
Pacific
Journal of
Mathematics

HAMILTONIAN-MINIMAL LAGRANGIAN SUBMANIFOLDS IN
COMPLEX SPACE FORMS

ILDEFONSO CASTRO, HAIZHONG LI AND FRANCISCO URBANO

Volume 227 No. 1 September 2006





PACIFIC JOURNAL OF MATHEMATICS
Vol. 227, No. 1, 2006
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ILDEFONSO CASTRO, HAIZHONG LI AND FRANCISCO URBANO

Using Legendrian immersions and, in particular, Legendre curves in odd-
dimensional spheres and anti-de Sitter spaces, we construct new examples of
Hamiltonian-minimal Lagrangian submanifolds in complex projective and
hyperbolic spaces, including explicit one-parameter families of embeddings
of quotients of certain product manifolds. We also give new examples of
minimal Lagrangian submanifolds in complex projective and hyperbolic
spaces. Making use of all these constructions, we get Hamiltonian-minimal
and special Lagrangian cones in complex Euclidean space as well.

1. Introduction

Let (M̃n, J, 〈 , 〉) be a Kähler manifold of complex dimension n, where J is the
complex structure and 〈 , 〉 the Kähler metric. The Kähler 2-form is defined by
ω( · , · )= 〈J · , · 〉. An immersion ψ : Mn

→ M̃n of an n-dimensional manifold M
is called Lagrangian if ψ∗ω ≡ 0. For this type of immersions, J defines a bundle
isomorphism between the tangent bundle TM and the normal bundle T ⊥M .

A vector field X on M̃ is a Hamiltonian vector field if there exists a smooth
function F : M̃ → R such that X = J ∇̃F , where ∇̃ is the gradient in M̃ . The
diffeomorphisms of the flux of a Hamiltonian vector field transform Lagrangian
submanifolds into Lagrangian ones.

In this setting, Oh [1990] studied the following natural variational problem. A
normal vector field ξ to a Lagrangian immersion ψ : Mn

→ M̃n is called Hamil-
tonian if ξ = J∇ f , where f ∈ C∞(M) and ∇ f is the gradient of f with respect
to the induced metric. Take f ∈ C∞

0 (M) and let {ψt : M → M̃} be a variation of
ψ , with ψ0 = ψ and d

dt

∣∣
t=0 ψt = ξ . The first variation of the volume functional is

given by
d
dt

∣∣∣
t=0

vol(M, ψ∗

t 〈 , 〉)= −

∫
M

f div JH d M
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(see [Oh 1990]), where H is the mean curvature vector of the immersion ψ and
div denotes the divergence operator on M . Oh called the critical points of this
variational problem Hamiltonian minimal (or H-minimal) Lagrangian submani-
folds; they are characterized by the third-order differential equation div JH = 0.
In particular, minimal Lagrangian submanifolds (where “minimal” means that the
mean curvature vector vanishes) are trivially H-minimal; so is, more generally, any
Lagrangian submanifold with parallel mean curvature vector.

Even when M̃ is a simply connected complex space form, only few examples
of H-minimal Lagrangian submanifolds are known outside the class of Lagrangian
submanifolds with parallel mean curvature vector.

This can be a brief history of them: S1-invariant H-minimal Lagrangian tori
in the complex Euclidean plane C2 were classified in [Castro and Urbano 1998].
H-minimal Lagrangian cones in C2 were studied in [Schoen and Wolfson 1999].
Hélein and Romon [2000; 2002a] derived a Weierstrass-type representation for-
mula to describe all H-minimal Lagrangian tori and Klein bottles in C2. When
the ambient space is the complex projective plane CP2 or the complex hyperbolic
plane CH2, conformal parametrizations of H-minimal Lagrangian surfaces using
holomorphic data were obtained in [Hélein and Romon 2002b; 2003]. Making
use of this technique, Anciaux [2003] constructed H-minimal Lagrangian singly
periodic cylinders and H-minimal Lagrangian surfaces with a nonconical singular-
ity in C2. Only recently have examples of H-minimal Lagrangian submanifolds of
arbitrary dimension in Cn and CPn been found, in [Mironov 2004]. A classification
of H-minimal Lagrangian submanifolds foliated by (n−1)-spheres in Cn is given
in [Anciaux et al. 2006].

Our aim in this paper is the construction of H-minimal Lagrangian submanifolds
in complex Euclidean space Cn , complex projective space CPn and complex hy-
perbolic space CHn , for arbitrary n ≥ 2. The examples in CPn are constructed by
projection, via the Hopf fibration5 :S2n+1

→CPn , of certain family of Legendrian
submanifolds of the sphere S2n+1 (Corollary 3.2). The cones with links in this fam-
ily of Legendrian submanifolds provide new examples of H-minimal Lagrangian
submanifolds in Cn+1 (Section 5). Using the Hopf fibration 5 : H2n+1

1 → CHn

and a similar family of Legendrian submanifolds of the anti-de Sitter space H2n+1
1

(Corollary 6.5), we also find examples of H-minimal Lagrangian submanifolds in
CHn . In a certain sense, our construction is reminiscent of the Smith join method
(see [Eells and Ratto 1993]) for constructing harmonic maps between spheres.

In CPn , we emphasize two different one-parameter families of H-minimal La-
grangian immersions described in Corollaries 4.1 and 4.4; as a particular case, in
Corollary 4.2 we provide explicit Lagrangian H-minimal embeddings of certain
quotients of S1

× Sn1 × Sn2 , where n1 + n2 + 1 = n.
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In CHn , we also point out in Corollary 6.6 a one-parameter family of H-minimal
Lagrangian immersions, which (in the easiest cases) induce explicit Lagrangian H-
minimal embeddings of certain quotients of S1

×Sn1 ×RHn2 , for n1 +n2 +1 = n
(see Corollary 6.7). Here RHn2 denotes real hyperbolic space.

As a byproduct, using our method of construction, we also obtain new exam-
ples of minimal Lagrangian submanifolds in CPn (Corollary 4.1, Remark 4.3 and
Corollary 4.4) and CHn (Corollaries 6.5 and 6.9), as well as special Lagrangian
cones in Cn+1 (see Section 5).

