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Let (M, g) be a compact smooth Riemannian surface with boundary. In
this paper, we use blowing-up analysis to prove that some Moser–Trudinger
trace inequalities hold on certain function spaces, and that the extremal
functions exist in those function spaces without any additional hypothesis
on (M, g).

1. Introduction and main results

Let (M, g) be a compact smooth Riemannian surface, and H 1,2(M) the completion
of C∞(M) under the norm

‖u‖H1,2(M) =

( ∫
M
(|∇u|

2
+ |u|

2) dVg

)1/2

.

A result of N. Trudinger [1967] implies that there exists a constant α such that

sup
‖u‖H1,2(M)=1

∫
M

eαu2
dVg <+∞.

J. Moser proved the following theorems:

Theorem A [Moser 1970/71]. Let � be an open domain in Rn , n ≥ 2. There
exists a constant C which depends only on n such that if u is smooth, has compact
support contained in � and its gradient ∇u satisfies

∫
M |∇u|

ndx ≤ 1, then∫
�

eαn |u|
n/(n−1)

dx ≤ C |�|,

where αn = n(ωn−1)
1/n−1 and ωn−1 is the surface measure of the unit sphere in

Rn . If αn is replaced by any α > αn , the integral on the left-hand is still finite, but
can be made arbitrarily large by an appropriate choice of u.
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Theorem B [Moser 1970/71]. There exists an absolute constant c0 such that if u
is a smooth function on S2 with

∫
S2 |∇u|

2 d S = 1 and
∫

S2 u dVg = 0, then∫
S2

e4πu2
d S ≤ c0.

The constant 4π is the best possible in the same sense as αn in Theorem A.

Recall that Sobolev’s theorems, see e.g. [10], assert existence of imbedding
W 1,p

0 (�) → Lq(�) for 1 < p < n and W 1,p
0 (�) → C0(�) for p > n, where

1/q = 1/p −1/n. Thus Theorem A represents a sharp way to fill in the gap at the
critical exponent p = n. Theorem B plays the same role for the Sobolev theorems
on S2.

Moser’s work was extended in [Adams 1988; Fontana 1993; Nolasco and Taran-
tello 1998; Chang and Yang 1988; Ding et al. 1997]. Generally, the inequalities
obtained by those mathematicians are also called Moser–Trudinger inequalities.

It is well known that Moses–Trudinger inequalities play an important role in the
study of partial differential equations, especially those that arise in geometry and
physics. There has been much work on such inequalities and their applications;
see, for example, [Trudinger 1967; Cohn and Lu 2002; Carleson and Chang 1986;
Chang 1996; Flucher 1992; Lin 1996; Jost and Wang 2001] and the references
therein.

Li and Zhu [1997] established some sharp Sobolev trace inequalities on n-
dimensional compact Riemannian manifolds with smooth boundaries. Recently,
Liu generalized a result of Osgood, Phillips and Sarnak [Osgood et al. 1988]:

Theorem C [Liu 2002]. Let (M, g) be a compact Riemannian surface with bound-
ary ∂M , then there exists a constant C , which depends only on the geometry of M ,
such that for all u ∈ H 1,2(M)

(1–1) log
∫
∂M

eudsg ≤
1

4π

∫
M

|∇u|
2dVg +

∫
∂M

u dsg + C.

The value
1

4π
is sharp.

A strong version of (1–1) has also been obtained:

Theorem D [Li and Liu 2005]. Let (M, g) be a compact Riemannian surface with
boundary ∂M. Then
(1–2) sup∫

M |∇u|
2 dVg=1∫

∂M u d Sg=0

∫
∂M

eπu2
d Sg <+∞,

and
sup∫

M |∇u|
2dVg=1∫

∂M u d Sg=0

∫
∂M

eαu2
d Sg = +∞
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for any α > π . Moreover, there is a function u ∈ C∞(M̄) which satisfies that∫
M |∇u|

2dVg = 1,
∫
∂M u = 0, and∫
∂M

eπu2
d Sg = sup∫

M |∇v|2dVg=1∫
∂M v d Sg=0

∫
∂M

eπv
2
d Sg.

Theorems C and D are proved by blowing-up analysis, a method closely related
to those used by Schoen [1984] in his solution of the Yamabe problem, Escobar and
Schoen [1986] for finding conformal metrics with prescribed curvatures in higher
dimensions, and Ding, Jost, Li and Wang [Ding et al. 1997] in their solution of the
differential equation 1u = 8π − 8πheu on a compact Riemannian surface.

In this paper we study some trace inequalities similar to (1–2). Let

H1 =
{
u ∈ H 1,2(M) :

∫
M |∇u|

2dVg = 1,
∫

M u dVg = 0
}
,

H2 =
{
u ∈ H 1,2(M) :

∫
M(|∇u|

2
+ u2) dVg = 1

}
.

Theorem 1.1. Let (M, g) be a compact Riemannian surface with boundary ∂M.
Then

sup
u∈H1

∫
∂M

eπu2
d Sg <+∞

and supu∈H1

∫
∂M eαu2

d Sg = +∞ for any α > π . Moreover, there is a function
u ∈ C∞(M̄)∩ H1 such that

(1–3)
∫
∂M

eπu2
d Sg = sup

v∈H1

∫
∂M

eπv
2
d Sg.

Our method to prove Theorem 1.1 is similar to that of [Li and Liu 2005]. Pre-
cisely speaking, we divide the proof into two steps. Firstly, for any ε > 0, let
uε ∈ H1 be a maximizer of the functional

Jπ−ε(u)=

∫
∂M

e(π−ε)u2
d Sg

on the space H1. Let G be a Green’s function on M . Then G takes the form

G(x, p)= −
1
π

log r(x)+ Ap + O(r)

in a normal coordinate system around p, where r(x) = dist(x, p) and Ap is a
constant. If the sequence {uε} blows up, i.e.,

|uε|(xε)= sup
x∈M

|uε|(x)→ +∞ as ε→ 0,
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we obtain

(1–4) sup
u∈H1

∫
∂M

eπu2
d Sg ≤ Vol ∂M + 2πeπ Ap .

In the second step, we construct a blowing up sequence φε ∈ H1 such that

Jπ (φε)=

∫
∂M

eπφ
2
ε d Sg > Vol ∂M + 2πeπ Ap

for sufficiently small ε. This contradicts step 1, and implies that blowing up cannot
occur. The weak compactness of L p(M) (p>1) gives the existence of the extremal
function, i.e., (1–3) holds.

