AN EICHLER–ZAGIER MAP FOR JACOBI FORMS OF
HALF-INTEGRAL WEIGHT

M. MANICKAM AND B. RAMAKRISHNAN
We construct an Eichler–Zagier map for Jacobi cusp forms of half-integral weight. As an application, we show there exists no Hecke-equivariant map from index 1 to index p (p prime), when the weight is half-integral.

The aim of this paper is to generalize the Eichler–Zagier map for Jacobi forms of half-integral weight, which is formally defined as

\[
\mathcal{F}_m : \sum_{0 > D, r \in \mathbb{Z}} c(D, r) e\left(\frac{r^2 - D}{4m} \tau + rz\right) \mapsto \sum_{0 > D \in \mathbb{Z}} \left(\sum_{r \equiv D \pmod{4m}} c(D, r) \right) e(|D|\tau).
\]

We prove that it is a Hecke-equivariant map from Jacobi cusp forms of weight $k + \frac{1}{2}$ on $\Gamma_0(4M)$, index m and character χ (k and χ are even) into a certain subspace of cusp forms of weight k on $\Gamma_1(16m^2M)$. First we derive this assertion for $m = 1$ by proving that \mathcal{F}_1 maps respective Poincaré series. For the general index m, we apply certain operator I_m (see (2) for the definition) which changes the index m into index 1 and then apply \mathcal{F}_1 to obtain the required mapping property.

In order to give a Maass relation for each prime p for Siegel modular forms of half-integral weight and degree two, Y. Tanigawa [1986] obtained a Hecke-equivariant map from the space of index 1 Jacobi forms of half-integral weight into certain modular forms of integral weight and he constructed the map V_{p^2} from the space of Jacobi forms of index 1 into index p^2. As a natural question, he asked the existence of a connection between Jacobi forms of index 1 and index p (p is a prime) in the case of half-integral weight. We show that there is no such Hecke-equivariant map as an application of the nature of the map \mathcal{F}_m.

Notation and background. Throughout this paper, unless otherwise specified, the letters k, m, M, N will stand for natural numbers and τ for an element of \mathcal{H}, the complex upper half-plane.

MSC2000: primary 11F11, 11F50; secondary 11F37.

Keywords: Modular forms, Siegel modular forms, Jacobi forms.
For a complex number \(z \), we write \(\sqrt{z} \) for the square root with argument in \((-\pi/2, \pi/2) \), and we set \(z^{k/2} = (\sqrt{z})^k \) for any \(k \in \mathbb{Z} \).

For integers \(a, b \), let \(\left(\frac{a}{b} \right) \) denote the generalized quadratic residue symbol. Let \(S_k(N, \psi) \) denote the space of cusp forms of weight \(k \) and level \(N \) with character \(\psi \).

We write the Fourier expansion of a modular form \(f \) as
\[
 f(\tau) = \sum_{n \geq 1} a_f(n) e^{2\pi i n \tau}.
\]

For \(z \in \mathbb{C} \) and \(c, d \in \mathbb{Z} \), we put \(e^c(z) = e^{2\pi i cz/d} \). We also write \(e^c(z) = e_c(z), e^1(z) = e(z) \). The symbol \(a \equiv \square (b) \) means that \(a \) is a square modulo \(b \). For two forms \(f \) and \(g \) (either in the space of modular forms of integral weight or in the space of Jacobi forms of half-integral weight), \(\langle f, g \rangle \) denotes the Petersson inner product of \(f \) and \(g \). For a Dirichlet character \(\psi \) modulo \(4m \), the twisting operator on modular forms of integral weight is given by
\[
 (1) \quad R_\psi = \frac{1}{W_\psi} \sum_{u \mod 4m} \overline{\psi}(u) \begin{pmatrix} 4m & u \\ 0 & 4m \end{pmatrix},
\]
where \(W_\psi = \sum_{u \mod (4m)} \psi(u) e(u/4m) \). It follows that \(\langle f \mid R_\psi, g \rangle = \langle f, g \mid R_\psi \rangle \), where \(f, g \in S_k(\Gamma_1(16mM)) \) and
\[
 R_\psi : \sum_{n \geq 1} a_f(n) e(n \tau) \mapsto \sum_{n \geq 1} \overline{\psi}(n) a_f(n) e(n \tau).
\]