2. Lagrangian submanifolds versus Legendrian submanifolds

Let Cn+1 be complex Euclidean space endowed with the Euclidean metric 〈 , 〉 and
standard complex structure J . The Liouville 1-form is given by 3z(v) = 〈v, J z〉
for all z ∈ Cn+1 and all v ∈ TzCn+1, and the Kähler 2-form is ω= d3/2. We denote
the (2n+1)-dimensional unit sphere in Cn+1 by S2n+1 and by 5 : S2n+1

→ CPn ,
5(z)= [z], the Hopf fibration of S2n+1 on the complex projective space CPn . We
denote the Fubini–Study metric, the complex structure and the Kähler two-form in
CPn by 〈 , 〉, J and ω. This metric has constant holomorphic sectional curvature 4.

We will also denote by 3 the restriction to S2n+1 of the Liouville 1-form of
Cn+1. So3 is the contact 1-form of the canonical Sasakian structure on the sphere
S2n+1. An immersion φ : Mn

→ S2n+1 of an n-dimensional manifold M is said
to be Legendrian if φ∗3≡ 0. In this case φ is isotropic in Cn+1, that is, φ∗ω ≡ 0;
in particular, the normal bundle T ⊥M splits as J (TM)⊕ span {Jφ}. This means
that φ is horizontal with respect to the Hopf fibration5 : S2n+1

→ CPn , and hence
8=5◦φ : Mn

→ CPn is a Lagrangian immersion and the metrics induced on Mn

by φ and 8 are the same. It is easy to check that Jφ is a totally geodesic normal
vector field, so the second fundamental forms of φ and 8 are related by

5∗(σφ(v,w))= σ8(5∗v,5∗w) for all v,w ∈ TM.

Thus the mean curvature vector H of φ satisfies 〈H, Jφ〉 = 0. In particular, φ :

Mn
→ S2n+1 is minimal if and only if 8=5 ◦φ : Mn

→ CPn is minimal.
In this way, we can construct (minimal) Lagrangian submanifolds in CPn by

projecting (minimal) Legendrian manifolds in S2n+1 via the Hopf fibration 5.
Conversely, any Lagrangian immersion 8 : Mn

→ CPn has a local horizontal
lift to S2n+1 with respect to the Hopf fibration 5; this local lift is unique up to
rotations. Only Lagrangian immersions in CPn have such lifts.

In this article we construct examples of Lagrangian submanifolds of CPn by
constructing examples of Legendrian submanifolds of S2n+1. We start with some
geometric properties of Legendrian submanifolds in S2n+1.
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Let � be the complex n-form on S2n+1 given by

�z(v1, . . . , vn)= detC {z, v1, . . . , vn}.

If φ : Mn
→ S2n+1 is a Legendrian immersion of a manifold M , then φ∗� is a

complex n-form on M . In the next result we analyze this n-form φ∗�.

Lemma 2.1. If φ : Mn
→ S2n+1 is a Legendrian immersion of a manifold M , then

(1) ∇(φ∗�)= αH ⊗φ∗�,

where αH is the one-form on M defined by αH (v)= n i〈H, Jv〉 and H is the mean
curvature vector of φ. Consequently, M is orientable if φ is minimal.

Proof. Let {E1, . . . , En} be an orthonormal frame on an open subset U ⊂ M
containing p, such that ∇vEi = 0 for all v ∈ Tp M and i = 1, . . . , n. We define
A : U → U (n + 1) by A = {φ, φ∗(E1), . . . , φ∗(En)}. Then

(∇vφ
∗�)(E1, . . . , En)= v(detC A)= detC A Trace (v(A)At),

where At denotes the transpose conjugate matrix of A. We easily see that

v(A)=
{
φ∗(v), σφ(v, E1(p))−〈v, E1(p)〉φ, . . . , σφ(v, En(p))−〈v, En(p)〉φ

}
,

and so we deduce that

(∇vφ
∗�)

(
E1(p), . . . , En(p)

)
= n i〈H(p), Jv〉(φ∗�)(E1, . . . , En)(p).

Using this in the preceding expression we get the result. �

Suppose that our Legendrian submanifold M is oriented. Then we can consider
the well defined map β : Mn

→ R/2πZ given by

eiβ(p)
= (φ∗�)p(e1, . . . , en),

where {e1, . . . , en} is an oriented orthonormal frame in Tp M . We will call β the
Legendrian angle map of φ. As a consequence of (1) we obtain

(2) J∇β = nH,

and so we deduce:

Proposition 2.2. A Legendrian immersion φ : Mn
→ S2n+1 of an oriented manifold

M is minimal if and only if the Legendrian angle map β of φ is constant.

A vector field X on S2n+1 is a contact vector field if LX3 = g3, for some
function g ∈ C∞(S2n+1), where L is the Lie derivative in S2n+1. As shown in
[McDuff and Salamon 1998], for instance, X is a contact vector field if and only
if there exists F ∈ C∞(S2n+1) such that

Xz = J (∇F)z + 2F J z, z ∈ S2n+1,
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where ∇F is the gradient of F . The diffeomorphisms of the flux {ϕt } of X are
contactomorphisms of S2n+1, that is, ϕ∗

t 3 = eht3, and so they transform Legen-
drian submanifolds into same. The Lie algebra of the group of contactomorphisms
of S2n+1 is the space of contact vector fields. In this setting, it is natural to study
the following variational problem.

Let φ : Mn
→ S2n+1 a Legendrian immersion with mean curvature vector H . A

normal vector field ξ f to φ is called a contact field if

ξ f = J∇ f + 2 f Jφ,

where f ∈ C∞(M) and ∇ f is the gradient of f with respect to the induced metric.
If f ∈C∞

0 (M) and {φt : M → S2n+1
} is a variation of φ with φ0 =φ and d

dt

∣∣
t=0φt =

ξ f , the first variation of the volume functional is given by

d
dt

∣∣∣
t=0

vol(M, φ∗

t 〈 , 〉)= −

∫
M

〈H, ξ f 〉 d M.

But using Stokes’ Theorem,∫
M

〈H, ξ f 〉 d M =

∫
M

〈H, J∇ f + 2 f Jφ〉 d M

= −

∫
M

〈JH,∇ f 〉 d M =

∫
M

f div JH d M.

This means that the critical points of the above variational problem are Legendrian
submanifolds such that

divJH = 0.

Definition 2.3. A Legendrian immersion φ : Mn
→ S2n+1 is said to be contact

minimal (or briefly C-minimal) if it is a critical point of the preceding variational
problem, that is, if divJH = 0.

