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We consider spacetimes with compact Cauchy hypersurfaces and with Ricci
tensor bounded from below on the set of timelike unit vectors, and prove
that the results known for spacetimes satisfying the timelike convergence
condition, namely, foliation by CMC hypersurfaces, are also valid in the
present situation, if corresponding further assumptions are satisfied.

In addition we show that the volume of any sequence of spacelike hyper-
surfaces, which run into the future singularity, decays to zero provided
there exists a time function covering a future end, such that the level hyper-
surfaces have nonnegative mean curvature and decaying volume.

1. Introduction

Let N be a (n+1)-dimensional spacetime with a compact Cauchy hypersurface, so
that N is topologically a product, N = I ×S0, where S0 is a compact Riemannian
manifold and I = (a, b) an interval. The metric in N can then be expressed in the
form

(1–1) ds̄2
= e2ψ(

−(dx0)2 + σi j (x0, x) dx i dx j)
;

x0 is the time function and (x i ) are local coordinates for S0.
If N satisfies a future mean curvature barrier condition and the timelike con-

vergence condition, then a future end N+ = (x0)−1
(
[a0, b)

)
can be foliated by

constant mean curvature (CMC) spacelike hypersurfaces and the mean curvature
of the leaves can be used as a new time function [Gerhardt 1983; 2003]. Moreover,
one of Hawking’s singularity results implies that N is future timelike incomplete
with finite Lorentzian diameter for the future end.

In this paper we want to extend these results to the case when the Ricci tensor
is only bounded from below on the set of timelike unit vectors

(1–2) R̄αβνανβ ≥ −Λ for all 〈ν, ν〉 = −1
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for some Λ ≥ 0, and in addition, we want to show that the volume of the CMC
leaves decays to zero, if the future singularity is approached.

We summarize our results:

Theorem 1.1. Suppose that in a future end N+ of N the Ricci tensor satisfies the
estimate (1–2) of the preceding page, and suppose that a future mean curvature
barrier exists (Definition 2.2). Then a slightly smaller future end Ñ+ can be foli-
ated by CMC spacelike hypersurfaces, and there exists a smooth time function x0

such that the slices

Mτ = {x0
= τ }, τ0 < τ <∞,

have mean curvature τ for some τ0 >
√

nΛ. The precise value of τ0 depends on
the mean curvature of a lower barrier.

Recall that a subset M ⊂ N is said to be achronal if any timelike piecewise
C1-curve intersects M at most once.

Theorem 1.2. Suppose that a future end N+ = (x0)−1
(
[a0, b)

)
of N can be covered

by a time function x0 such that the mean curvature of the slices Mt = {x0
= t} is

nonnegative and the volume of Mt decays to zero:

lim
t→b

|Mt | = 0.

Then the volume |Mk | of any sequence of spacelike achronal hypersurfaces Mk

such that
lim

k
inf
Mk

x0
= b

decays to zero. Thus, if the additional conditions of Theorem 1.1 are also satisfied,
the volume of the CMC hypersurfaces Mτ converges to zero:

lim
τ→∞

|Mτ | = 0.

N is also future timelike incomplete if there is a compact spacelike hypersurface
M with mean curvature H satisfying

H ≥ H0 >
√

nΛ,

due to a result in [Andersson and Galloway 2002].

2. Notations and definitions

The main objective of this section is to state the equations of Gauss, Codazzi,
and Weingarten for space-like hypersurfaces M in a (n+1)-dimensional Lorentzian
manifold N . Geometric quantities in N will be denoted by (ḡαβ), (R̄αβγ δ), etc., and
those in M by (gi j ), (Ri jkl), etc. Greek indices range from 0 to n and Latin from
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1 to n; the summation convention is always used. Generic coordinate systems in
N and M will be denoted by (xα) and (ξ i ), respectively. Covariant differentiation
will simply be indicated by indices; only in cases of possible ambiguity they will
be preceded by a semicolon. For example, for a function u in N , the gradient will
be (uα) and the Hessian (uαβ), but the covariant derivative of the curvature tensor
will be abbreviated by R̄αβγ δ;ε . We also point out that

R̄αβγ δ;i = R̄αβγ δ;εxεi

with obvious generalizations to other quantities.
Let M be a spacelike hypersurface, i.e., the induced metric is Riemannian, with

a differentiable normal ν which is timelike.
In local coordinates, (xα) and (ξ i ), the geometric quantities of the spacelike

hypersurface M are connected through the Gauss formula,

(2–1) xαi j = hi jν
α.

