= z1 z̄1 + z̄1x2 + i z̄1x3 + en(z1, z̄1, x),



ANALYTIC STABILITY OF THE CR CROSS-CAP 227

with s = 2, . . . ,m − 1, t = m, . . . , n − 2, or, again, there are no ht expressions
if m = n − 1. If m > 2

3(n + 1), then the x2, . . . , x2n−2m+1 variables appear in
the quadratic part of the normal form but the variables x2n−2m+2, . . . , xm−1 do
not. In fact, near the origin, the locus of CR singularities (with j(x) = 1) is a
codimension 2(n − m + 1) submanifold of M whose tangent space at the origin is
the real subspace with coordinates x2n−2m+2, . . . , xm−1.

Having stated these two nondegeneracy conditions, we are now ready to state
the main result:

Proposition 3.3. Given 2
3(n +1)≤ m < n, let M be a real analytic m-submanifold

of Cn with a CR singularity at x, with j(x) = 1. If its local defining equations (of
the form (1)) satisfy both nondegeneracy conditions (the full rank of the coefficient
matrices (3), (4)) so that they can be put into the form (5), then there exists a
holomorphic coordinate change z̃ = Ez + Ep as in (2), in a neighborhood of E0 ∈ Cn ,
transforming the equations (5) into the real algebraic normal form

(6) ỹs = 0 for s = 2 . . . ,m − 1,

z̃t = ¯̃z1(x̃2(t−m+2) + i x̃2(t−m+2)+1) for t = m . . . , n − 2,

z̃n−1 = ¯̃z2
1,

z̃n = ¯̃z1(z̃1 + x̃2 + i x̃3).

The real algebraic variety defined by (6) is denoted M̃m,n , or more briefly
M̃ . The example M̃4,5 is exactly the normal form of [Beloshapka 1997]. The
proposition states that any real analytic M satisfying only j(x)= 1 at a point and
both quadratic nondegeneracy conditions is locally biholomorphically equivalent
to the real algebraic model. This is the “analytic stability” mentioned in the title,
and it is apparently analogous to stability theorems in the singularity theory of
smooth maps, where any sufficiently nondegenerate singularity is equivalent under
a change of coordinates to a unique polynomial model. The equations for M̃ re-
semble the normal forms for smooth maps with cross-cap (or “S1”) singularities, as
in [Whitney 1958; Haefliger 1961; Golubitsky and Guillemin 1973, §VII.4], and
M̃ and the images of the singular maps also have similar structures as a cartesian
product when the singularity is not isolated. The main difference between Whit-
ney’s normal forms and (6) is that the quantities in (6) are not monomials, and
cannot be simultaneously transformed into monomials by holomorphic coordinate
transformations in the nondegenerate case. More will be said about the analogies
with singularity theory in Section 8.

In the case m =
2
3(n+1)when the singularity is isolated, some of the topological

invariants mentioned in Section 2 depend on an orientation of M , so it may be
useful to consider normalizing transformations that fix a given orientation of the
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tangent plane T . This corresponds to the real block R of matrix A having a positive
determinant, and the last equation of the normal form (5) falls into two cases: zn =

z̄1(z1 + x2 ± i x3). The two normal forms are equivalent under the biholomorphic
transformation z̃3 = −z3, but this reverses the orientation of T . In the remaining
sections we will not be concerned with the orientation.

4. A functional equation

To show the existence of a normalizing transformation, we will set up a system
of nonlinear functional equations, so that any solution Ep of the system will define
a normalizing transformation z̃ = Ez + Ep as in (2). In addition to finding a formal
power series solution, we will also have to show that the solution is convergent in
some neighborhood of the origin. The method of proof is the rapid convergence
technique, as used in [Moser 1985] and [Coffman 2004]. Rather than trying to solve
the system of equations directly, we first find an approximate solution by solving
a related system of linear equations. Iteration of this process gives a sequence
of approximations that approach an exact solution. The issue of the domain of
convergence of the exact solution was not addressed by [Beloshapka 1997], and
was left open in [Coffman 1997]. In this latter paper, each approximate solution in
the sequence was constructed only on a domain a fraction of the size of the previous
one in the sequence — when the domains shrink to a point, the limit is an exact
formal series solution, but no conclusion can be drawn about its analyticity. The
new step here, which is crucial for the method of [Moser 1985] to be applicable,
is the construction of a sequence of approximate solutions whose domains shrink
slowly enough so their diameters are bounded below by a positive constant.

Starting with the quadratic part of the defining equations in normal form (5),
we consider the effect of a coordinate change (2). As previously mentioned, the
z̃ =Ez+ Ep transformation is (at least formally) invertible near E0, and it may be useful
to think of z̃ = Ez + Ep as having identity linear part, although there could be linear
terms with weight 2, for example, z̃1 = z1 + anzn .

In terms of z̃ and Ez, consider the system of equations

(7) 0 = Im(z̃s)= Im(zs + ps(Ez)),

0 = z̃t − ( ¯̃z1 x̃2(t−m+2) + i ¯̃z1 x̃2(t−m+2)+1),

= zt + pt(Ez)− (z1 + p1(Ez))Re(z2(t−m+2) + p2(t−m+2)(Ez))

− i(z1 + p1(Ez))Re(z2(t−m+2)+1 + p2(t−m+2)+1(Ez)),

0 = z̃n−1 − ¯̃z2
1 = zn−1 + pn−1(Ez)− (z1 + p1(Ez))

2
,

0 = z̃n − ¯̃z1(z̃1 + x̃2 + i x̃3)

= zn + pn(Ez)−(z1+p1(Ez))
(
z1+ p1(Ez)+Re(z2+p2(Ez))+i Re(z3+p3(Ez))

)
.
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In order to get (6) to be the defining equations for M in the z̃ coordinates, the
preceding equalities must hold for points Ez on M and near E0. So, we can replace
the Ez = (z1, . . . , zn) expressions in (7) by the defining functions (5):

(8) Ez =
(
z1, x2 + i H2(z1, z̄1, x), . . . , hn(z1, z̄1, x)

)
,

to get a system of equations where the right-hand side functions depend only on
z1, z̄1, x :

(9) 0 = Im(xs + i Hs + ps(Ez))= Es(z1, z̄1, x)+ Im ps(Ez),

0 = et(z1, z̄1, x)+ pt(Ez)− p1(Ez)(x2(t−m+2) + i x2(t−m+2)+1)

− z̄1
(
Re p2(t−m+2)(Ez)+ i Re p2(t−m+2)+1(Ez)

)
− p1(Ez)

(
Re p2(t−m+2)(Ez)+ i Re p2(t−m+2)+1(Ez)

)
,

0 = en−1(z1, z̄1, x)+ pn−1(Ez)− 2z̄1 p1(Ez)− p1(Ez)
2

0 = en(z1, z̄1, x)+ pn(Ez)− z̄1
(

p1(Ez)+ Re p2(Ez)+ i Re p3(Ez)
)

− p1(Ez)(z1 + x2 + i x3)− p1(Ez)
(

p1(Ez)+ Re p2(Ez)+ i Re p3(Ez)
)
.

The components of Ee = (E2, . . . , Em−1, em, . . . , en) appear in two ways — as terms
in each equation of (9), and also in the Ez input (8) for each p j (Ez) in (9), j =

1, . . . , n. So, given Ee, if we happen to have an exact solution Ep of the system of
functional equations above, the conclusion of Proposition 3.3 holds and we are
done. However, (9) is a nonlinear system in the unknown quantity Ep, where in
addition to the composition with the given defining functions (8), there are products
of the components p j and their complex conjugates.

As a first step in solving for Ep in terms of Ee, consider the system of simpler
equations:

(10) 0 = Es(z1, z̄1, x)+ Im ps(Ez),

0 = et(z1, z̄1, x)+ pt(Ez)− p1(Ez)(x2(t−m+2) + i x2(t−m+2)+1)

− z̄1
(
Re p2(t−m+2)(Ez)+ i Re p2(t−m+2)+1(Ez)

)
,

0 = en−1(z1, z̄1, x)+ pn−1(Ez)− 2z̄1 p1(Ez),

0 = en(z1, z̄1, x)+ pn(Ez)

− z̄1
(

p1(Ez)+ Re p2(Ez)+ i Re p3(Ez)
)
− p1(Ez)(z1 + x2 + i x3),

where the Ez input for each p j is

(11) Ez =
(
z1, x2, . . . , xm−1, z̄1(x4 + i x5), . . . , z̄2

1, z̄1(z1 + x2 + i x3)
)
.

This simplifies p j (Ez) by considering only the linear and quadratic parts of the input
(8). Also, the products of p j are dropped, so that these are (real) linear equations.
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To see how the new equations are related to the original system, suppose Ee has
degree d ≥ 3, and that Ep is a solution of (10)–(11) so that p1, . . . , p2n−2m+1 have
weight ≥ d − 1, and p2n−2m+2, . . . , pn have weight ≥ d . Evaluating the right-
hand side of (9) with this solution for Ep evidently results in expressions of degree
≥ 2d−2. Converting these expressions in z1, z̄1, x to z̃1, ¯̃z1, x̃ and equating them to
the z̃ expressions in (7) gives the higher-order terms of the new defining equations
for M in the z̃ coordinate system. (It will be shown later (Theorem 6.5) that in
fact for Ez ∈ M close enough to E0, z1, z̄1, x are real analytic functions of z̃1, ¯̃z1, x̃ .)
So, while a solution Ep of the linearized equations is just an approximation to the
solution of the original system, using such a Ep to define a coordinate transformation
does have the effect of nearly doubling the order of vanishing of the Ee quantity.

5. A solution of the linear equation

The goal of this section is to construct a solution Ep of the system of linear equations
(10)–(11), given the higher-order terms of the defining equations, Ee. Considering
Ep and Ee as formal power series, such a solution exists but is not unique — this fact,
together with the approximate doubling of the degree mentioned in the previous
section and iteration of the linearization procedure, is enough to show the (already
known, as mentioned previously) formal equivalence of M and M̃ . The solution Ep
constructed here will be an n-tuple of series in Ez = (z1, . . . , zn) with the following
properties: the size of the domain of convergence of Ep is comparable in a certain
sense to the size of the domain of Ee, and also a suitable norm of Ep is bounded in
terms of a suitable norm of Ee.

Notation 5.1. For r = (r1, . . . , rN ) ∈ RN , with all r j > 0, define a polydisc in CN

by
Dr = {(z1, . . . , zN ) : |z j |< r j }.

As special cases, let

Dr = D(r,r,...,r) ⊆ Cm and 1r = D(r,...,r,2r2,...,2r2,r2,3r2) ⊆ Cn,

where there are m − 1 radius lengths r and n − m − 1 radius lengths 2r2, in the
zm, . . . , zn−2 coordinate directions.