It should be mentioned that xε lies on ∂M naturally in [Li and Liu 2005] because
uε is a harmonic function there. But in our case, passing to any subsequence, we
cannot assume xε ∈ ∂M and uε(xε) → +∞ simultaneously. Also, in the second
step, the blowing up sequence we constructed (see Section 5) is different from that
of [Li and Liu 2005].

Using the same idea described above, we also obtain:

Theorem 1.2. Let (M, g) be as in Theorem 1.1. Then

sup
u∈H2

∫
∂M

eπu2
d Sg <+∞

and supu∈H2

∫
∂M eαu2

d Sg = +∞ for any α > π . Moreover, there is a function
u ∈ C∞(M)∩ H2 such that∫

∂M
eπu2

d Sg = sup
u∈H2

∫
∂M

eπv
2
d Sg.

Clearly, Theorem C is a corollary of Theorem D. Similar results can also be
derived from Theorems 1.1 and 1.2; for instance, we can substitute

∫
M u dVg for∫

∂M u dsg, or (1/4π) ‖u‖H1,2(M) for (1/4π)
∫

M |∇u|
2dVg +

∫
∂M u dsg in the right

side of inequality (1–1). Theorems 1.1 and 1.2 are independent of Theorems C
and D. They are more interesting than Theorem C because we obtain boundary
estimates without direct boundary conditions.

For simplicity, we often omit the volume elements dVg and d Sg when we write
the integrals on M and ∂M respectively, and sometimes denote different constants
by the same c. The reader can distinguish them easily from the context.

Most of the remainder of this paper is devoted to the proof of Theorem 1.1.
In Section 2, we establish two regularity lemmas for use later. In Section 3, we
prove that π is the best constant. And we derive an upper bound of Jπ (u) under the
assumption that uε blows up in Section 4. A blowing up sequence φε is constructed
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to reach a contradiction in Section 5, and this completes the proof of Theorem 1.1.
In Section 6 we outline the proof of Theorem 1.2.

2. Regularity lemmas

Lemma 2.1. Suppose f ∈ Lq(M), h ∈ H 1,q(M), 1<q<2, and 2< p<2q/(2−q).
let u ∈ H 1,2(M) be a solution of the equation 1u = f in M̊

∂u
∂n

= h on ∂M,

where M̊ denotes the interior of M. Then u lies in L∞(M) and we have

‖u‖L∞(M) ≤ c
(
‖ f ‖Lq (M) + ‖h‖L p(M) + ‖∇h‖Lq (M) + ‖u‖L2(M)

)
,

where c is a constant depending only on M.

Proof. We use De Giorgi iteration. Choose a C∞ vector field ζ whose restriction
on ∂M is the outward unit normal vector field. By Stokes’ theorem we have, for
any ϕ ∈ C∞(M),

(2–1) −

∫
M

∇u∇ϕ =

∫
M

f ϕ−

∫
∂M
ϕ
∂u
∂n

=

∫
M

f ϕ−

∫
M

div(ϕhζ )

=

∫
M

(
f − h div ζ − 〈ζ,∇h〉g

)
ϕ−

∫
M

h〈ζ,∇ϕ〉g

≡

∫
M

f 0ϕ−

∫
M

〈Eh,∇ϕ〉g,

where 〈 · , · 〉 denotes the Riemannian inner product, f 0
= f − h div ζ − 〈ζ,∇h〉g,

and Eh = hζ . Clearly, f 0
∈ Lq(M) and Eh ∈ L p(M).

For 0< k <+∞, define vk = (u −k)+, Mk = {x ∈ M : vk(x) > 0}. By Hölder’s
inequality,

(2–2) |Mk | ≤
‖u‖L1(M)

k
≤

|M |
1/2

‖u‖L2(M)

k
,

where |Mk | and |M | represent the 2-dimensional measure of Mk and M respec-
tively. Inserting ϕ = vk into (2–1), one has
(2–3)∫

M
|∇vk |

2
=

∫
M

∇u∇vk = −

∫
M

f 0vk +

∫
M

〈Eh,∇vk〉g

≤

( ∫
M
( f 0)q

)1/q( ∫
M
v

q ′

k

)1/q ′

+

( ∫
Mk

|Eh|
2
)1/2( ∫

M
|∇vk |

2
)1/2

,
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where | · | =
√

〈 · , · 〉 and 1/q ′
+1/q = 1. Since 1< q < 2, we have q ′> 2. Choose

r sufficiently large that 1/q ′
− 1/r > 1/2 − 1/p and r(1/2 − 1/p) > 1. By the

Sobolev imbedding theorem,

‖vk‖Lr (M)≤ c(‖vk‖L2(M)+‖∇vk‖L2(M))≤ c(‖vk‖Lr (M)|Mk |
1/2−1/r

+‖∇vk‖L2(M)),

where c is a constant depending only on M .
Without loss of generality we assume that ‖u‖L2(M) = 1. According to (2–2),

there exists a large integer number k0 such that c|Mk |
1/2−1/r < 1 for k > k0. Hence

(2–4) ‖vk‖Lr (M) ≤ c‖∇vk‖L2(M) for k ≥ k0.

By (2–3), we have

‖∇vk‖
2
L2(M) ≤ ‖ f 0

‖Lq (M)‖vk‖Lr (M)|Mk |
1/q ′

−1/r
+ ‖Eh‖L2(Mk)‖∇vk‖L2(M)

≤ c‖ f 0
‖Lq (M)|Mk |

1/q ′
−1/r

‖∇vk‖L2(M) + ‖Eh‖L2(Mk)‖∇vk‖L2(M),

which gives

‖∇vk‖L2(M) ≤ c‖ f 0
‖Lq (M)|Mk |

1/q ′
−1/r

+ ‖Eh‖L p(M)|Mk |
1/2−1/p.

Note that 1/q ′
− 1/r > 1/2 − 1/p. We have

(2–5) ‖∇vk‖L2(M) ≤ cτ |Mk |
1/2−1/p,

where τ = ‖ f 0
‖Lq (M) + ‖Eh‖L p(M).

On the other hand, for h > k, we have∫
M
vr

k ≥

∫
Mh

(u − k)r ≥ |Mh|(h − k)r .