Here, and also in the sequel, a covariant derivative is always a full tensor, i.e.,

xαi j = xα,i j −Γ k
i j x

α
k + Γ̄ α

βγ xβi xγj .

The comma indicates ordinary partial derivatives.
In this implicit definition the second fundamental form (hi j ) is taken with respect

to ν.
The second equation is the Weingarten equation

ναi = hk
i xαk ,

where we remember that ναi is a full tensor.
Finally, we have the Codazzi equation

hi j;k − hik; j = R̄αβγ δναxβi xγj xδk

and the Gauss equation

Ri jkl = −(hikh jl − hilh jk)+ R̄αβγ δxαi xβj xγk xδl .

Now assume that N is a globally hyperbolic Lorentzian manifold with a compact
Cauchy surface. N is then a topological product R × S0, where S0 is a compact
Riemannian manifold, and there exists a Gaussian coordinate system (xα), such
that the metric in N has the form

ds̄2
N = e2ψ(

−(dx0)2 + σi j (x0, x) dx i dx j),
where σi j is a Riemannian metric, ψ a function on N , and x an abbreviation
for the spacelike components (x i ); see [Geroch 1970; Hawking and Ellis 1973,
p. 212; Geroch and Horowitz 1979, p. 252; Gerhardt 1983, Section 6]. We also
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assume that the coordinate system is future-oriented, that is, the time coordinate
x0 increases on future-directed curves. Hence, the contravariant timelike vector
(ξα) = (1, 0, . . . , 0) is future-directed, and so is its covariant version (ξα) =

e2ψ(−1, 0, . . . , 0).
Let M = graph u|S0 be a spacelike hypersurface

M = { (x0, x) : x0
= u(x), x ∈ S0 }.

Then the induced metric has the form

gi j = e2ψ(−ui u j + σi j ),

where σi j is evaluated at (u, x), and its inverse (gi j )= (gi j )
−1 can be expressed as

gi j
= e−2ψ

(
σ i j

+
ui

v

u j

v

)
,

where (σ i j )= (σi j )
−1 and

ui
= σ i j u j , v2

= 1 − σ i j ui u j ≡ 1 − |Du|
2.

Hence, graph u is spacelike if and only if |Du|< 1.
The covariant and contravariant forms of a normal vector of a graph look like

(να)= ±v−1eψ(1,−ui ), (να)= ∓v−1e−ψ(1, ui ),

respectively. Thus:

Remark 2.1. Let M be spacelike graph in a future-oriented coordinate system. The
contravariant future-directed and past-directed normal vectors have the respective
forms

(2–2) (να)= v−1e−ψ(1, ui ), (να)= −v−1e−ψ(1, ui ).

In the Gauss formula (2–1) of the preceding page, we are free to choose the
future- or past-directed normal, but we stipulate that we always use the past-
directed normal for reasons explained in [Gerhardt 2000a, Section 2].

Look at the component α = 0 in (2–1) and obtain, in view of (2–2) above,

(2–3) e−ψv−1hi j = −ui j − Γ̄ 0
00ui u j − Γ̄ 0

0 j ui − Γ̄ 0
0i u j − Γ̄ 0

i j .

Here, the covariant derivatives are taken relative to the induced metric of M and

−Γ̄ 0
i j = e−ψ h̄i j ,

where (h̄i j ) is the second fundamental form of the hypersurfaces {x0
= const}.
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An easy calculation shows

h̄i j e−ψ
= −

1
2 σ̇i j − ψ̇σi j ,

where the dot indicates differentiation with respect to x0.
Finally, we define what we mean by a future mean curvature barrier.

