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ITERATED LOOP ALGEBRAS

BRUCE ALLISON, STEPHEN BERMAN AND ARTURO PIANZOLA

Iterated loop algebras are by definition obtained by repeatedly applying
the loop construction, familiar from the theory of affine Kac–Moody Lie
algebras, to a given base algebra. Our interest in this iterated construction
is motivated by its use in the realization of extended affine Lie algebras,
but the construction also appears naturally in the study of other classes of
algebras. This paper consists of a detailed study of the basic properties of
iterated loop algebras.

1. Introduction

Over the past 35 years affine Kac–Moody Lie algebras have been at the centre
of a considerable amount of beautiful mathematics and theoretical physics. As
of late, and perhaps influenced by some of the newest theories in physics, the
need seems to have arisen for some “higher nullity” generalizations of affine Kac–
Moody Lie algebras. It is still too early to decide what the correct final choice for
these algebras will be, but it is fair to say notwithstanding, that Lie algebras graded
by root systems and extended affine Lie algebras (EALAs) will play a prominent
role in the process [Berman and Moody 1992; Benkart and Zelmanov 1996; Allison
et al. 1997a; Saito and Yoshii 2000].

Recall that given a Zm-grading 6 = {Aı̄ }ı̄∈Zm of an algebra A over a field k, the
loop algebra of 6 based on A is the subalgebra

L(A, 6) :=

⊕
i∈Z

Aı̄ ⊗k zi

of A⊗kk[z, z−1
]. Using this beautiful construction, V. Kac showed that (the derived

algebra modulo its centre of) any complex affine Kac–Moody Lie algebras can be
obtained as a loop algebra of a finite dimensional simple Lie algebra [Kac 1969].
The loop construction makes it clear, among other things, that the affine algebras

MSC2000: primary 17B65; secondary 17B67, 16S99, 17C99, 17D05, 17A01.
Keywords: loop algebra, Lie algebra, associative algebra, Jordan algebra.
The authors gratefully acknowledge the support of the Natural Sciences and Engineering Research
Council of Canada.

1

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2006.227-1
http://www.ams.org/msnmain?fn=705&pg1=CODE&op1=OR&s1=17B65,(17B67, 16S99, 17C99, 17D05, 17A01)


2 BRUCE ALLISON, STEPHEN BERMAN AND ARTURO PIANZOLA

are objects of nullity one in a sense that can be made precise. Indeed, in EALA the-
ory, where the concept of nullity is well-defined, one finds that finite dimensional
simple algebras are precisely the (tame) EALAs of nullity zero whereas affine
algebras are precisely the (tame) EALAs of nullity one [Allison et al. 1997b].

It thus seems almost inevitable to ask whether, starting from an affine Kac–
Moody Lie algebra and applying the loop construction, one obtains an extended
affine Lie algebra of nullity 2. This and related questions have been investigated
in some detail in [Wakimoto 1985; Pollmann 1994; Allison et al. 2002; Allison
et al. 2004; van de Leur 2001]. In our work on this topic, as well as in [van de
Leur 2001], it became clear that some advantages are to be had by thinking of loop
algebras based on an affine algebra as being obtained from a finite dimensional Lie
algebra by applying the loop construction twice (the advantages stemming from the
fact that in this case the “bottom” algebra, namely the finite dimensional one, is
much simpler than the affine algebra). As the reader will have surmised by now,
the study of these “iterated loop algebras” took on a life of its own and became the
subject of the present paper.

In general, if A is an (arbitrary) algebra over k, an n-step iterated loop algebra
based on A is an algebra that can be obtained starting from A by a sequence of
n loop constructions, each based on the algebra obtained at the previous step (see
Definition 5.1). Far from being a mere generalization of the loop construction,
iterated loop algebras seem to yield interesting mathematical objects in a natural
way. Even when the resulting objects are known, the new point of view can be
illuminating. As an example, we see in Example 9.8 that algebras representing
elements of the Brauer group of the ring k[t±1

1 , t±2
2 ] are obtained as 2-step iterated

loop algebras of Mn(k). This information is not apparent if one thinks in terms of
single loop algebras of M`(k[t±1

1 ]).

This paper contains a detailed study of the basic properties of iterated loop al-
gebras. We begin in Section 2 by recording some simple properties of the centroid
of an algebra. In the rest of Section 2 and in Section 3 we define and give the basic
properties of a very important class of algebras which for lack of a better name we
have simply referred to as pfgc algebras (nonzero, perfect, and finitely generated
as modules over their centroids). The property of being a prime pfgc algebra arises
naturally in the study of iterated loop algebras since this property is carried over
to a loop algebra (and hence to an iterated loop algebra) from its base. In contrast
the property of finite dimensional central simplicity certainly does not carry over
in the same way. After this discussion of pfgc algebras we establish in Section 4
some basic properties of (one step) loop algebras.

The main results of the paper appear in Sections 5, 6, 7 and 8 . These all deal
with properties of an n-step iterated loop algebra L based on a pfgc algebra A.
First Theorem 5.5 establishes a long list of properties that carry over from A to L.
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In particular, it is shown (as mentioned above) that if A is a prime pfgc algebra then
so is L. Next Theorem 6.2 shows that the centroid C(L) of L is itself an n-step
iterated loop algebra of the centroid of A. The same theorem describes a method
of calculating C(L) explicitly. Then Theorem 7.1 shows that L can be “untwisted”
by a base ring extension of C(L) that is free of finite rank. That is, the algebra L

(after such a base ring extension) becomes isomorphic to the iterated loop algebra
obtained using only the trivial gradings at each stage. Finally, Section 8 deals with
the concept of type of an algebra (which is motivated by the concept of type in
terms of root systems which exists in Lie theory). The main result, Theorem 8.16,
states that type cannot change under the loop construction.

Each of the main results in Sections 6, 7 and 8 has several corollaries that are
discussed in the respective sections. To give one important example, we show in
Section 8 that if L is an n-step iterated loop algebra based on a finite dimensional
split simple Lie algebra A over a field of characteristic 0 then both A and n are
isomorphism invariants of L (see Corollary 8.19). This result will play a crucial
role in our forthcoming work on the classification of the centreless cores of EALAs
of nullity 2 [Allison et al. ≥ 2006].

In the last section, Section 9, we look closely at 2-step iterated loop algebras.
If the base algebra is finite dimensional and central simple, these 2-step iterated
loop algebras come in two kinds, depending on the structure of their centroids.
We illustrate this fact along with many of the concepts discussed in the paper by
describing two examples dealing respectively with Lie algebras and associative
algebras.

2. Centroids and pfgc algebras

We record here some basic facts about centroids, and we define a class of algebras,
which we call pfgc algebras, that will play an important role in the study of loop
algebras. A good basic reference on the centroid is [Jacobson 1962, Ch. X, § 1].

Terminology and notation. A ring will mean a unital commutative associative
ring. Homomorphisms, subrings and modules for rings will always be assumed
to be unital.

A base change will mean a homomorphism υ : B → B ′ of rings. This base
change is said to be free (respectively flat, faithfully flat) if B ′ is a free (respectively
flat, faithfully flat) B-module. Note that if υ : B → B ′ is free and B ′

6= 0, then υ
is faithfully flat and hence flat [Bourbaki 1972, § I.3.1, Example 2]. An injective
base change υ : B → B ′ will be called an extension of rings, in which case we
often identify B as a subring of B ′ and denote the extension by B ′/B.

If B is a ring, an algebra over B will mean a B-module A together with a B-
bilinear product (which is not necessarily associative, commutative or unital). If
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A and A′ are B-algebras, we use the notation

A 'B A′

to mean that A and A′ are isomorphic as B-algebras. If A is an algebra over B and
υ : B → B ′ is a base change, we will denote by A ⊗B B ′ the (unique) B ′-algebra
which is obtained from A by base change [Bourbaki 1974, Ch. III, § 1.5].

For the rest of the section we assume that B is a ring, and that A is a B-algebra.
Note that A can also be regarded as Z-algebra under the natural action of Z on A.

We now recall the definition of the centroid of A [Jacobson 1962, Ch. X, § 1].

Definition 2.1. (i) For a ∈ A consider the two maps from A to A

aL : x 7→ ax and aR : x 7→ xa.

The multiplication algebra of A [Jacobson 1962, Ch. X, § 1] is defined to be the B-
subalgebra MultB(A) of EndB(A) generated by { 1 }∪{ aL | a ∈ A }∪{ aR | a ∈ A }.

(ii) The set CB(A) of elements of EndB(A) that commute with the action of
MultB(A) is called the centroid of A. Equivalently

CB(A) := {χ ∈ EndB(A) : χ(xy)= χ(x)y = xχ(y) for all x, y ∈ A}.

(The notation CentB(A) has been used for the centroid in some articles, for example
in [Allison et al. 2004]. We are using the abbreviated notation CB(A) since it will
arise frequently.) Clearly CB(A) is a B-subalgebra of EndB(A), and therefore A

can be viewed in a natural way as a left CB(A)-module by defining χ · x = χ(x).
(iii) For b ∈ B we define λA(b) ∈ EndB(A) by(

λA(b)
)
(x)= b · x .

Clearly λA(b) ∈ CB(A) since A is a B-algebra. Then the map λA : B → CB(A) is
a ring homomorphism, and CB(A) is a unital associative B-algebra via this map.
Furthermore, if A is a faithful B-module then B can be identified with a subring
of (the centre of) the centroid CB(A).

(iv) The B-algebra A is said to be central (or central over B) if λA : B → CB(A)

is an isomorphism.
(v) The centre of A is defined to be the set Z(A) of elements in A that commute

and associate with all elements of A. Then Z(A) is a B-subalgebra of A. If A is
unital, the map which sends z to left multiplication by z is a B-algebra isomorphism
of Z(A) onto CB(A) [Erickson et al. 1975, § 1].

The following is clear:
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Lemma 2.2. Suppose that A and A′ are B-algebras and ρ : A → A′ is a B-algebra
isomorphism. Then ρ induces a B-algebra isomorphism CB(ρ) :CB(A)→CB(A

′)

defined by χ 7→ ρχρ−1.

The formation of the centroid does not commute with base change. Nonetheless
these two processes do commute in two important cases that we now describe. If
B → B ′ is a homomorphism of rings, we define

ν = νA,B,B ′ : CB(A)⊗B B ′
→ CB ′(A ⊗B B ′)

to be the restriction of the canonical map EndB(A)⊗B B ′
→ EndB ′(A ⊗B B ′).

Then ν is a homomorphism, said to be canonical, of unital associative B ′-algebras.

Lemma 2.3. Suppose that B → B ′ is a homomorphism of rings. Then the map
νA,B,B ′ : CB(A)⊗B B ′

→ CB ′(A ⊗B B ′) is an isomorphism of B ′-algebras in the
following cases:

(a) A is finitely generated as a module over its multiplication algebra MultB(A)

and B ′ is a free B-module.

