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Dedicated to Professor George Lusztig on his sixtieth birthday.

Let 0 be any canonical left cell of the affine Weyl group Wa of type Ãn−1 for
n > 1. We describe the lower boundary hyperplanes for 0, answering two
questions of Humphreys.

Let Wa be an affine Weyl group and let8 be the root system of the corresponding
Weyl group. Fix a positive root system 8+ of 8. There is a bijection from Wa

to the set of alcoves in the euclidean space E spanned by 8. We identify the
elements of Wa with the alcoves (also with the topological closure of the alcoves)
of E . According to a result of Lusztig and Xi [1988], we know that the intersection
of any two-sided cell of Wa with the dominant chamber of E is exactly a single
left cell of Wa , called a canonical left cell. When Wa is of type Ãn−1, with n > 1,
there is a bijection φ from the set of two-sided cells of Wa to the set of partitions
of n; see Remark 2.1 and subsequent paragraphs, as well as [Shi 1986].

From now on, unless otherwise specified, we always assume that Wa is an affine
Weyl group of type Ãn−1, where n > 1. This article answers two questions posed
recently by J. E. Humphreys (private communication):

(1) Can one find the set B(L) of all the lower boundary hyperplanes for any
canonical left cell L of Wa?

(2) How does the partition φ(L) determine the set B(L), and in which case does
the set B(L) determine the partition φ(L) also?

In the first two sections, we collect some concepts and known results for later
use. In Section 3, we give criteria for a hyperplane to be the lower boundary of a
canonical left cell of Wa . Then we prove our main results in Section 4.
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1. Sign types

Let n = {1, 2, . . . , n} for n ∈ N. An n-sign type (or just a sign type) is by definition
a matrix X = (X i j )i, j∈n over the symbol set {+,©,−}, with

{X i j , X j i } ∈ {{+,−}, {©,©}} for i, j ∈ n.

X is determined entirely by its “upper unitriangular” part X1
= (X i j )i< j . We

identify X with X1. X is dominant, if X i j ∈ {+,©} for any i < j in n, and is
admissible, if

(1–1)
− ∈ {X i j , X jk} H⇒ X ik 6 max{X i j , X jk},

− /∈ {X i j , X jk} H⇒ X ik > max{X i j , X jk}

for any i < j < k in n, where we set a total ordering: −< ©<+ .

Lemma 1.1 ([Shi 1987b, Lemma 3.1; Shi 1999, Corollary 2.8]). (1) A dominant
sign type X = (X i j ) is admissible if and only if for any i 6 h< k 6 j , condition
X i j = © implies Xhk = ©.

(2) If an admissible sign type X = (X i j ) is not dominant, then there exists at least
one k with 1 6 k < n and Xk,k+1 = −.

Proof. This is an easy consequence of conditions (1–1). �

Let E = {(a1, . . . , an) ∈ Rn
|
∑n

i=1 ai = 0}. This is a euclidean space of dimen-
sion n−1 with inner product 〈(a1, . . . , an), (b1, . . . , bn)〉 =

∑n
i=1 ai bi . For i 6= j

in n, let αi j = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0), with 1 and −1 at the i-th and
j-th positions, respectively. Then 8 = {αi j | 1 6 i 6= j 6 n} is the root system of
type An−1, which spans E . 8+

= {αi j ∈8 | i < j} is a positive root system of 8
with corresponding simple root system 5= {αi,i+1 | 1 6 i < n}. For any ε ∈ Z and
i < j in n, define a hyperplane

(1–2) Hi j;ε = {(a1, . . . , an) ∈ E | ai − a j = ε}.

Encode a connected component C of E \
⋃

16i< j6n, ε∈{0,1}
Hi j;ε by a sign type

X = (X i j )i< j as follows. Take any v = (a1, . . . , an) ∈ C and, for i < j in n, set

X i j =


+ if ai − a j > 1,

− if ai − a j < 0,
© if 0< ai − a j < 1.

X only depends on C , but not on the choice of v; see [Shi 1986, Chapter 5]. Note
that not all sign types can be obtained in this way.