For a natural number \(d \), the operators \(U(d) \) and \(B(d) \) are defined on formal power series by
\[
 U(d) : \sum_{n \geq 1} a(n) e(n \tau) \mapsto \sum_{n \geq 1} a(nd) e(n \tau),
\]
\[
 B(d) : \sum_{n \geq 1} a(n) e(n \tau) \mapsto \sum_{n \geq 1} a(n) e(nd \tau).
\]

For \(n \geq 1 \), let \(P_n \) denote the \(n \)-th Poincaré series in \(S_k(N, \psi) \) whose \(\ell \)-th Fourier coefficient is given by
\[
 g_n(\ell) = 2 \pi i^{k-1} n^{(k-1)/2} \sum_{c \geq 1, \ N|c} K_{N, \chi}(n, \ell; c) J_{k-1} \left(\frac{4 \pi \sqrt{n \ell}}{c} \right),
\]
where \(\delta(\ell, n) \) is the Kronecker-delta function, \(J_{k-1}(x) \) is the Bessel function of order \(k-1 \) and \(K_{N, \chi}(n, \ell; c) \) is the Kloosterman sum defined by
\[
 K_{N, \chi}(n, \ell; c) = \frac{1}{c} \sum_{dd^{-1}=1} \overline{\psi}(d) e_c(n d^{-1} + \ell d).
\]
1. A certain space of cusp forms of integral weight

For $m, M \in \mathbb{N}$, let $\chi \mod M$ be a Dirichlet character and $\chi_m(n) = \left(\frac{n}{m}\right)$ be the quadratic character modulo m or $4m$ according as $m \equiv 1$ or $m \equiv 3 \pmod{4}$.

Let

\[
S = \{ \ell \in \mathbb{N} : 1 \leq \ell \leq 4m, \ell \equiv 0 \pmod{4m} \},
\]

\[
S^* = \{ \ell \in S : p^2 \mid 4mM \text{ implies } p \nmid \ell, \text{ with } p \text{ prime} \}.
\]

If $\ell \in S$, define

\[
S_k^{\square, \ell}(16mM, \chi \chi_m) := S_k(16mM, \chi \chi_m) \mid R_{\ell},
\]

where

\[
R_{\ell} : \sum_{n \geq 1} a(n) e(n\tau) \mapsto \sum_{n \geq 1} a(n) e(n\tau). \quad -n \equiv \ell \pmod{4m}
\]

For $\ell \in S$, let $t = (\ell, 4m)$. A formal computation shows that

\[
R_{\ell} = U(t) R(\ell) B(t),
\]

with

\[
R(\ell) = \frac{1}{\varphi(4m/t)} \sum_{\psi \mod 4m/t} \overline{\psi}(-\ell/t) R_{\psi},
\]

where $\varphi(n)$ is the Euler totient function. Using the mapping properties of $U(t)$, R_{ψ} and $B(t)$ in the said order, we verify that $S_k^{\square, \ell}(16mM, \chi \chi_m)$ is a subspace of $S_k(\Gamma(1, 16m^2M))$. Finally we define

\[
S_k^{\square}(16mM, \chi \chi_m) = \sum_{\ell \in S} S_k^{\square, \ell}(16mM, \chi \chi_m).
\]

2. Jacobi forms of half-integral weight

For $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{R})$, let $\tilde{\alpha} = (\alpha, \phi(\tau))$, where $\phi(\tau)$ is a holomorphic function on \mathbb{H} such that $\phi^2(\tau) = t(c\tau + d)$, with $t \in \{1, -1\}$. Then the set $G = \{ \tilde{\alpha} : \alpha \in \text{SL}_2(\mathbb{R}) \}$ is a group with group law

\[
(\alpha_1, \phi_1(\tau))(\alpha_2, \phi_2(\tau)) = (\alpha_1\alpha_2, \phi_1(\alpha_2\tau)\phi_2(\tau)).
\]