(b) B ′ is a finitely generated projective B-module.

Proof. (a) Let {si }i∈I be a basis of the B-module B ′.
It is clear that ν is injective. Indeed if

∑
χi ⊗ si is in the kernel of ν then∑

χi (x)⊗ si = 0 for all x in A and so χi = 0 for all i in I.
To see that ν is onto, let χ ∈ CB ′(A ⊗B B ′). Then for x ∈ A we can write

χ(x ⊗B 1B ′) uniquely as

χ(x ⊗ 1B ′)=

∑
χi (x)⊗ si ,

where χi (x) ∈ A and only finitely many of these are nonzero. It is easy to see that
for all i ∈ I the map χi : A → A given by χi : x 7→ χi (x) is an element of CB(A).
Thus to see that χ is an image under ν it suffices to show that only finitely many
of the maps χi are nonzero. For this let { x1, . . . , xn } be a set of generators of A

as a MultB(A)-module. Then whenever χi vanishes on all x j ’s we have

χi (A)= χi

( n∑
j=1

MultB(A) · x j

)
=

n∑
j=1

MultB(A) ·χi (x j )= 0.

(b) Consider the unique B-module homomorphism

ϕB,A : EndB(A)→ HomB(A ⊗B A,A ⊕ A)

satisfying

ϕB,A( f )(a1 ⊗B a2)=
(

f (a1a2)− f (a1)a2, f (a1a2)− a1 f (a2)
)
.
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By definition

ker(ϕB,A)= CB(A).

Also, by standard properties of projective modules we obtain the diagram

0 → CB(A)⊗B B ′
→ EndB(A)⊗B B ′

→ HomB(A⊗BA,A⊕A)⊗B B ′

↓ ν ‖ ‖

0 →CB′(A⊗BB ′)→EndB′(A⊗BB ′)→HomB′

(
(A⊗BB ′)⊗B′(A⊗BB ′),A⊗BB ′

⊕A⊗BB ′
)

where the horizontal rows are exact. Indeed the exactness of the top row is by flat-

ness of the B-module B ′ (every projective is flat). The two vertical isomorphisms
come from B ′ being a finitely generated B-module which is projective [Bourbaki
1974, Ch. II, § 5.3, Prop. 7]. It follows that ν is an isomorphism. �

The following important fact is proved in [Jacobson 1962, Ch. X, § 1, Theo-
rem 3]:

Lemma 2.4. Suppose that B is a field and A is finite dimensional and central
simple over B. If B ′/B is a field extension, then A ⊗B B ′ is finite dimensional and
central simple over B ′.

Next we consider gradings on CB(A) that are induced by gradings on A. For
this suppose that A is Q-graded algebra over B where Q is a finite abelian group.
Thus

A =

⊕
α∈Q

Aα

for some B-submodules Aα and AαAβ ⊂ Aα+β . Then, since Q is finite,

EndB(A)=

⊕
λ∈Q

EndB(A)λ

is also a Q-graded B-algebra, where

EndB(A)λ = {θ ∈ EndB(A) | θ(Aα)⊂ Aλ+α for all α ∈ Q}.

It is easy to check that CB(A) is a Q-graded B-subalgebra of EndB(A), and so we
have:

Lemma 2.5. Suppose that A is Q-graded algebra over B, where Q is a finite
abelian group. Then

CB(A)=

⊕
α∈Q

CB(A)λ

is a Q-graded algebra over B, where CB(A)λ = CB(A)∩EndB(A)λ for all λ∈ Q.
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Definition 2.6. If I and J are ideals of the B-algebra A we define

IJ =
{∑

xi yi : xi ∈ I, yi ∈ J
}

(finite sums of course). Note that in general IJ is not an ideal of A. We say that
A is perfect if AA = A.

Remark 2.7. It is clear that A is perfect as a B-algebra if and only if A is perfect
as a Z-algebra.

Lemma 2.8. Assume A is perfect. Then

(i) CB(A) is commutative.

(ii) CB(A)= CZ(A).

Proof. (i) See [Jacobson 1962, Ch. X, § 1, Lemma 1].
(ii) We must show that any element χ ∈ CZ(A) is B-linear. Indeed if x, y ∈ A

and b ∈ B we have χ(b ·(xy))=χ(x(b · y))=χ(x)(b · y)= b ·(χ(x)y)= b ·χ(xy).
�

We now introduce a convenient acronym, pfgc, that will be used throughout the
paper.

Definition 2.9. A B-algebra A is said to be pfgc if it satisfies the following condi-
tions

P0. A 6= (0)

P1. A is perfect

P2. A is finitely generated as a module over its centroid CB(A).

Remark 2.10. The notion of pfgc algebra A is independent of the base ring under
which A is viewed as an algebra. More precisely, if A is an algebra over B, it
follows from Remark 2.7 and Lemma 2.8(ii) that A is a pfgc algebra over B if and
only if A is a pfgc algebra over Z

We now summarize the basic facts that we will need about pfgc algebras.

Proposition 2.11. Suppose that A is a pfgc algebra over B. Then

(i) CB(A) is a nonzero unital commutative associative B-algebra.

(ii) A is finitely generated as a module over its multiplication algebra MultB(A).

Proof. (i) Since A is perfect and nonzero, this follows from Lemma 2.8(i).
(ii) Let C = CB(A). Let {x1, . . . , xn} ∈ A be such that A =

∑
Cxi . For each i

we can write xi =
∑

j yi j zi j (finite sum) for some yi j and zi j in A. Then

A =

∑
i

Cxi =

∑
i, j

C(yi j zi j )=

∑
i, j

(Cyi j )zi j ⊂

∑
i, j

MultB(A) · zi j ,

which shows that A is generated by the zi j ’s as an MultB(A)-module. �
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3. Prime pfgc algebras

In this section, we recall some basic facts about prime algebras and consider in
particular properties of prime pfgc algebras. A good basic reference on prime
nonassociative algebras and their centroids is [Erickson et al. 1975].

We suppose again in this section that B is a ring and that A is B-algebra.

Definition 3.1. The B-algebra A is said to be prime if for all ideals I and J of the
B-algebra A we have

IJ = 0 H⇒ I = 0 or J = 0.

On the other hand A is said to be semiprime if for all ideals I of A we have

II = 0 H⇒ I = 0.

The following lemma which is easily checked (see [Zhevlakov et al. 1982,
Exercise 1, § 8.2]) tells us that the notion of A being prime (or semiprime) is
independent of the base ring under which A is viewed as an algebra.

Lemma 3.2. A is prime (resp. semiprime) as a B-algebra if and only if A is prime
(resp. semiprime) as a Z-algebra.

The following is proved in [Erickson et al. 1975].

Lemma 3.3. Assume A is a prime algebra over B. Then

(i) CB(A) is an integral domain and A is a torsion free CB(A)-module.

(ii) If we denote the quotient field of CB(A) by C̃B(A), then A⊗CB(A) C̃B(A) is a
prime algebra over C̃B(A). Moreover, if A is finitely generated as a module
over its multiplication algebra MultB(A), then A ⊗CB(A) C̃B(A) is central
over C̃B(A).

Proof. (i) is Theorem 1.1(a) of [Erickson et al. 1975], whereas (ii) follows from
Theorem 1.3(a) and (b) of [Erickson et al. 1975]. �

In a later section of the paper we will investigate the type of an iterated loop
algebra. In that section, we will need the notion of central closure.

Definition 3.4. Let A be a prime pfgc algebra over B. Denote the quotient field of
CB(A) by C̃B(A), and form the C̃B(A)-algebra

Ã := A ⊗CB(A) C̃B(A).

We call Ã the central closure of A. (This is not apparently the same as the central
closure defined in [Erickson et al. 1975, § II]. Here we are following the termi-
nology in, for example, [McCrimmon and Zel’manov 1988, p. 154].) By Lemma
3.3(i), A is a torsion free CB(A)-module, and so the map a 7→ a ⊗1 is an injection
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of A into Ã which we regard as an identification. In this way A is regarded as a
subalgebra of its central closure Ã.

We now summarize the main facts that we will need about the central closure:

Proposition 3.5. Let A be a prime pfgc algebra over B. Then the central closure Ã

of A is a prime pfgc algebra over B. Moreover, Ã is finite dimensional and central
as an algebra over the field C̃B(A).

Proof. Ã is prime by Lemma 3.3(ii). Next, since A is embedded as a subalgebra
of Ã, we have Ã 6= 0. Also, since A is perfect, Ã is perfect. Furthermore, since
A is finitely generated as a CB(A)-module, Ã is finitely generated as a C̃B(A)-
module and therefore also as a CB(Ã)-module (since λ

Ã
(C̃B(A))⊂ CB(Ã)). Thus

Ã is pfgc.
We have just seen that Ã is finite dimensional over C̃B(A).
Finally, since A is pfgc, Proposition 2.11(ii) tells us that A is finitely generated

as a MultB(A)-module. Thus Ã is central over C̃B(A) by Lemma 3.3(ii). �

4. Loop algebras

Assumptions and notation: For the rest of the article, k will denote a fixed base
field. Unless indicated to the contrary, the term algebra will mean algebra over k.
For the sake of brevity, if A is an algebra (over k), we will often write

C(A) := Ck(A).

In this section we recall the definition of a loop algebra and derive some of its
basic properties.

Throughout the section let m be a positive integer and let

Zm = {ı̄ : i ∈ Z}

be the group of integers modulo m, where ı̄ = i + mZ ∈ Zm for i ∈ Z. Let

R = k[t±1
] and S = k[z±1

]

be the algebras of Laurent polynomials in the variables t and z respectively, and
we identify R as a subalgebra of S by identifying

t = zm .

Observe that S is a free R-module of rank m with basis { 1, z, . . . , zm−1
}, and

hence the ring extension S/R is faithfully flat.
Recall that a Zm-grading of the algebra A is an indexed family 6 = { Aı̄ }ı̄∈Zm

of subspaces of A so that A =
⊕

ı̄∈Zm
Aı̄ and Aı̄ Ā ⊂ Aı̄+̄ for ı̄, ̄ ∈ Zm . The

integer m is called the modulus of 6.
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Definition 4.1. Suppose that A is a k-algebra, and we are given a Zm-grading 6
of the algebra A:

A =

⊕
ı̄∈Zm

Aı̄ .

In A ⊗k S we define

L(A, 6) :=

⊕
i∈Z

Aı̄ ⊗k zi
= (A0̄ ⊗k R)⊕ (A1̄ ⊗k z R)⊕ · · · ⊕ (Am−1 ⊗k zm−1 R).