Definition 2.2. Let N be a globally hyperbolic spacetime with compact Cauchy
hypersurface S0 so that N can be written as a topological product N = R ×S0 and
its metric expressed as

ds̄2
= e2ψ(

−(dx0)2 + σi j (x0, x) dx i dx j).
Here, x0 is a globally defined future-directed time function and (x i ) are local co-
ordinates for S0. N is said to have a future mean curvature barrier if there is a
sequence M+

k of closed spacelike achronal hypersurfaces such that

lim
k→∞

H |M+

k
= ∞ and lim sup inf

M+

k

x0 > x0(p) for all p ∈ N

Likewise, N is said to have a past mean curvature barrier if there is a sequence
M−

k such that

lim
k→∞

H |M−

k
= −∞ and lim inf sup

M−

k

x0 < x0(p) for all p ∈ N .

A future mean curvature barrier certainly represents a singularity, at least if N
satisfies (1–2) on page 297, because of the future timelike incompleteness, but
these singularities need not be crushing; see [Gerhardt 2004, Introduction].

3. Proof of Theorem 1.1

We start with some simple but very useful observations. If, for a given coordinate
system (xα), the metric has the form (1–1) of page 297, then the coordinate slices
M(t)= {x0

= t} can be looked at as a solution of the evolution problem

(3–1) ẋ = −eψν,

where ν = (να) is the past-directed normal vector. The embedding x = x(t, ξ) is
then given as x = (t, x i ), where (x i ) are local coordinates for S0.

From (3–1) we can immediately derive evolution equations for the geometric
quantities gi j , hi j , ν and H = gi j hi j of M(t); see [Gerhardt 2000a, Section 3].

To avoid confusion with notations for the geometric quantities of other hyper-
surfaces, we occasionally denote the induced metric and second fundamental of
coordinate slices by ḡi j , h̄i j and H̄ . Thus, the evolution equations

(3–2) ˙̄gi j = −2eψ h̄i j
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and

(3–3) ˙̄H = −∆eψ + (| Ā|
2
+ R̄αβνανβ)eψ

are valid.
The last equation is closely related to the derivative of the mean curvature op-

erator: Let M0 be a smooth spacelike hypersurface and in a tubular neighborhood
U of M0, consider hypersurfaces M that can be written as graph u over M0 in the
corresponding normal Gaussian coordinate system. Then the mean curvature of M
can be expressed as

(3–4) H = −∆u + H̄ + v−2ui u j h̄i j ,

(see (2–3) on page 300), and hence, choosing u = εϕ, ϕ ∈ C2(M0), we deduce

(3–5)
d
dε

H |ε=0 = −∆ϕ+
˙̄Hϕ = −∆ϕ+ (| Ā|

2
+ R̄αβνανβ)ϕ.

Next we shall prove that CMC hypersurfaces are monotonically ordered, if the
mean curvatures are sufficiently large.

Lemma 3.1. Let M1 = graph u1 and M2 = graph u2 be spacelike hypersurfaces
such that the mean curvatures H1 and H2 satisfy H1 < H2 = τ2, where H2 is
constant, and

√
nΛ< τ2. Then

(3–6) u1 < u2.

Proof. We first observe that the weaker conclusion u1 ≤u2 is as good as the u1<u2,
in view of the maximum principle. Now suppose for a contradiction that u1 ≤ u2

is not valid, so that

E(u1)= { x ∈ S0 : u2(x) < u1(x) } 6= ∅.

Then there exist points pi ∈ Mi such that

0< d0 = d(M2,M1)= d(p2, p1)= sup{ d(p, q) : (p, q) ∈ M2 × M1 },

where d is the Lorentzian distance function. Let ϕ be a maximal geodesic from
M2 to M1 realizing this distance with endpoints p2 and p1, and parametrized by
arc length.

Denote by d̄ the Lorentzian distance function to M2, i.e., for p ∈ I +(M2)

d̄(p)= sup
q∈M2

d(q, p).

Since ϕ is maximal, 0 = {ϕ(t) : 0 ≤ t < d0 } contains no focal points of M2

[O’Neill 1983, Theorem 34, p. 285]. Hence there exists an open neighborhood
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V = V(0) such that d̄ is smooth in V [O’Neill 1983, Proposition 30], because d̄ is
a component of the inverse of the normal exponential map of M2.