If $\alpha \in \Gamma_0(4)$, set

\[
j(\alpha, \tau) = \left(\frac{\tau}{d}\right) \left(\frac{-4}{d}\right)^{-1/2} \left(c\tau + d\right)^{1/2}.
\]

We set $\alpha^* = (\alpha, j(\alpha, \tau))$; the association $\alpha \mapsto \alpha^*$ is an injective map from $\Gamma_0(4)$ into G. Let G^j be the set of all triplets $[\tilde{\alpha}, X, s]$, $\alpha \in \text{SL}_2(\mathbb{R})$, $X \in \mathbb{R}^2$, $s \in \mathbb{C}$, $|s| = 1$. Then G^j is a group, with group law given by

\[
[\tilde{\alpha_1}, X_1, s_1][\tilde{\alpha_2}, X_2, s_2] = \left[\tilde{\alpha_1}\tilde{\alpha_2}, X_1\alpha_2 + X_2, s_1s_2 \cdot \det\left(\begin{pmatrix} X_1 & \alpha_2 \\ & X_2 \end{pmatrix}\right)\right].
\]
The stroke operator \(|_{k+1/2,m} \) is defined on functions \(\phi : \mathcal{H} \times \mathbb{C} \to \mathbb{C} \) by
\[
\phi |_{k+1/2,m}[\tilde{\alpha},X,s] = \delta^m \phi(\tau) - 2k - 1 e^m \left(\frac{-e(z + \lambda \tau + \mu)^2}{\epsilon \tau + \delta} + 2\lambda^2 \tau + 2\lambda z + \lambda \mu \right) \phi \left(\frac{a\tau + b}{c\tau + d}, \frac{z + \lambda \tau + \mu}{c\tau + d} \right),
\]
where \([\tilde{\alpha},X,s] \in G^J\).

The Jacobi group for \(\Gamma_0(4N) \) is a subgroup \(\Gamma_0^J(4N)^* \) of \(G^J \), given by
\[
\Gamma_0^J(4N)^* = \{[\alpha^*,X] : \alpha \in \Gamma_0(4N), X \in \mathbb{Z}^2\}.
\]
A Jacobi form \(\phi(\tau, z) \) of weight \(k + \frac{1}{2} \) and index \(m \) for the group \(\Gamma_0(4M) \), with character \(\chi \), is a holomorphic function \(\phi : \mathcal{H} \times \mathbb{C} \to \mathbb{C} \) satisfying the following conditions:

(i) \(\phi |_{k+1/2,m}[\gamma^*,X](\tau, z) = \chi(d) \phi(\tau, z) \), where \(\chi \) is a Dirichlet character mod \(4M \) and \(\gamma = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \Gamma_0(4M) \).

(ii) For every \(\alpha = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \text{SL}_2(\mathbb{Z}) \), the image \(\phi |_{k+1/2,m}[\tilde{\alpha},(0,0)](\tau, z) \) has a Fourier development of the form
\[
\sum_{n,r \in \mathbb{Q}, \frac{r^2}{4} \leq 4nm} c_{\alpha}(n,r) e(n\tau + rz),
\]
where the sum ranges over rational numbers \(n, r \) with bounded denominators subject to the condition \(r^2 \leq 4nm \).

Further, if \(r^2 < 4nm \) whenever \(c_{\alpha}(n,r) \neq 0 \), then \(\phi \) is called a Jacobi cusp form. We denote by \(J_{k+1/2,m}(4M,\chi) \) the space of Jacobi forms of weight \(k + \frac{1}{2} \), index \(m \) for \(\Gamma_0(4M) \) with character \(\chi \), and by \(J_{k+1/2,m}^{\text{cusp}}(4M,\chi) \) the subspace of \(J_{k+1/2,m}(4M,\chi) \) consisting of Jacobi cusp forms. A Jacobi form \(\phi \) has a Fourier expansion of the form
\[
\phi(\tau, z) = \sum_{n,r \in \mathbb{Z}, \frac{r^2}{4} \leq 4nm} c(n,r) e(n\tau + rz).
\]