The initial assumption on the defining equations is that

Ee(z1, z̄1, x)= (E2, . . . , Em−1, em, . . . , en)

is real analytic, so there is some r > 0 so that each component of Ee is the restric-
tion to {ζ = z̄1, x = x̄} of a multivariable power series in (z1, ζ, x) with center
(0, 0, . . . , 0) and complex coefficients which converges on a complex polydisc
Dr ⊆ Cm (or, equivalently, a complex analytic function on Dr ).
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Notation 5.2. For a complex-valued function e(z1, ζ, x) of m complex variables,
which is defined on some set containing the polydisc Dr , define the norm

|e|r = sup
(z1,ζ,x)∈Dr

|e(z1, ζ, x)|.

For an (n−1)-tuple Ee = (E2, . . . , en), define

|Ee|r = |E2|r + · · · + |en|r .

For a complex-valued function p(z1, . . . , zn) of n complex variables, which is
defined on some set containing the polydisc 1r , define the norm

‖p‖r = sup
Ez∈1r

|p(Ez)|.

With this notation, we can further assume r>0 is small enough so that |Ee(z1, ζ, x)|r
is finite. Given Ee with degree ≥ 3, the eventual goal is to find some r̃ , 0 < r̃ ≤ r ,
and a holomorphic map Ep :1r̃ → Cn , so that the transformation z̃ = Ez + Ep(Ez) is a
biholomorphism with domain 1r̃ taking M to M̃ . That is, if Ez ∈ M ∩1r̃ , then z̃
satisfies (6). However, in this section we are only looking for Ep that is a solution
of (10)–(11).

Some steps of the proof of Theorem 5.6 below will decompose series into sub-
series and their complex conjugates, where these preliminary lemmas on the |e|r
norm will be useful.

Lemma 5.3. Given 0< R < r and complex coefficients a jk I , b jk I , if∣∣∣∑ a jk I z j
1ζ

k x I
∣∣∣
r
≤ K

and for complex x with |xs |< r , j, k = 0, 1, 2, 3, . . .,∣∣∣∣∑
I

b jk I x I
∣∣∣∣ ≤

∣∣∣∣∑
I

a jk I x I
∣∣∣∣,

then ∣∣∣∣∑ b jk I z j
1ζ

k x I
∣∣∣∣

R
≤

Kr2

(r − R)2
.

Proof. For (z1, ζ, x) ∈ Dr , these series are absolutely convergent and equal:∑
a jk I z j

1ζ
k x I

=

∞∑
j=0

( ∞∑
k=0

(∑
I

a jk I x I
)
ζ k

)
z j

1 .

Using Cauchy’s estimate [Ahlfors 1979] twice, we obtain∣∣∣∣ ∞∑
k=0

(∑
I

a jk I x I
)
ζ k

∣∣∣∣ ≤
K
r j and

∣∣∣∣∑
I

a jk I x I
∣∣∣∣ ≤

K
r kr j .
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For (z1, ζ, x) ∈ Dr , the series
∑

b jk I z j
1ζ

k x I is absolutely convergent, and for
(z1, ζ, x) ∈ DR:∣∣∣∣∑ b jk I z j

1ζ
k x I

∣∣∣∣ =

∣∣∣∣∣
∞∑
j=0

( ∞∑
k=0

( ∑
I

b jk I x I
)
ζ k

)
z j

1

∣∣∣∣∣
≤

∞∑
j=0

( ∞∑
k=0

∣∣∣∣∑
I

b jk I x I
∣∣∣∣ |ζ |k)|z1|

j

≤

∞∑
j=0

( ∞∑
k=0

∣∣∣∣∑
I

a jk I x I
∣∣∣∣ |ζ |k)|z1|

j

≤

∞∑
j=0

( ∞∑
k=0

K
r kr j |ζ |

k
)

|z1|
j

=

∑
j,k

K
(

|ζ |

r

)k(
|z1|

r

) j

= K
1

1 − |ζ |/r
1

1 − |z1|/r
=

Kr2

(r − |ζ |)(r − |z1|)
<

Kr2

(r − R)2
.

�

In the applications of the lemma, for each pair ( j, k), the coefficients b jk I will
either be zero for all I or equal to a jk I for all I , so the estimate in the hypothesis
is satisfied.

Notation 5.4. On the complex vector space of formal power series, define the real
structure operator

(12) e =

∑
eabI za

1ζ
bx I

7→ e′
=

∑
eabI ζ azb

1x I .

Lemma 5.5. For r >0, the restriction of the map (12) to the subspace {e : |e|r <∞}

is an isometry.

Proof. The equality of norms uses a change of variables that does not change the
radius length r .

|e′
|r = sup

(z1,ζ,x)∈Dr

∣∣∣∑ eabI ζ azb
1x I

∣∣∣ = sup
(ζ ′,z′

1,x
′)=(z̄1,ζ̄ ,x̄)∈Dr

∣∣∣∑ eabI z′

1
a
ζ ′

b
x ′

I
∣∣∣

= sup
(ζ ′,z′

1,x
′)∈Dr

∣∣∣∣∑ eabI (z′

1)
a(ζ ′)b(x ′)I

∣∣∣∣ = sup
(z′

1,ζ
′,x ′)∈Dr

∣∣∣∑ eabI (z′

1)
a(ζ ′)b(x ′)I

∣∣∣
= |e|r . �

Of course, this map is a representation of complex conjugation: given a series
e(z1, z̄1, x) for real x , which “complexifies” to e = e(z1, ζ, x) for (z1, ζ, x) ∈ Dr

for the purposes of finding its norm as in Notation 5.2, expanding e(z1, z̄1, x) as a
series in (z1, z̄1, x) and then complexifying gives e′

= e′(z1, ζ, x).
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In an attempt to simplify the notation by avoiding an excess of indices in an
already intricate calculation, the following theorem will focus on one particular
dimension pair (m, n). In order to represent the most general behavior, we want
m < n − 1, so there is a zt equation in (5), and also m > 2

3(n + 1), so there is a
variable xm−1 that does not appear in the quadratic part of the defining equations.
The smallest pair where both conditions occur is m = 7, n = 9, so we will be
considering a real 7-manifold in C9, where the coordinates of the tangent plane are
z1, x2, . . . , x6, and the CR singular locus in M near E0 is a real curve tangent to the
x6 axis at the origin.

Theorem 5.6. Given r > 0 and Ee(z1, ζ, x) convergent on Dr with |Ee|r < ∞ and
degree d ≥ 3, there exists Ep that is convergent on1r and satisfies these properties:

(a) Ep solves the following case of the system of equations (10)–(11):

(13) 0 = Es(z1, z̄1, x)+ Im ps(Ez) for s = 2, . . . , 6,

0 = e7(z1, z̄1, x)+ p7(Ez)− p1(Ez)(x4 + i x5)− z̄1(Re p4(Ez)+ i Re p5(Ez)),

0 = e8(z1, z̄1, x)+ p8(Ez)− 2z̄1 p1(Ez),

0 = e9(z1, z̄1, x)+ p9(Ez)

− z̄1(p1(Ez)+ Re p2(Ez)+ i Re p3(Ez))− (p1(Ez))(z1 + x2 + i x3),

where

(14) Ez =
(
z1, x2, x3, x4, x5, x6, z̄1(x4 + i x5), z̄2

1, z̄1(z1 + x2 + i x3)
)
.

(b) ‖p1‖r ≤ 3|e8|r/(2r), ‖p8‖r ≤ 4|e8|r and, for any 0< R < r ,

‖p2‖R ≤
3|e9|r +18|e8|r

R
+

( 8r2

(r −R)2
+ 10

)
|E2|r +

( 4r2

(r −R)2
+ 4

)
|E3|r ,

‖p3‖R ≤
3|e9|r +18|e8|r

R
+

( 4r2

(r −R)2
+ 4

)
|E2|r +

( 8r2

(r −R)2
+ 10

)
|E3|r ,

‖p4‖R ≤
3|e7|r +9|e8|r

R
+

( 8r2

(r −R)2
+ 10

)
|E4|r +

( 4r2

(r −R)2
+ 4

)
|E5|r ,

‖p5‖R ≤
3|e7|r +9|e8|r

R
+

( 4r2

(r −R)2
+ 4

)
|E4|r +

( 8r2

(r −R)2
+ 10

)
|E5|r ,

‖p6‖R ≤
20r2

(r −R)2
|E6|r ,

‖p7‖R ≤ 4|e7|r + 12|e8|r + 8R
( r2

(r −R)2
+ 1

)
(|E4|r + |E5|r ),

‖p9‖R ≤ 4|e9|r + 24|e8|r + 8R
( r2

(r −R)2
+ 1

)
(|E2|r + |E3|r ).
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Proof. First, notice that if Ep(z1, . . . , z9) is a formal series solution of (13)–(14),
it does not follow that Ep is convergent at any point (other than the origin). For
example, with any component p j , the series expressions p j (Ez) and

(15) p j (Ez)+ ((z1 + z2 + i z3)
2z8 − z2

9) · Q(Ez)

are formally the same when restricted to Ez as in (14), for any (possibly divergent)
series Q. So, if one formal solution Ep exists, then there exist infinitely many di-
vergent solutions. There may also exist formal series solutions that are convergent
only on some neighborhood of the origin much smaller than that claimed in the
theorem.

Continuing with the abbreviation x = x2, x3, x4, x5, x6, and also using z =

z2, z3, z4, z5, z6, the following choice of normalization will simplify the construc-
tion of the solution Ep satisfying the claimed convergence and bounds:

p1(Ez)= p1(z1, z, z8), p j (Ez)= pE
j (z1, z, z8)+ z9 pO

j (z1, z, z8),

for j = 2, . . . , 9. Note that Ep does not depend on z7, and the first component p1

does not depend on z9. We may make the further assumption that p1 is an even
function of z1: p1(z1, z, z8)= p1(−z1, z, z8). The remaining components, p j , have
some terms not depending on z9, labeled pE

j , and other terms which have exactly
one linear factor of z9. The pE

j and pO
j terminology corresponds to even and odd

powers of z̄1 which appear after the substitution of (14) into Ep. The choice that Ep
has at most linear terms in z9 = z̄1(z1 + x2 + i x3) is made to avoid high powers
of the nonmonomial quantity z̄1(z1 + x2 + i x3), since as in [Coffman 1997], any
multinomial coefficients in the series expansion of Ep(Ez) could be large enough to
affect the size of the domain of convergence.