Combining this with (2–4) and (2–5), we get |Mh| ≤ K (h − k)−r
|Mk |

β , with K ≡

c̃τ r for some constant c̃, β ≡ (1/2 − 1/p)r > 1, and k0 < k < h < h1 < +∞ for
any sufficiently large h1. By [Troianiello 1987, Lemma 2.9], |Mk0+k̂ | = 0 for some
k̂ > 0; that is, u ≤ k0 + k̂ in M . With the same argument, one can deduce that
−u ≤ k0 + k̂ in M . �

Theorem 3.17 of [Troianiello 1987] yields an immediate consequence:

Lemma 2.2. Suppose that f ∈ L p(M) and h ∈ H 1,p(M) for some p ≥ 2, and that
u ∈ H 1,2(M) is a solution of  1u = f in M̊

∂u
∂n

= h on ∂M.

Then u ∈ H 2,p(M).
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3. The best constants

We now prove that the best constant in Theorem 1.1 is π . Here best means that

supu∈H1

∫
∂M eαu2

<+∞ for α < π,

supu∈H1

∫
∂M eαu2

= +∞ for α > π.

The following lemma is well known:

Lemma 3.1. Let M be a compact Riemannian surface with boundary. Then there
exists a positive number α such that supu∈H1

∫
M eαu2

<∞.

Lemma 3.2. Set α2 = sup
{
α : supu∈H1

∫
M eαu2

<+∞
}
. Then α2 = 2π .

Proof. Step 1. We first prove that α2 ≥ 2π .
Suppose α2<2π . There exists a sequence uε ∈H1 such that

∫
M e(α2+ε)u2

ε →+∞

as ε→ 0. One can see that there exists a p ∈ M such that for any r > 0,

(3–1)
∫

Br (p)
e(α2+ε)u2

ε → +∞ as ε→ 0,

where Br (p) is a geodesic ball centered at p with radius r . For otherwise, using a
covering argument, one has

∫
M e(α2+ε)u2

ε ≤ c for ε small enough, which contradicts
the definition of uε. By the Poincaré inequality, {uε} is bounded in H 1,2(M), and
so is {|uε|}. Hence there is u ∈ H 1,2(M) such that |uε|⇁ u (weak convergence) in
H 1,2(M) and |uε| → u (strong convergence) in L2(M) as ε → 0. For any η > 0,
we claim that

(3–2) lim
ε→0

∫
M

|∇(|uε| − η)+|
2
= 1,

where (|uε| − η)+ is the positive part of |uε| − η. Suppose (3–2) does not hold.
Clearly, lim infε→0

∫
M |∇(|uε| − η)+|

2 < 1. By the definition of α2, passing to a
subsequence, we can choose α′ > α2 such that∫

M
exp

(
α′

(
(|uε| − η)+ −

1
Vol M

∫
M
(|uε| − η)+

)2 )
≤ c

for sufficiently small ε. Using the Poincaré inequality and the inequality ab ≤

δa2
+b2/(4δ) for any δ>0, we can choose some ε′>0 such that α′/(1+ε′)>α2 and∫

M eα
′u2
ε/(1+ε′)

≤ c, which contradicts (3–1) for ε small enough, and implies (3–2).
Let vε = min{|uε|, η}. Then vε is bounded in H 1,2(M). So there exists v ∈

H 1,2(M) such that vε ⇁ v weakly in H 1,2(M) and vε → v strongly in L2(M).
Obviously,

(3–3) |uε| = vε + (|uε| − η)+.
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Note that

1 =

∫
M

|∇uε|2 ≥

∫
M

∣∣∇|uε|
∣∣2

=

∫
M

|∇vε|
2
+

∫
M

∣∣∇(|uε| − η)+∣∣2
.

By (3–2), we have
∫

M |∇vε|
2

→ 0 as ε → 0. By the Poincaré lemma,
∫

M |vε −

v̄ε|
2

→ 0 as ε → 0, where v̄ε = (Vol M)−1
∫

M vε. Note that vε → v strongly in
L2(M). One has v = v̄ almost everywhere in M . From (3–3), we know that

u = v+ (u − η)+ a.e. in M.

By an appropriate choice of η, one easily derives that v = 0 and u = 0 a.e. in M .
Recall that |uε| → u strongly in L2(M). One has

(3–4) |uε| → 0 strongly in L2(M) as ε→ 0.

Now we turn to (3–1). Take p ∈ ∂M . Choose an isothermal coordinate system
(U, ψ) around p such that ψ : U → B+

2r . Choose a cut-off function ϕ ∈ C∞(M)
such that ϕ ≡ 1 on Br (p) and ϕ ≡ 0 outside B4r/3(p). By (3–4), we have∫

Br (p)
|∇(ηuε)|2 ≤

∫
M

|∇(ηuε)|2 ≤ 1 + ε′′

for some ε′′> 0 with 2π/(1+ε′′)>α2, provided that ε is sufficiently small. Define

ũε(s, t)=

{
(ηuε)(s, t) for t ≥ 0,

(ηuε)(s,−t) for t < 0.
Then

∫
B2r

|∇ũε|2 ds dt ≤ 2+2ε′′. By Moser’s inequality, we then obtain the bound∫
B2r

e4π ũ2
ε/(2+2ε′) ds dt ≤ c. Hence

(3–5)
∫

Br (p)
e2πu2

ε/(1+ε′)
≤ 2

∫
B2r

e4π ũ2
ε/(2+2ε′) ds dt ≤ 2c

for sufficiently small r . This contradicts (3–1).
When p is an interior point in M , one can get a contradiction as above without

any difficulty. In this case, ũε is not needed any more; one need only consider uε
itself. This completes the proof of step 1.

Step 2. To prove the opposite inequality, α2 ≤ 2π , take any p ∈ ∂M and choose
an isothermal coordinate system around p. Set

(3–6) uε =


−

√
1

2π
log 1

ε
in Bδ√ε(p),

√
2√

−π log ε
log r

δ
in Bδ(p) \ Bδ√ε(p),

Cεϕ in M \ Bδ(p),
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where ϕ ∈ C∞

0 (M\Bδ(p)), 0 ≤ ϕ ≤ 1, and Cε is chosen to satisfy
∫

M uε = 0. It is
easy to check that ∫

M
|∇uε|2 → 1 as ε→ 0

and that∫
M

exp
(
α
( uε
‖uε‖L2

)2
)

≥ exp
(

α

2π‖∇uε‖2
L2

log
1
ε

)
Vol Bδ√ε ≥ Cε1−α/(2π‖∇uε‖2

L2)

for any α > 2π ; the latter lower bound approaches +∞ as ε → 0. Therefore
α2 ≤ 2π . �

Lemma 3.3. Set Jα(u)=
∫
∂M eαu2

. Then

sup
u∈H1

Jα(u) <+∞ for α < π and sup
u∈H1

Jα(u)= +∞ for α > π .