Since \(c(n,r) = c(n',r') \) if \(r'^2 - 4n'm = r^2 - 4nm \) and \(r' \equiv r \pmod{2m} \), we write the Fourier expansion of \(\phi \) as
\[
\phi(\tau, z) = \sum_{D > 0, d \in \mathbb{Z}, D \equiv r^2 \pmod{4m}} c_{\phi}(D,r) e \left(\frac{r^2 - D}{4m} \tau + rz \right).
\]
Let $D < 0$ be a discriminant and r an integer modulo $2m$ with $D \equiv r^2 \pmod{4m}$. Then the (D, r)-th Poincaré series, denoted by $P_{(D, r)}$, is defined by

$$P_{(D, r)}(\tau, z) = \sum_{\gamma \in \Gamma_0(4M) \setminus \Gamma_0(4M)} \bar{\chi}(\gamma) e(n\tau + rz) \bigg|_{k+1/2,m} \gamma.$$

We state the following proposition without proof.

Proposition 2.1. The Poincaré series $P_{(D, r)}$ lies in $J_{k+1/2,m}^{\text{cusp}}(4M, \chi)$ and satisfies

$$\langle \phi, P_{(D, r)} \rangle = \alpha_{k, m} |D|^{-k+1} c_\phi(D, r),$$

for each $\phi \in J_{k+1/2,m}^{\text{cusp}}(4M, \chi)$, where $\alpha_{k, m} = \Gamma(k - 1) m^{k-3/2} / (2\pi^{k-1})$. It has a Fourier development of the form

$$P_{(D, r)}(\tau, z) = \sum_{0 \leq r', r' \in \mathbb{Z}, \frac{D'}{r'} = r \pmod{4m}} \left(g_{D, r}(D', r') + \bar{\chi}(-1) g_{D, r}(D', -r')\right) e\left(\frac{r'^2 - D'}{4m} \tau + r'z\right),$$

where $D = r^2 - 4mn$, $D' = r'^2 - 4mn'$, and $g_{D, r}(D', r')$ is given by

$$\delta_m(D, r, D', r') + i^{-k-3/2} \pi \sqrt{\frac{2}{m}} \left(\frac{D'}{D}\right)^{k/2} \sum_{c > 1 \pmod{4Mc}} H_{m, c, \chi}(D, r, D', r') J_k\left(\frac{\pi \sqrt{DD'}}{mc}\right),$$

with

$$\delta_m(D, r, D', r') = \begin{cases} 1 & \text{if } D' = D \text{ and } r' \equiv r \pmod{2m}, \\ 0 & \text{otherwise}. \end{cases}$$

and

$$H_{m, c, \chi}(D, r, D', r') = c^{-3/2} e^{-r'r'/(2mc)} \times \sum_{d, \lambda(c) \pmod{dd^{-1} \equiv 1(c)}} \bar{\chi}(d) \left(\frac{c}{d}\right) \left(\frac{-4}{d}\right)^{1/2} e_c \left(d^{-1} (m\lambda^2 + r\lambda + n) + dn' - \lambda r'\right).$$

3. The Eichler–Zagier map

First we consider the space $J_{k+1/2,1}^{\text{cusp}}(4M, \chi)$. Put $D = D_0 \ell^2$, $r = r_0 \ell$ in Proposition 2.1. In the Fourier coefficient of $P_{(D_0 \ell^2, r_0 \ell)}$, the Kloosterman-type sum is periodic as a function of ℓ of period $2c$. Hence, for any $h \pmod{2c}$, its Fourier transform (after replacing ℓ by ℓd and λ by λd) becomes

$$\frac{1}{2c^{5/2}} \sum_{\ell / (2c), \lambda(c)^*} \bar{\chi}(d) \left(\frac{c}{d}\right) \left(\frac{-4}{d}\right)^{1/2} \times e_{2c} \left(d(2\lambda^2 + 2r_0 \ell \lambda + 2n_0 \ell^2 + 2n - 2r \lambda - r_0 \ell r - h \ell)\right).$$
Since $4|c$, the sum over λ is nonzero only if $r_0 \ell \equiv r \pmod{2}$. Hence, the sum over λ becomes

$$\sum_{\lambda(c)} e_c(d\lambda^2) e_c(-d \left(\frac{r_0 \ell - r}{2} \right)^2).$$

