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Consider the differential equation ẋ = y, ẏ = h0(x)+ h1(x) y+ h2(x) y2 + y3

in the plane. We prove that if a certain solution of an associated linear
ordinary differential equation does not change sign, there is an upper bound
for the number of limit cycles of the system. The main ingredient of the
proof is the Bendixson–Dulac criterion for `-connected sets. Some concrete
examples are developed.

1. Main results

Although second order ordinary differential equations of the form ẍ = f (x, ẋ)

are some of the easiest autonomous planar differential equations, most problems
concerning the study of the number of periodic solutions remain open. For instance,
even if we consider the Kukles system ẋ = y, ẏ = f3(x, y), where f3 is a polynomial
of degree at most 3, the maximum number of limit cycles that it can have is still
unknown.

This paper deals with the problem of finding methods to establish upper bounds
for the number of limit cycles of planar differential equations of the form

(1–1) ẋ = y, ẏ = h0(x) + h1(x)y + h2(x)y2
+ y3,

where the functions hi are smooth enough.
The proof of our main result is based on the use of the generalized Bendixson–

Dulac criterion for `-connected sets. Recall that an open subset U of R2 is said to
be `-connected if its fundamental group π1(U ) is the free group in ` generators.
This method has already been used with similar goals by several authors; see for
instance [Cherkas 1997; Lloyd 1979; Yamato 1979; Cherkas and Grin’ 1997; 1998;
Gasull and Giacomini 2002]. The novelty of our approach is that we are able to
reduce the computation of an upper bound for the number of limit cycles of the
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differential system (1–1) to the study of the positiveness of a certain function, which
has the important property of satisfying a linear ordinary differential equation.

More precisely, our main result is this:

Theorem A. Let X be the vector field associated with the differential equation

(1–2) ẋ = y, ẏ = h0(x) + h1(x)y + h2(x)y2
+ y3,

and fix a positive integer number n. Then there exists a constructive procedure,
detailed in Lemmas 2.2 and 2.4, to associate with X two functions fn(x, y) and
Mn(x), such that

(i) div
(
| fn(x, y)|−3/n X (x, y)

)
= −

3
n sgn

(
fn(x, y)

)
| fn(x, y))|−1−3/n Mn(x), and

(ii) the function y = Mn(x) is defined for all x ∈ R and is a solution of a linear
ordinary differential equation of the form

sn,n+1(x) y(n+1)(x) + sn,n(x) y(n)(x) + · · · + sn,1(x) y′(x) + sn,0(x) y(x) = 0.

Assume furthermore that Mn(x) does not change sign and vanishes only at finitely
many points. Then:

(iii) The limit cycles of (1–2) do not cut the curves { fn(x, y) = 0}.

(iv) The number of limit cycles of (1–2) contained in an `-connected component
U of R2

\ { fn(x, y) = 0} is at most `. All these limit cycles are hyperbolic
and their stability is given by the sign of Mn(x) and the sign of fn(x, y) in the
region occupied by the limit cycle.

From the proof of the theorem it is easy to observe that, with small modifications,
it can also be applied to systems for which the second equation is ẏ = h0(x) +

h1(x)y + h2(x)y2
+ h3(x)y3.

In Section 3 we study a simple example, the van der Pol equation, to show how
the method works.

In Section 4 we study the number of limit cycles of the system

ẋ = y, ẏ = −x3
+ dxy2

+ y3.

For this system the expected upper bound is of one limit cycle, but as far as we
know this is still an open question. The authors have studied this problem by using
several existing methods in the literature but no progress has been possible. For this
reason we have selected this problem to test the effectiveness of the new method
proposed. A motivation for its study is also given at the beginning of Section 4.
The results obtained are detailed in Section 5.

In these two examples we see that we can reduce the study of the number of limit
cycles of a planar polynomial system to the study of a linear ordinary differential
equation. Although the study of this last equation is not easy and requires special



LIMIT CYCLES THROUGH LINEAR ODE 279

tricks for each concrete application, it provides a new way for trying to control the
number of limit cycles for special classes of planar polynomial systems. Also, for
the main example developed in Section 4, we can see that the final step goes to a
one-variable nonlinear equation. To end this introduction we would like to stress
this last scheme:

Planar ordinary
nonlinear differential equation

−→
Linear ordinary

differential equation
−→

Nonlinear
equation

2. Preliminary results and proof of Theorem A

First we recall the generalized Bendixson–Dulac criterion. For various proofs, see
[Lloyd 1979; Yamato 1979; Gasull and Giacomini 2002].

Proposition 2.1 (Generalized Bendixson–Dulac Criterion). Consider a C1 differ-
ential system

ẋ = P(x, y), ẏ = Q(x, y),

and set X = (P, Q). Let U be an open `-connected subset of R2 with a smooth
boundary. Assume that

div(X) =
∂ P
∂x

+
∂ Q
∂y

does not change sign on U and vanishes only on a null measure Lebesgue set. Then
the system can have at most ` periodic orbits contained in U. Each such orbit is
hyperbolic and its stability is given by the sign of div(X).

We now turn to preliminary computations needed to prove Theorem A.