Proof. Take a smooth vector field ζ whose restriction on ∂M is the outward unit
normal vector field. Using the divergence theorem and Lemma 3.2, one has∫

∂M
e(π−ε)u2

=

∫
M

div(ζe(π−ε)u2
)=

∫
M

(
div(ζ )+ 2(π − ε)u〈ζ,∇u〉g

)
e(π−ε)u2

≤ C
(

1 +

∫
M

|∇u||u|e(π−ε)u2
)

≤ C
(

1 + ‖∇u‖L2(M)‖u‖L p(M)‖e(π−ε)u2
‖L(2π−ε)/(π−ε)(M)

)
for all u ∈ H1, where 1/p +1/2+ (π − ε)/(2π − ε)= 1. Combining this estimate
with the Sobolev imbedding theorem, one has supu∈H1

Jπ−ε(u) < +∞ for any
ε > 0, which implies that supu∈H1

Jα(u) <+∞ for any α < π .
To complete the proof of the lemma, we employ (3–6) to check that for any

α > π , Jα(uε) diverges to +∞ as ε→ 0. �

4. Blowing up analysis

We now use the method of blowing up to prove (1–4). The same method has also
been used in [Li 2001; Li 2005].

The proof consists of several lemmas.

Lemma 4.1. The functional Jπ−ε(u) defined in the space H1 admits a smooth
maximizer uε ∈ H1.

Proof. It is obvious that there exists uε ∈ H1 such that

Jπ−ε(uε)= sup
u∈H1

Jπ−ε(u).
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The function uε satisfies the Euler–Lagrange equation

(4–1)


1uε =

µε
2λε

in M̊,

∂uε
∂n

=
π−ε

λε
uεe(π−ε)u2

ε on ∂M,

where

(4–2) λε = (π−ε)

∫
∂M

u2
εe
(π−ε)u2

ε and µε =
2(π−ε)

Vol M

∫
∂M

uεe(π−ε)u2
ε .

Write h(uε)= (π − ε)/λεuεe(π−ε)u2
ε . By the Orlicz space imbedding (see [Struwe

1988]), eu2
ε ∈ L p(M) for any p > 0. Hence h(uε) ∈ H 1,q(M) for any 1 < q < 2.

By Lemma 2.1 we have uε ∈ L∞(M), hence h(uε) ∈ H 1,2(M). By Lemma 2.2,
uε ∈ H 2,2(M). The Sobolev imbedding theorem then implies that h(uε)∈ H 1,p(M)
for some p > 2. Again, by Lemma 2.2, uε ∈ H 2,p(M). The Sobolev imbedding
theorem gives uε ∈ C1(M). Using Lemma 2.2 repeatedly, we conclude that uε ∈

C∞(M). �

Lemma 4.2. lim infε→0 λε > 0.

Proof. The following estimate is elementary

Vol ∂M < sup
u∈H1

∫
∂M

eπu2
= lim
ε→0

∫
∂M

e(π−ε)u2
ε ≤ Vol ∂M + lim inf

ε→0
λε,

which gives lim infε→0 λε > 0. �

Lemma 4.3. µε/λε is bounded with respect to ε.

Proof. By (4–2) and Lemma 4.2, we have

|µε|

λε
≤

2(π − ε)

Vol M

∫
∂M

|uε|
λε

e(π−ε)u2
ε ≤

2(π − ε)

Vol M

(
eπ−ε

λε
+

1
π − ε

)
≤ C. �

Write cε = |uε|(xε) = maxx∈M(x). If {cε} is bounded, then by the standard
elliptic estimate with respect to Equation (4–1), there exists u ∈ H1 ∩ C∞(M)
such that uε → u in C∞(M) as ε → 0, and Theorem 1.1 follows immediately.
Henceforth we assume cε → +∞ as ε→ 0.

Passing to a subsequence, we may assume that µε ≥ 0 for all ε > 0, for oth-
erwise we consider −uε instead of uε in (4–1)–(4–2). We consider separately the
possibilities that {uε(xε)} approaches +∞ or −∞ or as ε→ 0.

Take first the case uε(xε) → +∞. Applying the maximum principle to (4–1),
we see that xε ∈ ∂M . Passing to a subsequence, we may assume xε → p for some
p ∈ ∂M .
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Lemma 4.4. Define

(4–3) rε =
1

π−ε

λε

c2
ε

e−(π−ε)c2
ε .

Then rεcε → 0 as ε→ 0.

Proof. By the first equality in (4–2), we have

1 =
π−ε

λε

∫
∂M

u2
εe
(π−ε)u2

ε ≤
π−ε

λε
eπc2

ε

∫
∂M

u2
ε ≤ c

π−ε

λε
eπc2

ε

for some constant c, where we have used the Sobolev trace imbedding theorem.
This implies that rεcε → 0 as ε→ 0. �

Choose an isothermal coordinate system (U, φ) near p such that φ(p) = 0, φ
maps U to R2

+
:= {x = (x1, x2) ∈ R2

: x2 > 0} and φ(U ∩ ∂M)⊂ ∂R2
+

.
Set

(4–4) ψε(x)= uε(xε + rεx)/cε, ϕε(x)= cε
(
uε(xε + rεx)− cε

)
.

Lemma 4.5. ψε → 1 in C2
loc(R

2
+) as ε→ 0.

Proof. By (4–1), for ε is sufficiently small we have
1ψε =

r2
ε

cε
µε
2λε

in B+

R (0),

∂ψε
∂n

=
rε
cε
π−ε

λε
uεe(π−ε)u2

ε on BR(0)∩ ∂R2
+
,

for any R > 0. As in the proof of Lemma 4.1, it is not hard to see that ψε → 1 in
C2(B+

R/2(0)) as ε→ 0. �

Lemma 4.6. The functions ϕε converge in C2
loc(R

2
+) as ε→ 0 to some ϕ satisfying

−1R2ϕ = 0 in R2
+

∂ϕ

∂n
= e2πϕ on ∂R2

+
,

ϕ(0)= supϕ = 0.