Then L(A, 6) is an R-subalgebra of A ⊗k S that we call the loop algebra of 6
based on A. Since L(A, 6) is an algebra over R, it is also an algebra over k.

Remark 4.2. If we wish to emphasize the role of the variable z in the construction
of the loop algebra we write L(A, 6) as L(A, 6, z).

Example 4.3. If m = 1, then Zm = { 0̄ }, A = A0̄ and L(A, 6)= A ⊗k S is called
the untwisted loop algebra based on A.

Remark 4.4. Suppose that k contains a primitive m -th root of unity ζm . In that
case we can choose to work with finite order automorphisms of period m rather
than Zm-gradings, provided that we fix the choice of ζm .

Indeed, suppose that A is an algebra. If σ is an algebra automorphism of period
m of A, we may define a Zm-grading 6 = { Aı̄ }ı̄∈Zm of A by setting

Aı̄ = { x ∈ A | σ(x)= ζ i
m x },

for ı̄ ∈ Zm . We refer to this grading 6 as the grading determined by σ . It is clear
that any Zm-grading is determined by a unique automorphism σ in this way. If 6
is the grading determined by σ , we denote the algebra L(A, 6) by L(A, σ ), or
L(A, σ, z) if we want to emphasize the role of z. The algebra L(A, σ ) can alter-
nately be defined as the subalgebra of fixed points in A ⊗k S of the automorphism
σ ⊗ η−1

m , where ηm ∈ Autk(S) is defined by ηm(z)= ζmz.

Remark 4.5. When k = C, A is a finite dimensional simple Lie algebra over k
and σ is a finite order automorphism of A, the loop algebra L(A, σ ) was used by
V. Kac in [Kac 1969] to give realizations of all affine Kac–Moody Lie algebras and
to classify finite order automorphisms of A. (See [Kac 1990, Ch. 8] and [Helgason
1978, Ch. X, § 5] for more information about this.)

For the rest of the section, let A a k-algebra, let 6 be a grading of A by Zm ,
and let

L = L(A, 6).

We next describe a useful canonical form for elements of A ⊗k S in terms of
elements of L(A, 6). For this purpose note that A ⊗k S is an S-module (with
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action denoted by “ · ”) and L(A, 6) is contained in A ⊗k S. Thus we may write
expressions like

∑m−1
i=0 zi

· xi ∈ A ⊗k S if x0, . . . , xm−1 ∈ L(A, 6).

Lemma 4.6. Each element of A ⊗k S can be written uniquely in the form

(4–1)
m−1∑
i=0

zi
· xi

where x0, . . . , xm−1 ∈ L.

Proof. This fact was proved using a Galois cocycle argument in [Allison et al. 2004,
Theorem 3.6 (b)] in the case when k contains a primitive m -th root of unity. We
give a direct proof here instead. Let x ∈A⊗k S. Then x is the sum of elements of the
form a⊗z j , where j ∈ Z and a ∈ A ¯̀ for some `∈ Z. But, if we write j −`=qm+i ,
where q ∈ Z and 0 ≤ i ≤ m −1, then a ⊗ z j

= zi
· (a ⊗ z j−i )= zi

· (a ⊗ zqm+`) and
a ⊗ zqm+`

∈ L. So x can be expressed in the form (4–1). For uniqueness, suppose
that

∑m−1
i=0 zi

· xi = 0, where x0, . . . , xm−1 ∈ L. Write xi =
∑

j∈Z ai j ⊗ z j , where
ai j ∈ Ā for all j and only finitely many ai j are nonzero. Then

m−1∑
i=0

∑
j∈Z

ai j ⊗ zi+ j
= 0.

For 0 ≤ `≤ m−1, the A ¯̀⊗k S-component of the expression on the left above must
be zero. Thus we have

m−1∑
i=0

∑
j≡`

ai j ⊗ zi+ j
= 0

for 0 ≤ ` ≤ m − 1, where ≡ denotes congruence modulo m. The exponents i + j
appearing in this sum are all distinct and so we have ai j = 0 for all i, j and hence
xi = 0 for all i . �

Next note that we have the canonical map ξ = ξA,6 : L(A, 6)⊗R S → A ⊗k S
defined by

ξ
(
x ⊗ zi)

= zi
· x

for x ∈ L(A, 6), i ∈ Z. As observed in [Allison et al. 2004, Theorem 3.6(b)],
Lemma 4.6 has the following interpretation:

Lemma 4.7. The map ξA,6 : L(A, 6)⊗R S → A⊗k S is an S-algebra isomorphism
of L(A, 6)⊗R S onto A ⊗k S.

Proof. Clearly ξ is a homomorphism of S-algebras. Moreover, each element of
L(A, 6)⊗R S can be expressed in the form

∑m−1
i=0 xi ⊗ zi , where xi ∈ L(A, 6)

for each i , and so ξ is bijective by Lemma 4.6. �
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Remark 4.8. Lemma 4.7 tells us that after base ring extension from R to S the
loop algebra L(A, 6) becomes isomorphic to the untwisted loop algebra A ⊗k S.
In other words, L(A, 6) is “untwisted” by the extension S/R. This fact is of great
importance in the study of loop algebras since, among other things, it allows one
to use the tools of Galois cohomology to study loop algebras [Allison et al. 2004;
Pianzola 2002].

Lemma 4.9.

(i) If A 6= 0, then L(A, 6) 6= 0.

(ii) If A is perfect, then L(A, 6) is perfect.

Proof. Statement (i) is clear and statement (ii) is easily checked (see the argument
in [Allison et al. 2004, Lemma 4.3]). �

We now examine the centroid of L = L(A, 6).
First note that since L is an R-algebra, CR(L) is naturally an R-algebra (see

Definition 2.1(iii)). So since CR(L) ⊂ C(L), it follows that C(L) is also an R-
algebra.

Next by Lemma 2.5 the centroid C(A) inherits a Zm-grading that we denote
by C(6). Under this grading we have

C(A)=

⊕
ı̄∈Zm

C(A)ı̄ ,

where

(4–2) C(A)ı̄ = {χ ∈ C(A) | χ(Ā )⊂ Aı̄+̄ for ̄ ∈ Zm }.

Now let
ψ := ψA,6 : L(C(A),C(6))→ CR

(
L(A, 6)

)
be the unique k-linear map so that(

ψ(χ ⊗ zi )
)
(a ⊗ z j )= χ(a)⊗ zi+ j

for i, j ∈ Z, χ ∈ C(A)ı̄ , a ∈ Ā . It is immediate from this definition that ψ is a
homomorphism of R-algebras that we call canonical.

Lemma 4.10. Assume A is finitely generated as a module over its multiplication
algebra Multk(A). Then the map ψA,6 : L

(
C(A),C(6)

)
→ CR

(
L(A, 6)

)
is an

R-algebra isomorphism.

Proof. Since the ring extension S/R is faithfully flat, to show thatψ is an R-module
isomorphism it suffices to show thatψ becomes an isomorphism of S-modules after
the base change from R to S. That this is so follows from the commutative diagram
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L
(
C(A),C(6)

)
⊗R S

ψ ⊗ 1- CR(L)⊗R S

CS
(
L ⊗R S

)νL
?

C(A)⊗k S

ξC

?

νA

- CS(A ⊗k S)

CS(ξ)
?

in view of the fact that all vertical maps and the bottom row therein are S-isomor-
phisms. In this diagram ξC = ξC(A),C(6) as in Lemma 4.7, νA = νA,k,S as in Lemma
2.3(a), νL = νL,R,S as in Lemma 2.3(b), and CS(ξ) is the isomorphism induced by
the isomorphism ξ = ξA,6 : L ⊗R S → A ⊗k S (see Lemmas 2.2 and 4.7). �

The following proposition tells us that the centroid of a loop algebra based on a
pfgc algebra A is isomorphic to the loop algebra of the centroid of A.

Proposition 4.11. Let L = L(A, 6) be a loop algebra based on a pfgc algebra A.
Then CR(L)= C(L), and the canonical map

ψ = ψA,6 : L(C(A),C(6))→ C(L)

is an R-algebra isomorphism.

Proof. Since L is perfect by Lemma 4.9(ii), it follows that CR(L) = C(L) by
Lemma 2.8(ii). Also since A is pfgc, it follows from Proposition 2.11(ii) that A

is finitely generated as a module over Multk(A). Thus, by Lemma 4.10, ψ is an
R-algebra isomorphism from L(C(A),C(6)) onto C(L). �

Finally we want to show that a loop algebra based on a pfgc algebra is pfgc. For
this we will use the following:

Lemma 4.12. If A is finitely generated as a C(A)-module then L(A, 6) is finitely
generated as a CR

(
L(A, 6)

)
-module.

Proof. Let {a1, . . . , ap} be a set of homogeneous elements of A that generates
A as a C(A)-module. Fix integers d1, . . . , dp so that a j ∈ Ad j

. Let M be the
CR(L)-submodule of L generated by the elements ak ⊗ zdk . Since S/R is flat we
may identify M ⊗R S as an S-submodule of L ⊗R S, and since S/R is faithfully
flat it is sufficient to show that M ⊗R S = L ⊗R S [Bourbaki 1972, Ch. I, § 3.1,
Proposition 2]. We do this by showing that ξ(M ⊗R S) = ξ(L ⊗R S), where ξ =

ξA,6 : L ⊗R S −→ A ⊗k S is the S-algebra isomorphism from Lemma 4.7.
Suppose that i, j ∈ Z, χ ∈ C(A)ı̄ and 1 ≤ `≤ p. Then ψ(χ ⊗ zi ) is an element

of CR(L), where ψ = ψA,6 . So
(
ψ(χ ⊗ zi )

)
(a`⊗ zd`) ∈ M. But under ξ we have((

ψ(χ ⊗ zi )
)
(a` ⊗ zd`)

)
⊗ z j

7→ χ(a`)⊗ zd`+i+ j .
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Since {a1, . . . , ap} generates A as a C(A)-module, it follows ξ(M⊗R S)= ξ(L⊗R

S) as needed. �

Proposition 4.13. Let L = L(A, 6) be a loop algebra based on a pfgc algebra A.
Then L is a pfgc algebra.

Proof. L 6= (0) and L is perfect by Lemma 4.9. So P0 and P1 hold (see Definition
2.9). By Lemma 4.12, L is finitely generated as a CR(L)-module. But by Proposi-
tion 4.11, we have CR(L)= C(L). Thus L is finitely generated as a C(L)-module
and so P2 holds. Hence L is pfgc. �

5. Iterated loop algebras

In this section we define iterated loop algebras and prove some of their basic prop-
erties.