We begin with the e8 equation of the system (13). If the series expansion of e8

had only even powers of z̄1, then it would be a very simple matter to compare the
coefficients of e8(z1, z̄1, x) and pE

8 (z1, x, z̄2
1), and get a solution of the equation

with pO
8 = p1 = 0. The odd powers of z̄1 in e8 make the pO

8 and p1 quantities
necessary to solve the equation. The consideration of the terms of the compo-
nents of the given quantity Ee which are even or odd in z̄1 was part of the analysis
of [Beloshapka 1997] and [Coffman 1997] of the formal normal form problem,
and even/odd decompositions also appeared in analogous calculations in [Whitney
1943]. However, to deal with the nonmonomial property of the quadratic normal
form, there will be some rearrangements of the terms in the series which were not
required in Whitney’s work. First, decompose e8 into even and odd parts e8A, e8B ,
e8C , and then apply an add-and-subtract trick to e8C , as follows:

e8 =
∑

eabI
8 za

1 z̄b
1x I

= e8A + e8B + e8C ,

e8A =
∑

b even eabI
8 za

1 z̄b
1x I ,
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e8B =
∑

a even, b odd eabI
8 za

1 z̄b
1x I ,

e8C =
∑

a, b odd eabI
8 za

1 z̄b
1x I

= e8D + e8E ,

e8D = z̄1(z1 + x2 + i x3)
∑

a, b odd eabI
8 za−1

1 z̄b−1
1 x I ,

e8E = −(x2 + i x3)
∑

a, b odd eabI
8 za−1

1 z̄b
1x I .

Let f8 = e8B + e8E , so f8(z1, z̄1, x) is even in z1 and odd in z̄1. Then, combining
e8 = e8A + e8D + f8 with the normalization for p1 and p8 in the e8 equation from
(13), a straightforward (by construction) comparison of coefficients yields

0 = e8A(z1, z̄1, x)+ pE
8 (z1, x, z̄2

1),

0 = e8D(z1, z̄1, x)+ z̄1(z1 + x2 + i x3)pO
8 (z1, x, z̄2

1),

0 = f8(z1, z̄1, x)− 2z̄1 p1(z1, x, z̄2
1).

If pE
8 (z1, z, z8)=

∑
pacI

8 za
1zc

8z I , then the coefficient pacI
8 must be equal to −ea,2c,I

8 ,
and we get an estimate for the norm of pE

8 on the polydisc 1r ⊆ C9:

‖pE
8 ‖r = sup

Ez∈1r

|pE
8 (Ez)| = sup

|z1|<r, |xs |<r,
|ζ 2

|<r2

∣∣pE
8 (z1, x, ζ 2)

∣∣ = sup
(z1,ζ,x)∈Dr

∣∣−e8A(z1, ζ, x)
∣∣

= |e8A|r =
∣∣ 1

2(e8(z1, ζ, x)+ e8(z1,−ζ, x))
∣∣
r ≤ |e8|r .

By using the averaging formula to extract the even part of e8, we can just apply
the triangle inequality to get the estimate for the subseries instead of Lemma 5.3.
There is a similar estimate for the other component pO

8 , but this time the Schwarz
Lemma [Ahlfors 1979] is used in two steps:

‖z9 pO
8 ‖r ≤ ‖z9‖r‖pO

8 ‖r = 3r2 sup
|z1|<r, |xs |<r,

|ζ 2
|<r2

|pO
8 (z1, x, ζ 2)|

= 3r2 sup
(z1,ζ,x)∈Dr

∣∣∣∣ −e8D(z1, ζ, x)
ζ(z1 + x2 + i x3)

∣∣∣∣ = 3r2 sup
(z1,ζ,x)∈D∗

r

∣∣∣∣−e8C(z1, ζ, x)
z1ζ

∣∣∣∣
≤ 3r2 sup

(z1,ζ,x)∈D∗
r

(|z1|/r) sup|z1|<r |e8C |

|z1||ζ |

≤ 3r sup
(z1,ζ,x)∈D∗

r

sup|z1|<r

∣∣(|ζ |/r) sup|ζ |<r |e8C |
∣∣

|ζ |
= 3|e8C |r

=
3
4

∣∣e8(z1, ζ, x)− e8(z1,−ζ, x)− e8(−z1, ζ, x)+ e8(−z1,−ζ, x)
∣∣
r

≤ 3|e8|r .

In some of these steps, we restricted to the open subset

D∗

r = Dr \
(
{z1 = 0} ∪ {ζ = 0}

)
,
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which avoids division by 0 but, by the maximum principle, does not affect the
supremum.

From f8 = e8B + e8E and the Schwarz Lemma,

| f8|r ≤ |e8B |r + |e8E |r

=
1
4

∣∣e8(z1, ζ, x)− e8(z1,−ζ, x)+ e8(−z1, ζ, x)− e8(−z1,−ζ, x)
∣∣
r

+

∣∣∣∣− x2 + i x3

z1
e8C

∣∣∣∣
r

≤ |e8|r + |x2 + i x3|r ·
1
r
|e8C |r ≤ 3|e8|r .

Solving for p1 involves complex conjugation, so we take care to work out a few
steps. By comparing the coefficients of f8 and p1, we see that if p1(z1, z, z8) =∑

α even pαβ I
1 zα1 zβ8 z I , then pαβ I

1 =
1
2 f 2β,α+1,I

8 . Using the Schwarz Lemma and
Lemma 5.5, we obtain

‖p1‖r = sup
(z1,ζ,x)∈Dr

∣∣∣ ∑
α even

pαβ I
1 zα1 ζ

2βx I
∣∣∣ = sup

(z1,ζ,x)∈Dr

∣∣∣ ∑
α even

1
2 f 2β,α+1,I

8 zα1 ζ
2βx I

∣∣∣
= sup
(z1,ζ,x)∈Dr

∣∣∣∣∣ ∑
a even, b odd

f abI
8 ζ azb

1x I

2z1

∣∣∣∣∣ =

∣∣∣ f ′

8(z1, ζ, x)
2z1

∣∣∣
r

≤
1
2r

| f ′

8|r =
1
2r

| f8|r ≤
3
2r

|e8|r .

By construction, p1 has weight d − 1 and p8 has weight d.
Moving next to the E6 equation of (13), split the real valued series E6 into

subseries, some real and some in complex conjugate pairs:

E6 = e6A + e6A + E6B + e6C + e6C + e6D + e6D + E6E ,

e6A =
∑

a > b, b even EabI
6 za

1 z̄b
1x I ,

E6B =
∑

a even EaaI
6 za

1 z̄a
1 x I ,

e6C =
∑

a > b, a even, b odd EabI
6 za

1 z̄b
1x I ,

e6D =
∑

a > b, a, b odd EabI
6 za

1 z̄b
1x I ,

E6E =
∑

a odd EaaI
6 za

1 z̄a
1 x I .

By Lemma 5.3, we have

|e6A|R ≤
r2

(r − R)2
|E6|r ,



ANALYTIC STABILITY OF THE CR CROSS-CAP 237

and all the other subseries have the same bound. We rearrange two of these sub-
series to be able to compare coefficients with p6:

e6D = e6F + e6G,

e6F = (z1 + x2 + i x3)z̄1
∑

a > b, a, b odd EabI
6 za−1

1 z̄b−1
1 x I ,

e6G = −(x2 + i x3)
∑

a > b, a, b odd EabI
6 za−1

1 z̄b
1x I ,

E6E = e6H + e6H + e6I + e6I ,

e6H =
1
2(z1 + x2 + i x3)z̄1

∑
a odd EaaI

6 za−1
1 z̄a−1

1 x I ,

e6I = −
1
2(x2 + i x3)

∑
a odd EaaI

6 za−1
1 z̄a

1 x I ,

and collect some of these subseries back together:

f6A(z1, z̄1, x)= e6A + e6I =
∑

a > b, b even f abI
6A za

1 z̄b
1x I ,

f6C(z1, z̄1, x)= e6C + e6G =
∑

a < b, a odd, b even f abI
6C za

1 z̄b
1x I ,

so

E6 = f6A + f6A + E6B + f6C + f6C + e6F + e6F + e6H + e6H .

The unknown p6 can also be expressed as a sum of subseries:

p6 = pE
6 (z1, z, z8)+ z9 pO

6 (z1, z, z8),

pE
6 = p6A + p6B + p6C ,

p6A =
∑

α > 2γ pαγ I
6A zα1 z I zγ8 ,

p6B =
∑

pγ I
6B z2γ

1 z I zγ8 ,

p6C =
∑

α < 2γ , α odd pαγ I
6C zα1 z I zγ8 ,

pO
6 = p6D + p6E ,

p6D =
∑

α > 2γ , α even pαγ I
6D zα1 z I zγ8 ,

p6E =
∑

pγ I
6E z2γ

1 z I zγ8 .
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Comparing coefficients, the equation 0 = E6 −
1
2 i(p6 − p6) from (13) turns into

these five equations and their complex conjugates:

0 = f6A −
1
2 i p6A,

0 =
1
2 E6B −

1
2 i p6B,

0 = f6C −
1
2 i p6C ,

0 = e6F −
1
2 i(z1 + x2 + i x3)z̄1 p6D,

0 = e6H −
1
2 i(z1 + x2 + i x3)z̄1 p6E .

Solving for each component of p6 gives a weight d quantity, and using Lemma
5.5, the Schwarz Lemma, and the previously mentioned estimates for the subseries
of E6, we get these estimates:

‖p6A‖R = | − 2i f6A|R = 2|e6A + e′

6I |R ≤ 2(|e6A|R + |e6I |R),

≤ 2
(

|e6A|R +

∣∣∣∣−(x2 + i x3)E6E

2z1

∣∣∣∣
R

)
,

≤ 2
(

r2
|E6|r

(r − R)2
+

2R
2

·
1
R

·
r2

|E6|r

(r − R)2

)
=

4r2

(r − R)2
|E6|r ,

‖p6B‖R =
∣∣−2i ·

1
2 E6B

∣∣
R ≤

r2

(r − R)2
|E6|r ,

‖p6C‖R = | − 2i f6C |R = 2|e′

6C + e′

6G |R,

≤ 2
(

|e6C |R +

∣∣∣∣−(x2 + i x3)e6D

z1

∣∣∣∣
R

)
,

≤ 2
(

r2
|E6|r

(r − R)2
+ 2R ·

1
R

·
r2

|E6|r

(r − R)2

)
=

6r2

(r − R)2
|E6|r ,

‖z9 p6D‖R ≤ ‖z9‖R‖p6D‖R = 3R2
∣∣∣∣−2i

e6F

(z1 + x2 + i x3)ζ

∣∣∣∣
R

= 6R2
∣∣∣∣e6D

z1ζ

∣∣∣∣
R
,

≤ 6|e6D|R ≤
6r2

(r − R)2
|E6|r ,

‖z9 p6E‖R ≤ 3R2
∣∣∣∣−2i

e6H

(z1 + x2 + i x3)ζ

∣∣∣∣
R
= 6R2

∣∣∣∣ e6E

2z1ζ

∣∣∣∣
R

≤
3r2

(r − R)2
|E6|r .