Lemma 2.2. Consider the system (1–2),

ẋ = y =: P(x, y),

ẏ = h0(x) + h1(x)y + h2(x)y2
+ y3

=: Q(x, y),

and fix a positive integer number n. There is a constructive procedure to find n +1
functions rn,i (x), i = 0, . . . , n, satisfying the following condition:

Let y(x) = gn(x) be any solution of the order-(n+1) linear ordinary differential
equation

(2–1) y(n+1)(x) + rn,n(x) y(n)(x) + · · · + rn,1(x) y′(x) + rn,0(x) y(x) = 0,

and let gn,i (x), where i = 0, . . . , n − 1, be defined in terms of h0(x), h1(x),
h2(x), gn(x), their derivatives, and gn,n(x) := gn(x). Then, setting

fn(x, y) := gn,0(x) + gn,1(x)y + gn,2(x)y2
+ · · · + gn,n(x)yn,

the expression
Mn := 〈∇ fn, (P, Q)〉 −

n
3

fn div(P, Q)
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is a function of only the x-variable.

Proof. Instead of dealing with a general n and for the sake of clarity, we present
the details of the proof just for the case n = 2. The general case can be handled in
the same way. Also, for the sake of brevity and during this proof, when a function
of x appears that we do not want to specify, we will write ∗ .

Take f2(x, y) = g2,0(x) + g2,1(x)y + g2,2(x)y2
:= g0(x) + g1(x)y + g2(x)y2.

Then,

M2(x, y) =
〈
∇ f2, (P, Q)

〉
−

2
3 div(P, Q) f2

=
(
g′

2(x) +
2
3 g2(x)h2(x) − g1(x)

)
y3

+
(
g′

1(x) +
4
3 g2(x)h1(x) −

1
3 g1(x)h2(x) − 2 g0(x)

)
y2

+
(
g′

0(x) +
1
3 g1(x)h1(x) −

4
3 h2(x)g0(x) + 2 g2(x)h0(x)

)
y

+
(
g1(x)h0(x) −

2
3 h1(x)g0(x)

)
.

By choosing

(2–2)
g0(x) =

1
2

(
g′

1(x) +
4
3 g2(x)h1(x) −

1
3 g1(x)h2(x)

)
,

g1(x) = g′

2(x) +
2
3 g2(x)h2(x),

we ensure that the coefficients of y2 and y3 in M2 vanish. Observe that g1(x) =

g′

2(x)+∗ g2(x) and that g0(x)= g′′

2 (x)/2+∗ g′

2(x)+∗ g2(x). If we substitute these
equalities into the coefficient of y in the expression for M2, we obtain g′′′

2 (x)/2 +

∗ g′′

2 (x) + ∗ g′

2(x) + ∗ g2(x). By imposing that this last expression be identically
zero, we get the linear ordinary differential equation (2–1) given in the statement
of the lemma. Hence for these values of the functions gi , where i = 0, 1, 2, the
expression of M2 is the function of one variable

(2–3) M2(x) = g1(x)h0(x) −
2
3 h1(x)g0(x),

as we wanted to prove. �

Remark 2.3. (i) From the proof of Lemma 2.2 it is easy to observe that if all the
functions hi appearing in system (1–2) are polynomials, then all the functions
rn,i are polynomials as well.

(ii) If in system (1–2) instead of considering ẏ = h0(x)+h1(x)y +h2(x)y2
+ y3,

we take ẏ = h0(x) + h1(x)y + h2(x)y2
+ h3(x)y3, then a similar result can

be proved. The main difference is that the function h3 and its powers appear
in the denominators of the expressions of rn,i . Hence, all the computations
make sense on only the strips where h3(x) does not vanish.
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Lemma 2.4. Let Mn(x) be the one-variable function described in Lemma 2.2.
Then there exists an order-(n+1) linear ordinary differential equation

(2–4) sn,n+1(x) y(n+1)(x)+sn,n(x) y(n)(x)+· · ·+sn,1(x) y′(x)+sn,0(x) y(x)=0,

such that y = Mn(x) is one of its solutions. Here the functions sn,i , for i = 0, . . . ,

n + 1, can be explicitly obtained from all the functions appearing in Lemma 2.2.

Proof. As for Lemma 2.2, we detail the proof just for the case n = 2. We continue
denoting a generic smooth function of the variable x by ∗. From (2–3) and (2–2),
we have M := M2 = ∗ g′′

2 +∗ g′

2 +∗ g2 and from the proof of Lemma 2.2 we obtain
g′′′

2 (x)+∗ g′′

2 (x)+∗ g′

2(x)+∗ g2(x)= 0. Hence, if we differentiate the first equality
three times and the second one twice, we get the linear system

0 0 1 ∗ ∗ ∗ 0
0 1 ∗ ∗ ∗ ∗ 0
1 ∗ ∗ ∗ ∗ ∗ 0
0 0 0 ∗ ∗ ∗ M
0 0 ∗ ∗ ∗ ∗ M ′

0 ∗ ∗ ∗ ∗ ∗ M ′′

∗ ∗ ∗ ∗ ∗ ∗ M ′′′





gV
2

g I V
2

g′′′

2
g′′

2
g′

2
g2

1


=



0
0
0
0
0
0
0


.

Since for all x , this system has the nonzero solution given by the function g2(x)

and its derivatives, the determinant of the matrix is identically zero. By developing
it from its last column, we get the linear ordinary differential equation satisfied by
M given in the statement of the lemma. �

Remark 2.5. A main difference between the linear differential equations of order
n+1 satisfied by gn and Mn and those given in (2–1) and (2–4), respectively, is that
the coefficient of the highest order derivative is identically 1 in the first case, and
a function of x in the second case. Hence, one could think that Mn is not defined
for all x , but this is not the case because it is also given by (2–3). In other words,
Mn is a solution of the linear equation (2–4) defined for all real x .