Now, M2 is the level set {d̄ = 0}, and the level sets

M(t)= { p ∈ V : d̄(p)= t }

are smooth hypersurfaces; x0
= d̄ is a time function in V and generates a normal

Gaussian coordinate system, since 〈Dd̄, Dd̄〉 = −1. Hence, by Equation (3–3) on
page 302, the mean curvature H̄(t) of M(t) satisfies

˙̄H = | Ā|
2
+ R̄αβνανβ,

and therefore we have

(3–7) ˙̄H ≥
1
n
|H̄ |

2
−Λ> 0,

in view of the assumption
√

nΛ< τ2.
Next, consider a tubular neighborhood U of M1 with corresponding normal

Gaussian coordinates (xα). The level sets

M̃(s)= {x0
= s}, −ε < s < 0,

lie in the past of M1 = M̃(0) and are smooth for small ε.
Since the geodesic ϕ is normal to M1, it is also normal to M̃(s) and the length

of the geodesic segment of ϕ from M̃(s) to M1 is exactly −s, i.e., equal to the
distance from M̃(s) to M1. Hence we deduce

d(M2, M̃(s))= d0 + s;

that is, {ϕ(t) : 0 ≤ t ≤ d0 + s } is also a maximal geodesic from M2 to M̃(s). We
conclude further that, for fixed s, the hypersurface M̃(s)∩V is contained in the past
of M(d0 + s) and touches M(d0 + s) in ps = ϕ(d0 + s). The maximum principle
then implies

H |M̃(s)(ps)≥ H |M(d0+s)(ps) > τ2,

in view of (3–7) above.
On the other hand, the mean curvature of M̃(s) converges to the mean curvature

of M1 if s tends to zero; hence

H1(ϕ(d0))≥ τ2,

contradicting the assumption that H1 < H2. �

Corollary 3.2. The CMC hypersurfaces with mean curvature

τ >
√

nΛ

are uniquely determined.
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Proof. Let M1 =graph u1 and M2 =graph u2 be hypersurfaces with mean curvature
τ and suppose that, say,

{ x ∈ S0 : u1(x) < u2(x) } 6= ∅.

Consider a tubular neighborhood of M1 with a corresponding future-oriented nor-
mal Gaussian coordinate system (xα). Then the evolution of the mean curvature
of the coordinate slices satisfies

˙̄H = | Ā|
2
+ R̄αβνανβ ≥

1
n
|H̄ |

2
−Λ> 0

in a neighborhood of M1; i.e., the coordinate slices M(t)= {x0
= t} with t > 0 all

have mean curvature H̄(t) > τ . Using now M1 and M(t), t > 0, as barriers, we
infer that for any τ ′

∈ R, τ < τ ′ < H̄(t), there exists a spacelike hypersurface Mτ ′

with mean curvature τ ′ such that Mτ ′ can be expressed as graph u over M1, where

0< u < t.

For a proof see [Gerhardt 1983, Section 6]; a different more transparent proof
of this result has been given in [Gerhardt 2000b].

Writing Mτ ′ as graph over S0 in the original coordinate system without changing
the notation for u, we obtain

u1 < u,

and by choosing t small enough, we may also conclude that

E(u)= { x ∈ S0 : u(x) < u2(x) } 6= ∅,

which is impossible, in view of the preceding result. �

Lemma 3.3. Under the assumptions of Theorem 1.1, if Mτ0 = graph uτ0 is a CMC
hypersurface with mean curvature τ0>

√
nΛ, then the future of Mτ0 can be foliated

by CMC hypersurfaces

(3–8) I +(Mτ0)=

⋃
τ0<τ<∞

Mτ .

Each set Mτ can be written over S0 as

Mτ = graph u(τ, · ),

such that u is strictly monotone increasing with respect to τ and continuous in
[τ0,∞)× S0.

Proof. The monotonicity and continuity of u follow from Lemma 3.1 and Corollary
3.2, in view of the a priori estimates.

It remains to verify the relation (3–8). Letting p = (t, yi ) ∈ I +(Mτ0), we have
to show p ∈ Mτ for some τ > τ0.
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In [Gerhardt 1983, Theorem 6.3] it is proved that there exists a family

{ Mτ : τ0 ≤ τ <∞ },

of CMC hypersurfaces Mτ if there is a future mean curvature barrier.
Define u(τ, · ) by

Mτ = graph u(τ, · ).

Then u(τ0, y)< t < u(τ ∗, y) for some large τ ∗, because the mean curvature barrier
condition together with Lemma 3.1 implies that the CMC hypersurfaces run into
the future singularity, if τ goes to infinity.