Finding p2, p3, p4, p5 is a bit trickier since each appears in more than one equa-
tion of (13). We will simultaneously solve for p4, p5, p7, using a more involved
comparison of coefficients, and similarly but independently, also p2, p3, p9.
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To find p4, p5, and p7, we consider the E4, E5, e7 equations of (13), and use
the previously found solution for p1 to get the system with the unknowns on the
left-hand side and the known O(d) quantities on the right-hand side:

Im p4 = −E4,(16)

Im p5 = −E5,(17)

p7 − z̄1 Re p4 − i z̄1 Re p5 = −e7 + (x4 + i x5)p1(18)

Starting with the right-hand side of (16), the following decomposition of E4 is
different from that of E6:

E4 = E4A + e4B + e4B + e4C + e4C + E4D,

E4A =
∑

a, b even EabI
4 za

1 z̄b
1x I ,

e4B =
∑

a > b, a odd, b even EabI
4 za

1 z̄b
1x I ,

e4C =
∑

a > b, a even, b odd EabI
4 za

1 z̄b
1x I ,

E4D =
∑

a, b odd EabI
4 za

1 z̄b
1x I

= e4E + e4F ,

e4E = (z1 + x2 + i x3)z̄1
∑

a, b odd EabI
4 za−1

1 z̄b−1
1 x I ,

e4F = −(x2 + i x3)
∑

a, b odd EabI
4 za−1

1 z̄b
1x I .

The E4A piece is simply an even part, so |E4A|r ≤ |E4|r , and similarly for the odd
part, |E4D|r ≤|E4|r . The other two subseries satisfy the estimate from Lemma 5.3:

|e4B |R ≤
r2

(r − R)2
|E4|r and |e4C |R ≤

r2

(r − R)2
|E4|r .

We regroup some of these subseries:

m4(z1, z̄1, x)= e4B + e4C + e4F =
∑

a even, b odd mabI
4 za

1 z̄b
1x I ,

f4(z1, z̄1, x)= E4A + e4B + e4C + m4 =
∑

b even f abI
4 za

1 z̄b
1x I .

Hence,
E4 = f4 + e4E + m4 − m4.

Similarly, E5 = f5 + e5E + m5 − m5, where f5 is even in z̄1 and m5 is even in z1

and odd in z̄1.
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The estimates follow from Lemma 5.5 and the Schwarz Lemma:

|m4|R = |e′

4B + e4C + e4F |R ≤ |e4B |R + |e4C |R + |e4F |R

≤
r2

(r − R)2
|E4|r +

r2

(r − R)2
|E4|r + |x2 + i x3|R

∣∣∣∣ E4D

z1

∣∣∣∣
R

≤

(
2r2

(r − R)2
+ 2

)
|E4|r ,

| f4|R = |E4A + 2e4B + 2e′

4C + e′

4F |R ≤

(
4r2

(r − R)2
+ 3

)
|E4|r ,

and similarly for m5 and f5.
From the right-hand side of (18), let f7(z1, z̄1, x)=−e7+(x4+i x5)p1(z1, x, z̄2

1),
so

(19) | f7|r ≤ | − e7|r +

∣∣∣∣(x4 + i x5)
f8

2ζ

∣∣∣∣
r
≤ |e7|r + 3|e8|r .

It splits into even and odd parts, f7 = f7A + f7B + f7C , with

f7A =
∑

b even f abI
7A za

1 z̄b
1x I

f7B =
∑

a, b odd f abI
7B za

1 z̄b
1x I ,

f7C =
∑

a even, b odd f abI
7C za

1 z̄b
1x I ,

with | f7A|r ≤ | f7|r and the same bound for f7B , f7C . Let

g7A = f7A + i z̄1m4 − z̄1m5 =
∑

b even gabI
7A za

1 z̄b
1x I ,

g7B = f7B − i z̄1m4 + z̄1m5 =
∑

a, b odd gabI
7B za

1 z̄b
1x I

= g7C + g7D,

g7C = (z1 + x2 + i x3)z̄1
∑

a, b odd gabI
7B za−1

1 z̄b−1
1 x I ,

g7D = −(x2 + i x3)
∑

a, b odd gabI
7B za−1

1 z̄b
1x I .

Then

f7 = g7A + g7C + g7D + f7C − z̄1(im4 − im4 − m5 + m5)

is in a form that compares to the left-hand side of (18) to give

pE
7 = g7A,(20)

(z1 + x2 + i x3)z̄1 pO
7 = g7C ,(21)

−z̄1(Re p4 + i Re p5)= g7D + f7C − z̄1(im4 − im4 − m5 + m5).(22)
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Equations (20) and (21) determine p7, with the estimates

‖pE
7 ‖R = |g7A|R = | f7A + iζm4 − ζm5|R

≤ | f7|r + R
(

2r2

(r − R)2
+ 2

)
|E4|r + R

(
2r2

(r − R)2
+ 2

)
|E5|r

‖z9 pO
7 ‖R ≤ 3R2

∣∣∣∣ g7C

(z1 + x2 + i x3)ζ

∣∣∣∣
R

= 3R2
∣∣∣∣g7B

z1ζ

∣∣∣∣
R

≤ 3| f7B − iζm′

4 + ζm′

5|R

≤ 3| f7|r + 3R
(

2r2

(r − R)2
+ 2

)
|E4|r + 3R

(
2r2

(r − R)2
+ 2

)
|E5|r .

Dividing (22) by −z̄1, then considering the real and imaginary parts and recalling
(16) and (17), we get the system

Re p4 = Re
g7D + f7C

−z̄1
+im4−im4, Re p5 = Im

g7D + f7C

−z̄1
+im5−im5,

Im p4 = −E4 = − f4−e4E −m4+m4, Im p5 = −E5 = − f5−e5E −m5+m5.

It is at this point that the second nondegeneracy condition — the full rank of the
coefficient matrix (4) — is used: if the quadratic term ε5

7 z̄1x5 in h7 had coefficient
0 instead of i , then Re p5 would not appear in the e7 equality of (13), and (18)
could not be solved this way.

Recombining the real and imaginary parts of p4, p5, there is (by construction)
a convenient cancellation:

p4 = Re p4 + i Im p4 = Re
g7D + f7C

−z̄1
− i f4 − ie4E ,

p5 = Re p5 + i Im p5 = Im
g7D + f7C

−z̄1
− i f5 − ie5E .

These equations were set up so that e4E and e5E are the only terms on the right-
hand side with odd powers of z̄1, so p4 = pE

4 + z9 pO
4 and p5 = pE

5 + z9 pO
5 are

each determined by a comparison of coefficients, and by construction, p4 and p5

have weight d − 1 and satisfy the estimates

‖pE
4 ‖R =

∣∣∣∣ g7D

−2ζ
+

f7C

−2ζ
+

g′

7D

−2z1
+

f ′

7C

−2z1
− i f4

∣∣∣∣
R

≤
1
R

|g7D|R +
1
R

| f7C |R + | f4|R

≤
1
R

∣∣∣∣−(x2 + i x3)
g7B

z1

∣∣∣∣
R

+
1
R

| f7|R + | f4|R

≤
3|e7|r + 9|e8|r

R
+

(
8r2

(r − R)2
+ 7

)
|E4|r +

(
4r2

(r − R)2
+ 4

)
|E5|r
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‖pE
5 ‖R =

∣∣∣∣ g7D

−2iζ
+

f7C

−2iζ
−

g′

7D

−2i z1
−

f ′

7C

−2i z1
− i f5

∣∣∣∣
R

≤
3|e7|r + 9|e8|r

R
+

(
4r2

(r − R)2
+ 4

)
|E4|r +

(
8r2

(r − R)2
+ 7

)
|E5|r ,

‖z9 pO
4 ‖R ≤ ‖z9 pO

4 ‖r ≤ 3r2
∣∣∣∣ −ie4E

(z1 + x2 + i x3)ζ

∣∣∣∣
r
= 3r2

∣∣∣∣ E4D

z1ζ

∣∣∣∣
r
≤ 3|E4|r

‖z9 pO
5 ‖R ≤ ‖z9 pO

5 ‖r ≤ 3r2
∣∣∣∣ −ie5E

(z1 + x2 + i x3)ζ

∣∣∣∣
r
= 3r2

∣∣∣∣ E5D

z1ζ

∣∣∣∣
r
≤ 3|E5|r .

The method of finding p2, p3, p9 can be copied from the solution of p4, p5, p7.
In the place of (16), (17), (18), the system to be solved is

(23) Im p2 = −E2,

Im p3 = −E3,

p9 − z̄1 Re p2 − i z̄1 Re p3 = −e9 + (z1 + x2 + i x3)p1 + z̄1 p1,

and the right-hand side of the third equation can be abbreviated f9, in analogy with
f7. The estimate (19) changes to

| f9|r ≤ | − e9|r +

∣∣∣∣(z1 + x2 + i x3)
f8

2ζ

∣∣∣∣
r
+

∣∣∣∣ζ f ′

8

2z1

∣∣∣∣
r
≤ |e9|r + 6|e8|r .

Both the construction of the solution and the estimates proceed by only changing
the subscripts from 4, 5, 7 to 2, 3, 9, and adjusting the estimate for f9 to get the
claimed results — the second nondegeneracy condition on the quadratic part of h9

is used here also in the same way. �

Corollary 5.7. Given 2
3(n + 1) ≤ m < n, r > 0, and Ee(z1, ζ, x) convergent on Dr

with |Ee|r <∞ and degree d ≥ 3, there exists Ep that is convergent on 1r , solves the
system of equations (10)–(11), satisfies

‖p1‖r ≤
3
2r

|en−1|r and ‖pn−1‖r ≤ 4|en−1|r ,

and, for any 0< R < r , satisfies

‖p2‖R ≤
3|en|r + 18|en−1|r

R
+

( 8r2

(r −R)2
+ 10

)
|E2|r +

( 4r2

(r −R)2
+ 4

)
|E3|r ,

‖p3‖R ≤
3|en|r + 18|en−1|r

R
+

( 4r2

(r −R)2
+ 4

)
|E2|r +

( 8r2

(r −R)2
+ 10

)
|E3|r ,

‖pn‖R ≤ 4|en|r + 24|en−1|r + 8R
( r2

(r −R)2
+ 1

)
(|E2|r + |E3|r ).
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Further, if m > 2
3(n + 1), then

‖ps‖R ≤
20r2

(r − R)2
|Es |r for s = 2n − 2m + 2, . . . ,m − 1,

and if m < n − 1, then for t = m, . . . , n − 2,

‖p2(t−m+2)‖R ≤
3|et |r + 9|en−1|r

R
+

( 8r2

(r −R)2
+ 10

)
|E2(t−m+2)|r

+

( 4r2

(r −R)2
+ 4

)
|E2(t−m+2)+1|r ,

‖p2(t−m+2)+1‖R ≤
3|et |r + 9|en−1|r

R
+

( 4r2

(r −R)2
+ 4

)
|E2(t−m+2)|r

+

( 8r2

(r −R)2
+ 10

)
|E2(t−m+2)+1|r ,

‖pt‖R ≤ 4|et |r + 12|en−1|r + 8R
( r2

(r −R)2
+ 1

)
(|E2(t−m+2)|r + |E2(t−m+2)+1|r ).