Proof. By (4–1), we have
1ϕε(x)= cεr2

ε

µε

2λε
in B+

R (0),

∂ϕε

∂n
=

uε
cε

exp
(
(π−ε)ϕε

(
1 +

uε
cε

))
on ∂R2

+
∩ BR(0)

for any R > 0. Using Lemma 2.2, we have ϕε → ϕ in C2(B+

R/2(0)) as ε → 0 for
some u ∈ C2(B+

R/2(0)). Clearly u satisfies the required conditions. �
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It is not difficult to see that∫
BR(0)∩∂R2

+

e2πϕ
≤ lim inf

ε→0

∫
BRrε (xε)∩∂M

π−ε

λε
u2
εe
(π−ε)u2

ε ≤ 1,

which gives ∫
∂R2

+

e2πϕ
≤ 1.

By a result in [Li and Zhu 1995], we have

ϕ(x)= −
1

2π
log

(
π2x2

1 + (1 +πx2)
2).

A direct calculation gives ∫
∂R2

+

e2πϕ
= 1.

Following [Li and Liu 2005], we define uc
ε = min{

cε
c , uε}.

Lemma 4.7. For any c > 1, we have limε→0
∫

M |∇uc
ε|

2
=

1
c .

Proof. Using Stokes’ formula, (4–1) and Lemma 4.5, we have∫
M

∣∣∣∣∇(
uε −

cε
c

)+
∣∣∣∣2

=

∫
M

∇uε∇
((

uε −
cε
c

)+
)

=

∫
∂M

(
uε −

cε
c

)+ ∂uε
∂n

−

∫
M

(
uε −

cε
c

)+

1uε

=

∫
∂M

(
uε −

cε
c

)+ π−ε

λε
uεe(π−ε)u2

ε −

∫
M

(
uε −

cε
c

)+ µε
2λε

≥

∫
∂M∩BRrε(xε)

(
uε − cε/c

)+ π−ε

λε
uεe(π−ε)u2

ε + oε(1)

=
c − 1

c

∫
∂R2+∩BR(0)

e2πϕ
+ oε(R)+ oε(1),

where oε(1) → 0 as ε → 0, and oε(R) → 0 for any fixed R as ε → 0. Letting
ε→ 0 first, and then R → +∞, we obtain

lim inf
ε→0

∫
M

∣∣∣∣∇(
uε −

cε
c

)+
∣∣∣∣ 2

≥
c − 1

c
.

With the same argument, we get

lim inf
ε→0

∫
M

|∇uc
ε|

2
≥

1
c
.
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Note that since ∫
M

∣∣∣∣∇(
uε −

cε
c

)+
∣∣∣∣2

+

∫
M

|∇uc
ε|

2
= 1,

we have lim infε→0
∫

M |∇uc
ε|

2
= c−1. �

Lemma 4.8. Under the assumption that cε → +∞ as ε→ 0, we have the estimate

sup
u∈H1

Jπ (u)≤ Vol ∂M +
1
π

lim sup
ε→0

λε

c2
ε

.

Proof. For any c > 1, we have∫
∂M

e(π−ε)u2
ε =

∫
∂M∩{uε≤cε/c}

e(π−ε)u2
ε +

∫
∂M∩{uε>cε/c}

e(π−ε)u2
ε

≤

∫
∂M

e(π−ε)(uc
ε)

2
+ c2λε

c2
ε

∫
∂M

u2
ε

λε
e(π−ε)u2

ε .

By Lemma 4.7, according to step 1 in the proof of Lemma 3.2, one can see that
uc
ε → 0 a.e. in M as ε→ 0. Substituting uc

ε for u in (3–5), one immediately has∫
∂M

e(π−ε)(uc
ε)

2
→ Vol ∂M as ε→ 0.

Hence

sup
u∈H1

Jπ (u)= lim
ε→0

∫
∂M

e(π−ε)u2
ε ≤ Vol ∂M +

c2

π
lim sup
ε→0

λε

cε
.

Letting c → 1, the conclusion of the lemma follows. �

The next result is an immediate consequence of Lemma 4.8:

Corollary 4.9. λε/cε → +∞ as ε→ 0.

Lemma 4.10. For any φ ∈ C∞(∂M), we have

(4–5) lim
ε→0

∫
∂M
φ
π−ε

λε
cεuεe(π−ε)u2

ε = φ(p).

Proof. For any fixed c > 1, we partition ∂M into its intersections with

D1 =

({
uε >

cε
c

}
\ BRrε(xε)

)
, D2 =

({
uε ≤

cε
c

}
\ BRrε(xε)

)
, D3 = BRrε(xε).

Denote by I1, I2, I3 the partial integrals in (4–5) taken over D1, D2, D3. Then

|I1| ≤ c sup
∂M

|ϕ|

∫
∂M∩({uε> cε

c }\BRrε (xε))

π − ε

λε
u2
εe
(π−ε)u2

ε

≤ c sup
∂M

|ϕ|

(
1 −

∫
∂M∩BRrε (xε)

π − ε

λε
u2
εe
(π−ε)u2

ε

)
≤ c sup

∂M
|ϕ|

(
1 −

∫
∂B+

R (0)∩∂R2
+

e2πϕ
+ oε(R)

)
,
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where oε(R)→ 0 as ε→ 0 for any fixed R. Letting ε→ 0 first, and then R →+∞,
one has I1 → 0. Next,

|I2| ≤ (π − ε) sup
∂M

|ϕ|
cε
λε

∫
∂M

|uε|e(π−ε)(uc
ε)

2

≤ π sup
∂M

|ϕ|
cε
λε

‖uε‖L(c+1)/(c−1)(∂M)‖e(π−ε)(uc
ε)

2
‖L(c+1)/2(∂M)

≤ C̃ sup
∂M

|ϕ|
cε
λε
,

where C̃ is a constant depending on M and c, here we have used Hölder’s inequality
and Sobolev imbedding theorem. By Corollary 4.9, we get I2 → 0 as ε → 0.
Finally,

I3 =

∫
∂M∩BRrε (xε)

ϕ
π−ε

λε
cεuεe(π−ε)u2

ε =

∫
∂R2

+∩∂B+

R (0)
ϕ

uε
cε

e(π−ε)ϕε(1+uε/cε)

= ϕ(p)
( ∫

∂B+

R (0)∩∂R2
+

e2πϕ
+ oε(R)

)
.

As before, letting ε → 0 first, then R → +∞, we get I3 → ϕ(p). Combining all
three estimates, we get the conclusion of the lemma. �

Lemma 4.11. |∇uε|2 ⇁ δp weakly in the sense of measure.