Proof of Theorem A. (i) From Lemma 2.2 we can construct a function fn(x, y)

such that
Mn := 〈∇ fn, X〉 −

n
3

div(P, Q) fn

depends just on x , as we wanted to prove.
(ii) By Lemma 2.4, the function y = Mn(x) satisfies the linear ordinary differ-

ential equation (2–4). Furthermore, by Remark 2.5 we know that it is defined for
all x ∈ R.

Assume from now on that Mn(x) does not change sign and vanishes only on a
finite set of points.
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(iii) Since

Mn| fn=0 = 〈∇ fn, X〉| fn=0 ,

from the control on the sign of Mn , the periodic orbits of (1–2) never cut the
curves { fn = 0}, because the flow associated with X crosses each one of them
either inwards or outwards.

(iv) Instead of considering the vector field X , we take the new one | fn|
−3/n X .

From the previous paragraph, we know that none of the limit cycles of X intersect
{ fn = 0}. Hence each limit cycle is contained in a connected component U of
R2

\ { fn = 0}. Note that

div
(
| fn|

−3/n X
)
=

〈
∇(| fn|

−3/n), X
〉
+ | fn|

−3/n div(X)

= −
3
n sgn( fn)| fn|

−1−3/n
〈∇ fn, X〉 + | fn|

−3/n div(X)

= −
3
n sgn( fn)| fn|

−1−3/n(
〈∇ fn, X〉 −

1
3 n fn div(X)

)
= −

3
n sgn( fn)| fn|

−1−3/n Mn.

Therefore, div(| fn|
−3/n X) does not change sign on U . By using the generalized

Bendixson–Dulac criterion (Proposition 2.1), the theorem follows. �

3. A first example: the van der Pol equation

The uniqueness of the limit cycle of the van der Pol equation can be proved by
several different methods. We have chosen this simple example to illustrate our
approach. Recall that the van der Pol equation is

ẋ = y − ε
( 1

3 x3
− x

)
, ẏ = −x .

It can be transformed into the form (1–2) by interchanging x and y and then chang-
ing y to −y. This gives

(3–1) ẋ = y, ẏ = −x − ε
( 1

3 y3
− y

)
.

To prove the uniqueness of the limit cycle of this system by our method, we will
apply Theorem A with n = 2. Notice that since f2(x, y) = g0(x) + g1(x)y +

g2(x)y2, for this value of n all the connected components of R2
\{ f2 = 0} are either

simply connected or 1-connected. Furthermore, there is at most one 1-connected
component that surrounds the origin.

With the notation introduced in Theorem A, we have

(3–2)
g0(x) =

3
2(3g′′

2 (x) −
4
3 g2(x)), g1(x) = −3g′

2(x),

M2(x) =
1
3(4g2(x) + 9xg′

2(x) − 9g′′

2 (x)),
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where we have taken ε = 1 to simplify the calculations. The function g2(x) is any
solution of the third order linear differential equation

9y′′′(x) − 6y′(x) − 4xy(x) = 0.(3–3)

We have to choose a suitable solution g2 such that its associated M2 does not change
sign. From the classical theory of linear differential equations, (see for instance
[Ince 1927; Wasow 1965]), the solutions of this equation are analytic and entire.
We can write them as

g2(x) =

∞∑
n=0

anxn,

with a3 =
1
9a1 and

an =
4an−4 + 6(n − 2)an−2

9n(n − 1)(n − 2)
, for n ≥ 4.(3–4)

For facilitating the control of the sign of M2(x) we take the even solution of (3–3),
defined by the conditions

y(0) = 1, y′(0) = 0, y′′(0) = 0.

With these initial conditions, it is clear from (3–4) that all the nonzero coefficients
an are positive. Hence, g2 as well as all of its derivatives, are positive for positive
x . Furthermore, from (3–2) we see that M2 is an even function with M2(0) = 4/3.
Hence, it suffices to study the sign of M2(x) for x > 0. Let us prove that the m-
th derivative of M2(x) is positive for x > 0 and any m ≥ 3. By taking the third
derivative of M2(x) from (3–2), and by using (3–3), we obtain

M ′′′

2 (x) =
2
3

( 68
9 xg2(x) +

(
2x2

+
13
3

)
g′

2(x) + xg′′

2 (x)
)
.

This equality and the properties of g2(x) and its derivatives imply that M ′′′

2 (x) > 0
for all positive x . Furthermore, by taking more derivatives of this expression, and
using the equality g′′′

2 (x) =
1
9

(
6g′

2(x) + 4xg2(x)
)

at each step, we obtain only
positive coefficients during all of the computations. Hence, our assertion follows
about the derivatives of M2. By using Taylor’s Formula and some straightforward
computations, we get

M2(x) =
4
3 −

2
3 x2

+
17
81 x4

+
1
5!

M (5)
2 (sx)x5,

for some sx between 0 and x . Hence, for x > 0,

M2(x) ≥
4
3 −

2
3 x2

+
17
81 x4 > 0,
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as we wanted to prove. As a consequence of Theorem A, we conclude that the
system (3–1) has at most one limit cycle. Moreover, when this limit cycle exists,
it is hyperbolic and stable.