Proof. The method of solution from the proof of Theorem 5.6 groups the system of
equations into smaller subsystems that can be solved sequentially, so the general-
ization from (7, 9) to (m, n) can be accomplished by a straightforward relabeling
of subscripts (described below), resulting in similar estimates as claimed. The
nondegeneracy conditions remain essential for any (m, n).

The solution claimed by the corollary can be chosen to have the following form,
where now z abbreviates z2, . . . , zm−1 and again p1 is even in z1:

p1(Ez)= p1(z1, z, zn−1)

p j (Ez)= pE
j (z1, z, zn−1)+ zn pO

j (z1, z, zn−1),

for j = 2, . . . , n. For m < n − 1, this Ep does not depend on zm, . . . , zn−2.
The en−1 equation from (10) determines pn−1 and p1, exactly as in the solution

of the e8 equation, replacing the subscript 8 with n − 1 in the first part of the
preceding proof. The subscript 1 does not change.

If m > 2
3(n + 1), then each of the 3m − 2n − 2 individual Es equations, s =

2n−2m +2, . . . ,m −1, independently determines ps , in analogy with the solution
for p6 in terms of E6 in the second part of the preceding proof. If m =

2
3(n+1) (the

case of an isolated singularity), there are no equations analogous to the proof’s E6

equation.
The subsystem of three equations determining p2, p3, pn in terms of E2, E3,

en , and p1, can be solved in analogy with the above E2, E3, e9 group of equations
(23), only the subscript 9 needs to change to n. If m = n − 1, then those three
equations are the only remaining ones in the system.
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If m < n − 1, then there are n − m − 1 more subsystems of three equations, to
be solved for p2(t−m+2), p2(t−m+2)+1, pt , t = m, . . . , n −2, in terms of E2(t−m+2),
E2(t−m+2)+1, et , and p1, in analogy with equations (16)–(18). Solving each of these
subsystems depends only on having solved for p1, and not any other equations in
the system (10). �

It is not yet claimed that using the solution Ep of Theorem 5.6 or Corollary 5.7 in
(2) defines a local biholomorphism; this will be shown later (Theorem 6.4), under
certain conditions on Ee and r . The most important property so far of the solution
Ep is that the norms of its components can be estimated on 1R for R less than, but
arbitrarily close to, r .

Corollary 5.8. Given 2
3(n +1)≤ m < n, there is a constant c1 > 0 (depending only

on m, n) such that, for any Ep, Ee as in Corollary 5.7 and any radius lengths ρ, r
with 1

2 < ρ < r ≤ 1, we have

max
j=1,...,n

{
‖p j‖ρ

}
≤

c1|Ee|r
(r − ρ)2

and max
j=1,...,n

{ n∑
k=1

∥∥∥∥dpk

dz j

∥∥∥∥
ρ

}
≤

c1|Ee|r
(r − ρ)3

.

Proof. Let R =
1
2(ρ + r). The bound on each p j follows from ‖p j‖ρ ≤ ‖p j‖R

and the bounds from the previous corollary, using 1
2 < R < r ≤ 1, and 16 <

1/(r − R)2 = 4/(r − ρ)2. The bounds for the derivatives of pk follow from this
consequence of Cauchy’s estimate (for which see [Ahlfors 1979]): If 0< R2 < R1

and f (w) is holomorphic and bounded by K for |w|< R1, then d f/dw is bounded
by K/(R1 − R2) for |w|< R2.

This fact can be applied with K = ‖pk‖R and R1 − R2 = R − ρ =
1
2(r − ρ)

for the z1, . . . , zm−1 derivatives, R1 − R2 = R2
− ρ2 > R − ρ =

1
2(r − ρ) for the

zn−1 derivatives, and R1 − R2 = 3R2
− 3ρ2 > 3

2(r −ρ) for the zn derivatives. The
zm, . . . , zn−2 derivatives are zero by construction. �

The lower bound r > 1
2 was important for the previous corollary, but it is not

a significant a priori restriction on the manifold M . By a real rescaling Ez 7→

(a1z1, . . . , a1zm−1, a1
2zm, . . . , a1

2zn), with a1 > 0, equations (5) can be assumed
to define M for |z1| < 1, |xs | < 1; and for any η > 0, there is a rescaling making
|Ee|1 less than η.

6. The new defining equations and some estimates

To get a solution of the nonlinear equation (9) by iterating the solution of the
linear equation, the rapid convergence technique will apply, closely following the
methods used in [Moser 1985] on a different CR singularity problem. Each step
along the way to a proof of Proposition 3.3 is stated as a theorem.
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Substituting the linear equation’s normalized solution Ep from Corollary 5.7 into
E2, . . . , en in the right-hand side of the nonlinear equation (9) gives a quantity Eq
depending on z1, z̄1, x . Let

(24) Ez = (z1, x, . . . , z̄1(x2(t−m+2) + i x2(t−m+2)+1), . . . , z̄2
1, z̄1(z1 + x2 + i x3)),

as in (11), let

(25) Ez + Ee =
(
z1, x2 + i E2, . . . , xm−1 + i Em−1, . . . ,

z̄1(x2(t−m+2) + i x2(t−m+2)+1)+ et , . . . ,

z̄2
1 + en−1, z̄1(z1 + x2 + i x3)+ en

)
,

as in (8), and then define

Eq(z1, z̄1, x)= (Q2, . . . , Qm−1, qm, . . . , qn)

by

(26) Qs = Im
(

ps(Ez + Ee)− ps(Ez)
)
,

qt = pt(Ez + Ee)− pt(Ez)− (x2(t−m+2) + i x2(t−m+2)+1)(p1(Ez + Ee)− p1(Ez))

− z̄1 · Re
(

p2(t−m+2)(Ez + Ee)− p2(t−m+2)(Ez)
)

− i z̄1 Re
(

p2(t−m+2)+1(Ez + Ee)− p2(t−m+2)+1(Ez)
)

− p1(Ez + Ee)
(
Re p2(t−m+2)(Ez + Ee)+ i Re p2(t−m+2)+1(Ez + Ee)

)
,

qn−1 = pn−1(Ez + Ee)− pn−1(Ez)− 2z̄1(p1(Ez + Ee)− p1(Ez))− (p1(Ez + Ee))
2
,

qn = pn(Ez + Ee)− pn(Ez)− z̄1(p1(Ez + Ee)− p1(Ez))

− z̄1(Re
(

p2(Ez + Ee)− p2(Ez)
)
+ i Re

(
p3(Ez + Ee)− p3(Ez)

)
)

− (z1 + x2 + i x3)(p1(Ez + Ee)− p1(Ez))

− (p1(Ez + Ee))(p1(Ez + Ee)+ Re p2(Ez + Ee)+ i Re p3(Ez + Ee)).

To outline the role of Eq in the argument, the next step (Theorem 6.2) will suppose
that Ep(z1, . . . , zn) is complex analytic on 1ρ and |Ee|σ is small enough that Ez ∈1σ

implies Ez + Ee ∈ 1ρ ; hence Eq is a real analytic function for (z1, z̄1, x) ∈ Dσ . If
Eq(z1, z̄1, x) happens to be identically zero, the manifold M has been brought to
normal form by the functions Ep. Otherwise, the degree of Eq is at least 2d −2 by the
construction of the solution Ep, and defining Eq(z1, ζ, x) by Equations (26), with ζ
formally substituted for z̄1 and allowing complex x , the norm |Eq|σ can be bounded
in terms of the norm of Ee. Then later, in the proof of Theorem 6.6, converting
Eq(z1, z̄1, x) into an expression in z̃1, ¯̃z1, x̃ and equating it to the z̃ polynomial
expression in (7) gives the defining equations of M in the z̃ coordinate system.
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The case Ñ = N of the next result is [Coffman 2004, Lemma 4.1].

Lemma 6.1. Let f = ( f1, . . . , f Ñ ) : Dr → CÑ be a holomorphic map with

max
j=1,...,N

{ Ñ∑
k=1

sup
Ez∈Dr

∣∣∣∣d fk

dz j
(Ez)

∣∣∣∣} ≤ K .

Then, for Ez, Ez ′
∈ Dr ,

Ñ∑
k=1

| fk(Ez ′)− fk(Ez)| ≤ K
N∑

j=1

|z′

j − z j |.

Theorem 6.2. There are some constants c2 > 0 and δ1 > 0 (depending on m, n)
such that if 1

2 < σ < r ≤ 1, and Ee is as in Corollary 5.7, with |Ee|r ≤ δ1(r −σ), then

|Eq|σ ≤
c2|Ee|2r
(r − σ)3

.

Proof. Let ρ =
1
2(r +σ). Note that if δ1 ≤

1
2 , the formal series for Eq is convergent

on Dσ , since then, for (z1, ζ, x)∈ Dr , |xs +i Es |<σ+δ1(r −σ)≤σ+(ρ−σ)=ρ,
|ζ(x2(t−m+2)+i x2(t−m+2)+1)+et |<2σ 2

+(ρ−σ)<2σ 2
+(ρ−σ)(2(ρ+σ))=2ρ2,

and similarly |ζ 2
+ en−1| < ρ

2 and |(z1 + x2 + i x3)ζ + en| < 3ρ2, so Ez + Ee ∈ 1ρ ,
which is contained in the domain of Ep by Corollary 5.7. The case N = n, Ñ = 1,
Dr =1ρ of Lemma 6.1 applies to pk :1ρ → C, with

max
j=1,...,n

{∥∥∥∥dpk

dz j

∥∥∥∥
ρ

}
≤ K =

c1|Ee|r
(r − ρ)3

,

by Corollary 5.8, and Ez ′
= Ez + Ee ∈1ρ , so the conclusion is

|pk(Ez + Ee)− pk(Ez)| ≤ K (|E2|r + · · · + |en|r )=
c1|Ee|r
(r − ρ)3

|Ee|r =
8c1|Ee|2r
(r − σ)3

.