Proof. Set

A =

{
q ∈ M : lim

r→0
lim inf
ε→0

∫
Br (q)

|∇uε|2 > 0
}
.

We claim that A contains only one point.
Suppose not. Then, for any q ∈ M , we have limr→0 lim infε→0

∫
Br (q)

|∇uε|2< 1.
There exist positive numbers r and δ such that∫

Br (q)
|∇uε|2 ≤ δ(q) < 1.

With the assumption cε → +∞ as ε→ 0, step 1 in the proof of Lemma 3.2 implies
that uε → 0 in L2(M), and hence

∫
Br (q)

uε → 0 as ε→ 0. It is not difficult to see
that there exists a constant α(q) > π such that∫

∂M∩∂Br (q)
eα(q)u

2
ε ≤ Cq

for some constant Cq depending on q . By a covering argument, there exists an
α > π such that ∫

∂M
eαu2

ε ≤ C
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for some constant C . This contradicts the choice of uε, and our claim follows.
Next we claim that A = {p}. Let q be the unique point in A, and suppose q 6= p.

Choose a smooth function ψ such that ψ(p) 6= ψ(q). By Stokes’ theorem and
Equation (4–1), we have∫

M
ψ |∇uε|2 =

∫
∂M
ψ
π − ε

λε
u2
εe
(π−ε)u2

ε −

∫
M

uε
µε

2λε
−

∫
M

uε∇ψ∇uε.

Clearly the last two terms here tend to 0 as ε→ 0. As in the proof of Lemma 4.10,
we can show that

lim
ε→0

∫
∂M
ψ
π − ε

λε
u2
εe
(π−ε)u2

ε = ψ(p).

On the other hand, limε→0
∫

M ψ |∇uε|2 = ψ(q). Hence ψ(p) = ψ(q), which
contradicts the choice of ψ . This completes the proof of the lemma. �

Lemma 4.12. cεuε ⇁ G weakly in H 1,q(M) for any q : 1 < q < 2. For any
�b M \ {p}, we have cεuε → G in C∞(�), where G satisfies

(4–6)


−1G = δp −

1
Vol M

in M,∫
M

G = 0, ∂G
∂n

∣∣∣
∂M\{p}

= 0.

Proof. By Equation (4–1), we have
1(cεuε) = cε

µε

2λε
in M,

∂(cεuε)
∂n

=
π − ε

λε
cεuεe(π−ε)u2

ε on ∂M.

Integrating both sides on M , one has∫
M

cε
µε

2λε
=

∫
M
1(cεuε)=

∫
∂M

π − ε

λε
cεuεe(π−ε)u2

ε .

By Lemma 4.10, we immediately get cεµε/(2λε)→ 1/Vol M as ε→ 0.
For any q in the range 1< q < 2, denote its conjugate by q ′, so 1/q +1/q ′

= 1.
It is well known that∫

M
|∇(cεuε)|q ≤ sup

{ ∫
M

∇φ∇(cεuε) dVg : ‖φ‖H1,q′ = 1
}
.
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The Sobolev embedding theorem yields ‖φ‖C0(M) ≤ C , where C is a constant
depending only on M . Using the divergence theorem and (4–1), we have∫

M
∇φ ∇(cεuε)=

∫
∂M
φ
∂(cεuε)
∂n

−

∫
M
φ1(cεuε)

=

∫
∂M
φ
π−ε

λε
cεuεe(π−ε)u2

ε − cε
µε

2λε

∫
M
φ.

By Lemma 4.10 again, we obtain∫
M

|∇(cεuε)|q ≤ C‖φ‖C0(M) ≤ C.

This, together with Poincaré’s inequality, implies that cεuε is bounded in H 1,q(M).
Hence there exists G ∈ H 1,q(M) such that cεuε⇁G weakly in H 1,q(M) as ε→ 0.
For any φ ∈ C∞(M), we have∫

M
∇φ∇(cεuε)=

∫
∂M
φ
∂(cεuε)
∂n

−

∫
M
φ1(cεuε)

=

∫
∂M
φ
π − ε

λε
cεuεe(π−ε)u2

ε − cε
µε

2λε

∫
M
φ

−→ φ(p)−
1

Vol M

∫
M
φ as ε→ 0.

Hence ∫
M

∇G ∇φ = φ(p)−
1

Vol M

∫
M
φ,

and Equation (4–6) holds.
For any � b M \ {p}, we choose a smooth function η on M such that η ≡ 1

on �, and η ≡ 0 near p. By Lemma 4.11, ηuε → 0 in L2(M) as ε → 0. This,
together with the convergence uε → 0 in L2(M) as ε → 0, implies that e(π−ε)u2

ε

is uniformly bounded in Lr (�) with respect to ε for any r > 1. Standard elliptic
estimates imply that cεuε → G in Ck(�) for any positive integer k. This completes
the proof of the lemma. �

In the following, we use the capacity technique to derive the upper bound of
Jπ (u). Take an isothermal coordinate system (U, φ) near p such that φ(p) = 0
and φ maps U inside R2

+
and U ∩ ∂M inside ∂R2

+
. In this coordinate system

we can write g = e2 f (dx2
1 + dx2

2), with f (0) = 0. Set φ(xε) = (x1
ε , 0). Let

Br = Br (x1
ε , 0)⊂ R2 be the standard ball centered at (x1

ε , 0) with radius r . Define

iε = inf
∂B+

Rrε \∂R2
+

uε ◦φ−1, sε = sup
∂B+

δ \∂R2
+

uε ◦φ−1, ũε = max{sε,min{uε ◦φ−1, iε}}.
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Clearly,

(4–7)
∫

B+

δ \B+

Rrε

|∇ũε|2 ≤

∫
φ−1(B+

δ )\φ
−1(B+

Rrε )

|∇uε|2

≤ 1 −

∫
φ−1(B+

δ )

|∇uε|2 −

∫
φ−1(B+

Rrε )

|∇uε|2.

Define a function space

3ε =

{
u ∈ H 1,2(B+

δ \ B+

Rrε) : u|∂B+

δ \∂R2
+

= sε, u|∂B+

Rrε \∂R2
+

= iε,
∂u
∂n

∣∣∣
∂R2

+

= 0
}
.

It is easy to see that inf
u∈3ε

∫
B+

δ \B+

Rrε

|∇R2u|
2 is attained by the unique solution of the

equation {
18= 0 in B+

δ \ B+

Rrε

8 ∈3ε.