The van der Pol equation has a unique critical point located at the origin and it
is repelling for ε > 0. The point at infinity is also a repeller for ε > 0. Therefore,
the system has at least one limit cycle. Combining both statements we have proved
the existence, uniqueness and hyperbolicity of the limit cycle.

We remark that in order to find an upper bound for the number of limit cycles
by using our approach, it has not been necessary to explicitly solve the linear
differential equation satisfied by the function g2(x). Only general properties of
this function, which can be easily obtained from the linear equation, have been
employed. In the next section we analyze a more difficult case.

4. A second example

We start this section with some motivation for the system of ordinary differential
equations that we will study. In [Cima et al. 1997] it is proved that there are systems
of the form

ẋ = P2n+1(x, y), ẏ = Q2m+1(x, y),

with P2n+1 and Q2m+1 homogeneous polynomials of degrees 2n + 1 and 2m +

1 respectively (n 6= m), possessing at least n + m + 1 limit cycles surrounding
the origin. These examples are constructed by studying the perturbations of the
Hamiltonian system ẋ = y2n+1, ẏ = −x2m+1. Inside this family, the simplest case,
n = 0 and m = 1, gives a system of the form

ẋ = ax + by, ẏ = cx3
+ dx2 y + exy2

+ f y3

with at least two limit cycles. We would like to investigate whether there can be
more than two. This seems to be a hard problem, and so we start by considering
the simplest case:

(4–1) ẋ = y, ẏ = −x3
+ dx2 y + y3,

for which it is not difficult to prove that there is at least one limit cycle [Cima et al.
1997]. This section is devoted to trying to prove that in fact one is the maximum
number of limit cycles that the system can have. Before starting our study, we
want to comment that we have not been able to prove the uniqueness of the limit
cycles of system (4–1) by using standard results in the literature, such as those in
[Ye et al. 1986; Zhang et al. 1992]. Our results are summarized in Section 5. As a
starting point we prove a previous result that reduces the study to the case d < 0.

Lemma 4.1. (i) The origin is the only critical point of the system (4–1).

(ii) If d ≥ 0, the system has no limit cycles.
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(iii) For d < 0 is close enough to zero, the system has at least one limit cycle.

(iv) If for some d̄ < 0 the system has no limit cycles, the same holds for any d ≤ d̄.

Proof. Part (i) is trivial.
(ii) The divergence of X = (P, Q), the vector field associated with (4–1), equals

dx2
+3y2. For d ≥0 this is always positive or zero, so using the divergence criterion

we deduce that system (4–1) has no limit cycles.
(iii) Notice that (4–1) is a semicomplete family of rotated vector fields with re-

spect to the parameter d , or SCFRVF for short (see [Duff 1953; Perko 1975]). This
follows from the next computations, where we denote the vector field associated
with (4–1) by Xd(x, y) = (Pd(x, y), Qd(x, y)),

∂

∂d
arctan

Qd(x, y)

Pd(x, y)
=

Pd(x, y)∂ Qd(x, y)/∂d − Qd(x, y)∂ Pd(x, y)/∂d
P2

d (x, y) + Q2
d(x, y)

=
x2 y2

P2
d (x, y) + Q2

d(x, y)
≥ 0.

In [Cima et al. 1997] it is proved that the origin is a repeller when d ≥ 0, and an
attractor when d < 0. Combining this with the fact that our system is an SCFRVF,
we see that a repelling limit cycle bifurcates from the origin when d is negative
and small. Hence, item (iii) follows.

To prove item (iv) we need to recall more properties of an SCFRVF. The first
is the nonintersection property, which asserts that limit cycles corresponding to
different values of d are disjoint.

The second is the planar termination principle [Perko 1990a; 1990b], which
asserts the following for polynomial families of an SCFRVF: If d varies and we
consider the continuous evolution of some limit cycle born at a critical point p
(allowing for the possibility that the limit cycle goes to a multiple limit cycle, in
which case we continue with the other limit cycle that has collided with it), then
the union of this one-parameter family of limit cycles is a 1-connected open set
K whose boundaries are p and a cycle of separatrices of Xd . The corners of this
cycle of separatrices are finite or infinite critical points of Xd . In our case, because
the only finite critical point of Xd is the origin, K is unbounded.

If for some value of d = d̄ < 0 the system has no limit cycles, this means that the
limit cycles starting at the origin for d = 0 have disappeared for some d∗, where
d̄ < d∗ < 0, covering the set K . Since K covers from a neighborhood of the origin
until infinity, then by the nonintersection property, the limit cycle cannot exist for
d ≤ d̄ either, as we wanted to prove. �

Nonexistence of limit cycles. We will now find a value d = d̄ , as sharp as possible,
that determines parameter values for which there are no limit cycles. In a later
section (page 289) we will study when there is a unique limit cycle.
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From Lemma 4.1, to complete the study of the nonexistence of limit cycles for
(4–1), the case d < 0 remains:

(4–2) ẋ = y, ẏ = −x3
− a2x2 y + y3.

To prove the nonexistence of limit cycles, it suffices to apply Theorem A with
n = 1, because for this value of n all of the connected components of R2

\{ f1 = 0}

are simply connected. With the notation introduced in this theorem we have

M1(x) = −x2(xg1(x) −
1
3a2g′

1(x)
)
,

where g1(x) is any solution of the linear ordinary differential equation

(4–3) y′′(x) −
2
3a2x2 y(x) = 0.