Clearly, minimal Legendrian submanifolds and Legendrian submanifolds with
parallel mean curvature vector are C-minimal. As a consequence of (2) and the geo-
metric relationship between Legendrian and Lagrangian submanifolds mentioned
at the beginning of this section, we get:

Proposition 2.4. Let φ : Mn
→ S2n+1 be a Legendrian immersion of a Riemannian

manifold M.

(1) If M is oriented, φ is C-minimal if and only if the Legendrian angle β of φ is
a harmonic map.

(2) φ is C-minimal if and only if 8=5 ◦φ : Mn
→ CPn is H-minimal.
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3. A new construction of C-minimal Legendrian immersions

After Proposition 2.4, it is clear that constructing C-minimal Legendrian immer-
sions in odd-dimensional spheres is a good way to find H-minimal Lagrangian
submanifolds in CPn . This is the purpose of this section.

Let n1, n2 ≥ 0 be integers with n = n1 + n2 + 1. The product SO(n1 + 1)×

SO(n2 + 1) of special orthogonal groups acts on S2n+1
⊂ Cn+1 as a subgroup of

isometries:

(3) (A1, A2) ∈ SO(n1 + 1)× SO(n2 + 1) 7→

(
A1

A2

)
∈ SO(n + 1).

Theorem 3.1. Let n, n1, n2 be nonnegative integers with n = 1 + n1 + n2. For
i = 1, 2, let ψi : Ni → S2ni +1

⊂ Cni +1 be Legendrian isometric immersions of
ni -dimensional oriented Riemannian manifolds (Ni , gi ). Suppose γ = (γ1, γ2) :

I → S3
⊂ C2 is a Legendre curve, where I is an interval in R. The map

φ : I × N1 × N2 → S2n+1
⊂ Cn+1

= Cn1+1
× Cn2+1

defined by

(4) φ(s, p, q)=
(
γ1(s)ψ1(p), γ2(s)ψ2(q)

)
is a Legendrian immersion in S2n+1 whose induced metric is

(5) 〈 , 〉 = |γ ′
|
2ds2

+ |γ1|
2g1 + |γ2|

2g2

and whose Legendrian angle map is

(6) βφ ≡ n1π +βγ + n1 arg γ1 + n2 arg γ2 +βψ1 +βψ2 mod 2π,

where βγ , βψ1 and βψ2 are the Legendre angle maps of γ , ψ1 and ψ2.
If n1, n2 ≥2, a Legendrian immersion Mn

→ S2n+1 is invariant under the action
(3) of SO(n1+1)× SO(n2+1) if and only if it is locally of the form (4), where ψi

(i = 1, 2) is the totally geodesic Legendrian embedding of Sni in S2ni +1 and γ
is some Legendre curve in S3. That is, such immersions are locally congruent to
(s, x1, x2) 7→

(
γ1(s)x1, γ2(s)x2), where xi ∈ Sni .

Note that Legendrian immersions of the form (4) have singularities at the points
(s, p, q) ∈ I × N1 × N2 where either γ1(s)= 0 or γ2(s)= 0.

Proof. If ′ denotes differentiation with respect to s, and v and w are arbitrary
tangent vectors to N1 and N2 respectively, it is clear that

φs = φ∗(∂s, 0, 0)= (γ ′

1 ψ1, γ
′

2 ψ2),

φ∗(v) := φ∗(0, v, 0)= (γ1 ψ1∗(v), 0),

φ∗(w) := φ∗(0, 0, w)= (0, γ2 ψ2∗(w)).
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(Recall that g1, g2 are the metrics on N1, N2 induced by ψ1, ψ2.) Because ψ1 and
ψ2 are Legendrian immersions, we deduce from these equalities that the induced
metric on I × N1 × N2 by φ is |γ ′

|
2ds2

+ |γ1|
2g1 + |γ2|

2g2. It follows that, γ , ψ1

and ψ2 being Legendrian, so is the immersion φ.
To compute the Legendrian angle map βφ , let {e1, . . . , en1} and {e′

1, . . . , e′
n2

} be
oriented local orthonormal frames on N1 and N2. Then the frame

(7) {u1, v1, . . . , vn1, w1, . . . , wn2}

defined by

u1 =

( ∂s

|γ ′|
, 0, 0

)
, v j =

(
0,

e j

|γ1|
, 0

)
, wk =

(
0, 0,

e′

k

|γ2|

)
(with 1 ≤ j ≤ n1, 1 ≤ k ≤ n2) is a local oriented orthonormal frame on I ×N1×N2.
Putting

φ = γ1(ψ1, 0)+ γ2(0, ψ2),

φ∗(u1)=
γ ′

1

|γ ′|
(ψ1, 0)+

γ ′

2

|γ ′|
(0, ψ2),

we have

eiβφ = detC {φ, φ∗(u1), . . . , φ∗(v j ), . . . , φ∗(wk), . . . }

=
γ

n1
1 γ

n2
2 (γ1γ

′

2−γ
′

1γ2)

|γ ′||γ1|n1 |γ2|n2

× detC {(ψ1, 0), (0, ψ2), . . . , (ψ1∗(e j ), 0), . . . , (0, ψ2∗(e′

k)), . . . }.

In this way we obtain

eiβφ(s,p,q) = (−1)n1 ei(n1 arg γ1+n2 arg γ2)(s) (γ1γ
′

2 − γ ′

1γ2)(s)
|γ ′(s)|

detC A1(p) detC A2(q),

where A1 and A2 are the matrices

A1 = {ψ1, ψ1∗(e1), . . . , ψ1∗(en1)},

A2 = {ψ2, ψ2∗(e′

1), . . . , ψ2∗(e′

n2
)}.

Taking into account the definition of the Legendrian angle map given in Section 2,
we finally arrive at

eiβφ(s,p,q) = (−1)n1 ei(βγ+n1 arg γ1+n2 arg γ2)(s) eiβψ1 (p) eiβψ2 (q).

This proves the first part of the result.
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Conversely, let ψ : Mn
→ S2n+1

⊂ Cn+1 be a Legendrian immersion that is
invariant under the action (3) of SO(n1 +1)×SO(n2 +1). Let p be any point of M
and set z = (z1, . . . , zn+1) = ψ(p). By the invariance assumption, for any matrix
X = (X1, X2) in the Lie algebra of SO(n1 + 1)× SO(n2 + 1), the curve t 7→ zet X̂

given by

X̂ =

(
X1

X2

)
lies in the submanifold. Thus its tangent vector at t = 0 satisfies

z X̂ ∈ ψ∗(Tp M).