Proposition 1.2 ([Shi 1986, Proposition 7.1.1 and §2]). A sign type X = (X i j ) can
be obtained in the above way if and only if it is admissible.
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Lemma 1.3. Let X = (X i j ) be a dominant admissible sign type with X p,p+1 = ©

for some p with 1 6 p < n. Let X ′
= (X ′

i j ) be the sign type given by

X ′

i j =

{
X i j if (i, j) 6= (p, p+1),

− if (i, j)= (p, p + 1)

for i < j in n. Then X ′ is admissible if and only if X ph = X p+1,h for all h ∈ n.

Proof. This is an easy consequence of (1–1). �

For α ∈8, let sα be the reflection in α:

sα(v)= v− 2
〈v, α〉

〈α, α〉
α.

Let Tα be the translation by α: T (v)= v+α. Define si = sαi,i+1 for 1 6 i < n, and
s0 = Tα1n sα1n . Then S = {si | 0 6 i < n} forms a distinguished generator set of the
affine Weyl group Wa of type Ãn−1.

A connected component in

E \
⋃

16i< j6n
k∈Z

Hi j;k

is called an alcove. The (right) action of Wa on E induces a simply transitive
permutation on the set A of alcoves in E . There exists a bijection w 7→ Aw from
Wa to A such that A1 (where 1 is the identity element of Wa) is the unique alcove
in the dominant chamber of E whose closure contains the origin and such that
(Ay)w= Ayw for y, w ∈ Wa; see [Shi 1987a, Proposition 4.2]. To each w ∈ Wa we
associate an admissible sign type X (w) that contains the alcove Aw. An admissible
sign type X can be identified with the set {w ∈ Wa | X (w)= X}.

2. Partitions and Kazhdan–Luzstig cells

Let (P,�) be a finite poset. By a chain of P , we mean a totally ordered subset
of P (allow to be an empty set). Also, a cochain of P is a subset K of P whose
elements are pairwise incomparable. A k-(co)chain family in P (k > 1) is a subset
J of P which is a disjoint union of k (co)chains Ji (1 6 i 6 k). We usually write
J = J1 ∪ · · · ∪ Jk .

A partition of n ∈ N is a sequence λ= (λ1, λ2, . . . , λr ) of positive integers such
that λ1 > λ2 > · · · > λr and

∑r
i=1 λi = n. In particular, when λ1 = · · · = λr = a,

we also write λ= (ar ), and call it a rectangular partition. Let 3n be the set of all
partitions of n.

Let λ= (λ1, λ2, . . . , λr ) and µ= (µ1, µ2, . . . , µt) be in 3n . Write λ6µ if the
inequalities

∑i
j=1 λ j 6

∑i
j=1 µ j hold for i > 1. We say that µ is conjugate to λ
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if µi = |{ j | λ j > i, 1 6 j 6 r}| for 1 6 i 6 t , where |X | stands for the cardinality
of the set X .

Let dk be the maximal cardinality of a k-chain family in P for k > 1. Then
d1 < d2 < · · · < dr = n = |P| for some r > 1. Let λ1 = d1 and λi = di − di−1

for 1 < i 6 r . Then λ1 > λ2 > · · · > λr > 0 by [Greene 1976, Theorem 1.6].
We get φ(P) = (λ1, . . . , λr ) ∈ 3n , called the partition associated to chains in P .
Replacing the word “k-chain family” by “k-cochain family”, we can also define
ψ(P) = (µ1, . . . , µt) ∈ 3n , again by [Greene 1976, Theorem 1.6], called the
partition associated to cochains in P . Moreover, ψ(P) is conjugate to φ(P).

Remark 2.1. Let (P,�) be a finite poset with ψ(P)= (µ1, . . . , µt). For 1 6 k 6 t ,
let P (k) = P1 ∪ · · · ∪ Pk be a k-cochain family of P with |P (k)| =

∑k
h=1 µh . Then

µ1 > |Pi | > µk for 1 6 i 6 k. In particular, when ψ(P)= (at) is rectangular, we
have |P1| = · · · = |Pk | = a. This fact will be used in the proof of Lemma 4.2.