To conclude the nonexistence of limit cycles, it suffices to give a concrete solution
g1 of (4–3) such that the corresponding M1 does not change sign. In fact it suffices
to ensure that

(4–4) ha(x) := xg1(x) −
1
3a2g′

1(x)

does not change sign. Furthermore, from Theorem A we also know that M1 satisfies
a second order linear differential equation. Hence, the same happens with ha . The
expression ha(x) satisfies the equation

(4–5)
(
(6a6

− 81)x2
− 27a2) y′′(x) − 6(2a6

− 27)xy′(x)

−
(
(4a8

− 54a2)x4
− 18a4x2

+ 162
)

y(x) = 0.

Fortunately, we can solve (4–3) in terms of the modified Bessel functions. More
concretely, for all x ∈ R+, define

(4–6) Iν(x) :=

∞∑
k=0

(x/2)ν+2k

0(ν + k + 1)0(k + 1)
.

This function is a solution of the Bessel equation

x2 y′′(x) + xy′(x) − (x2
+ ν2)y(x) = 0.

Hence, it is easy to check that

(4–7) g1(x) =
√

x I1/4

(
ax2
√

6

)
is a solution of (4–3) for x > 0, and it can be extended to an odd solution of (4–3)
for all x ∈ R.
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From now on we will fix this choice for g1. In Lemma 4.2 we collect some
known properties of the modified Bessel functions that are useful for our study of
ha . Before stating them we need to introduce some standard notations.

Following Poincaré’s definition, given a function f : R → R, its asymptotic
expansion at ∞ is

∑
∞

k=0 bk x−k if

lim
x→∞

xn
(

f (x) −

n∑
k=0

bk

xk

)
= 0 for all n ∈ N.

The usual notation is f (x) ∼
∑

∞

k=0 bk x−k . Furthermore, the notation

f (x) ∼ g(x)

∞∑
k=0

bk x−k

means f (x)/g(x) ∼
∑

∞

k=0 bk x−k . In this case,

lim
x→∞

(
f (x)

g(x)
− b0

)
= 0.

This fact is also denoted as f (x) ∼ b0g(x) at ∞, and b0g(x) is said to be the
dominant term or to represent the leading behavior of f (x) at infinity.

Lemma 4.2. The modified Bessel function Iν(x) of (4–6) satisfies

I ′

ν(x) = Iν−1(x) −
ν

x
Iν(x), Iν(x) ∼

ex
√

2πx
at ∞.

Lemma 4.3. Let ha be given by expression (4–4) with g1 given in (4–7).

(i) The function ha is an even function.

(ii) In a neighborhood of zero,

ha(x) = −
213/8

39/8

a9/4

0
( 1

4

) + m(a)x2
+ O(x4),

where m(a) is positive for a > 0.

(iii) For a > 6
√

27/2, we have limx→+∞ ha(x) = −∞.

(iv) For a < 6
√

27/2, we have limx→+∞ ha(x) = +∞.

(v) If the system of equations ha(x) = h′
a(x) = 0 has some positive solution, it has

to be at the point

x = x∗(a) :=
3a

√
2a6 − 27

.

(vi) For x >0 and sufficiently large values of a, the function ha(x) does not vanish.

Proof. (i) From its definition, it is clear that ha is even. Hence, from now on we
will consider only positive values of x .
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(ii) By Lemma 4.2, it is easy to verify that

(4–8) ha(x) =
x3/2

9

(
9I1/4

(ax2
√

6

)
−

√
6a3 I−3/4

(ax2
√

6

))
.

By using this last expression and (4–6), the Taylor expansion of ha at the origin
follows.

(iii), (iv) By applying the second part of Lemma 4.2 to the last expression of ha

and by the asymptotic expansion properties, we obtain

ha(x) ∼
1

√
2π

(18 − 2
√

6a3)x2eax2/
√

6

18x3/2 at ∞.

Hence the results about the behavior of ha at infinity are proved.

(v) Let x̄(a) be a solution of the system of equations ha(x) = h′
a(x) = 0. Since ha

satisfies the linear ordinary differential equation (4–5), we have when x = x̄(a),
then

(
(6a6

− 81)x2
− 27a2

)
h′′

a(x) has to be zero. Assume that at this point h′′
a also

vanishes, and that x̄(a) 6= x∗(a). Then, since x̄(a) is not a singular point for (4–5),
this implies that ha(x) ≡ 0, which gives a contradiction. Therefore x̄(a) has to be
the positive root of

(
(6a6

− 81)x2
− 27a2

)
= 0, say x∗(a), as we wanted to prove.

(vi) Let x̃(a) be a positive solution of ha(x)=0. Then x = x̃(a) is also a solution
of the equation

(4–9)
I1/4

(ax2
√

6

)
I−3/4

(ax2
√

6

) =

√
6a3

9
.

If for sufficiently large a such a solution x̃(a) exists, there are two possibilities:

(a) either ax̃(a)2 is bounded above when a tends to infinity,

(b) or ax̃(a)2 is unbounded.

In the first case we can construct a sequence {an}n tending to infinity and such
that limn→∞ an x̃(an)

2
= k ≥ 0. By replacing these values in (4–9) we arrive at a

contradiction.
In the case (b), by Lemma 4.2, I1/4 and I−3/4 have the same behavior at infinity.