Since ψ is a Legendrian immersion, this implies that

Im(z X̂ Ŷ zt)= 0

for any matrices X = (X1, X2), Y = (Y1, Y2) in the Lie algebra of SO(n1 + 1)×
SO(n2 + 1). As n1 + 1 ≥ 3 and n2 + 1 ≥ 3, it is easy to see from the last equation
that Re(z1, . . . , zn1+1) and Im(z1, . . . , zn1+1) are linearly dependent, and so are
Re(zn1+2, . . . , zn+1) and Im(zn1+2, . . . , zn+1). But SO(n1 +1) acts transitively on
Sn1 and SO(n2+1) acts transitively on Sn2 ; hence z is in the orbit (under the action
of SO(n1 + 1)× SO(n2 + 1) described above) of a point of the form

(z0
1, 0, . . . , 0, z0

n1+2, 0, . . . , 0),

with

|z0
1|

2
=

n1+1∑
i=1

|zi |
2 and |z0

n1+2|
2
=

n+1∑
j=n1+2

|z j |
2.

This implies that locally ψ is the orbit under the action of SO(n1 +1)×SO(n2 +1)
of a curve γ in C2

≡ Cn
∩{z2 = · · · = zn1+1 = zn1+3 = · · · = zn+1 = 0}. Therefore

M is locally I × Sn1 × Sn2 , with I an interval in R. Moreover, ψ is given by

ψ(s, x, y)= (γ1(s) x, γ2(s) y),

where γ = (γ1, γ2) must be a Legendre curve in S3
⊂ C2. Finally, as ψ is a

Legendrian submanifold, the result follows using the first part of this theorem. �

In the next result we make use of the method described in Theorem 3.1 to obtain
new minimal and C-minimal Legendrian immersions, which will provide (project-
ing via the Hopf fibration) new nontrivial minimal and H-minimal immersions in
CPn .
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Corollary 3.2. Let ψi : Ni → S2ni +1, i = 1, 2, be C-minimal Legendrian im-
mersions of ni -dimensional oriented Riemannian manifolds Ni , i = 1, 2, and let
γ = (γ1, γ2) : I → S3

⊂ C2 be a Legendre curve. As before, set n = n1 + n2 + 1.
Then the Legendrian immersion φ : I × N1 × N2 → S2n+1 of Theorem 3.1, given by

φ(t, p, q)=
(
γ1(t)ψ1(p), γ2(t)ψ2(q)

)
,

is C-minimal if and only if there exist real constants λ,µ such that (γ1, γ2) is a
solution of the system of ordinary differential equations

(8) (γ ′

1γ 1)(t)= −(γ ′

2γ 2)(t)= − ei(λ+µt) γ 1(t)n1+1 γ 2(t)n2+1.

This Legendrian immersion φ is minimal if and only if ψ1 and ψ2 are minimal and
there exists some λ such that (γ1, γ2) is a solution of the system (8) with µ= 0.

Remark. If we apply a rotation through θ to a Legendre curve γ that is a solution
of (8) with parameters (λ, µ), the new Legendre curve is a solution of the same
equation with parameters (λ− (n + 1)θ, µ). The corresponding immersions given
in Corollary 3.2 are related by φ̃= eiθφ and are therefore congruent. By choosing θ
appropriately, then, we can assume that λ=π ; that is, it suffices (up to congruence)
to consider solutions of the one-parameter family of equations

(9) (γ ′

jγ j )(t)= (−1) j−1i eiµt γ 1(t)n1+1 γ 2(t)n2+1, with µ ∈ R, j = 1, 2.

Proof of Corollary 3.2. We know from Proposition 2.4 that φ is C-minimal if and
only if 1βφ = 0, where βφ is given by (6). So we must compute the Laplacian of
βφ . We use the orthonormal frame (7) and after a long but direct computation we
obtain

(10) 1βφ =
1

|γ ′|2

(
∂2βφ

∂s2 +
d
ds

(
log

|γ1|
n1 |γ2|

n2

|γ ′|

)
∂βφ

∂s

)
+
11βψ1

|γ1|2
+
12βψ2

|γ2|2
,

where the 1i are the Laplace operators in (Ni , gi ).
The assumptions of the Corollary 3.2 imply that 11βψ1 =12βψ2 = 0 again by

Proposition 2.4. So φ is C-minimal if and only if

(11)
∂2βφ

∂s2 +
d
ds

(
log

|γ1|
n1 |γ2|

n2

|γ ′|

)
∂βφ

∂s
= 0.

Since we want φ to be regular, we impose that γ1(0) and γ2(0) not vanish (see
after statement of Theorem 3.1). Up to a reparametrization, we can assume that γ
satisfies |γ ′(t)| = |γ1(t)|n1 |γ2(t)|n2 . Thus (11) becomes

∂2βφ

∂t2 = 0.
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This means that βφ(t, p, q)= f (p, q)+t g(p, q), for certain functions f, g defined
on N1 × N2. Using (6), we obtain that g(p, q) is constant and that

(12) (βγ + n1 arg γ1 + n2 arg γ2)(t)= λ+µt, with λ,µ ∈ R.

The definition of the Legendrian angle βγ of γ is given, in particular, by

eiβγ =
1

|γ ′|
(γ1γ

′

2 − γ2γ
′

1).

Using this, it is easy to rewrite (12) as

γ ′

1γ 1 = −γ ′

2γ 2 = − ei(λ+µt) γ
n1+1
1 γ

n2+1
2 ,

which is exactly (8).
Finally, by Proposition 2.2, φ is minimal if and only if βφ is constant. This is

equivalent to βψ1 , βψ2 being constant (i.e., the ψi are minimal, again by the same
proposition) and βγ +n1 arg γ1 +n2 arg γ2 is constant. But this corresponds to the
case µ= 0 in (12) and so to the case µ= 0 in (8). �

It is difficult to describe the general solution of (9). However it is an exercise to
check that for any δ ∈ (0, π/2) the Legendre curve

(13) γδ(t)=
(
cδ exp(isn1+1

δ cn2−1
δ t), sδ exp(−isn1−1

δ cn2+1
δ t)

)
,

satisfies (9) for µ = sn1−1
δ cn2−1

δ

(
(n1 + 1)s2

δ − (n2 + 1)c2
δ

)
, where cδ = cos δ and

sδ = sin δ. This value of µ vanishes if and only if tan2 δ = (n2+1)/(n1+1). In this
way we are able to obtain an explicit family of examples:

Corollary 3.3. Let ψi : Ni → S2ni +1, for i = 1, 2, be C-minimal Legendrian
immersions of ni -dimensional Riemannian manifolds Ni , and let n = n1 + n2 + 1.
Given δ ∈ (0, π/2), set cδ = cos δ and sδ = sin δ. Then the map φδ : R× N1 × N2 →

S2n+1 defined by

φδ(t, p, q)=
(
cδ exp(isn1+1

δ cn2−1
δ t) ψ1(p) , sδ exp(−isn1−1

δ cn2+1
δ t) ψ2(q)

)
is a C-minimal Legendrian immersion.