Again, the fact that $4|c$ and $\gcd(c, d) = 1$ gives the identity

$$\frac{1}{\sqrt{2c}} \sum_{\lambda(c)} e_c(d\lambda^2) = \left(\frac{c}{d} \right) \left(-\frac{4}{d} \right)^{-1/2}.$$

Thus, the Fourier transform simplifies to

$$\frac{\sqrt{i}}{\sqrt{2c^2}} \sum_{(\ell(2c), d(c))^r} \overline{\chi}(d) e_{4c}(d(D_0 \ell^2 + D - 2h\ell)) = \frac{\sqrt{i}}{4\sqrt{2c^2}} \sum_{(\ell(2c), d(4c))^r} \overline{\chi}(d) e_{4c}(d(D_0 \ell^2 + D - 2h\ell)).$$

which is the Fourier transform of the corresponding Kloosterman sum of integral weight.

More precisely:

Theorem 3.1. The Eichler–Zagier map \mathcal{H}_1 maps $J_{k+1/2,1}^{\text{cusp}}(4M, \chi)$ into $S_k^\square(16M, \chi)$.

Proof. We shall prove that the (D, r)-th Fourier coefficient of $P(D_0 \ell^2, r_0 \ell)$ is equal (up to constant) $|D|$-th Fourier coefficient of $P(D_0 \ell^2)$. It is easy to see that

$$\delta_1(D_0 \ell^2, r_0 \ell, D, r) = \delta_{|D_0|\ell^2, |D|}.$$

We consider both the Kloosterman sums as periodic functions of period $2c$. The arguments put forth above shows that for each $c \geq 1$, with $4M|c$, the Fourier transform of $H_{1,c,\chi}(D_0 \ell^2, r_0 \ell, D, r)$ is equal to (up to the required constants) the Fourier transform of the Kloosterman sum (corresponding to integral weight) $K_{16M,\chi}(D_0 \ell^2, |D|; 4c)$. This proves the theorem. □

The index-changing operator I_m. If $\phi \in J_{k+1/2,m}^{\text{cusp}}(4M, \chi)$, define I_m by

$$ (2) \quad \phi \mid I_m(\tau, z) = \sum_{\lambda \pmod{m}} e(\lambda^2 \tau + 2\lambda z) \phi(m\tau, z + \lambda \tau). $$

Proposition 3.2. I_m maps $J_{k+1/2,m}^{\text{cusp}}(4M, \chi)$ into $J_{k+1/2,1}^{\text{cusp}}(4mM, \chi \chi_m)$. The Fourier development of $\phi \mid I_m$ is of the form

$$ \phi \mid I_m(\tau, z) = \sum_{0 < D, r \in \mathbb{Z}} \left(\sum_{D \equiv r^2 \pmod{4}} \sum_{c \in \mathbb{Z}/2m} D \equiv r^2 \pmod{2} \chi(D, s) \right) e \left(\frac{r^2 - D}{4} \tau + rz \right). $$
Proof. It is easy to see that
\[
\phi \mid I_m(\tau, z) = m^{-k/2-1/4} \sum_{\lambda \bmod m} \phi_1(\tau) \Delta_m(\lambda, 0)(\tau, z),
\]
where \(\phi_1(\tau) = \phi(\tau, z / \sqrt{m})\) and \(\Delta_m\) is the diagonal matrix \(\text{diag}(\sqrt{m}, 1/\sqrt{m})\).

The proposition now follows directly from the preceding expression. \(\square\)

Using the equality \(\mathcal{D}_m = I_m \mathcal{D}_1\), together with Theorem 3.1 and Proposition 3.2, we have:

Theorem 3.3. The map \(\mathcal{D}_m\) takes \(J^{\text{cusp}}_{k+1/2, m}(4M, \chi)\) into \(S_k(16mM, \chi\chi_m)\).