Notation: For the rest of this article, we fix some notation. Let n be a positive
integer. Let z1, . . . , zn be a sequence of algebraically independent variables over k.
For 0 ≤ p ≤ n, let

S⊗p
:= k[z±1

1 , . . . , z±1
p ]

be the algebra of Laurent polynomials in the variables z1, . . . , z p over k. (So
S⊗0

=k.) We identify S⊗p
⊗S⊗q

= S⊗(p+q) in the natural fashion when 0≤ p, q ≤n
and p +q ≤ n. We also fix a sequence m1, . . . ,mn of positive integers, and we set

Ip := { (i1, . . . , i p) ∈ Zp
| 0 ≤ i j ≤ m j − 1 for all j },

for 1 ≤ p ≤ n.

Definition 5.1. Suppose that A is an algebra over k. An algebra L over k is called
an n-step loop algebra or an iterated loop algebra based on A if there exists a
sequence L0,L1, . . . ,Ln of algebras so that L0 = A, Ln = L and

Lp = L(Lp−1, 6p, z p),

for 1 ≤ p ≤ n, where 6p is a Zm p -grading of Lp−1. (See Remark 4.2 for the
notation used here.) In that case we write

L = L(A, 61, . . . , 6n)

(suppressing in the notation the role of the variables z1, . . . , zn).

Remark 5.2. Suppose that L is an n-step loop algebra based on A and we have
the notation from Definition 5.1.

(i) For 1 ≤ p ≤ n, Lp = L(A, 61, . . . , 6p) is a p-step loop algebra based on A.
(ii) Observe that Lp ⊂ Lp−1 ⊗k k[z±1

p ] for 1 ≤ p ≤ n. Thus

Lp ⊂ (. . . ((A ⊗k k[z±1
1 ])⊗k k[z±1

2 ]) . . . )⊗k k[z±1
p ] = A ⊗ k[z±1

1 , . . . , z±1
p ],
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for 0 ≤ p ≤ n, where the last equality is the natural identification using the asso-
ciativity of the tensor product and the identification k[z±1

1 ]⊗k . . .⊗k k[z±1
p ] = S⊗p.

Consequently, Lp is a subalgebra of A ⊗k S⊗p for 0 ≤ p ≤ n, and in particular L

is a subalgebra of A ⊗k S⊗n .
(iii) Suppose that k contains a primitive mi -th root of unity ζmi (which we fix)

for i = 1, . . . , n. Then for p = 1, . . . , n, the grading 6p of Lp−1 is determined
by a unique automorphism σp of Lp−1 of period m p. We then denote the algebra
L(A, 61, . . . , 6n) by L(A, σ1, . . . , σn).

Example 5.3. If m1 = · · · = mn = 1 then L(A, 61, . . . , 6n)= A ⊗k S⊗n is called
the untwisted n-step loop algebra based on A.

Example 5.4 (Multiloop algebras). Suppose that k contains a primitive mi -th root
of unity ζmi for 1 ≤ i ≤ n. Let A be an algebra, and let σ1, . . . , σn be commuting
finite order automorphisms of A with periods m1, . . . ,mn respectively. Let

Aı̄1,...,ı̄n = { x ∈ A | σ j x = ζ
i j
m j x for 1 ≤ j ≤ n }

for (i1, . . . , in) ∈ Zn , where ı̄ j := i j + m j Z ∈ Zm j for 1 ≤ j ≤ n. Then

A =

⊕
(i1,...,in)∈In

Aı̄1,...,ı̄n ,

and we set

M(A, σ1, . . . , σn) :=

⊕
(i1,...,in)∈Zn

Aı̄1,...,ı̄n ⊗k zi1
1 . . . z

in
n

in A⊗k S⊗n . Then M(A, σ1, . . . , σn) is a subalgebra of A⊗k S⊗n that we call the
n-step multiloop algebra of σ1, . . . , σn based on A.

Now the multiloop algebra L = M(A, σ1, . . . , σn) can be interpreted as an it-
erated loop algebra. To see this, let L0 = A and let Lp = M(A, σ1, . . . , σp) for
1 ≤ p ≤ n. Then by definition we have L0 = A and Ln = L. Also, for 1 ≤ p ≤ n,
we may define a Zm p -grading 6p on Lp−1 by setting

(Lp−1)ı̄ p =

⊕
(i1,...,i p−1)∈Zp−1

Aı̄1,...,ı̄ p ⊗k zi1
1 . . . z

i p−1
p−1

for ı̄ p ∈ Zm p , in which case it is then clear that L(Lp−1, 6p, z p) = Lp. So L =

L(A, 61, . . . , 6n).

We have just seen in Example 5.4 that any multiloop algebra is an iterated loop
algebra. However we will see later in Example 9.7 that there are iterated loop
algebras A that are not multiloop algebras.

For the rest of the section we assume that

L = L(A, 61, . . . , 6n)
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is an n-step loop algebra based on an algebra A over k, and we use the notation
L0, . . . ,Ln of Definition 5.1.

Our first theorem describes some important basic algebraic properties that are
inherited by a loop algebra from its base. In the last part of this theorem we will
see how the Krull dimension of a loop algebra depends on the Krull dimension of
its base. Here and subsequently we use

Dim C

to denote the Krull dimension of a unital commutative associative k-algebra C

(when regarded as a ring). Note that if C is finitely generated as a k-algebra then
Dim C is finite [Kunz 1985, p. 52].

Theorem 5.5. Let L = L(A, 61, . . . , 6n).

(i) If A 6= 0 then L 6= 0.

(ii) If A is perfect then L is perfect.

(iii) If A is pfgc then L is pfgc.

(iv) If A is prime then L is prime.

(v) If A is unital then L is a unital subalgebra of A ⊗ S⊗n .

(vi) If A is commutative then L is commutative.

(vii) If A is associative then L is associative.

(viii) If A is an integral domain then L is an integral domain.

(ix) If A is unital and finitely generated as a k-algebra then L is unital and finitely
generated as a k-algebra.

(x) If A is unital, commutative, associative and finitely generated as a k-algebra,
then L has the same properties and

(5–1) Dim L = Dim A + n.

Proof. Since Lp+1 is a loop algebra based on Lp for 0 ≤ p ≤ n−1, we can assume
in the proof of each of these statements that n = 1. So we may use the notation of
Section 4:

m = m1, z = z1, 6 =61, L = L(A, 6, z), S = S⊗1
= k[z±1

] and R = k[z±m
].

Now (i) and (ii) follow from Lemma 4.9. (iii) follows from Proposition 4.13.
(v) follows from that fact that 1A ∈ A0̄, since then 1A ⊗1S ∈ L. (vi), (vii) and (viii)
follow from the fact that L is a subalgebra of A⊗k S 'k A[z±1

]. So we only need
to prove (iv), (ix) and (x).
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(iv) We show first that A ⊗k S is prime. For this let I and J be ideals of the
k-algebra A ⊗k S such that IJ = 0. For m ∈ Z, let

Im = { a ∈ A | ∃ ai ∈ A for i ≥ m with am = a and
∑

i≥mai ⊗ zi
∈ I },

in which case Im is an ideal of A. Similarly, using J instead of I, we define
an ideal Jn of A for n ∈ Z. Furthermore, since IJ = 0, we have ImJn = 0 for
m, n ∈ Z. Now suppose that I 6= 0. Then Im 6= 0 for some m ∈ Z. Thus, since A

is prime, we have Jn = 0 for all n ∈ Z and so J = 0. Therefore A ⊗k S is prime.
But L ⊗R S 'S A ⊗k S by Lemma 4.7. Hence L ⊗R S is a prime algebra. To

prove that L is prime (as a k-algebra), it is enough to show that L is a prime R-
algebra (by Lemma 3.2). For this let I and J be ideals of the R-algebra L such
that IJ = 0. Since S/R is flat, we can identify I⊗R S and J⊗R S as ideals of the
S-algebra L ⊗R S. Furthermore, we have (I ⊗R S)(J ⊗R S) = 0. Since L ⊗R S
is prime, either I ⊗R S or J ⊗R S is 0. Therefore I = 0 or J = 0 by the faithful
flatness of S/R.

(ix) L is unital by (v). Let {a1, . . . , ap} be a set of homogeneous elements of A

that generates A as a k-algebra, and fix integers d1, . . . , dp so that a j ∈ Ad̄ j
. One

easily checks that the elements a1 ⊗ zd1, . . . , ap ⊗ zdp together with the elements
1A ⊗zm and 1A ⊗z−m generate L as a k-algebra.

(x) L is unital, commutative, associative and finitely generated as a k-algebra
by (v), (vi), (vii) and (ix), and so the Krull dimensions of both A and L are finite.
Now recall that L is a subalgebra of A ⊗k S and, by Lemma 4.6, each element of
A ⊗k S can be written uniquely in the form

m−1∑
i=0

zi
· xi =

m−1∑
i=0

xi (1A ⊗zi )

where x0, . . . , xm−1 ∈ L. Thus A ⊗k S is a free L-module of rank m, and so in
particular A⊗k S is a finitely generated L-module. Hence A⊗k S/L is an integral
ring extension and so by [Kunz 1985, Corollary II.2.13],

Dim L = Dim
(
A ⊗k S

)
.

On the other hand since both A and S are finitely generated k-algebras

Dim
(
A ⊗k S

)
= Dim A + Dim S

[Kunz 1985, Corollary II.3.9]. Since Dim S = 1, we obtain Dim L = Dim A+1. �

Remark 5.6. It follows in particular from Theorem 5.5 that any n-step loop algebra
based on a prime pfgc algebra is a prime pfgc algebra. The corresponding statement
is not true for simple pfgc algebras. For example, an untwisted pfgc algebra A ⊗k

S⊗n is never simple (since S⊗n is not simple). This is the reason why prime pfgc
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algebras are natural algebras to consider when studying loop algebras, even if one’s
main interest is in the case when the base algebras are simple.

We conclude this section with a generalization to iterated loop algebras of the
canonical form described in Lemma 4.6. If 1 ≤ p ≤ n, we use the usual convenient
notation

zi
= zi1

1 . . . z
i p
p

for i = (i1, . . . , i p) ∈ Zp. Note that A ⊗k S⊗p is an S⊗p-module (with action
denoted by “·”), and Lp is contained in A⊗k S⊗p. Thus, we can write expressions
like

∑
i∈Ip

zi
· xi ∈ A ⊗k S⊗p, where xi ∈ Lp for all i ∈ Ip.

Lemma 5.7. If 1 ≤ p ≤ n, each element in A ⊗k S⊗p can be expressed uniquely in
the form

(5–2)
∑
i∈Ip

zi
· xi,

where xi ∈ Lp for all i.

Proof. We argue by induction on p. When p = 1, the statement follows from
Lemma 4.6. So we suppose that the statement is true for p, where 1 ≤ p ≤ n − 1.