In particular, using minimal Legendrian immersions ψ1, ψ2 and the value δ =

δ0 := arctan
√
(n2+1)/(n1+1), we obtain a minimal Legendrian immersion φδ0 :

R × N1 × N2 → S2n+1.

Proof. We simply remark that we do not need the orientability assumption be-
cause, in the case at hand, the Legendrian immersions φδ are easily seen to satisfy
divJH = 0 and thus are C-minimal (see Definition 2.3). �

To finish this section, we turn our attention to Equation (9) with µ = 0. We
observe that this is exactly equation (6) in [Castro and Urbano 2004, Lemma 2]
(in the notation of that paper, put p = n1 and q = n2). If we choose the initial
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conditions γ (0) = (cos θ, sin θ), with θ ∈ (0, π/2), we can make use of the study
made in that reference.

Lemma 3.4. Let γθ = (γ1, γ2) : I ⊂ R → S3 be the unique curve solution of

(14) γ ′

jγ j = (−1) j−1 i γ n1+1
1 γ

n2+1
2 , j = 1, 2,

satisfying the real initial conditions γθ (0)= (cos θ, sin θ), θ ∈ (0, π/2).

(1) Re(γ n1+1
1 γ

n2+1
2 )= cosn1+1 θ sinn2+1 θ .

(2) For j = 1, 2 and any t ∈ I , we have γ j (t)= γ j (−t).

(3) The functions |γ1| and |γ2| are periodic with the same period T = T (θ), and
γθ is a closed curve if and only if

θ ∈ (0, π/2) and
cosn1+1 θ sinn2+1 θ

2π

( ∫ T

0

dt
|γ1|2(t)

,

∫ T

0

dt
|γ2|2(t)

)
∈ Q2.

(4) If θ takes the value δ0 = arctan
√
(n2+1)/(n1+1) from Corollary 3.3, we

recover the curve of Equation (13), with δ = δ0.

Proof. (1) and (2) follow directly from parts 2 and 3 of [Castro and Urbano 2004,
Lemma 2]. To prove (3) we set f (θ)= cos2(n1+1) θ sin2(n2+1) θ , for θ ∈ (0, π/2). It
is easy to prove that f (θ)≤ (n1 + 1)n1+1(n2 + 1)n2+1/(n + 1)n+1 and the equality
holds if and only if θ = δ0. Using this in parts 4 and 5 of [Castro and Urbano 2004,
Lemma 2] completes the proof. �

4. H-minimal Lagrangian submanifolds in complex projective space

In Section 2 we explained that we can construct (minimal, H-minimal) Lagrangian
submanifolds in CPn by projecting (minimal, C-minimal) Legendrian submani-
folds in S2n+1 by the Hopf fibration 5 : S2n+1

→ CPn (Proposition 2.4). The aim
of this section is to analyze the Lagrangian immersions in CPn that we obtain just
by projecting the Legendrian ones deduced in Section 3.

First we mention that if n2 = 0 in Theorem 3.1, projection by the Hopf fibration
5 yields Examples 1 of [Castro et al. 2001]. In this sense, the construction given in
Theorem 3.1 can be considered as a generalization of the family introduced in that
reference. Some applications of our construction of Theorem 3.1 when n = 3 have
been used recently in [Montealegre and Vrancken 2006] to the study of minimal
Lagrangian submanifolds in CP3.

The Legendrian immersions described in Corollary 3.2 provide new examples
of Lagrangian H-minimal immersions in CPn when we project them via 5. If
we consider the case n2 = 0 (so n1 = n − 1) in the minimal case of Corollary
3.2, we recover (by projecting via the Hopf fibration 5) the minimal Lagrangian
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submanifolds of CPn described in [Castro et al. 2002, Proposition 6], although we
used there a unit speed parametrization for γ .

We write in more detail what we obtain with this procedure if we consider the
special case coming from Corollary 3.3.

Corollary 4.1. Let ψi : Ni → S2ni +1, for i = 1, 2, be C-minimal Legendrian
immersions of ni -dimensional Riemannian manifolds Ni , and let n = n1 + n2 + 1.
Suppose δ ∈ (0, π/2). Then the map 8δ : S1

× N1 × N2 → CPn given by

8δ(eis, p, q)=
[(

cos δ exp(is sin2 δ)ψ1(p), sin δ exp(−is cos2 δ)ψ2(q)
)]

is an H-minimal Lagrangian immersion. 8δ is minimal if and only ifψ1 andψ2 are
minimal and tan2 δ = (n2+1)/(n1+1). (Recall that the brackets denote the image
under 5.)

Proof. We consider the C-minimal Legendrian immersions

φδ : R × N1 × N2 → S2n+1

given in Corollary 3.3. Projecting via the Hopf fibration 5 : S2n+1
→ CPn and

using Proposition 2.4 we conclude that

5 ◦φδ : R × N1 × N2 → CPn

is a one-parameter family of H-minimal Lagrangian immersions. We study when
5 ◦φδ is periodic in its first variable. It is easy to see that there exists A > 0 such
that (5◦φδ)(t + A, p, q)= (5◦φδ)(t, p, q), ∀(t, p, q) ∈ R× N1 × N2 if and only
if there exists θ ∈ R satisfying

exp(isn1+1
δ cn2−1

δ A)= eiθ
= exp(−isn1−1

δ cn2+1
δ A).