One can check that

8=
sε(log r − log(Rrε))+ iε(log δ− log r)

log δ− log(Rrε)
,

whence

(4–8)
∫

B+

δ \B+

Rrε

|∇8|
2
= π

(sε − iε)2

log δ− log Rrε
.

By Lemma 4.7, we have∫
φ−1(B+

Rrε )

|∇uε|2 =
1
c2
ε

(
1
π

log R +
1
π

log
π

2
+ O

( log R
R

)
+ oε(1)

)
.

Lemma 4.12 then yields

(4–9)
∫

M\φ−1(B+

δ )

|∇uε|2 =
1
c2
ε

(
−

1
π

log δ+ Ap + O(δ log δ)+ oε(1)
)
.

By (4–7) and (4–8), we have

(4–10)
πs2

ε − 2πsεiε +π i2
ε

log δ− log(Rrε)
< 1 −

1
c2
ε

(
−

1
π

log δ+Ap+O(δ log δ)+oε(1)
)

−
1
c2
ε

(
1
π

log R+
1
π

log
π

2
+O

( log R
R

)
+oε(1)

)
.

From Lemma 4.7 and Lemma 4.12, one can see that

iε = cε −
log(1 +π2 R2)+ oε(R)

2πcε
, sε =

− log δ+π Ap + O(δ)+ oε(R)
πcε

.
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Adding this and (4–3) to (4–10), we have

log
λε

c2
ε

≤ −εc2
ε + log(2π2)+π Ap + oε(δ)+ oε(R)+ oε(1)+ oδ(1)+ oR(1).

Letting ε→ 0 first, then δ → 0 and R → +∞, we obtain

lim sup
ε→0

λε

c2
ε

≤ 2π2eπ Ap .

Together with Lemma 4.8, this estimate yields supu∈H1
Jπ (u)≤ Vol ∂M +2πeπ Ap .

In fact, we have proved the following:

Proposition 4.13. Under the assumption that µε ≥ 0 and uε(xε)→ +∞ as ε→ 0,
we obtain

sup
u∈H1

Jπ (u)≤ Vol ∂M + 2πeπ maxp∈∂M Ap .

For the other case, µε ≥ 0 and uε(xε) → −∞, we only need to replace (4–4)
by ϕε(x)= −cε

(
uε(xε+rεx)+cε

)
. Using the same arguments we have used from

Lemma 4.5 to Proposition 4.13, we also get:

Proposition 4.14. Under the assumption that µε ≥ 0 and uε(xε)→ −∞ as ε→ 0,
we obtain

sup
u∈H1

Jπ (u)≤ Vol ∂M + 2πeπ maxp∈∂M Ap .

5. Existence results

Assume Ap = maxp∈∂M Ap for some p ∈ ∂M . In this section, we will construct a
blowing up sequence φε with

∫
M |∇φε|

2
= 1, and∫

∂M
eπ(φε−φ̄ε)

2
> Vol ∂M + 2πeπ Ap , where φ̄ε =

1
Vol M

∫
∂M
φε.

Take an isothermal coordinate system (U, ψ) around p such that ψ(p) = (0, 0),
ψ maps ∂M ∩ U ) inside ∂R2

+
, and g = e2 f (ds2

+ dt2) with f (0) = 0. Let R be
a function of ε such that R → +∞ and Rε → 0 as ε → 0. For sufficiently small
r > 0, write B+

r = B+
r (0,−ε/π)= Br (0,−ε/π)∩ R2

+, B+
r = ψ−1(B+

r ) and

φ̃ε(s, t)= c +
−(1/2π) log(π2s2/ε2

+ (π t/ε+ 1)2)+ B
c

in B+

Rε,

for some constants B, c.
Set

φε =


φ̃ε ◦ψ(x) if x ∈ B+

Rε,

(G−ηβ)/c if x ∈ B+

2Rε \ B+

Rε,

G/c if x ∈ M \ B+

2Rε,
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where B, c are constants to be defined later, β = G + (1/π) log r − Ap = O(r),
η ∈ C∞

0 (B2Rε) with η ≡ 1 on BRε, and max |∇η| = O(1/(Rε)).
To ensure that φε ∈ H 1,2(M), we assume

c +
−(1/2π) log(π2 R2)+ B

c
=

−(1/π) log(Rε)+ Ap

c
,

which gives

(5–1) 2πc2
= 2 logπ − 2πB − 2 log ε+ 2π Ap.

By (4–9), we have∫
B+

Rε

|∇φε|
2
=

1
πc2 log

π

2
+

1
πc2 log R + O

( log R
R

)
,

∫
M\B+

Rε

|∇φε|
2
=

∫
M\B+

Rε

|∇G|
2

c2 +

∫
B+

2Rε\B+

Rε

|∇(ηβ)|2

c2 −
2
c2

∫
B+

2Rε\B+

Rε

∇G∇(ηβ).

Let I1, I2, I3 be the three summands on the right-hand side of the last equation.
Clearly, I2 = c−2O(Rε) and I3 = c−2O(Rε). Next,

I1 =
1
c2

∫
∂(M\B+

Rε)

G
∂G
∂n

−
1
c2

∫
M\B+

Rε

G1G

=
1
c2

∫
∂M\∂B+

Rε

G
∂G
∂n

−
1
c2

∫
∂B+

Rε\∂M
G
∂G
∂n

+
1
c2

1
Vol M

( ∫
B+

Rε

G
)

+
1
c2 O(

1
R
)

=
1
c2

(
−

1
π

log(Rε)+ Ap + O(Rε log(Rε))+ O
( 1

R

))
,

whence∫
M\B+

Rε

|∇φε|
2
=

1
c2

(
−

1
π

log(Rε)+ Ap + O(Rε log(Rε))+ O
( 1

R

))
.

Combining the two estimates above, one has∫
M

|∇φε|
2
=

1
c2

(
−

1
π

log ε+
1
π

log
π

2
+ Ap + O(Rε log(Rε))+ O

( log R
R

))
.

To ensure that
∫

M |∇φε|
2
= 1, we set

c2
= −

1
π

log ε+
1
π

log
π

2
+ Ap + O(Rε log(Rε))+ O

( log R
R

)
.

By (5–1), one can determine B as

B =
1
π

log 2 + O(Rε log(Rε))+ O
( log R

R

)
.
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A straightforward computation gives

φ̄ε =
1

Vol M

∫
M
φε =

1
c

(
O

(
(Rε)2 log R

)
+ O

(
(Rε)2 log ε

)
+ O

(
(Rε)2 log(Rε)

))
.