Let x ∈ A ⊗ S⊗(p+1). To show that x can be expressed in the form (5–2), note
first that x is a sum of elements of the form x ′

⊗ z j
p+1, where x ′

∈ A ⊗k S⊗p and
j ∈ Z. But by the induction hypothesis, x ′ is the sum of elements of the form zi

·x ′′,
where i ∈ Ip and x ′′

∈ Lp. Thus x is the sum of elements of the form

(zi
· x ′′)⊗ z j

p+1 = zi
· (x ′′

⊗ z j
p+1).

But x ′′
⊗ z j

p+1 ∈ Lp ⊗k k[z±1
p+1], and so, by Lemma 4.6, x ′′

⊗ z j
p+1 is the sum of

elements of the form z`p+1 · x ′′′, where 0 ≤ ` ≤ m p+1 − 1 and x ′′′
∈ Lp+1. Thus x

is the sum of elements of the form

zi
· (z`p+1 · x ′′′)= (ziz`p+1) · x ′′′

as desired.
For uniqueness, suppose that

∑
j∈Ip+1

zj
· xj = 0, where xj ∈ Lp+1 for each

j ∈ Ip+1. Then

∑
i∈Ip

m p+1−1∑
`=0

(ziz`p+1) · xi,` = 0,
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where, if i = (i1, . . . , i p) ∈ Ip and 0 ≤ ` ≤ m p+1 − 1, we are using the notation
xi,` := x(i1,...,i p,`) ∈ Lp+1. So we have

∑
i∈Ip

zi
·

( m p+1−1∑
`=0

z`p+1 · xi,`

)
= 0.

But for i ∈ Ip, the element
∑m p+1−1

`=0 z`p+1 · xi,` is in Lp ⊗k k[z±1
p+1] and therefore

we can write
m p+1−1∑
`=0

z`p+1 · xi,` =

∑
j∈Z

yi, j ⊗ z j
p+1,

where each yi, j is in Lp and only finitely many of these elements are nonzero.
Then

∑
i∈Ip

zi
·
(∑

j∈Z yi, j ⊗ z j
p+1

)
= 0, and so

∑
j∈Z

(∑
i∈Ip

zi
· yi, j

)
⊗ z j

p+1 = 0.

Hence
∑

i∈Ip
zi

· yi, j = 0 for each j and so by the induction hypothesis yi, j = 0

for all i ∈ Ip and j ∈ Z. So
∑m p+1−1

`=0 z`p+1 · xi,` = 0 for all i ∈ Ip, and hence, by
Lemma 4.6, xi,` = 0 for all i ∈ Ip and 0 ≤ `≤ m p+1 − 1. �

If A is unital and associative, then L = L(A, 61, . . . , 6n) is a unital associative
subalgebra of A⊗k S⊗n and hence A⊗k S⊗n is an L-module (with action denoted
by “·”).

Corollary 5.8. Suppose that L = L(A, 61, . . . , 6n) where A is unital and asso-
ciative. Then A ⊗k S⊗n is a free L-module of rank m1 . . .mn with basis

{ 1A ⊗zi
}i∈In .

Proof. This follows from Lemma 5.7 (with p = n) and the observation that

zi
· x = x · (1A ⊗zi)

for x ∈ L and i ∈ Zn . (On the left of this equation · denotes the action of S⊗n on
A ⊗k S⊗n , whereas on the right · denotes the action of L on A ⊗k S⊗n .) �

6. The centroid of an iterated loop algebra

In this section, we give an explicit description of the centroid of an n-step loop
algebra based on a pfgc algebra A as an n-step loop algebra based on C(A).

Throughout the section we assume that L = L(A, 61, . . . , 6n) is an n-step
loop algebra based on a algebra A over k. So we have algebras L0, . . . ,Ln so
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that L0 = A, Ln = L and

Lp+1 = L(Lp, 6p+1, z p+1)

for 0 ≤ p ≤ n −1. As we observed in Remark 5.2, Lp is a subalgebra of A⊗k S⊗p

for 0 ≤ p ≤ n.
We next introduce some notation.
First let 0 ≤ p ≤ n. Then C(A) ⊗k S⊗p is a unital associative algebra and

A ⊗k S⊗p is a C(A)⊗k S⊗p-module under the action “·” defined by

(χ ⊗ zi) · (a ⊗ zj)= χ(a)⊗ zi+j.

We let C̄(Lp) denote the stabilizer of Lp in C(A)⊗k S⊗p under this action. That
is we let

C̄(Lp) := { u ∈ C(A)⊗k S⊗p
| u · Lp ⊂ Lp }.

Then C̄(Lp) is a unital subalgebra of C(A)⊗k S⊗p and Lp is a C̄(Lp)-module.
(For convenience, our notation suppresses the fact that C̄(Lp) depends on A,
61, . . . , 6p and not just on the loop algebra Lp.)

Next suppose that 0 ≤ p ≤ n − 1. Then 6p+1 is a Zm p+1-grading of the algebra
Lp which we write as

Lp =

⊕
ı̄∈Zm p+1

(Lp)ı̄ .

We set

(6–1) C̄(Lp)ı̄ := { u ∈ C̄(Lp) | u · (Lp)̄ ⊂ (Lp)ı̄+̄ for all ̄ ∈ Zm p+1 }

for ı̄ ∈ Zm p+1 . We denote the collection {C̄(Lp)ı̄ }ı̄∈Zm p+1
by C̄(6p+1). We will see

in Lemma 6.1(ii) below that C̄(6p+1) is a Zm p+1-grading of C̄(Lp).
Finally for 0 ≤ p ≤ n we define γp : C̄(Lp)→ C(Lp) by

γp(u)(x)= u · x

for u ∈ C̄(Lp), x ∈ Lp, in which case γp is an algebra homomorphism. Note in
particular that C̄(L0)= C(A) and γ0 is the identity map.

Lemma 6.1. Suppose that L = L(A, 61, . . . , 6n), where A is a pfgc algebra.

(i) If 0 ≤ p ≤ n then γp : C̄(Lp)→ C(Lp) is an isomorphism of k-algebras.

(ii) If 0 ≤ p ≤ n − 1 then C̄(6p+1) is a Zm p+1-grading of the algebra C̄(Lp) and
the map γp is an isomorphism of graded algebras.

(iii) If 0 ≤ p ≤ n − 1 then

(6–2) C̄(Lp+1)= L(C̄(Lp), C̄(6p+1), z p+1).
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Proof. (i) We first show that γp is injective for 0 ≤ p ≤ n. To see this, suppose
that u ∈ ker(γp). Then u · x = 0 for all x ∈ Lp, and so (since Lp spans A ⊗k S⊗p

over S⊗p by Lemma 5.7) we have u · x = 0 for all x ∈ A⊗k S⊗p. This implies that
u = 0.

Next we prove the bijectively of γp for 0 ≤ p ≤ n by induction on p. This is
clear if p = 0 since γ0 is the identity map. So we suppose that 0 ≤ p ≤ n − 1
and that γp is bijective. It is clear from this bijectivity and from the definitions of
C̄(Lp+1) and C(Lp+1) (see (6–1) and (4–2)) that

γp(C̄(Lp+1)ı̄ )= C(Lp+1)ı̄

for ı̄ ∈ Zm p+1 . Hence C̄(6p+1) is a grading of the algebra C̄(Lp) and γp : C̄(Lp)→

C(Lp) is a graded isomorphism. So γp induces an algebra isomorphism

L(γp) : L(C̄(Lp), C̄(6p+1), z p+1)→ L(C(Lp),C(6p+1), z p+1).

Consequently we have the composite algebra isomorphism
(6–3)

L(C̄(Lp), C̄(6p+1), z p+1)
L(γp)
−→ L(C(Lp),C(6p+1), z p+1)

ψLp ,6p+1
−→ C(Lp+1),

where ψLp,6p+1 is the isomorphism of Proposition 4.11. (Note that the proposition
can be applied since Lp is a pfgc algebra by, Theorem 5.5(iii).) But

L(C̄(Lp), C̄(6p+1), z p+1)⊂ C̄(Lp+1)

and one easily checks that the restriction

(6–4) γp+1|L(C̄(Lp),C̄(6p+1),z p+1)
: L(C̄(Lp), C̄(6p+1), z p+1)→ C(Lp+1)

equals the composite map (6–3). Hence the restriction (6–4) of γp+1 is bijective.
Thus, since γp+1 itself is injective, it follows that

L(C̄(Lp), C̄(6p+1), z p+1)= C̄(Lp+1)

and γp+1 is bijective. So we have proved (i).
(ii) and (iii): These were proved in the argument for (i). �

Since L = Ln , we write C̄(L)= C̄(Ln) and so

C̄(L) := { u ∈ C(A)⊗k S⊗n
| u · L ⊂ L }.

Then C̄(L) is a unital subalgebra of C(A)⊗k S⊗n , and A⊗k S⊗n is a C̄(L)-module.
We also write γL = γn . Thus γL : C̄(L)→ C(L) is the k-algebra homomorphism
(said to be canonical) defined by

γL(u)(x)= u · x

for u ∈ C̄(L), x ∈ L.
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Using Lemma 6.1 we can now give an explicit description of the centroid of an
n-step loop algebra as an n-step loop algebra.

Theorem 6.2. Suppose that L= L(A, 61, . . . , 6n) is an n-step loop algebra based
on a pfgc algebra A. Then the canonical map γL : C̄(L) → C(L) is an algebra
isomorphism and we have

(6–5) C̄(L)= L(C(A), C̄(61), . . . , C̄(6n)).

Proof. γL is an isomorphism by Lemma 6.1(i). Moreover (6–5) follows by repeated
application of (6–2). �

Corollary 6.3. Suppose that L is an n-step loop algebra based on a pfgc algebra
A. Then

(i) C(A) and C(L) are nonzero unital commutative associative algebras over k.

(ii) If C(A) is an integral domain, then C(L) is an integral domain.

(iii) If C(A) is finitely generated as an algebra over k, then C(L) is finitely gen-
erated as an algebra over k and Dim C(L)= Dim C(A)+ n.

Proof. (i) Since A is pfgc, we know that L is pfgc by Theorem 5.5(iii). Hence
C(A) and C(L) are nonzero unital commutative associative algebras by Proposi-
tion 2.11(i).

(ii) and (iii): We know by Theorem 6.2 that C(L) is isomorphic to an n-step
loop algebra based on C(A). Thus (ii) and (iii) follow from Theorem 5.5 (viii) and
(x) respectively. �

If A is a finite dimensional central simple algebra over k, then C(A)= k and A

is a pfgc algebra. Hence we have the following consequence of Corollary 6.3:

Corollary 6.4. Suppose that L is an n-step loop algebra based on a finite dimen-
sional central simple algebra A over k. Then C(L) is an integral domain, C(L)
is finitely generated as an algebra over k, and Dim C(L)= n. Consequently, if L′

is an n′-step loop algebra based on a finite dimensional central simple algebra A′

over k, then

L 'k L′
H⇒ n = n′.