4. Half-integral weight Jacobi forms of index 1 and index \(p\)

In the case of integral weight Jacobi forms, the well-known map \(V_p\) is a Hecke-equivariant map from \(J_{k,1}\) into \(J_{k,p}\) (\(p\) is a prime). If we replace \(k\) by \(k+\frac{1}{2}\), then we have a Hecke-equivariant map \(V_p\) from \(J_{k+1/2,1}(4M)\) into \(J_{k+1/2,p}(4M)\), which was given by Tanigawa [1986]. Therefore, existence of a Hecke-equivariant map from index 1 into \(p\) in the case of half-integral weight Jacobi forms seems to be a natural question.

As an application of the map \(\mathcal{D}_m\), we show that there does not exist a Hecke-equivariant map from \(J^{\text{cusp}}_{k+1/2,1}(4)\) into \(J^{\text{cusp}}_{k+1/2,p}(4)\).

Let
\[
N = \begin{cases}
 p & \text{if } p \equiv 1 \pmod{4}, \\
 p^2 & \text{if } p \equiv 3 \pmod{4}.
\end{cases}
\]

Let \(\psi \pmod{N}\) be a primitive Dirichlet character such that \(\psi^2 = \chi_p\). Let \(R_\psi\) be the twisting operator defined as in (1). Then, \(R_\psi\) maps \(S_k(16N^2, \chi_p)\) into \(S_k(16N^2)\) and commutes with Hecke operators \(T_n\), \((n, p) = 1\). Further, if \(f \in S_k(16N^2, \chi_p)\), we have
\[
(f \mid R_\psi) \mid W_p = f \mid R_\psi,
\]
where \(W_p\) is the \(W\)-operator on \(S_k(16N^2)\) for the prime \(p\).

Case 1: \(p \equiv 3 \pmod{4}\). Let \(f \in S_k(4p, \chi_p)\) be a normalized Hecke eigenform. Since \(f \mid R_\psi \in S_k(4p^4)\) and it is an eigenform for all the Hecke operators and the \(W\) operators, it is a newform in \(S_k^{\text{new}}(4p^4)\). Hence, by the theory of newforms, it is not equivalent to a level-1 Hecke eigenform.

Case 2: \(p \equiv 1 \pmod{4}\). Let \(f \in S_k^{\text{new}}(4p, \chi_p)\) be a normalized Hecke eigenform. Then, \(f \mid R_\psi \in S_k^{\text{new}}(4p^2)\). Since \(f \mid R_\psi = S_k^{\text{new}}(4p^2)\), and \(\psi^2 = \overline{\psi}\) (as \(\psi^2\) is quadratic), we get \(f \mid R_\psi\) and \(f \mid R_{R_\psi} = R_{\psi'}\) are newforms in \(S_k^{\text{new}}(4p^2)\). Thus, the form \(f\) is not equivalent to a level-1 Hecke eigenform. Now, we let \(f \in S_k(p, \chi_p)\).
Arguments as above again show that \(f \) is not equivalent to a level-1 Hecke eigenform.

Thus, we conclude that a normalized Hecke eigenform in \(S_k(4p, \chi_p) \) is not equivalent to a normalized Hecke eigenform in \(S_k(4) \). In view of the mapping property proved in Theorem 3.3, we have proved:

Theorem 4.1. There is no Hecke-equivariant map from the space \(J_{k+1/2,1}^{\text{cusp}}(4) \) into the space \(J_{k+1/2,1}^{\text{cusp}}(4) \).

In this connection the following question seems natural.

What contribution do half-integral weight Jacobi forms of square-free index make to the construction of a “Maass space” (if one exists) for degree-2 Siegel modular forms of half-integral weight?

References

Received November 1, 2004.

M. M. ANICKAM

mmcmanickam@yahoo.com

DEPARTMENT OF MATHEMATICS

RKM VIVEKANANDA COLLEGE

MYLAPORE, CHENNAI 600 004

INDIA

B. RAMAKRISHNAN

ramki@mri.ernet.in

HARISH-CHANDRA RESEARCH INSTITUTE

CHHATNAG ROAD

JHUNSI, ALLAHABAD 211 019

INDIA