For each admissible sign type X = (X i j ), we write i 6X j in n if either i = j
or X i j = + . By [Shi 1999, Lemma 2.2], the order 6X is a partial order on n. We
associate to X two partitions φ(X) and ψ(X) of n defined above.

Kazhdan and Lusztig [1979] defined certain equivalence classes in a Coxeter
system (W, S), called a left cell, a right cell and a two-sided cell.

Let Wa be the affine Weyl group of type Ãn−1 for n > 1. Each element w of
Wa determines a sign type X (w), and hence it in turn determines two partitions
φ(w) := φ(X (w)) and ψ(w) := ψ(X (w)). This defines two maps φ,ψ : Wa −→

3n , each of which induces, by [Shi 1986, Theorem 17.4], a bijection from the set
of two-sided cells of Wa to the set 3n .

To each w ∈ Wa , we associate a set R(w) = {s ∈ S | ws < w}, where 6 is the
Bruhat order in the Coxeter system (Wa, S). Define

Y0 = {w ∈ Wa | R(w)⊆ {s0}}.

By [Lusztig and Xi 1988, Theorem 1.2], the intersection of Y0 with any two-sided
cell φ−1(λ) (λ ∈3n) is a single left cell of Wa , written 0λ and called a canonical
left cell.

3. Lower boundary of a canonical left cell

We now define a lower boundary hyperplane for any F ⊂ Wa , and give criteria for
a hyperplane of E to be lower boundary for a canonical left cell of Wa .

For i < j in n and k ∈ Z, the hyperplane Hi j;k divides the space E into three
parts: H+

i j;k = {v ∈ E | 〈v, αi j 〉 > k}, H−

i j;k = {v ∈ E | 〈v, αi j 〉 < k}, and Hi j;k .
For any set F of alcoves in E , call Hi j;k a lower boundary hyperplane of F if⋃

A∈F A ⊂ H+

i j;k and if there exists some alcove C in F such that C ∩ Hi j;k is a
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facet of C of dimension n −2, where C stands for the closure of C in E under the
usual topology.

Let 0 be a canonical left cell of Wa . As a subset in Wa , 0 is a union of some
dominant sign types, by [Shi 1986, Proposition 18.2.2]; denote by S(0) the set
of these sign types. Regarded as a union of alcoves, the topological closure of 0
in E is connected [Shi 1986, Theorem18.2.1] and is bounded by a certain set of
hyperplanes in E of the form Hi j;ε , for 1 6 i < j 6 n and ε = 0, 1, defined in
(1–2). Then a lower boundary hyperplane of 0 must be one of such hyperplanes.
Let B(0) be the set of all the lower boundary hyperplanes of 0. Given a hyperplane
Hi j;ε with 1 6 i < j 6 n and ε = 0, 1, we see that Hi j;ε ∈ B(0) if and only if one
of the following conditions holds.

Condition 3.1. ε = 1, X i j = + for all X = (Xab) ∈ S(0), and there exists some
Y = (Yab) ∈ S(0) such that the sign type Y ′

= (Y ′

ab) defined below is admissible:

Y ′

ab =

{
Yab if (a, b) 6= (i, j),
© if (a, b)= (i, j).

Condition 3.2. ε = 0, and there exists some X = (Xab) ∈ S(0) with X i j = © such
that the sign type X ′

= (X ′

ab) defined by

X ′

ab =

{
Xab if (a, b) 6= (i, j),

− if (a, b)= (i, j)

is admissible.

Remark 3.3. By Lemma 1.1(2), Condition 3.2 happens only if j = i + 1.

Proposition 3.4. (1) Hi,i+1;0 ∈ B(0) if and only if there exists some X = (Xab) ∈

S(0) such that X i,h = X i+1,h for all h ∈n. In particular, when these conditions
hold, we have X i,i+1 = ©.

(2) If Hi j;1 ∈ B(0) and if either i 6 k < l 6 j or k 6 i < j 6 l, then Hkl;1 ∈ B(0)
if and only if (i, j)= (k, l).