We deduce that the smallest period A must equal A = 2π/(sn1−1
δ cn2−1

δ ). Applying
the change of variables

s 7→ t = s/(sn1−1
δ cn2−1

δ )

for s ∈ [0, 2π ], the equation for the Legendre curve γδ of (13) becomes

γδ(s)=
(
cδ exp(is2

δ s), sδ exp(−ic2
δ s)

)
, s ∈ [0, 2π ],

which leads to the expression of 8δ.
We conclude the proof by observing that 5 ◦ φδ is minimal if and only if φδ is

minimal (see Section 2) and using Corollary 3.3 again. �

We get H-minimal Lagrangian embeddings as a particular case:
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Corollary 4.2. Let δ∈ (0, π/2) and n = n1+n2+1. The immersion8δ of Corollary
3.3, where ψi , for i = 1, 2, is the totally geodesic Legendrian embedding of Sni

into S2ni +1, gives rise to an H-minimal Lagrangian embedding

(eis, x, y) 7→
[(

cos δ exp(is sin2 δ)x, sin δ exp(−is cos2 δ)y
)]

of the quotient (S1
×Sn1 ×Sn2)/(Z2×Z2) into CPn , the action of Z2 × Z2 being

generated by the involutions (eis,x,y) 7→(−eis,−x,y), (eis, x, y) 7→(−eis, x,−y).

Proof. Consider the H-minimal Lagrangian immersion8δ : S1
×Sn1 ×Sn2 → CPn

defined by

8δ(eis, x, y)=
[(

cos δ exp(i sin2 δ s) x, sin δ exp(−i cos2 δ s) y
)]
.

Take (eis, x, y), (ei ŝ, x̂, ŷ) ∈ S1
×Sn1 ×Sn2 . Then 8δ(eis, x, y)=8δ(ei ŝ, x̂, ŷ) if

and only if there exists θ ∈ R such that

(15) x̂ = exp
(
i(θ + sin2 δ(s − ŝ))

)
x, ŷ = exp

(
i(θ − cos2 δ(s − ŝ))

)
y.

Since some coordinate of x ∈ Sn1 and y ∈ Sn2 is nonzero, we deduce that

(16)
ε1 := exp

(
i(θ + sin2 δ(s − ŝ))

)
= ±1,

ε2 := exp
(
i(θ − cos2 δ(s − ŝ))

)
= ±1.

We distinguish two cases:

(i) ε1 = ε2: From (16) we get ei ŝ
= eis ; using (15) we obtain x̂ = x , ŷ = y if

ε1 = ε2 = 1 or x̂ = −x , ŷ = −y if ε1 = ε2 = −1. In either case (ei ŝ, x̂, ŷ) and
(eis, x, y) are equivalent under the Z2 × Z2 action.

(ii) ε1 = −ε2: From (16) we get ei ŝ
= −eis and using (15) we obtain that either

x̂ = x and ŷ =−y or x̂ =−x and ŷ = y. Again we see that (ei ŝ, x̂, ŷ) and (eis, x, y)
are equivalent under the Z2 × Z2 action. �

If tan2 δ= (n2+1)/(n1+1) the minimal Lagrangian embedding of Corollary 4.2
admits as a special case (n2 = 0) the example (S1

× Sn−1)/Z2 → CPn studied in
[Naitoh 1981].

Remark 4.3. As can easily be checked, the action of Z2 × Z2 on S1
× Sn1 × Sn2

preserves orientation (and hence the quotient is an orientable manifold) if and only
if both n1 and n2 are odd.

To conclude this section, we use the information given by Lemma 3.4 on the
solutions of equation (9) with µ= 0.

Assume θ ∈ (0, π/2) and let γθ be the only solution of (14) satisfying γθ (0) =

(cos θ, sin θ). Consider the C-minimal Legendrian immersions

φθ : I × N1 × N2 → S2n+1
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constructed with γθ . Projecting by the Hopf fibration 5 : S2n+1
→ CPn and using

Proposition 2.4 we obtain a one-parameter family

5 ◦φθ : I × N1 × N2 → CPn

of H-minimal Lagrangian immersions.
Lemma 3.4(3) tells us when γθ is a closed curve, but now we want to find when

5◦φθ is periodic of period T , say, in its first variable. Write γθ = (ρ1eiν1, ρ2eiν2);
then ρi (t + T )= ρi (t) for i = 1, 2. It is not hard to deduce that there exists A > 0
such that (5 ◦φθ )(t + A, p, q)= (5 ◦φθ )(t, p, q) if and only if there exist ν ∈ R

and m ∈ Z satisfying

(17) eiν j (t+mT )
= eiνeiν j (t), j = 1, 2

(and then A = mT ). From (14) we can deduce that

(18) ρ2
j ν

′

j = (−1) j−1cn1+1
θ sn2+1

θ , j = 1, 2.

Then it is easy to check that ν j (t + mT ) = ν j (t)+ mν j (T ), j = 1, 2, and (17) is
equivalent to eimν j (T ) = eiν , j = 1, 2. This means that (ν2(T )− ν1(T ))/2π must
be a rational number. In view of (18), this implies that θ lies in

0 :=

{
α ∈

(
0,
π

2

)
:

cosn1+1 α sinn2+1 α

2π

∫ T

0

dt
|γ1|2(t)|γ2|2(t)

∈ Q

}
.

Hence:

Corollary 4.4. For θ ∈ 0 and fixed C-minimal Legendrian immersions ψi : Ni →

S2ni +1, i = 1, 2, we obtain from φθ a one-parameter family of H-minimal La-
grangian immersions

8θ : S1
× N1 × N2 → CPn, n = n1 + n2 + 1, θ ∈ 0.

In particular, 8θ is minimal if and only if ψ1 and ψ2 are.

5. H-minimal Lagrangian cones in complex Euclidean space

Given a Legendrian immersion φ : Mn
→ S2n+1, the cone with link φ in Cn+1 is

the map C(φ) : R × Mn
→ Cn+1 given by

(s, p) 7→ s φ(p).

C(φ) is a Lagrangian immersion with singularities at s = 0.
M. Haskins [2004b; 2004a] has studied in depth special Lagrangian cones using

the fact that φ is minimal if and only if C(φ) is minimal. Following a reasoning
similar to Haskin’s, a straightforward computation leads to the next result.
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Proposition 5.1. Let φ : Mn
→ S2n+1 be a Legendrian immersion of an oriented

manifold M and C(φ) : R× M → Cn+1 the cone with link φ. Then φ is C-minimal
if and only if C(φ) is H-minimal.

Thanks to Proposition 5.1 we have a fruitful and simple construction method for
examples of H-minimal Lagrangian cones in Cn+1 using the C-minimal Legendrian
immersions described in Section 3.

6. The complex hyperbolic case

In this section we summarize the analogous results when the ambient space is
complex hyperbolic space. We omit proofs.