Therefore, the left hand side of Equation (4–9) tends to 1 when an x̃(an)
2 tends to

infinity. However, the right hand side tends to infinity, again reaching a contradic-
tion. Hence, for sufficiently large a, the function ha does not vanish, as we wanted
to prove. �

The main result of this subsection is this:
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Proposition 4.4. Let ϕ be the function

(4–10) ϕ(a) := 3
√

3I1/4

(
3
√

3/2a3

2a6 − 27

)
−

√
2a3 I−3/4

(
3
√

3/2a3

2a6 − 27

)
.

Denote by ā the largest positive solution of the equation ϕ(a) = 0. Then the differ-
ential equation (4–2) has no limit cycles for a ≥ ā.

Proof. To prove that system (4–2) has no limit cycles for some value of a, it suffices
to show that its corresponding ha does not change sign. For sufficiently large a, by
Lemma 4.3(vi), we already know that this is true. On the other hand, by studying
the behavior of ha near zero and infinity (see again Lemma 4.3), it is clear that ha

changes sign for a < 6
√

27/2. Hence the case a ≥
6
√

27/2 remains to be studied. Let
ã be the biggest value of a for which the function ha has some zero. Denote any
of these zeros by z(ã). From the behavior of ha near zero and infinity, and from
the regularity of ha with respect to x and a, we have hã(z(ã)) = h′

ã(z(ã)) = 0.
Hence, by Lemma 4.3(v),

z(ã) = x∗(ã) :=
3ã

√
2ã6 − 27

.

By imposing that hã(x∗(ã)) = 0 in the expression for ha given in (4–8), we get the
desired expression for ϕ. �

Remark 4.5. Although we have not been able to perform the analytic study of the
zeros of ϕ, it is not difficult to make a numerical study. The equation ϕ(a) = 0 has
a unique positive solution ā ' 1.636. For this value of a, the corresponding value
of d = −a2 in (4–1) is d̄ ' −2.678.

Uniqueness of limit cycles. From Lemma 4.1, we have to study (4–1) only in the
case d < 0. As in the van der Pol equation, for obtaining the uniqueness of the limit
cycle with our procedure, it suffices to apply Theorem A with n = 2. Following
the notation introduced in Theorem A we get

(4–11) M2(x) = 3dg′′

2 (x) + 9xg′

2(x) + 4d2x2g2(x),

where g2(x) is any solution of the linear ordinary differential equation

(4–12) y′′′(x) + 2dx2 y′(x) +
( 8

3 d − 4x2)xy(x) = 0.

Hence, to prove the existence of at most one limit cycle and its hyperbolicity, it
suffices to choose a concrete g2 as the solution of (4–12), such that its associated
M2, given in (4–11), does not change sign.

All the solutions of (4–12) are analytic for all x ∈ R, with an infinite radius
of convergence. We will choose the even solution of (4–12) defined by the initial
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conditions

(4–13) y(0) = 1, y′(0) = y′′(0) = 0.

Notice that this function g2 produces an even function M2. Before studying the
sign of M2 we need to study the function g2 near infinity in some detail. Recall
that g2 is a solution of Equation (4–12). It is easy to see that infinity is a singularity
for Equation (4–12). Although unfortunately not regular,1 the singularity turns out
to be of normal irregular type. For this kind of singularity there are some powerful
results, which in most cases give the asymptotic expansions of a fundamental set
of solutions. The result we need here is a generalization of a theorem of Poincaré;
a proof can be found in [Horn 1901]. See also [Wasow 1965, Theorem 12.3].

Theorem 4.6. Consider the linear ordinary differential equation

(4–14) y(n)(x) + b1(x)y(n−1)(x) + · · · + bn(x)y(x) = 0,

where the functions bs(x) are either rational functions or admit asymptotic expan-
sions at infinity of the form

(4–15) bs(x) ∼ x sk
∞∑

i=0

bs,i

x i , s = 1, 2, . . . , n,

where k is a positive integer or zero. Assume that the algebraic equation

mn
+ b1,0mn−1

+ · · · + bn−1,0m + bn,0 = 0

associated with (4–14) has n different roots m1, m2, . . . , mn . Then (4–14) has
n linearly independent solutions y1, y2, . . . , yn whose asymptotic expansions at
infinity are of the form

ys(x) ∼ e fs(x)xαs

∞∑
i=0

Bs,i

x i , s = 1, 2, . . . , n,

where αs and Bs,i are constants with Bs,0 = 1, and the fs are polynomials in x
of degree k + 1, vanishing at zero and having leading coefficient ms/(k + 1). The
asymptotic expansions of the functions ys(x) can be uniquely determined by formal
substitutions in (4–14).

(A more general result about irregular singularities of linear equations, including
also the case of multiple roots, can be found in [Wasow 1965, Theorem 19.1].
See [Bender and Orszag 1999, Chapter 3; Erdélyi 1956, Chapter III; Ince 1927,

1When infinity is a regular singularity for a linear equation, generically the solutions of the
equation for sufficiently large x are xα

∑
∞
k=0 bk x−k , where α is not necessarily an integer, and

the series has a positive radius of convergence; in nongeneric cases, some logarithms can appear in
the expressions of the solutions.
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Chapters VII and XVII] for more examples of irregular singularities, both normal
and not; for a more recent point of view about linear differential equations, see
[Varadarajan 1996] and the references therein.)