Then∫
∂B+

Rε∩∂M
exp

(
π(φε − φ̄ε)

2)
=

∫
∂B+

Rε∩∂R2
+

exp
(
π

(
c −

log (π2s2/ε2
+(1+π t/ε)2)+cφ̄ε − 2πB

2πc

)2

+ O(Rε)
)

ds

≥

∫
∂B+

Rε∩∂R2
+

exp
(
πc2

− log
(
π2 s2

ε2 + 1
)

+ 2πB − cφ̄ε

)
eO(Rε)ds

= 2πeπ Ap
( 2
π

arctan(πR)
)

exp
(

O(Rε log Rε)+ O
( log R

R

))
= 2πeπ Ap

(
1 + O(Rε log (Rε))+ O

( log R
R

))
.

Moreover,∫
∂M\∂B+

Rε

exp
(
π(φε−φ̄ε)

2)
≥

∫
∂M\∂B+

Rε

(
1 +π2(φε − φ̄ε)

2)
≥ Vol ∂M − Vol(∂M ∩ ∂B+

Rε)+π
2
∫
∂M\B+

2Rε

(G−cφ̄ε)2

c2 .

Therefore∫
∂M

eπ(φε−φ̄ε)
2
≥ Vol ∂M +

π2

c2

∫
∂M\B+

2Rε

(
G − O(Rε log Rε)

)2

+O
(
Rε log(Rε)

)
+ O

( log R
R

)
.

Set R = log2 ε. Then R → +∞, Rε→ 0, c2(log R)/R → 0, c2 Rε log Rε→ 0.
Hence ∫

∂M
eπ(φε−φ̄ε)

2
> Vol ∂M + 2πeπ Ap

when ε is sufficiently small. This contradicts Proposition 4.13 or Proposition 4.14.
Hence Theorem 1.1 holds. �

6. Proof of Theorem 1.2

Lemma 6.1. Set α̃2 = sup
{
α; sup

u∈H2

∫
M

eαu2
<+∞

}
. Then α̃2 = 2π .
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Proof. We first show that α̃2 ≥ 2π . For any α < 2π and u ∈ H2, we set

ũ = u −
1

Vol M

∫
M

u.

Then ũ ∈ H1. So, by Lemma 3.2,∫
M

eαũ2
≤ sup
v∈H1

∫
M

eαv
2
<+∞.

For any u ∈ H2, we have ∫
M

eαu2
≤ ec(ε′)

∫
M

eα(1+ε′)ũ2

for some ε′ > 0. One can choose ε′ such that α(1 + ε′) < 2π , which gives∫
M

eαu2
≤ sup
v∈H1

∫
M

eα(1+ε′)v2
<+∞.

Hence
sup

u∈H2

∫
M

eαu2
<+∞.

Next we prove that α̃2 cannot be greater than 2π . To do this, the example in the
proof of Lemma 3.2 still works here. For p ∈ ∂M , we set

uε =


−

√
1

2π
log 1

ε
in Bδ√ε(p),

√
2√

−π log ε
log r

δ
in Bδ(p) \ Bδ√ε(p)

Cεϕ in M \ Bδ(p),

where ϕ ∈ C∞

0 (M \ Bδ(p)), 0 ≤ ϕ ≤ 1, and Cε is chosen to satisfy
∫

M uε = 0. It is
easy to check that

‖uε‖2
H1,2(M) =

∫
M

(
|∇uε|2 + u2

ε

)
→ 1 as ε→ 0,

and for any α > 2π∫
M

exp
(
α
( uε
‖uε‖H1,2(M)

)2
)

≥ exp
(

α

2π‖uε‖2
H1,2(M)

log
1
ε

)
Vol Bδ√ε

≥ Cε
1−

α

2π‖uε‖2
H1,2(M)

,

which approaches +∞ as ε→ 0. Therefore α̃2 ≤ 2π , as needed. �

Using the same argument as in the proof of Lemma 3.3, we obtain:
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Lemma 6.2.

sup
u∈H2

Jα(u) <+∞ for α < π and sup
u∈H2

Jα(u)= +∞ for α > π.

Similarly to Lemma 4.1, one has:

Lemma 6.3. The functional Jπ−ε(u) defined in the space H2 admits a smooth
maximizer uε ∈ H2.

Proof. The proof of the existence of uε is the same as that of Lemma 4.1. The
Euler–Lagrange equation of uε is

(6–1)


1uε = uε in M̊,

∂uε
∂n

=
π − ε

λε
uεe(π−ε)u2

ε on ∂M,

where

λε = (π − ε)

∫
M

u2
εe
(π−ε)u2

ε .

Using Lemmas 2.1 and 2.2 repeatedly, we get uε ∈ C∞(M). �

The rest of the proof of Theorem 1.2 is almost the same as that of Theorem
1.1; we only give its outline. Without loss of generality, we may assume uε ≥ 0
in M . Set cε = uε(xε) = maxx∈M uε(x). If {cε} is bounded, it is not difficult to
see that Theorem 1.2 holds. Hence we assume that cε → +∞ as ε → 0. This is
equivalent to saying

∫
M eαu2

ε → +∞ for any α > 2π , which implies that uε → 0
strongly in L2(M) (see the first step in the proof of Lemma 3.2). Applying the
maximum principle to (6–1), we find that xε ∈ ∂M . Assume that xε converges to
p, so p ∈ ∂M . Let rε, ϕε(x) and ψε(x) be as in Section 4. Then

ϕε → ϕ = −
1

2π
log

(
π2x2

1 + (1 +πx2)
2) in C2

loc(R
2
+
).

Moreover cεuε ⇁ G weakly in H 1,q(M) for any q such that 1 < q < 2. The
function G ∈ C∞(M \ {p}) satisfies{

−1G + G = δp in M,∫
M G = 1.

In a normal coordinate system around p, the Green’s function G has the repre-
sentation G = −(1/π) log r + Ap + O(r), where r(x)= dist(p, x) is the distance
function, Ap is a constant depending only on p, and Ap+O(r) is called the regular
part. Repeating the other steps taken in Section 4, we obtain

(6–2) sup
u∈H2

(u)≤ Vol ∂M + 2πeπ Ap .
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The blowing up sequence we constructed in Section 5 still works here; one can
check that

Jπ

(
φε

‖φε‖H1,2(M)

)
> Vol ∂M + 2πeπ Ap

for sufficiently small ε, which contradicts (6–2) and so proves Theorem 1.2. �
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