Proof. Part (1) follows from Condition 3.2 and Lemma 1.3. Then part (2) is a
direct consequence of Condition 3.1 and Lemma 1.1(1). �

4. Description of the sets B0(0λ) and B1(0λ)

We now answer the two questions of Humphreys.
Let 0λ be the canonical left cell of Wa corresponding to λ ∈3n . Let Bε(0λ)=

{Hi j;ε | Hi j;ε ∈ B(0λ)} for ε = 0, 1.

Lemma 4.1. Suppose that λ = (λ1, . . . , λr ) ∈ 3n contains at least two different
parts. Then B0(0λ)= {Hi,i+1;0 | 1 6 i < n}.
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Proof. Let µ= (µ1, . . . , µt) be the conjugate partition of λ. Then µ also contains
at least two different parts. Given any p with 1 6 p< n, there exists a permutation
a1, a2, . . . , at of 1, 2, . . . , t such that ms < p and ms+1 > p for some s with
0 6 s < t , where mu :=

∑u
k=1 µak for 0 6 u 6 t with the convention that m0 = 0.

Define a dominant sign type X = (X i j ) such that for any i, j with 1 6 i < j 6 n,
X i j = © if and only if mh < i < j 6 mh+1 for some h with 0 6 h < t . Clearly, X is
admissible with ψ(X)=µ. Hence X ∈ S(0λ). We see also that X ph = X p+1,h for
all h such that 1 6 h 6 n. So we conclude that Hp,p+1;0 ∈ B0(0λ) by Proposition
3.4(1). Our result follows by Remark 3.3. �

Lemma 4.2. For a rectangular partition (ka) ∈3 with a, k ∈ N, we have

B0(0(ka))= {Hp,p+1;0 | 1 6 p < n, a - p}.

Proof. Let X = (X i j ) be a dominant admissible sign type. Then a maximal cochain
in n with respect to 6X must consist of consecutive numbers. Now suppose
ψ(X) = (ak). Then by Remark 2.1, we can take a maximal k-cochain family
n = P1 ∪· · ·∪ Pk such that Ph = {a(h−1)+1, a(h−1)+2, . . . , ah} with 1 6 h 6 k
are the maximal cochains in n with respect to 6X . We have Xa(h−1)+1,ah = ©

and Xa(h−1)+1,ah+1 = +, which are different. So by the arbitrariness of X and by
Proposition 3.4(1), we see that

(4–1) Hah,ah+1;0 /∈ B0(0(ka)) for 1 6 h < k.

On the other hand, let Y = (Yi j ) be a sign type defined by

Yi j =

{
© if a(h − 1) < i < j 6 ah for some 1 6 h 6 k,

+ otherwise

for 1 6 i < j 6 n. Then it is clear that Y is dominant admissible with ψ(Y )= (ak).
Suppose a(h−1) < p < ah for some h ∈ [1, k]. Then Yp,p+1 = ©. We see also
that Yph = Yp+1,h for all h ∈ [1, n]. By Proposition 3.4(1), we have

Hp,p+1;0 ∈ B0(0(ka)) for all p with 1 6 p < n and a - p.

The result follows from this, (4–1), and Remark 3.3. �

Theorem 4.3. B0(0λ)={Hi,i+1;0 |16 i<n} for all λ∈3n unless λ is a rectangular
partition. In the latter case, say λ = (ka) for k, a ∈ N, we have B0(0(ka)) =

{Hp,p+1;0 | 1 6 p < n, a - p}.

Proof. We see that a partition is nonrectangular if and only if it contains at least two
different parts. So our result follows immediately from Lemmas 4.1 and 4.2. �

Theorem 4.4. B1(0λ)= {Hi,i+r;1 | 1 6 i 6 n − r} for λ= (λ1, . . . , λr ) ∈3n .
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Proof. Let µ = (µ1, . . . , µt) ∈ 3n be conjugate to λ. First we claim that, for any
X = (X i j ) ∈ S(0λ),

(4–2) X i,i+r = + for i = 1, . . . , n−r.

Otherwise, there would exist some X = (X i j ) ∈ S(0λ) with X i,i+r = © for some i ,
1 6 i 6 n − r . By Lemma 1.1(1), we would have Xhk = © for all h, k such that
i 6 h < k 6 i + r . Then {i, i + 1, . . . , i + r} would be a cochain in n with respect
to the partial order 6X , whose cardinality is r + 1 > µ1 = r , contradicting the
assumption ψ(0λ)= (µ1, µ2, . . . , µt).