This provides bounds for the differences that appear in (26), and the remaining
terms are the products, where we can use 1

2 < σ < ρ < r ≤ 1, the bound of
Theorem 5.6 on the p1 factor, and the bounds of Corollary 5.8 on the other factors.
For example, for the qt equation of (26), in a case where t = m < n −1, part of the
expression is the product

sup
Dσ

∣∣∣∣(p1(Ez + Ee))′
p4(Ez + Ee)+ (p4(Ez + Ee))′ + i p5(Ez + Ee)+ i(p5(Ez + Ee))′

2

∣∣∣∣
≤ ‖p1‖ρ

(
‖p4‖ρ + ‖p5‖ρ

)
≤

3
2r

|en−1|r
2c1 |Ee|r
(r − ρ)2

<
6c1|Ee|2r
(r − ρ)2

<
12c1 |Ee|2r
(r − σ)3

. �
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The following lemma on inverse functions will be used twice, in the construction
of the new coordinate system and the new defining equations; a proof by a standard
iteration procedure is sketched in [Coffman 2004].

Lemma 6.3. Suppose 0< R2,k < R1,k for k = 1, . . . , N , so that

D2
= D(R2,1,...,R2,N ) ⊆ D1

= D(R1,1,...,R1,N ).

Let f (Ez)= ( f1(z1, . . . , zN ), . . . , fN (z1, . . . , zN )) be holomorphic on D1, with

max
j=1,...,N

{ N∑
k=1

sup
Ez∈D1

∣∣∣∣d fk

dz j
(Ez)

∣∣∣∣} ≤ K < 1

and
N∑

k=1

sup
Ez∈D2

| fk(Ez)| ≤ (1 − K ) min
k=1,...,N

{R1,k − R2,k}.

Given Ew ∈ D2, there exists a unique solution Ez ∈ D1 of the equation

Ew = Ez + f (Ez),

and this solution satisfies

N∑
k=1

|zk −wk | ≤
1

1 − K

N∑
k=1

| fk( Ew)|.

Theorem 6.4. There is some constant δ2 > 0 (depending on m, n) so that for any
radius lengths 1

2 < σ < r ≤ 1, and Ee, Ep as in Corollary 5.7, with |Ee|r ≤ δ2(r − σ)3

and ρ =
1
2(r + σ), the transformation

9 : Ez = (z1, . . . , zn) 7→ z̃ =
(
z1 + p1(Ez), . . . , zn + pn(Ez)

)
has a holomorphic inverse ψ(z̃)= Ez such that z̃ ∈1σ implies ψ(z̃) ∈1ρ .

Proof. By Corollary 5.8,

max
j=1,...,n

{ n∑
k=1

∥∥∥∥dpk

dz j

∥∥∥∥
ρ

}
≤

c1|Ee|r
(r − ρ)3

≤
c1δ2(r − σ)3

(r − ρ)3
= 8δ2c1 ≤

1
2 = K ,

if δ2 ≤ 1/(16c1). Also by Corollary 5.8,
n∑

k=1

‖pk‖σ ≤
nc1|Ee|r
(r − σ)2

≤ nc1δ2(r − σ)≤ (1 − K )(ρ− σ)

if δ2 ≤ 1/(4nc1). The hypotheses of Lemma 6.3 are satisfied with 1σ ⊆ 1ρ , and
R1,k − R2,k ≥ ρ − σ , so given z̃ ∈ 1σ , there exists a unique Ez ∈ 1ρ such that
z̃ =

(
z1 + p1(Ez), . . . , zn + pn(Ez)

)
. This defines ψ so that 9 ◦ψ is the identity map

on 1σ . �
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For (z1, ζ, x) ∈ DR1 ⊆ Cm , define zc
∈ Cn by

zc
= (z1, x2 + i E2(z1, ζ, x), . . . , xm−1 + i Em−1(z1, ζ, x), . . . ,

ζ(x2(t−m+2) + i x2(t−m+2)+1)+ et(z1, ζ, x), . . . ,

ζ 2
+ en−1(z1, ζ, x), ζ(z1 + x2 + i x3)+ en(z1, ζ, x)),

and define a map τ : DR1 → Cm by

τ(z1, ζ, x)=
(
τ1(z1, ζ, x), . . . , τm(z1, ζ, x)

)
=

(
z1 + p1(zc), ζ + (p1(zc))′, x2 +

1
2(p2(zc)+ (p2(zc))′), . . . ,

xm−1 +
1
2(pm−1(zc)+ (pm−1(zc))′)

)
.

Theorem 6.5. There is some constant δ3 > 0 (depending on m, n) so that for
any radius lengths 1

2 < r ′ < r ≤ 1, with σ = r ′
+

1
3(r − r ′), and any Ee, Ep as in

Corollary 5.7, with |Ee|r ≤ δ3(r −r ′)3, the transformation τ : (z1, ζ, x) 7→ (z̃1, ζ̃ , x̃)
has a holomorphic inverse φ(z̃1, ζ̃ , x̃)= (z1, ζ, x) such that if (z̃1, ζ̃ , x̃)∈ Dr ′ , then
φ(z̃1, ζ̃ , x̃) ∈ Dσ .

Proof. Let ρ = r ′
+

2
3(r − r ′), so σ − r ′

= ρ − σ = r − ρ =
1
3(r − r ′) < 1

6 , and
let r̄ =

1
2(r + r ′), so 1

2 < r ′ < σ < r̄ < ρ < r ≤ 1. If (z1, ζ, x) ∈ Dr̄ , and δ3 ≤
2
3 ,

then |E2(z1, ζ, x)| ≤ δ3(r − r ′)3 = 216δ3(ρ − r̄)3 < (216/122) δ3(ρ − r̄) ≤ ρ − r̄ ,
and similarly |en−1(z1, ζ, x)|<ρ2

− r̄2, etc., so zc
∈1ρ , and Ep(zc) and τ are well-

defined and holomorphic on Dr̄ . Using Cauchy’s estimate as in Corollary 5.8, for
(z1, ζ, x) ∈ Dσ ,∣∣∣∣ d

dz1
p2(zc)

∣∣∣∣ ≤
|p2(zc)|r̄

r̄ − σ
≤

‖p2‖ρ
1
2(ρ− σ)

≤
2c1|Ee|r

(ρ− σ)(r − ρ)2
=

54c1|Ee|r
(r − r ′)3

.

Similarly, the derivative of each term, p1(zc), ps(zc), (p1(zc))′, (ps(zc))′, with
respect to each variable z1, ζ , xs , is bounded by a comparable quantity, so there is
some constant c3 > 0 (depending on m, n) so that

max
j=2,...,m−1

{∣∣∣∣dp1(zc)

dz1

∣∣∣∣
σ

+

∣∣∣∣d((p1(zc))′)

dz1

∣∣∣∣
σ

+

m−1∑
s=2

∣∣∣∣d( 1
2(ps(zc)+ (ps(zc))′))

dz1

∣∣∣∣
σ

,

∣∣∣∣dp1(zc)

dζ

∣∣∣∣
σ

+

∣∣∣∣d((p1(zc))′)

dζ

∣∣∣∣
σ

+

m−1∑
s=2

∣∣∣∣d( 1
2(ps(zc)+ (ps(zc))′))

dζ

∣∣∣∣
σ

,

∣∣∣∣dp1(zc)

dx j

∣∣∣∣
σ

+

∣∣∣∣d((p1(zc))′)

dx j

∣∣∣∣
σ

+

m−1∑
s=2

∣∣∣∣d( 1
2(ps(zc)+ (ps(zc))′))

dx j

∣∣∣∣
σ

}
≤ c3|Ee|r/(r − r ′)3 ≤ c3δ3 ≤

1
2

if δ3 ≤ 1/(2c3). It also follows from Corollary 5.8 that
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|p1(zc)|r ′ + |(p1(zc))′|r ′ +

m−1∑
s=2

∣∣1
2(ps(zc)+ (ps(zc))′)

∣∣
r ′

≤ 2‖p1‖ρ +

m−1∑
s=2

‖ps‖ρ ≤
mc1|Ee|r
(r − ρ)2

≤
mc1δ3(r − r ′)3

(r − ρ)2

= 9mc1δ3(r − r ′)≤
1
2(σ − r ′)

if δ3 ≤ 1/(54mc1). So, by Lemma 6.3, given (z̃1, ζ̃ , x̃) ∈ Dr ′ , there exists a unique
(z1, ζ, x) ∈ Dσ such that (z̃1, ζ̃ , x̃)= τ(z1, ζ, x). �

By inspection of the form of τ , if (z1, ζ, x)∈ Dσ and τ(z1, ζ, x)= (z̃1, ζ̃ , x̃), then
τ(ζ̄ , z̄1, x̄) = (ζ̃ , ¯̃z1, ¯̃x). If, further, (z̃1, ζ̃ , x̃) = (ζ̃ , ¯̃z1, ¯̃x) ∈ Dr ′ , then (z1, ζ, x) =

(ζ̄ , z̄1, x̄) by uniqueness of the inverse. In particular, if |z̃1| < r ′ and for s =

2, . . . ,m − 1, x̃s is real and |x̃s | < r ′, then φ(z̃1, ¯̃z1, x̃) is of the form (z1, z̄1, x)
for some z1 with |z1| < σ and x real with |xs | < σ . Such (z1, x) is unique, given
(z̃1, x̃): suppose there were (z0

1, x0) with |z0
1|< σ , |x0

s |< σ , x0 real, such that

z̃1 = τ1(z0
1, z0

1, x0),

x̃s = τs+1(z0
1, z0

1, x0) for s = 2, . . . ,m − 1.

Then the second component τ2(z0
1, z0

1, x0) can be calculated to have some value ζ̃ ,

so τ(z0
1, z0

1, x0)= (z̃1, ζ̃ , x̃). By the formula for τ , ζ̃ = ¯̃z1, so (z̃1, ζ̃ , x̃) ∈ Dr ′ and

(z0
1, z0

1, x0)= φ(z̃1, ζ̃ , x̃)= φ(z̃1, ¯̃z1, x̃)= (z1, z̄1, x), so we can conclude from the
uniqueness of Lemma 6.3 that z0

1 = z1 and x0
= x .