Remark 6.5. Suppose that L is an n-step loop algebra based on a finite dimensional
central simple algebra A over k. Then C(A)⊗k S⊗n

= k ⊗k S⊗n
= S⊗n and so

C(L)
γL
'k C̄(L)= { u ∈ S⊗n

: u · L ⊂ L }.

This fact can be used to explicitly compute C(L) in examples.
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Corollary 6.6. Suppose that L = M(A, σ1, . . . , σn) is a multiloop algebra based
on a finite dimensional central simple algebra A over k, where σ1, . . . , σn are
commuting finite order automorphisms of A with periods m1, . . . ,mn respectively.
Then

(6–6) C̄(L)= k[(zm1
1 )±1, . . . , (zmn

n )±1
],

and so C(L) is isomorphic to the algebra of Laurent polynomials in n-variables
over k.

Proof. Recall (using the notation of Example 5.4) that

L =

⊕
(i1,...,in)∈Zn

Aı̄1,...,ı̄n ⊗k zi1
1 . . . z

in
n ,

and so the inclusion “⊃” in (6–6) is clear. For the inclusion “⊂”, let u ∈ C̄(L).
Now S⊗n is naturally Zn-graded and it is clear that C̄(L) is a graded subalgebra.
Hence we can assume that u = z j1

1 . . . z
jn
n , where ( j1, . . . , jn) ∈ Zn . But then

Aı̄1,...,ı̄n ⊂ Aı̄1+̄1,...,ı̄n+̄n for all (i1, . . . , in) ∈ Zn and so (̄1, . . . , ̄n)= (0̄, . . . , 0̄).
�

7. Untwisting iterated loop algebras

In this section we show that any n-step loop algebra based on a pfgc algebra can
be untwisted by an extension of the centroid of L that is free of finite rank.

Suppose again throughout the section that L = L(A, 61, . . . , 6n) is an n-step
loop algebra based on an algebra A over k. We use the notation of the previous
section.

It will be convenient to work with C̄(L) rather than C(L) (although one could
use γL to identify these algebras using Theorem 6.2 and avoid this distinction).
Note that C̄(L) is a subalgebra of C(A)⊗k S⊗n , and so C(A)⊗k S⊗n/C̄(L) is a
ring extension. This is the extension that we use to untwist L.

We define
ωL : L ⊗C̄(L) (C(A)⊗k S⊗n)→ A ⊗k S⊗n

by
ωL(x ⊗ u)= u · x

for x ∈ L and u ∈ C(A) ⊗k S⊗n . One easily checks that ωL is a well-defined
C(A)⊗k S⊗n-algebra homomorphism which we call canonical.

Our untwisting theorem is the following:

Theorem 7.1. Suppose that L= L(A, 61, . . . , 6n) is an n-step loop algebra based
on a pfgc algebra A, where 6p has modulus m p for 1 ≤ p ≤ n. Then
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(i) C(A)⊗k S⊗n is a free C̄(L)-module of rank m1 . . .mn with basis

{ 1C(A) ⊗zi
| i ∈ In }.

(ii) The canonical map ωL is an isomorphism and so

(7–1) L ⊗C̄(L) (C(A)⊗k S⊗n)'C(A)⊗k S⊗n A ⊗k S⊗n.

Proof. (i) Since C̄(L) is an n-step loop algebra based on C(A) by Theorem 6.2,
statement (i) follows from Corollary 5.8.

(ii) First L spans A ⊗k S⊗n over S⊗n by Lemma 5.7, and so L spans A ⊗k S⊗n

over C(A)⊗ S⊗n . Thus ωL is surjective.
To show that ωL is injective, let x ∈ ker(ωL). Then, in particular, x is an element

of L ⊗C̄(L) (C(A)⊗k S⊗n). Now since C̄(L) is an n-step loop algebra based on
C(A), it follows from Lemma 5.7 that every element of C(A) ⊗k S⊗n can be
written as a sum of elements of the form zi

· u, where i ∈ In and u ∈ C̄(L). But
zi

· u = u · (1C(A) ⊗zi). Thus from the balanced property in the tensor product
L ⊗C̄(L) (C(A)⊗k S⊗n), it follows that x can be written in the form

x =

∑
i∈In

xi ⊗ (1C(A) ⊗zi),

where xi ∈ L for all i. Applying ωL to this expression yields
∑

i∈In
zi

· xi = 0, and
so xi = 0 for all i ∈ In by Lemma 5.7. Thus x = 0 and ωL is injective. �

Remark 7.2. Suppose that L is an n-step loop algebra based on a pfgc algebra A.
(i) We can use the canonical isomorphism γL : C̄(L)→ C(L) of Theorem 6.2

to identify the algebras C̄(L) and C(L). This identification is compatible with
the actions of these algebras on L and it gives C(A) ⊗k S⊗n the structure of a
C(L)-module. Then (7–1) can be restated as

(7–1′) L ⊗C(L)
(
C(A)⊗k S⊗n)

'C(A)⊗k S⊗n A ⊗k S⊗n.

Since A ⊗k S⊗n is the untwisted n-step loop algebra based on A, Theorem 7.1
tells us that L is untwisted by a free base ring extension of rank m1 . . .mn of the
centroid of L.

(ii) Also observe that the algebras A ⊗k S⊗n and A ⊗C(A)
(
C(A)⊗k S⊗n

)
are

canonically isomorphic as C(A)⊗k S⊗n-algebras. Thus the isomorphism (7–1′)
can be further restated as

(7–1′′) L ⊗C(L)
(
C(A)⊗k S⊗n)

'C(A)⊗k S⊗n A ⊗C(A)
(
C(A)⊗k S⊗n).

Theorem 7.1 can be used to compare properties of an iterated loop algebra as
a module or algebra over its centroid with corresponding properties of the base
algebra over its centroid. We now indicate an example of this sort of argument.
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Corollary 7.3. Let L be an n-step loop algebra based on a pfgc algebra A. If A is
a projective C(A)-module then L is a finitely generated projective C(L)-module

Proof. As in Remark 7.2, we identify C̄(L) and C(L) using γL. By axiom P2
of pfgc algebras and the present assumption, A is a finitely generated projective
C(A)-module. Hence A ⊗C(A)

(
C(A)⊗k S⊗n

)
is a finitely generated projective

C(A)⊗k S⊗n-module. Thus by (7–1′′), L ⊗C(L)
(
C(A)⊗k S⊗n

)
is a finitely gen-

erated projective C(A)⊗k S⊗n-module. But the extension C(A)⊗k S⊗n/C(L) is
free of finite rank by Theorem 7.1(i), and so it is faithfully flat. The result now
follows from [Bourbaki 1972, Ch. I, § 3.6, Prop. 12] �

In the same spirit, we now describe an application of Theorem 7.1 for asso-
ciative algebras. For this purpose we first recall some definitions and basic facts
about Azumaya algebras. A unital associative algebra D over a ring B is called
an Azumaya algebra over B if D is central and separable over B (see for example
[Knus and Ojanguren 1974, §5]). If D is an Azumaya algebra over B, then D is a
finitely generated projective B-module [Knus and Ojanguren 1974, Théorème 5.1],
and so Dm is a free Bm-module of finite rank rm for each maximal ideal m of B.
D is said to have constant rank r over B if rm = r for all such m [Bourbaki 1972,
§II.5.3]. It is known that if D is a unital associative algebra over a ring B and ` is
a positive integer then

(7–2)

D is an Azumaya algebra of constant rank `2 over B if and only if
there exists a faithfully flat extension B ′/B of rings so that D ⊗B

B ′ is isomorphic as a B ′-algebra to the algebra M`(B ′) of `× `-
matrices over B ′.

In that case we will say that D is split by the extension B ′/B. Indeed the implication
“⇒” of (7–2) is Corollary 6.7 of [Knus and Ojanguren 1974]. For the converse,
the algebra M`(B ′) is an Azumaya algebra of constant rank `2 over B ′, and hence
D is an Azumaya algebra of constant rank `2 over B since the extension B ′/B is
faithfully flat (see Lemma 5.1.9(1) in [Knus 1991] and Exercise 8 in [Bourbaki
1972, § II.5]).

Corollary 7.4. Suppose that L is an n-step loop algebra based on the matrix
algebra M`(k) over k. Then L is a prime Azumaya algebra of finite rank `2 over
its centroid C(L) which is split by the extension S⊗n/C(L).

Proof. Let A = M`(k). Then A is a prime unital associative algebra over k and
hence so is L (by Theorem 5.5). Also C(A)= k and so C(A)⊗k S⊗n

= S⊗n as in
Remark 6.5. Thus by (7–1′) we have

L ⊗C(L) S⊗n
'S⊗n M`(k)⊗k S⊗n

'S⊗n M`(S⊗n).
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Our conclusion now follows from (7–2), since the extension S⊗n/C(L) is faithfully
flat. �

8. Permanence of type

There is a classical notion of type for simple pfgc Lie algebras in characteristic zero
(see Example 8.1 below). This notion can easily be extended using the central clo-
sure to include prime pfgc Lie algebras in characteristic 0. It will be a consequence
of the results in this section that type is preserved under the loop construction (that
is type is permanent).

An analogous notion of type can be defined for many other important classes
of prime pfgc algebras besides Lie algebras in characteristic 0. Moreover, since
algebras in these classes arise naturally as coordinate algebras in the study of Lie
algebras, and in particular in the study of extended affine Lie algebras, it is desirable
to include these classes in our discussion of type. This generality requires almost
no extra effort once the appropriate definitions are made. That being said, the
reader can safely choose to assume throughout this section that the base algebras,
and hence their loop algebras, are Lie algebras in characteristic 0.

We begin by recalling the classical notion of type for simple pfgc Lie algebras
in characteristic 0.

Example 8.1. Suppose that k has characteristic 0. Let A be a simple pfgc Lie
algebra over k (or equivalently let A be a simple Lie algebra over k that is finitely
generated as a module over its centroid). Then, since A is simple, it is easily
checked that C(A) is a field. Hence, if we let K be an algebraic closure of C(A),
the algebra A⊗C(A)K is a finite dimensional simple Lie algebra over K by Lemma
2.4. The type of A is defined in [Jacobson 1962, Ch. X, § 3] to coincide with
the type of the root system of the K -algebra A ⊗C(A) K relative to any Cartan
subalgebra.

In order to extend this notion to other classes of algebras, we need to introduce
some terminology.

Definition 8.2. Recall that a variety over k is a class Vk of algebras over k that
is defined by a set of identities in the free nonassociative algebra kna[x1, x2, . . . ]

in countably many symbols [Zhevlakov et al. 1982, § 1.2]. A variety Vk over k is
said to be homogeneous if the ideal in kna[x1, x2, . . . ] consisting of all identities
satisfied by all algebras in Vk is homogeneous. Algebras in a variety Vk over k
will be simply called Vk-algebras.