Let Cn+1
1 be complex Euclidean space Cn+1 endowed with the indefinite metric

〈 , 〉 = Re( , ), where

(z, w)=

n∑
i=1

ziwi − zn+1wn+1

for z, w ∈ Cn+1, here z stands for the conjugate of z. The Liouville 1-form is
given by 3z(v) = 〈v, J z〉, for all z ∈ Cn+1 and all v ∈ TzCn+1, and the Kähler
2-form is ω = d3/2. We denote by H2n+1

1 the anti-de Sitter space, defined as the
hypersurface of Cn+1

1 given by

H2n+1
1 = {z ∈ Cn+1 / (z, z)= −1},

and by 5 : H2n+1
1 → CHn , 5(z)= [z], the Hopf fibration of H2n+1

1 onto complex
hyperbolic space CHn . The metric, complex structure and Kähler two-form in CHn

are written 〈 , 〉, J and ω. This metric has constant holomorphic sectional curvature
−4. We also denote by 3 the restriction to H2n+1

1 of the Liouville 1-form of Cn+1
1 .

Thus3 is the contact 1-form of the canonical (indefinite) Sasakian structure on the
anti-de Sitter space H2n+1

1 . An immersion φ : Mn
→ H2n+1

1 of an n-dimensional
manifold M is said to be Legendrian if φ∗3 ≡ 0. So φ is isotropic in Cn+1

1 ,
that is, φ∗ω ≡ 0. In particular, the normal bundle T ⊥M has the decomposition
J (TM) ⊕ span {Jφ}. This means that φ is horizontal with respect to the Hopf
fibration 5 : H2n+1

1 → CHn , and hence 8 = 5 ◦ φ : Mn
→ CHn is a Lagrangian

immersion and the induced metrics on Mn by φ and 8 are the same.
It is easy to check that Jφ is a totally geodesic normal vector field, so the second

fundamental forms of φ and 8 are related by

5∗(σφ(v,w))= σ8(5∗v,5∗w) for all v,w ∈ TM.

Thus the mean curvature vector H of φ satisfies 〈H, Jφ〉 = 0. In particular, φ :

Mn
→ H2n+1

1 is minimal if and only if 8=5 ◦φ : Mn
→ CHn is minimal.
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In this way, we can construct (minimal) Lagrangian submanifolds in CHn by
projecting (minimal) Legendrian manifolds in H2n+1

1 via the Hopf fibration 5.
Let � be the complex n-form on H2n+1

1 given by

�z(v1, . . . , vn)= detC {z, v1, . . . , vn}.

If φ : Mn
→ H2n+1

1 is a Legendrian immersion of a manifold M , then φ∗� is a
complex n-form on M . In the following result we analyze this n-form φ∗�.

Lemma 6.1. If φ : Mn
→ H2n+1

1 is a Legendrian immersion of a manifold M , then

(19) ∇(φ∗�)= αH ⊗φ∗�,

where αH is the one-form on M defined by αH (v)= n i〈H, Jv〉 and H is the mean
curvature vector of φ. Consequently, M is orientable if φ is minimal.

Suppose that our Legendrian submanifold M is oriented. Consider the well
defined map β : Mn

→ R/2πZ given by

eiβ(p)
= (φ∗�)p(e1, . . . , en)

where {e1, . . . , en} is an oriented orthonormal frame in Tp M . We will call β the
Legendrian angle map of φ. As a consequence of (19) we obtain

J∇β = nH,

and so we deduce:

Proposition 6.2. Let φ : Mn
→ H2n+1

1 be a Legendrian immersion of an oriented
manifold M. Then φ is minimal if and only if the Legendrian angle map β of φ is
constant.

In this context we can also consider contact minimal (or briefly C-minimal)
Legendrian submanifolds of H2n+1

1 as critical points of the volume functional for
compactly supported variations with variational vector field a (normal) contact field
ξ f = J∇ f −2 f Jφ, where f lies in C∞

0 (M) and ∇ f is the gradient of f respect to
the induced metric. Such fields are also characterized by the equation divJH = 0,
and we have a counterpart to Proposition 2.4:

Proposition 6.3. Let φ : Mn
→ H2n+1

1 be a Legendrian immersion of a Riemannian
manifold M.

(1) If M is oriented, φ is C-minimal if and only if the Legendrian angle β of φ is
a harmonic map.

(2) φ is C-minimal if and only if 8=5 ◦φ : Mn
→ CHn is H-minimal.
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The identity component of the indefinite special orthogonal group will be de-
noted by SO1

0(m). So SO(n1 + 1)× SO1
0(n2 + 1) acts on H2n+1

1 ⊂ Cn+1, where
n = n1 + n2 + 1, as a subgroup of isometries:

(20) (A1, A2) ∈ SO(n1 + 1)× SO1
0(n2 + 1) 7→

(
A1

A2

)
∈ SO1

0(n + 1).

We now state the main results of Section 3 adapted to this context. We denote
by RHn

=
{
(y1, . . . , yn+1) ∈ Rn+1

:
∑n

i=1 y2
i − y2

n+1 = −1, yn+1 > 0
}

the real
hyperbolic space of dimension n.

Theorem 6.4. Let n, n1, n2 be nonnegative integers with n = 1 + n1 + n2. Let ψ1 :

N1 → S2n1+1
⊂ Cn1+1 and ψ2 : N2 → H

2n2+1
1 ⊂ Cn2+1 be Legendrian immersions

of ni -dimensional oriented Riemannian manifolds (Ni , gi ). Suppose γ = (γ1, γ2) :

I → H3
1 ⊂ C2 is a Legendre curve. The map

φ : I × N1 × N2 → H2n+1
1 ⊂ Cn+1

= Cn1+1
× Cn2+1

defined by

(21) φ(s, p, q)=
(
γ1(s)ψ1(p), γ2(s)ψ2(q)

)
is a Legendrian immersion in H2n+1

1 whose induced metric is

(22) 〈 , 〉 = |γ ′
|
2ds2

+ |γ1|
2g1 + |γ2|

2g2

and whose Legendrian angle map is

(23) βφ ≡ n1π +βγ + n1 arg γ1 + n2 arg γ2 +βψ1 +βψ2 mod 2π,

where βγ , βψ1 and βψ2 are the Legendre angle maps of γ , ψ1 and ψ2.
If n1, n2 ≥2, a Legendrian immersion Mn

→H2n+1
1 is invariant under the action

(20) of SO(n1+1)×SO1
0(n2+1) if and only if it is locally of the form (21), where ψ1

is the totally geodesic Legendrian embedding of Sn1 in S2n1+1 and ψ2 is the totally
geodesic Legendrian embedding of RHn2 in H

2n2+1
1 That is, such immersions are

locally congruent to φ(s, x, y)= (γ1(s)x, γ2(s)y), where x ∈ Sn1 , y ∈ RHn2 .