Theorem 6.6. There exist constants c4 > 0 and δ4 > 0 (depending on m, n) such
that for any 1

2 < r ′ < r ≤ 1 (with σ , ρ as in the previous theorem), and any Ee as in
Corollary 5.7 with |Ee|r ≤ δ4(r − r ′)3, there exist a holomorphic map

9 :1ρ → Cn, (z1, . . . , zn) 7→ (z̃1, . . . , z̃n),

with a holomorphic inverseψ :1σ →1ρ , and a holomorphic map ẽ= (Ẽ2, . . . , ẽn)

from Dr ′ to Cn−1, such that the defining equations for M are

ỹs = Ẽs(z̃1, ¯̃z1, x̃),

z̃t = ¯̃z1(x̃2(t−m+2) + i x̃2(t−m+2)+1)+ ẽt(z̃1, ¯̃z1, x̃),

z̃n−1 = ¯̃z2
1 + ẽn−1(z̃1, ¯̃z1, x̃),

z̃n = ¯̃z1(z̃1 + x̃2 + i x̃3)+ ẽn(z̃1, ¯̃z1, x̃),

for |z̃1|< r ′, |x̃s |< r ′. The degree of ẽ is at least 2d − 2, and

|ẽ|r ′ ≤
c4|Ee|2r
(r − r ′)3

.
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Proof. Initially, choose δ4 ≤ min{
8
3δ1,

8
27δ2, δ3}, so that Theorems 6.2, 6.4, 6.5

apply, and define 9, ψ , Eq, and φ in terms of the given Ee and the functions Ep
constructed in Corollary 5.7. Define ẽ to be the composite of holomorphic maps
Eq ◦φ : Dr ′ → Cn−1, so that by Theorem 6.2,

|ẽ|r ′ ≤ |Eq|σ ≤
c2|Ee|2r
(r − σ)3

=
c2|Ee|2r

( 2
3(r − r ′))3

.

Since φ(z̃1, ¯̃z1, x̃) has no constant terms, and Eq has degree ≥2d−2 by construction,
ẽ(z̃1, ¯̃z1, x̃) also has degree at least 2d − 2.

Given z̃1, x̃ such that |z̃1| < r ′, and x̃ is real with |x̃s | < r ′, define quantities
z̃2, . . . , z̃n by

(27) z̃s = x̃s + i Ẽs(z̃1, ¯̃z1, x̃),

z̃t = ¯̃z1(x̃2(t−m+2) + i x̃2(t−m+2)+1)+ ẽt(z̃1, ¯̃z1, x̃)

z̃n−1 = ¯̃z2
1 + ẽn−1(z̃1, ¯̃z1, x̃),

z̃n = ¯̃z1(z̃1 + x̃2 + i x̃3)+ ẽn(z̃1, ¯̃z1, x̃),

and define z̃ = (z̃1, z̃2, . . . , z̃n). The claim of the theorem is that ψ(z̃) ∈ M .
If δ4

2
≤ 32/(81c2), then

|ẽ|r ′ ≤
c2(δ4(r − r ′)3)2

(r − σ)3
= c2(δ4)

2 36

23 (σ − r ′)3 ≤ c2(δ4)
2 36

2362 (σ − r ′)≤ σ − r ′,

so z̃ ∈1σ , the domain of ψ .
By Theorem 6.5, there exists a unique (z1, x) (the first and last components of

(z1, z̄1, x)= φ(z̃1, ¯̃z1, x̃)) such that |z1|< σ , x is real with |xs |< σ , and

z̃1 = z1 + p1(z1, x2 + i E2(z1, z̄1, x), . . . , z̄1(z1 + x2 + i x3)+ en(z1, z̄1, x)),

x̃s = xs + Re
(

ps(z1, x2 + i E2(z1, z̄1, x), . . . , z̄1(z1 + x2 + i x3)+ en(z1, z̄1, x))
)
.

Then define quantities z2, . . . , zn by

zs = xs + i Es(z1, z̄1, x),

zt = z̄1(x2(t−m+2) + i x2(t−m+2)+1)+ et(z1, z̄1, x),

zn−1 = z̄2
1 + en−1(z1, z̄1, x),

zn = z̄1(z1 + x2 + i x3)+ en(z1, z̄1, x),

and define, as in (11) and (24), Ez = (z1, x, . . . , z̄1(z1 + x2 + i x3)) and Ez + Ee =

(z1, z2, . . . , zn) as in (8) and (25). Since |z1|<σ < r and |xs |<σ < r , Ez + Ee ∈ M ,
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and if δ4 ≤
4
3 , then

|Ee|σ ≤ |Ee|r ≤ δ4(r − r ′)3 = δ4 · 27(ρ− σ)3 < δ4
27
62 (ρ− σ) ≤ (ρ− σ),

so Ez + Ee ∈1ρ , which is contained in the domain of Ep.
Next, by the construction of Eq , ẽ, and z̃, we see that 9(Ez + Ee) equals(

z1 + p1(Ez + Ee), . . . , zn + pn(Ez + Ee)
)

=

(
z̃1, . . . , x̃s + i Es(z1, z̄1, x)+ i Im ps(Ez + Ee), . . . ,

z̃1 − p1(Ez + Ee)
(
x̃2(t−m+2) − Re p2(t−m+2)(Ez + Ee)

)
+ i z̃1 − p1(Ez + Ee)

(
x̃2(t−m+2)+1 − Re p2(t−m+2)+1(Ez + Ee)

)
+ et(z1, z̄1, x)+ pt(Ez + Ee), . . . ,

z̃1 − p1(Ez + Ee)
2
+ en−1(z1, z̄1, x)+ pn−1(Ez + Ee),

z̃1 − p1(Ez + Ee)
(
z̃1− p1(Ez+Ee)+ x̃2−Re p2(Ez+Ee)+i x̃3−i Re p3(Ez+Ee)

)
+ en(z1, z̄1, x)+ pn(Ez + Ee)

)
=

(
z̃1, . . . , x̃s + i Qs(z1, z̄1, x), . . . ,

¯̃z1(x̃2(t−m+2) + i x̃2(t−m+2)+1)+ qt(z1, z̄1, x), . . . ,
¯̃z2

1 + qn−1(z1, z̄1, x), ¯̃z1(z̃1 + x̃2 + i x̃3)+ qn(z1, z̄1, x)
)

=
(
z̃1, . . . , x̃s + i Qs(φ(z̃1, ¯̃z1, x̃)), . . . ,

¯̃z1(x̃2(t−m+2) + i x̃2(t−m+2)+1)+ qt(φ(z̃1, ¯̃z1, x̃)), . . . ,
¯̃z2

1 + qn−1(φ(z̃1, ¯̃z1, x̃)), ¯̃z1(z̃1 + x̃2 + i x̃3)+ qn(φ(z̃1, ¯̃z1, x̃))
)

=
(
z̃1, . . . , x̃s + i Ẽs(z̃1, ¯̃z1, x̃), . . . ,

¯̃z1(x̃2(t−m+2) + i x̃2(t−m+2)+1)+ ẽt(z̃1, ¯̃z1, x̃), . . . ,
¯̃z2

1 + ẽn−1(z̃1, ¯̃z1, x̃), ¯̃z1(z̃1 + x̃2 + i x̃3)+ ẽn(z̃1, ¯̃z1, x̃)
)

= z̃.

Here we have used the fact that Ep is a solution of (10)–(11). By the uniqueness of
Theorem 6.4, ψ(z̃)= Ez + Ee lies in M . �

7. Composition of approximate solutions

The previous theorem’s quadratic estimate on the size of ẽ in terms of Ee allows
for the rapid convergence of a sequence of approximations. A couple of technical
lemmas will be needed to measure the behavior of composite mappings. Theorem
7.7, which is the last step in proving Proposition 3.3, uses these lemmas and the
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estimates of the previous section to prove convergence of a sequence of transfor-
mations, following the ideas of [Moser 1985].

Notation 7.1. For R1 > 0 and a n × n matrix of complex-valued functions F =

(Fk j (Ez)) on 1R1 , define

|||F |||R1 = max
j=1,...,n

{ n∑
k=1

sup
Ez∈1R1

|Fk j (Ez)|
}
.

This “maximum column sum” norm has already appeared, in Corollary 5.8 and
Lemmas 6.1 and 6.3, in the case where F = D f = DEz f , the Jacobian matrix of
some map f :1R1 → Cn at Ez ∈1R1 . The 3 × 3 case of the following lemma was
proved in [Coffman 2004].

Lemma 7.2. If |||A|||R1 < 1, then 1+ A is invertible (where 1 is the n × n identity
matrix), and

|||(1+ A)−1
|||R1 ≤

1
1 − |||A|||R1

.

We need an elementary fact from the calculus of one real variable:

Lemma 7.3. If µk is a sequence such that 0 ≤ µk < 1 and
∞∑

k=0
µk is a convergent

series, then the sequence of partial products

N∏
k=0

1
1 −µk

is bounded above by some positive limit.

Notation 7.4. For ν=0, 1, 2, . . ., define a sequence
{
1, 3

4 ,
4
6 ,

5
8 , . . .

}
by the formula

rν =
1
2

(
1 +

1
ν+ 1

)
.

Note that 1
2 < rν ≤ 1, and the sequence is decreasing, with

rν − rν+1 =
1

2(ν+ 1)(ν+ 2)
and

rν+1 − rν+2

rν − rν+1
=
ν+ 1
ν+ 3

≥
1
3
.

Notation 7.5. Define σν = rν+1 +
1
3(rν − rν+1), ρν = rν+1 +

2
3(rν − rν+1), as in

Theorem 6.5.

Recall that given η > 0, there is some scaling transformation so that M ∩11 is
defined by (5), with Ee holomorphic on D1, degree d ≥ 3, and |Ee|1 ≤ η.

Notation 7.6. Set Ee0 = Ee (so |Ee0|r0 =|Ee|1 ≤ η), and inductively define the formal se-
ries Eeν+1(z1, ζ, x) in terms of Eeν(z1, ζ, x), by the Ee 7→ ẽ procedure of Theorem 6.6,
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with r = rν , r ′
= rν+1. Each Eeν defines, as in the previous theorems, functions Epν ,

Eqν , 9ν , ψν , φν , and the degree of Eeν is denoted dν .

Also recall that the degree dν+1 of Eeν+1 is at least 2dν − 2; it can be checked
that this, together with d0 = d ≥ 3, implies dν ≥ 2ν + 2.

The plan is to show that the bound for Eeν in the hypothesis of Theorem 6.6
holds for all ν, to get a sequence of transformations ψν : 1σν → 1ρν , so that the
composition

ψ0 ◦ . . . ◦ψν−1 ◦ψν :1σν →1ρ0

is well-defined, Eeν is holomorphic on Drν , and lim
ν→∞

|Eeν |rν = 0.

Theorem 7.7. There exists η > 0 (depending on m, n) so that if Ee0 and M are as
described above, then there exists a holomorphic transformation ψ : 11/2 → Cn ,
with a holomorphic inverse 9, and such that if z̃ ∈ M̃ ∩11/2, then ψ(z̃) ∈ M.