A very familiar example is the variety Vk of Lie algebras over k which is de-
fined by the identities x1x1 and (x1x2)x3 + (x2x3)x1 + (x3x1)x2. In that case Vk is
homogeneous [Zhevlakov et al. 1982, § 1.4], and a Vk-algebra is just a Lie algebra
over k.
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Remark 8.3. Suppose that Vk is a variety over k. Suppose that B is a unital
associative commutative k-algebra. A Vk-algebra over B will mean a B-algebra
A with the property that A, when regarded as an algebra over k, is in Vk . In other
words, a Vk-algebra over B is a B-algebra that satisfies the identities (which are
identities with coefficients from our fixed base field k) that define Vk .

The homogeneity assumption is important for our purposes since homogeneous
varieties are closed under base ring extension.

Lemma 8.4. Suppose that Vk is a homogeneous variety over k and B → B ′ is a
homomorphism of unital commutative associative k-algebras. If A is a Vk-algebra
over B then A ⊗B B ′ is a Vk-algebra over B ′.

Proof. This follows the proof of Theorem 6 in [Zhevlakov et al. 1982, § 1.4]. �

Corollary 8.5. Suppose that Vk is a homogeneous variety over k. If L is an n-step
loop algebra based on a Vk-algebra A, then L is a Vk-algebra.

Proof. By Lemma 8.4, A⊗k S⊗n is a Vk-algebra. Hence so is its subalgebra L. �

We will be interested in homogeneous varieties Vk that satisfy the following
axiom:

(S) If K/k is a field extension and A is a finite dimensional semiprime Vk-algebra
over K then A is a direct sum of simple algebras over K .

Example 8.6. In each of the following cases, the variety Vk is homogeneous and
satisfies axiom (S):

(a) char(k)= 0, Vk is the variety of Lie algebras.

(b) Vk is the variety of associative algebras.

(c) Vk is the variety of commutative associative algebras.

(d) Vk is the variety of alternative algebras.

(e) char(k) 6= 2, Vk is the variety of Jordan algebras.

Indeed the fact that these varieties are homogeneous is proved in [Zhevlakov et al.
1982, § 1.4]. Moreover axiom (S) follows from the structure theory for the variety
Vk in each case. For example, in case (a), suppose that K/k is a field extension
and A is a finite dimensional semiprime Lie algebra over K . If the radical R of
A is nonzero, then the last nonzero term in the derived series for R has trivial
multiplication, contrary to the assumption that A is semiprime. So R = 0 and
hence A is the direct sum of simple algebras [Jacobson 1962, § III.4]. Similarly
we can use (for example) [Zhevlakov et al. 1982, §12.2, Theorem 3] in cases (b),
(c) and (d) and [Jacobson 1968, § V.2, Lemma 2 and § V.5, Corollary 2] in case (e)
to verify axiom (S).
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The reason for our interest in Axiom (S) is that it allows us to prove the following
proposition.

Proposition 8.7. Let Vk be a homogeneous variety over k that satisfies axiom (S).
Suppose that A is a prime pfgc Vk-algebra over k and let C̃(A) be the quotient field
of C(A). Then the central closure Ã := A⊗C(A) C̃(A) of A is a finite dimensional
central simple Vk-algebra over C̃(A).

Proof. By Proposition 3.5, Ã is a prime pfgc algebra over k and hence also over
C̃(A) (see Remark 2.10 and Lemma 3.2). Also, by Lemma 8.4, Ã is a Vk-algebra.
Hence, by axiom (S), Ã is the direct sum of simple algebras over C̃(A). Since

Ã is prime, there is only one summand in this sum. Thus Ã is a simple algebra
over C̃(A). Finally, by Proposition 3.5, Ã is central and finite dimensional over
C̃(A). �

Remark 8.8. Suppose that A is as in Proposition 8.7. Then in the terminology
of [Polikarpov and Shestakov 1990, § 1], Proposition 8.7 says that A is a central
order in the finite dimensional central simple algebra Ã.

We will also need a set Xk of algebras over k that play the role of the split simple
Lie algebras over k.

Definition 8.9. Suppose that Vk is a homogeneous variety over k. A set of ar-
chetypes for Vk is a set Xk of finite dimensional central simple Vk-algebras over k
such that the following axioms hold:

(A1) If K/k is an algebraically closed field extension and A is a finite dimensional
central simple Vk-algebra over K then there exists X∈Xk so that A'K X⊗k K .

(A2) If K/k is a field extension and X,X′
∈ Xk then

X ⊗k K 'K X′
⊗k K H⇒ X = X′

In particular, the elements of Xk are pairwise nonisomorphic over k.

Example 8.10. In each of the cases (a)-(e) in Example 8.6 there is a natural choice
for a set Xk of archetypes:

(a) char(k)= 0, Vk is the variety of Lie algebras and Xk = { X5 }, where 5 runs
through all connected Dynkin diagrams (up to isomorphism) and X5 denotes
the split simple Lie algebra with Dynkin diagram5 [Jacobson 1962, § VII.4].

(b) Vk is the variety of associative algebras and Xk = { M`(k) | ` ≥ 1 }, where
M`(k) is the algebra of `× `-matrices over k.

(c) Vk is the variety of commutative associative algebras and Xk = { k }.

(d) Vk is the variety of alternative algebras and Xk ={ M`(k) | `≥1 }∪{ O }, where
O denotes the split Cayley–Dickson (octonion) algebra [Zhevlakov et al. 1982,
§ 2.4].
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(e) char(k) 6= 2, Vk is the variety of Jordan algebras and Xk is the set consisting
of the following algebras: k; the Jordan algebra constructed from a nonde-
generate symmetric bilinear form with matrix diag(1,−1, . . . , 1,−1) on a
2`-dimensional space over k, ` ≥ 1; the Jordan algebra constructed from a
nondegenerate symmetric bilinear form with matrix diag(1,−1, . . . , 1,−1, 1)
on a 2`+ 1-dimensional space over k, ` ≥ 1; the algebra of `× ` hermitian
matrices with coordinates from the split composition algebras of dimension 1,
2 and 4, ` ≥ 3; and the algebra of 3 × 3 hermitian matrices over O [Jacobson
1968, § 1.4 and 4.3].

The fact that Xk satisfies axioms (A1) and (A2) follows from the classification of
finite dimensional central simple algebras over algebraically closed fields in each
case. See for example [Jacobson 1962, § IV.3, Theorem 3] in case (a), [Zhevlakov
et al. 1982, § 12.2, Theorem 3] in cases (b), (c) and (d), and [Jacobson 1968, § V.6,
Corollary 2] in case (e).

Remark 8.11. A homogeneous variety Vk over k may possess more than one set
of archetypes. For example if k = R and Vk is the variety of Lie algebras over
k as in Example 8.10(a) above, then an alternate choice of a set of archetypes is
the set Xk = { C5 }, where 5 runs through all connected Dynkin diagrams (up to
isomorphism) and C5 denotes the compact real Lie algebra whose complexification
is the simple Lie algebra with Dynkin diagram 5.

Assumption. For the rest of this section we assume that Vk is a homogeneous
variety over k that satisfies axiom (S), and that there exists a set Xk (which we fix)
of archetypes for Vk .

We can now prove the proposition that allows us to define the notion of type.

Proposition 8.12. Suppose that A is a prime pfgc Vk-algebra over k. If

C(A) ↪→ K

is a unital k-algebra monomorphism of C(A) into an algebraically closed field
extension K of k (such a monomorphism exists since C(A) is an integral domain),
then there exists a unique X ∈ Xk so that

(8–1) A ⊗C(A) K 'K X ⊗k K ,

where on the left K is regarded as an algebra over C(A) using the given monomor-
phism. Moreover, X is independent of the choice of the k-algebra monomorphism
C(A) ↪→ K .
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Proof. First let L be an algebraic closure of C̃(A). By Proposition 8.7, Ã is
a finite dimensional central simple Vk-algebra over C̃(A). Therefore, by Lemma
2.4, Ã⊗

C̃(A)
L is a finite dimensional central simple algebra over L . So, by Lemma

8.4, Ã ⊗
C̃(A)

L is a finite dimensional central simple Vk-algebra over L . Thus, by
axiom (A1) (see Definition 8.9), there exists X ∈ Xk so that Ã⊗

C̃(A)
L 'L X⊗k L .

Then

(8–2) A ⊗C(A) L 'L (A ⊗C(A) C̃(A))⊗
C̃(A)

L = Ã ⊗
C̃(A)

L 'L X ⊗k L .

Now let C(A) ↪→ K be an arbitrary unital k-algebra monomorphism of C(A)
into an algebraically closed extension K of k. This extends to a unital k-algebra
monomorphism C̃(A) ↪→ K which in turns extends to a unital k-algebra monomor-
phism L ↪→ K . We use this latter monomorphism to identify L as a subfield of K .
Then using (8–2) we have

A ⊗C(A) K 'K (A ⊗C(A) L)⊗L K 'K (X ⊗k L)⊗L K 'K X ⊗k K .

This shows the existence of an element X ∈ Xk satisfying (8–1). The uniqueness
follows from Axiom (A2).

Finally if C(A) ↪→ K ′ is another unital k-algebra monomorphism of C(A) into
an algebraically closed extension K ′ of k, then the argument just given using (8–2)
shows that A ⊗C(A) K ′

'K ′ X ⊗k K ′. �

Definition 8.13. Let A be a prime pfgc Vk-algebra over k. The element X ∈ Xk

described in Proposition 8.12 is called the type of A (relative to Xk) and denoted
by t (A). We also sometimes refer to t (A) as the absolute type of A since it is
determined by extending the base ring C(A) to an algebraically closed field.

Example 8.14. Let char(k) = 0, let Vk be the variety of Lie algebras, and let
Xk = { X5 } be as in Example 8.10(a). If we identify X5 with the diagram 5,
then Definition 8.13 assigns to each prime pfgc Vk-algebra A a connected Dynkin
diagram t (A). (If A is a simple pfgc algebra, this is exactly what was done in
Example 8.1.)

The following result tells us that type is an isomorphism invariant for prime pfgc
algebras.

Proposition 8.15. Suppose that A and A′ are prime pfgc Vk-algebras over k. Then

A 'k A′
H⇒ t (A)= t (A′).