The next lemma gives the desired properties of g2 at infinity.

Lemma 4.7. Consider −
3
√

27/2 < d < 0. Let g2 be the solution of (4–12) with
initial conditions given in (4–13). Then the following conditions hold:

(i) The function g2 is defined for all x ∈ R, and it is an even positive function.

(ii) The functions g′

2(x) and g′′

2 (x) are positive for all x > 0.

(iii) The dominant term of the asymptotic behavior of g2 at infinity is

(4–16) g2(x) ∼ c1er1x2
xα1,

where r1 is the positive root of 2r3
+ dr − 1 = 0, α1 = −

2
3

2d + 9r2
1

d + 6r2
1

, and c1

is a positive constant.

Proof. (i) From the initial conditions that g2 satisfies, we get

g2(x) =

∞∑
n=0

an(x2)n,

where a0 = 1, a1 = 0, a2 = −d/9, and

an =
1

n(n − 1)(2n − 1)
(an−3 −

1
3 d(3n − 4)an−2), for n ≥ 3.

Furthermore, since an > 0 for n ≥ 2, item (i) holds. Item (ii) follows by taking
derivatives of the expression of g2.

We prove item (iii) in two steps: first we find a basis of formal solutions of
(4–12), then we use Theorem 4.6 and formal computations to get the leading term
of the asymptotic behavior of g2.

We start our first step by using a heuristic method, called the method of dominant
balance, to get the leading terms of the basis of formal solutions; see for instance
[Bender and Orszag 1999, p. 76]. Apply to (4–12) the change of dependent variable
y(x) = eS(x), which yields

3S′′′(x) + 9S′(x)S′′(x) + 3S′(x)3
+ 6dx2S′(x) − 12x3

+ 8dx = 0.(4–17)

The leading behavior of g2(x) will be determined by those contributions to S(x)

that do not tend to zero when x approaches the irregular singularity. We sup-
pose that the dominant terms in this equation when x is sufficiently large are
3S′(x)3, 6dx2S′(x) and −12x3. Then we obtain the simplified equation 3S′(x)3

+

6dx2S′(x) − 12x3
= 0, whose solutions are Ss(x) = rs x2

+ ps (s = 1, 2, 3),
where the rs are the three roots of the equation 2r3

+ dr − 1 = 0 and the ps
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are arbitrary constants that we take as zero for simplicity. Afterwards, we can
verify that when we replace these expressions of Ss(x) in (4–17), the terms of
the equation that we have neglected are, at infinity, of smaller order than those
we have kept in the simplified equation. This fact validates the first step of the
procedure. Once a value of s = 1, 2, 3 is fixed, to obtain the next contribution to
the leading behavior we introduce the new change of variable y(x) = ers x2

+S(x),
with limx→∞ S(x)/x2

= 0. We apply the method of dominant balance again (for
brevity we omit the full differential equation satisfied for this new S). We propose
the simplified equation 3(2d + 12r2

s )x2S′(x) + (36r2
s + 8d)x = 0, whose solution

is S(x) = αs log x , with αs = −(4d +18r2
s )/(3d +18r2

s ), where again the additive
constant is not taken into account. As before, we can verify the self-consistency of
the calculations by replacing this expression of S(x) in the complete equation. A
third term is obtained by using the change of variable y(x)=ers x2

+αs log x+S(x), with
limx→∞ S(x)/log x = 0. Repeating the same procedure, we obtain a solution that
does not contribute to the leading behavior. Hence our candidates to be the leading
behaviors at infinity of a basis of formal solutions of (4–12) are ers x2

xαs , where
s = 1, 2, 3. To end this step we show that (4–12) admits three formal solutions of
the form

(4–18) ŷs(x) = ers x2
xαs

∞∑
i=0

Cs,i

x2i ,

where the Cs,i , for s = 1, 2, 3 and i = 1, 2, . . ., are constant, with Cs,0 = 1. To
prove this last assertion, fix a value of s and introduce in (4–12) the change of
variables y(x) = xαs ers x2

h(u), with u = 1/x . Then the function h(u) must satisfy
an equation with the structure

b1u9h′′′(u)+u6(b2+b3u2)h′′(u)+u3(b4+b5u2
+b6u4)h′(u)+u4(b7+b8u2)h(u)=0,

where the coefficients bi depend on the parameter d and on rs . It is straight-
forward to verify that this equation admits a formal solution of the form h(u) =∑

∞

n=0 hn(u2)n if and only if b4 = 54((30d3
−324)r2

s −162d2rs +108d −d4) 6= 0.
Since rs satisfies the equation 2r3

+ dr − 1 = 0 and d ∈ (− 3
√

27/2, 0), we have
b4 6= 0. Hence, for each s, (4–12) admits the formal solution given in (4–18) as
we wanted to prove. This is precisely the definition of a normal irregular singular
point [Ince 1927, p. 168]. (The radius of convergence of these formal series is
generally difficult to determine, and may be zero.)

For the second step in the proof of (iii), we check that (4–12) satisfies the as-
sumptions of Theorem 4.6. Notice that

b1(x) ≡ 0, b2(x) = 2dx2, b3(x) = x3
(
−4 +

8d
3x2

)
.
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Hence k = 1, and the equation associated with (4–12) is m3
+ 2dm − 4 = 0.