Next we want to find, for any p with 1 6 p 6 n − r , some Y = (Yi j ) ∈ S(0λ)
such that the sign type Y ′

= (Y ′

i j ) defined by

(4–3) Y ′

i j =

{
Yi j if (i, j) 6= (p, p + r),
© if (i, j)= (p, p + r)

for 1 6 i < j 6 n, is admissible. If this happens, we automatically have ψ(Y ′)	µ

by the proof of (4–2).
Take a permutation a1, a2, . . . , at of 1, 2, . . . , t satisfying two conditions:

(1) Let mu =
∑u

k=1 µak for 0 6 u 6 t with the convention that m0 = 0. Then there
exists some s ∈ [0, t) such that as+1 = 1, ms < p and ms+1 > p.

(2) s is the largest possible number with the property (1) when a1, a2, . . . , at

ranges over all the permutations of 1, 2, . . . , t .

Then we have t −s > 2, p 6 ms+1< p+r and ms+2 > p+r . Define a dominant
sign type Y = (Yi j ) such that Yi j = © if and only if either

mu < i < j 6 mu+1 for 0 6 u< t, or p 6 i < j 6 p+r with (i, j) 6= (p, p+r).

By Lemma 1.1(1), Y is admissible with ψ(Y )=µ, i.e., Y ∈ S(0λ). Clearly, the
sign type Y ′ obtained from Y as in (4–3) is also dominant admissible by Lemma
1.1(1). This implies by Condition 3.1 that Hp,p+r;1 belongs to B1(0λ) for any
p = 1, . . . , n − r . The result follows by Proposition 3.4(2). �

Remark 4.5. Theorems 4.3 and 4.4 answer the two questions of Humphreys. In
particular, the canonical left cells of Wa associated to the rectangular partitions
are determined entirely by the corresponding B1-set of hyperplanes. From the
above description of B0-sets of hyperplanes, we see that compared with the other
canonical left cells of Wa , the positions of the canonical left cells associated to
rectangular partitions are farther from the walls of the dominant chamber.

Remark 4.6. When λ= (n), we have B0(0λ)= ∅ and

B1(0λ)= {Hi,i+1;1 | 1 6 i < n}.
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Actually, this is the unique canonical left cell whose B1-set contains a hyperplane
of the form Hi,i+1;1. Also, this is the unique canonical left cell whose B0-set is
empty. On the other hand, B0(0(1n)) = {Hi,i+1;0 | 1 6 i < n} and B1(0(1n)) = ∅.
0(1n) is the unique canonical left cell whose B1-set is empty.

Remark 4.7. When n ∈ N is a prime number, the B0-sets of all the canonical left
cells 0λ of Wa are {Hi,i+1;0 | 1 6 i < n}, except for the case where λ= (n).

Remark 4.8. Now assume that (Wa, S) is an irreducible affine Weyl group of
arbitrary type with 1 a choice of simple roots system of 8. We are unable to de-
scribe the lower boundary hyperplanes for a canonical left cell L of Wa in general.
This is because L is not always a union of some sign types (as in the case of type
B̃2). But we know that L is a single sign type when L is in either the lowest or the
highest two-sided cell of Wa (see [Shi 1987c; Shi 1988]) for which we can describe
its lower boundary hyperplanes: if L is in the lowest two-sided cell of Wa , then
B1(L)= {Hα;1 | α ∈1} and B0(L)= ∅, where Hα;1 := {v ∈ E | 〈v, α∨

〉 = 1} and
α∨

= 2α/〈α, α〉; if L is in the highest two-sided cell of Wa , then B1(L) = ∅ and
B0(L) = {Hα;0 | α ∈ 1}. This extends the result in Remark 4.6. We conjecture
that any canonical left cell of Wa is a union of some sign types whenever Wa has a
simply-laced type, namely Ã, D̃ or Ẽ . If this is true, one would be able to describe
the lower boundary hyperplanes for the canonical left cells of these groups.
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