Proof. Set δ5 = min{δ4, 1/(27c4)} and choose 0< η <min{δ5/64, 1/(1728c1)}. It
will be shown that |Eeν |rν ≤ δ5(rν−rν+1)

3 implies |Eeν+1|rν+1 ≤ δ5(rν+1 −rν+2)
3. By

Theorem 6.6, |Eeν |rν ≤ δ4(rν − rν+1)
3 and |Eeν |rν ≤ (rν − rν+1)

3/(27c4) imply

|Eeν+1|rν+1 ≤
c4|Eeν |2rν

(rν − rν+1)3
≤

1
27

|Eeν |rν ;

this already suggests a geometric decrease in the sequence of norms. Then, using
the properties of the sequence rν ,

1
27 |Eeν |rν ≤

1
27δ5(rν − rν+1)

3
≤ δ5(rν+1 − rν+2)

3,

which proves the claimed implication. Using this as an inductive step, and starting
the induction with |Ee0|r0 ≤ η < 1

64δ5 = δ5(r0 − r1)
3, the hypothesis of Theorem

6.6 is satisfied for all ν. The first of three conclusions from Theorem 6.6 is that
Eeν is holomorphic on Drν , with degree dν ≥ 2ν + 2, and |Eeν |rν ≤ 27−νη. Secondly,
ψ0 ◦ . . . ◦ψν is a well-defined holomorphic map 1σν →1ρ0 , and 9ν ◦ . . . ◦90 is
well-defined and holomorphic on the image (ψ0 ◦ . . . ◦ψν)(1σν ), so that

9ν ◦ . . . ◦90 ◦ψ0 ◦ . . . ◦ψν

is the identity on 1σν . The third conclusion is that if |z̃1| < rν+1 and |x̃s | < rν+1,
and z̃ is defined as in (27) with ẽ = Eeν+1, then (ψ0 ◦ . . . ◦ ψν)(z̃) ∈ M . For any
Ez = (z1, . . . , zn)∈11/2, the sequence (depending on ν) (ψ0 ◦ . . .◦ψν−1 ◦ψν)(Ez) is
contained in 1ρ0 =111/12. The following argument, beginning with several appli-
cations of Lemma 6.1, shows this sequence is a Cauchy sequence, and converges
to some value ψ(Ez).
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We have

(28)
n∑

k=1

∣∣(ψ0 ◦ . . . ◦ψν+1)k(Ez)− (ψ0 ◦ . . . ◦ψν)k(Ez)
∣∣

=

n∑
k=1

∣∣(ψ0)k((ψ1 ◦ . . . ◦ψν+1)(Ez))− (ψ0)k((ψ1 ◦ . . . ◦ψν)(Ez))
∣∣

≤ |||Dψ0|||ρ1 ·

n∑
j=1

∣∣(ψ1 ◦ . . . ◦ψν+1) j (Ez)− (ψ1 ◦ . . . ◦ψν) j (Ez)
∣∣

≤

( ν∏
`=0

|||Dψ`|||ρ`+1

)
·

n∑
j=1

∣∣(ψν+1) j (Ez)− z j
∣∣.

By the estimate from Lemma 6.3, with f = Epν+1 and K =
1
2 from the proof of

Theorem 6.4, and then using the bound for Ep from Corollary 5.8,

n∑
j=1

|(ψν+1) j (Ez)− z j | ≤
1

1 −
1
2

n∑
j=1

|( Epν+1) j (Ez)| ≤ 2
n∑

j=1

‖( Epν+1) j‖1/2

≤ 2
n∑

j=1

‖( Epν+1) j‖ρν+1 ≤ 2n
c1|Eeν+1|rν+1

(rν+1 − ρν+1)2

= 18n
c1|Eeν+1|rν+1

(rν+1 − rν+2)2
= 72nc1(ν+ 2)2(ν+ 3)2|Eeν+1|rν+1

≤
72nc1(ν+ 2)2(ν+ 3)2η

27ν+1 . �

It follows from DEzψ` = (1+ Dψ`(Ez) Ep`)
−1 and Lemma 7.2 that

|||Dψ`|||ρ`+1 = |||(1+ Dψ`(Ez) Ep`)
−1

|||ρ`+1 ≤ |||(1+ D Ep`)−1
|||ρ` ≤

1
1 − |||D Ep`|||ρ`

.

Then, by Lemma 7.3, the product from (28) is bounded above by some constant
c5 > 0, since by Corollary 5.8,

∞∑
`=0

|||D Ep`|||ρ` ≤

∞∑
`=0

c1|Ee`|r`
(r` − ρ`)3

=

∞∑
`=0

27c1|Ee`|r`
(r` − r`+1)3

=

∞∑
`=0

216(`+ 1)3(`+ 2)3c1|Ee`|r` ≤

∞∑
`=0

216(`+ 1)3(`+ 2)3c1η

27`
,

a convergent infinite series with terms less than 1.
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The inequality

n∑
k=1

∣∣(ψ0 ◦ . . . ◦ψν+1)k(Ez)− (ψ0 ◦ . . . ◦ψν)k(Ez)
∣∣ ≤

72nc1c5(ν+ 2)2(ν+ 3)2η
27ν+1

is enough to show that the sequence of composite functions converges pointwise
and uniformly to a function ψ on 11/2.

Remark. Although some details remain to be checked, it seems plausible that a
similar rapid convergence argument could be used to prove an analogous analytic
stability property for a nondegenerate CR singularity of a real 3-manifold in C4,
as conjectured in [Coffman 2006].

8. Analogy with singularity theory

To continue with the theme of analogies between the normal form result and the
properties of Whitney’s cross-cap singularity, we briefly consider the notion of
complexification. If the defining equations of a real m-submanifold M in Cn with
a CR singularity at E0 are given as a graph over the tangent space as in (1), then M
can also be considered as the image of a real analytic parametrization

π : Rm
→ R2n, (z, x) 7→ (z, x, Hs(z, x), hu(z, x)).

Then the spaces Rm , R2n can be embedded as totally real subspaces of Cm , C2n ,
and there is a complex analytic map πc : Cm

→ C2n which restricts to π on the
totally real subspaces. In the following examples, composing with a projection
P : C2n

→ Cn gives a holomorphic map P ◦πc which restricts to π on the totally
real Rm subspace, and its image is a complex subvariety of Cn containing M .
Even though πc is an embedding, the composite P ◦ πc can be singular, and the
image of its critical point set contains the CR singular locus of M . For details and
more examples of this construction, see [Webster 1985; Coffman 2002; Coffman
2003], and to be more precise, these maps should be considered only in some
neighborhood of the origin in the domain and target.

Example 8.1. In the case m = n = 2 [Bishop 1965], the local defining equation
of a real surface with a nondegenerate CR singularity in C2 can be normalized to
z2 = β(z2

1 + z̄2
1)+ z1 z̄1 + O(3), where the coefficient β ≥ 0 is a biholomorphic

invariant. Considering the real embedding’s quadratic part,

π : (z1, z̄1) 7→
(
z1, z̄1, z2 = β(z2

1 + z̄2
1)+ z1 z̄1, z̄2 = β(z2

1 + z̄2
1)+ z1 z̄1

)
is a real analytic map from the totally real subspace {(z1, w1) : w1 = z̄1} of C2 to
the totally real subspace {(z1, w1, z2, w2) :w1 = z̄1, w2 = z̄2} of C4, which extends
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to a complex analytic embedding

πc : (z1, w1) 7→
(
z1, w1, β(z2

1 +w2
1)+ z1w1, β(w

2
1 + z2

1)+w1z1
)
.

Then composing with the projection P : C4
→ C2 that forgets the w1, w2 variables

in the target gives a map P ◦πc : (z, w) 7→ (z, β(z2
+w2)+ zw). For β > 0, this

is a ramified two-to-one map onto C2 [Moser and Webster 1983; Webster 1985],
and is analogous to Whitney’s fold singularity (x, y) 7→ (x, y2).

Example 8.2. An example of a cubic normal form for a CR singular surface in C2

in the β = 0 case is z2 = z1 z̄1 + z̄3
1 [Moser 1985]. The map P ◦ πc : (z1, w1) 7→

(z1, z1w1 +w3
1) is analogous to Whitney’s cusp, (x, y) 7→ (x, xy + y3).

Example 8.3. An example of a surface M in C3 with a topologically unstable CR
singularity, considered in [Coffman 2004], has real equations z2 = z̄2

1, z3 = z1 z̄1,
which complexify to P ◦πc : (z1, w1) 7→ (z1, w

2
1, z1w1), exactly Whitney’s normal

form for the parametrization of the cross-cap singularity. The image of P ◦ πc

in C3 is {z2
1z2 − z2

3 = 0}, a singular complex hypersurface (Whitney’s “umbrella”
surface), and the smallest complex variety containing M .

Example 8.4. For the normal form variety M̃4,5, a parametrization C4
→C10

→C5

of the complexification is

(z1, w1, z2, z3) 7→ (z1, z2, z3, w
2
1, w1(z1 + z2 + i z3)).

The real manifold M̃4,5 is the image of the restriction of this map to the totally real
subspace {w1 = z̄1, z2 = z̄2, z3 = z̄3} in the domain. The holomorphic map C4

→C5

parametrizes a singular complex hypersurface H, which is the product of Whitney’s
cross-cap surface and a complex 2-plane, and the image {(z1 + z2 + i z3)

2z4 − z2
5 =

0} is the smallest complex variety in C5 containing M̃4,5; a similar expression
appeared in (15). The geometry of M̃4,5

⊆ H is considered in [Coffman 2003, §8],
but with a different expression for the quadratic normal form.

Example 8.5. In general, the real variety M̃m,n is contained in a singular subvariety
of complex dimension m in Cn , the defining ideal of which contains, for example,
(z1 + z2 + i z3)

2zn−1 − z2
n . As a consequence of Proposition 3.3, any real analytic

M is not a local uniqueness set for holomorphic functions in a neighborhood of a
nondegenerate CR singularity; compare [Harris 1983].

For surfaces in C2, the two-to-one nature of the complexification C2
→ C2 as

in Example 8.1 was used in [Moser and Webster 1983] to solve a normal form
problem in the 0<β < 1

2 case. Their methods are different from that of this paper;
for example in the (m, n) = (4, 5) case, the map C4

→ C5 from Example 8.4 is
generally one-to-one, the two-to-one locus being contained in a complex subvariety
in the domain as shown in [Coffman 2003].
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Normal forms for the complexifications that look more like Whitney’s monomial
normal forms would be possible using a larger group, where the z and w vari-
ables could be transformed independently. Under the subgroup used to normalize
the CR singularity, one expects equivalence classes of maps to be smaller, and
continuous parameters (“moduli”) to appear sooner (for more and for lower-order
terms). However, invariants which distinguish maps under the larger group will still
distinguish them under the smaller group. One may speculate that invariants of the
complexification, such as the intrinsic derivative, the Boardman sequence, Jacobian
extensions, etc., could provide a coarse but general beginning to the development
of a CR singularity theory analogous to the singularity theory of maps [Golubitsky
and Guillemin 1973; Porteous 1971].
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