In view of the continuity of u( · , y) we conclude that there exists τ1 such that
τ0 < τ1 < τ

∗ and
u(τ1, y)= t.

Hence p ∈ Mτ1 . �

Remark 3.4. The continuity and monotonicity of u holds in any coordinate system
(xα), even in those that do not cover the future completely like the normal Gauss-
ian coordinates associated with a spacelike hypersurface, which are defined in a
tubular neighborhood.

The proof of Theorem 1.1 is now almost finished. The remaining arguments
are identical to those in [Gerhardt 2003, Section 2], but for the convenience of the
reader, we shall briefly summarize the main steps.

We have to show that the mean curvature parameter τ can be used as a time
function in {τ0 < τ <∞}, i.e., τ should be smooth with a nonvanishing gradient.
Both properties are local.

First step: Fix an arbitrary τ ′
∈ (τ0,∞), and consider a tubular neighborhood U

of M ′
= Mτ ′ . Each set Mτ ⊂ U can then be written as graph u(τ, · ) over M ′. For

small ε > 0 we have

Mτ ⊂ U for all τ ∈ (τ ′
− ε, τ ′

+ ε),

and with the help of the implicit function theorem we now show that u is smooth.
Define the operator G by

G(τ, ϕ)= H(ϕ)− τ,

where H(ϕ) is an abbreviation for the mean curvature of graphϕ|M ′ . Then G is
smooth and from (3–5) (page 302) we deduce that D2G(τ ′, 0)ϕ equals

−∆ϕ+ (‖A‖
2
+ R̄αβνανβ)ϕ,

where the Laplacian, the second fundamental form and the normal correspond
to M ′. Hence D2G(τ ′, 0) is an isomorphism and the implicit function theorem
implies that u is smooth.
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Second step: Still in the tubular neighborhood of M ′, define the coordinate trans-
formation

Φ(τ, x i )= (u(τ, x i ), x i );

note that x0
= u(τ, x i ). Then

det DΦ =
∂u
∂τ

= u̇.

We know that u̇ is nonnegative. If it is strictly positive, Φ is a diffeomorphism,
and hence τ is smooth with nonvanishing gradient. A proof that u̇ > 0 is given in
[Gerhardt 2003, Lemma 2.2], but we give a simpler one: The CMC hypersurfaces
in U satisfy an equation

H(u)= τ,

where the left hand-side can be expressed as in Equation (3–4), page 302. Differ-
entiating both sides with respect to τ and evaluating for τ = τ ′, i.e., on M ′, where
u(τ ′, · )= 0, we get

−∆u̇ + (|A|
2
+ R̄αβνανβ)u̇ = 1.

In a point where u̇ attains its minimum, the maximum principle implies

(|A|
2
+ R̄αβνανβ)u̇ ≥ 1.

Hence u̇ 6= 0 and u̇ is therefore strictly positive.

4. Proof of Theorem 1.2

Let x0 be a time function satisfying the assumptions of Theorem 1.2. In other
words, N+ = {a0 < x0 < b}, the mean curvature of the slices M(t) = {x0

= t} is
nonnegative, and

lim
t→b

|M(t)| = 0.

Also let Mk be a sequence of spacelike achronal hypersurfaces such that

lim inf
Mk

x0
= b.

Write Mk as graph uk over S0. Then

gi j = e2ψ(ui u j + σi j (u, x))

is the induced metric, where we dropped the index k for better readability, and the
volume element of Mk has the form

dµ= v
√

det(ḡi j (u, x)) dx,
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where

(4–1) v2
= 1 − σ i j ui u j < 1,

and (ḡi j (t, · )) is the metric of the slices M(t).
From (3–2) we deduce

(4–2)
d
dt

√
det(ḡi j (t, · ))= −eψ H̄

√
det(ḡi j )≤ 0.

Now, let a0 < t < b be fixed. Then for almost every k we have

(4–3) t < uk

and hence

|Mk | =

∫
S0

v
√

det(ḡi j (uk, x)) dx

≤

∫
S0

√
det(ḡi j (t, x)) dx = |M(t)|,

in view of (4–1), (4–2) and (4–3). We conclude that lim sup |Mk | ≤ |M(t)| for all
a0 < t < b, and thus lim|Mk | = 0.
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