Remark. If n2 = 0 in the theorem, we recover Examples 2 of [Castro et al. 2001]
by projection via the Hopf fibration 5 : H2n+1

1 → CHn . When n1 = 0 we obtain
Examples 3.

Corollary 6.5. Letψ1 : N1 → S2n1+1
⊂ Cn1+1 andψ2 : N2 → H

2n2+1
1 ⊂ Cn2+1 be C-

minimal Legendrian immersions of ni -dimensional oriented Riemannian manifolds
Ni , i = 1, 2, and let γ = (γ1, γ2) : I → H3

1 ⊂ C2 be a Legendre curve. As before,
set n = n1 + n2 + 1. Then the Legendrian immersion φ : I × N1 × N2 → H2n+1

1 of
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Theorem 6.4, given by

φ(t, p, q)=
(
γ1(t)ψ1(p), γ2(t)ψ2(q)

)
,

is C-minimal if and only if , up to congruences, there exists a real constant µ such
that (γ1, γ2) is a solution of the system of ordinary differential equations

(24) (γ ′

1γ 1)(t)= (γ ′

2γ 2)(t)= i eiµt γ 1(t)n1+1 γ 2(t)n2+1.

This Legendrian immersion φ is minimal if and only if ψ1 and ψ2 are minimal and
(γ1, γ2) is a solution of (24) with µ= 0.

If we consider the particular cases n2 = 0 and n1 = 0 in the minimal case
of Corollary 6.5, we recover (projecting via the Hopf fibration 5) the minimal
Lagrangian submanifolds of CHn described in [Castro et al. 2002, Propositions 3
and 5], although we used there a unit speed parametrization for γ .

From these two last results we can get similar examples to the ones given in
Section 4 in the projective case. Concretely, it is easy to check that for any ρ > 0
the Legendre curve

(25) γρ(t)= (sρ exp(i sn1−1
ρ cn2+1

ρ t), cρ exp(i sn1+1
ρ cn2−1

ρ t)),

satisfies (24) for µ = sn1−1
ρ cn2−1

ρ

(
(n1 + 1)c2

ρ + (n2 + 1)s2
ρ

)
, where cρ = cosh ρ,

sρ = sinh ρ.
Hence an analogous reasoning to that in Corollary 4.1 yields following explicit

family of examples.

Corollary 6.6. Let ψ1 : N1 → S2n1+1
⊂ Cn1+1 and ψ2 : N2 → H

2n2+1
1 ⊂ Cn2+1 be

C-minimal Legendrian immersions of ni -dimensional Riemannian manifolds Ni ,
i = 1, 2, and let n = n1 + n2 + 1. Given ρ > 0, set cρ = cosh ρ and sρ = sinh ρ.
Then the map 8ρ : S1

× N1 × N2 → CHn given by

8ρ(ei t , p, q)=
[
(sρ exp(i t c2

ρ) ψ1(p) , cρ exp(i t s2
ρ) ψ2(q))

]
is a H-minimal Lagrangian immersion.

A particular case of Corollary 6.6 gives a one-parameter family of H-minimal
Lagrangian embeddings.

Corollary 6.7. Let ρ > 0 and n = n1+n2+1. The immersion 8ρ of Corollary 6.6,
where ψ1 (resp. ψ2) is the totally geodesic Legendrian embedding of Sn1 into
S2n1+1 (resp. of RHn2 into H

2n2+1
1 ), provides a H-minimal Lagrangian embedding

(ei t , x, y) 7→
[
(sρ exp(i t c2

ρ) x , cρ exp(i t s2
ρ) y)

]
of the quotient of S1

× Sn1 × RHn2 by the action of the group Z2 into CHn , the
action of Z2 being generated by the involution (eis, x, y) 7→ (−eis,−x, y).
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We finally turn our attention to (24) with µ= 0. We observe that this is exactly
equation (3) in [Castro and Urbano 2004, Lemma 2] (with p = n1 and q = n2). If
we choose the initial conditions γ (0) = (sinh %, cosh %), % > 0, we can make use
of the study made in that paper.

Lemma 6.8. Let γ% = (γ1, γ2) : I ⊂ R → H3
1 be the unique curve solution of

γ ′

jγ j = i γ n1+1
1 γ

n2+1
2 , j = 1, 2,

satisfying the real initial conditions γ%(0)= (sinh %, cosh %), % > 0.

(1) Re(γ n1+1
1 γ

n2+1
2 )= sinhn1+1% coshn2+1%.

(2) For j = 1, 2 and any t ∈ I , we have γ j (t)= γ j (−t).

(3) The curves γ1 and γ2 are embedded and can be parametrized by γ j (t) =

ρ j (t)eiθ j (t), where we have set (with c% = cosh %, s% = sinh %)

ρ1(t)=

√
t2 + s2

%,

θ1(t)=

∫ t

0

sn1+1
% cn2+1

% x dx

(x2 + s2
%)

√
(x2 + s2

%)
n1+1(x2 + c2

%)
n2+1 − s2(n1+1)

% c2(n2+1)
%

,

ρ2(t)=

√
t2 + c2

%,

θ2(t)=

∫ t

0

sn1+1
% cn2+1

% x dx

(x2 + c2
%)

√
(x2 + s2

%)
n1+1(x2 + c2

%)
n2+1 − s2(n1+1)

% c2(n2+1)
%

.

In this way, the immersions φ% constructed with the curves γ% of Lemma 6.8
induce a one-parameter family of H-minimal Lagrangian immersions

8% : R × N1 × N2 → CHn, n = n1 + n2 + 1, % > 0.

In particular,8% is minimal if and only ifψ1 andψ2 are minimal. We conclude with
the following particular case, which leads to a one-parameter family of minimal
Lagrangian embeddings.

Corollary 6.9. Let % > 0 and set c% = cosh %, s% = sinh %. Then

R × Sn1 × RHn2 → CHn, n = n1 + n2 + 1,

(s, x, y) 7→ [(
√

s2 + s2
% exp(i θ1(s))x ,

√
s2 + c2

% exp(i θ2(s))y)],

where the θi (s) are given in Lemma 6.8(3), is a minimal Lagrangian embedding.
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