Therefore, the polynomials given in (4–15) are of the form fs(x) = ms x2/2+ns x ,
where ms , for s = 1, 2, 3 are the three different roots of the previous cubic equation
(notice that we need to use the interval of values where d varies, and that in the left
boundary of this interval, Theorem 4.6 is no longer applicable, because the cubic
polynomial has a double root). If we write fs(x) = rs x2

+ ns x , then the values
rs are in fact the roots of the cubic equation 2r3

+ dr − 1 = 0 obtained above by
the dominant balance method. Notice also the approach above gives ns = 0, for
s = 1, 2, 3. Hence, by using Theorem 4.6 we can assure that Equation (4–12) has
a basis of solutions ys , for s = 1, 2, 3, such that

(4–19) ys(x) ∼ ŷs(x) = ers x2
xαs

∞∑
i=0

Cs,i

x2i ,

with Cs,0 = 1, and some constants Cs,i , where s = 1, 2, 3 and i = 1, 2, . . ..
Now the function g2 can be written as g2(x) = c1 y1(x) + c2 y2(x) + c3 y3(x),

for some constants cs (s = 1, 2, 3). From (4–19), we have the leading behaviors
at infinity of this basis of solutions. Since from items (i) and (ii) we know that the
function g2(x) is a solution of (4–12) that tends to infinity when x → +∞, we
conclude that the leading behavior of the asymptotic expansion of g2 is g2(x) ∼

c1er1x2
xα1 for the value c1 > 0 given above, where r1 is the positive root of 2r3

+

dr − 1 = 0 and α1 = −(4d + 18r2
1 )/(3d + 18r2

1 ), as we wanted to prove. �

The next lemma gives some properties for the function M2. To stress its depen-
dence with respect to d , we will rename it M2,d . Hence

(4–20) M2,d(x) := M2(x) = 3dg′′

2 (x) + 9xg′

2(x) + 4d2x2g2(x).

Lemma 4.8. Consider −
3
√

27/2 < d < 0. Let M2,d be given in (4–20), where g2 is
the solution of (4–12), with initial conditions given in (4–13). Then

(i) The function M2,d(x) is positive for x 6= 0 near 0, and M2,d(0) = 0.

(ii) limx→+∞ M2,d(x) = +∞.

(iii) If M ′

2,d(x1)=0 for some x1 > 0, then M2,d(x1) = (( 2d3
+27
3 )x1 −

3d
x1

)g′

2(x1) >0.

Proof.
(i) Using the series expansion of g2(x) we obtain M2,d(x) = −dx4

+ (9
5 +

4
27 d3)x6

+ 0(x8). Since d is negative, we have M2,d(x) is positive for x 6= 0 near
0, as we wanted to prove.

(ii) By using Lemma 4.7(iii), the leading term of the asymptotic expansion of M2,d

at infinity is
M2,d(x) ∼ c1er1x2

x2+α1
(
4d2

+ 18r1 + 12dr2
1
)
,
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where c1, r1 and α1 are given also in that Lemma. Hence, because we have 4d2
+

18r1 + 12dr2
1 > 0, for the values of d considered here, the result follows.

(iii) By taking the derivative of (4–20) with respect to x , we get an expression
that also involves g′′′

2 (x). Because g2(x) satisfies (4–12), we can simplify this
expression. Finally, by evaluating the resulting expression at x1, item (iii) follows
since x1 satisfies M ′

2,d(x1) = 0. �

Using Lemmas 4.7 and 4.8, we get the main result of this section:

Proposition 4.9. System (4–1) has at most one limit cycle when d ∈ (− 3
√

27/2, 0).
When it exists, the limit cycle is hyperbolic and unstable.

Proof. Recall that, for each value of d , by using Theorem A and the results of this
subsection, we have reduced the problem to proving that the function M2,d(x) does
not change sign. Recall also that M2,d is an even function vanishing at the origin,
so it suffices to study it for positive values of x .

Consider, from now on, that d is a fixed value in (− 3
√

27/2, 0). As straightfor-
ward consequences of Lemma 4.8, we have:

(a) For x positive and small enough, M2,d is positive.

(b) For x positive and large enough, M2,d is positive.

(c) If M2,d has a local minimum at some value x̄ > 0, the function evaluated at
this minimum x̄ takes a positive value.

We claim that M2,d is positive for x > 0. Assume for a contradiction that it
takes a negative value for some x∗ > 0. By items (a) and (b), an absolute minimum
x̄ > 0 exists, at which of course M2,d(x̄) < 0. But this inequality contradicts (c).
Hence M2,d is always positive or zero, as we wanted to prove. �

5. Conclusions

Collecting the results obtained earlier, we conclude that system (4–1) has:

(i) No limit cycles when d ≥ 0 or d < −2.679 (this value being obtained numer-
ically by solving a nonlinear equation).

(ii) At most one limit cycle when 0 > d > −
3
√

27/2 ' −2.381.

We have not been able to cover all the values of the parameter d. There is a small
gap for which we do not know the maximum number of limit cycles of system
(4–1). By a numerical study, we conclude that the limit cycle is unique and exists
only when −2.198 < d < 0. Hence, although we have not completely solved
the problem, it seems the method presented in this paper gives reasonably good
estimates for the regions of nonexistence of limit cycles, and for the regions of
uniqueness of limit cycles.
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