Proof. Let ϕ : C(A′) ↪→ K be a unital k-algebra monomorphism of C(A′) into an
algebraically closed field extension K of k. Denote the resulting action of C(A′)

on K by (χ ′, α) 7→ χ ′
·α.
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Fix a k-algebra isomorphism ρ : A → A′. Then ρ induces an isomorphism
C(ρ) : C(A)→ C(A′) by Lemma 2.2. So the composite map ϕ◦C(ρ) : C(A)→ K
is a unital k-algebra monomorphism which we use to view K as an algebra over
C(A). The resulting action of C(A) on K is given by

χ ·α = C(ρ)(χ) ·α.

for χ ∈ C(A) and α ∈ K .
The biadditive map ρ̃ : A × K → A′

⊗C(A′) K satisfying ρ̃ : (a, α) 7→ ρ(a)⊗α
is then C(A)-balanced. Indeed if χ ∈ C(A), a ∈ A and α ∈ K we have

ρ̃
(
χ(a), α

)
= ρ

(
χ(a)

)
⊗α = C(ρ)(χ)

(
ρ(a)

)
⊗α

= ρ(a)⊗
(
C(ρ)(χ) ·α

)
= ρ(a)⊗χ ·α = ρ̃(a, χ ·α).

Thus ρ̃ induces a k-linear map A⊗C(A)K → A′
⊗C(A′)K so that a⊗α 7→ρ(a)⊗α

for a ∈ A and α ∈ K . This map is clearly a homomorphism of K -algebras. In a
similar fashion we obtain a homomorphism of K -algebras A′

⊗C(A′)K → A⊗C(A)

K so that a′
⊗ α 7→ ρ−1(a′)⊗ α for a′

∈ A′ and α ∈ K . These maps are inverses
of each other and so we have

A ⊗C(A) K 'K A′
⊗C(A′) K .

Thus, X⊗k K 'K X′
⊗k K , where X= t (A) and X′

= t (A′), and so t (A)= t (A′). �

Our main result in this section is the following:

Theorem 8.16. (Permanence of type) If L is an n-step loop algebra based on a
prime pfgc Vk-algebra A, then L is a prime pfgc Vk-algebra and

t (L)= t (A).

Proof. By Theorem 5.5(iii) and (iv) and Corollary 8.5, L is a prime pfgc Vk-
algebra. So t (A) and t (L) are defined and it remains so show that these types are
equal. For this note first that C(A) is an integral domain by Lemma 3.3(i), and so
the algebra C(A)⊗k S⊗n

'k C(A)[z±1
1 , . . . , z±1

n ] is an integral domain. Let K be
an algebraic closure of the quotient field of C(A)⊗k S⊗n . Now by (7–1′′) we have
the isomorphism

L ⊗C(L)
(
C(A)⊗k S⊗n)

'C(A)⊗k S⊗n A ⊗C(A)
(
C(A)⊗k S⊗n).

Tensoring this over C(A)⊗k S⊗n with K yields the isomorphism

L ⊗C(L) K 'K A ⊗C(A) K .

Hence we have X ⊗k K 'K X′
⊗k K , where X = t (A) and X′

= t (L), and so
X = X′. �
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Since finite dimensional central simple algebras over k are prime pfgc algebras,
we have:

Corollary 8.17. If L is an n-step loop algebra based on a finite dimensional central
simple Vk-algebra A over k, then L is a prime pfgc Vk-algebra and t (L)= t (A).

Corollary 8.18. If X ∈ Xk and L is an n-step loop algebra based on X, then L

is a prime pfgc Vk-algebra of type X. If further X′
∈ Xk and L′ is an n′-step loop

algebra based on X′, then

L 'k L′
H⇒ X = X′ and n = n′.

Proof. The first statement follows from Corollary 8.17 since t (X) = X. For the
second statement suppose that L 'k L′. Then by Proposition 8.15, t (L) = t (L′)

and so X = X′. Finally by Corollary 6.4, n = n′. �

Our primary focus in future work will be on the case when the base algebra is
a finite dimensional split simple Lie algebra. For ease of reference we therefore
record Corollary 8.18 explicitly in that case.

Corollary 8.19. Suppose that A is a finite dimensional split simple Lie algebra
over a field k of characteristic 0, and L is an n-step loop algebra based on A.
Then L is a prime pfgc Lie algebra and for any unital k-algebra monomorphism
C(L) ↪→ K into an algebraically closed extension K of k we have

L ⊗C(L) K 'K A ⊗k K .

Moreover, if A′ is a finite dimensional split simple Lie algebra and L′ is an n′-step
loop algebra based on A′, then

(8–3) L 'k L′
H⇒ A 'k A′ and n = n′.

Proof. We apply Corollary 8.18 to the case when Vk is the variety of Lie algebras
and Xk = { X5 } as in Example 8.10(a). Since any finite dimensional split simple
Lie algebra over k is isomorphic to exactly one algebra in Xk the result follows. �

If L is an n-step loop algebra based on a finite dimensional split simple Lie
algebra A (in characteristic 0), then (8–3) tells us that both (the isomorphism class
of) the base algebra A and the number of steps n are isomorphism invariants of L.
This answers a natural question that began the research described in this paper.
We have now seen in Corollary 8.18 that the result is true in a much broader
context. The interested reader can easily write down the results corresponding
to Corollary 8.19 for the varieties of associative algebras, alternative algebras and
Jordan algebras (see Example 8.10(b), (d) and (e)).
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9. Two-step loop algebras

In this section we look more closely at 2-step iterated loop algebras and their cen-
troids. We then conclude with a detailed look at two examples that illustrate several
of the concepts studied in this article.

Throughout this section, we assume that m1 and m2 are positive integers and
that k contains a primitive mi -th root of unity ζmi , i = 1, 2. We use the notation of
Section 5 (for iterated loop algebras).

We start with some further notation. Let k×
= { ρ ∈ k | ρ 6= 0 } be the group of

units of k. If ρ ∈ k×, we let
k[u1, u±1

2 , w]ρ

denote the unital associative commutative k-algebra presented by the generators
u1, u2, u−1

2 , w subject to the relations

u2u−1
2 = 1 and w2

= (u2
1 − 4ρ)u2.

It is clear that the set

{ ui1
1 ui1

2 w
j
: i1 ∈ Z≥0, i2 ∈ Z, j = 0, 1 }

is a k-basis for k[u1, u±1
2 , w]ρ . It is also easy to verify that the group of units of

k[u1, u±1
2 , w]ρ is given by

(9–1) U (k[u1, u±1
2 , w]ρ)= {αui2

2 | α ∈ k×, i2 ∈ Z }.

Indeed, one way to see this is to make use of the multiplicative norm function
N : k[u1, u±1

2 , w]ρ → k[u1, u±1
2 ] defined by N (a1 +a2w)= a2

1 −a2
2w

2 for a1, a2 ∈

k[u1, u±1
2 ], and use the fact that if u is a unit in k[u1, u±1

2 , w]ρ then N (u) is a unit
in k[u1, u±1

2 ]. We leave the details of this to the reader.
The algebra k[u1, u±1

2 , w]ρ is important in the study of iterated loop algebras
because of the following fact.

Lemma 9.1. Let L = L(k, 61, 62) be a 2-step iterated loop algebra based on the
algebra k, where6i has modulus mi for i = 1, 2. Then exactly one of the following
holds:

(a) L 'k k[t±1
1 , t±2

2 ] (the algebra of Laurent polynomials in 2 variables).

(b) L 'k k[u1, u±1
2 , w]ρ for some ρ ∈ k×.

Moreover (a) holds if and only if zm1
1 z j

2 ∈ L for some j ∈ Z.

Proof. Note that the group of units in k[t±1
1 , t±1

2 ] spans the algebra k[t±1
1 , t±1

2 ],
whereas this is not true for the algebra k[u1, u±1

2 , w]ρ (by (9–1)). Thus (a) and (b)
cannot hold simultaneously. So it remains to show that either (a) or (b) holds (the
final statement will be proved along the way).
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Now as noted in Remark 5.2(iii), we have

L = L(k, σ1, σ2),

where σ1 is an automorphism of period m1 of L0 = k, and σ2 is an automorphism
of period m2 of L1 = L(k, σ1). Then, since σ1 is an algebra homomorphism, σ1 =1
and so

L1 = k[y±1
1 ], where y1 = zm1

1 .

Thus σ2 is an automorphism of period m2 of k[y±1
1 ]. Hence either σ2(y1) = ρy1

for some m2-th root of unity ρ in k× or σ2(y1)= ρy−1
1 for some ρ ∈ k×. Moreover

(for the proof of the final statement in the proposition) the first of these possibilities
holds if and only if y1 is homogeneous in the grading 62 determined by σ2 which
in turn holds if and only if y1z j

2 ∈ L for some j ∈ Z.
Case (a): Suppose that σ2(y1)= ρy1 for some m2-th root of unity ρ in k×. Let

n2 be the order of ρ in k×. Then n2 is a divisor of m2,

ρ = ζ p2r
m2
, where p2 =

m2

n2
,

and r is relatively prime to n2 (take r = 0 if n2 = 1). Choose an inverse s for r
modulo n2 (take s = 0 if n2 = 1). Now the grading 62 of L1 is given by L1 =⊕

̄∈Zm2
(L1)̄ , where (L1)̄ is spanned by the elements yi

1 with i ∈ Z and σ2(yi
1)=

ζ
j

m2 yi
1. But n2 and s are relatively prime and so any integer can be expressed in the

form an2 + bs, where a, b ∈ Z. Also

σ2(y
an2+bs
1 )= ρan2+bs yan2+bs

1 = ρbs yan2+bs
1 = ζ p2rbs

m2
yan2+bs

1 = ζ p2b
m2

yan2+bs
1

and so yan2+bs
1 ∈ (L1)p2b. Therefore L = L(L1, σ2) is spanned by elements of the

form
yan2+bs

1 z p2b
2 , a, b ∈ Z.

But yan2+bs
1 z p2b

2 = (yn2
1 )

a(ys
1z p2

2 )
b. Hence we obtain

L = k[t±1
1 , t±2

2 ], where t1 = yn2
1 and t2 = ys

1z p2
2 .

Case (b): Suppose that σ2(y1) = ρy−1
1 for some ρ ∈ k×. Then σ2 has order 2

and so m2 is even. Let p2 =
m2
2 and y2 = z p2

2 . Then

L =
(
L+

1 ⊗k k[(y2
2)

±1
]
)
⊕
(
L−

1 ⊗k y2k[(y2
2)

±1
]
)
,

where L±

1 is the ±1-eigenspace for σ2. Now it is clear that L+

1 has a k-basis
consisting of the elements (y1 + ρy−1

1 )a , a ≥ 0. Therefore L+

1 ⊗k k[(y2
2)

±1
] has

basis
(y1 + ρy−1

1 )a y2b
2 , a, b ∈ Z, a ≥ 0.
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Also one easily checks that L−

1 = (y1 −ρy−1
1 )L+

1 , so L−

1 ⊗k y2k[(y2
2)

±1
] has basis

(y1 − ρy−1
1 )y2(y1 + ρy−1

1 )a y2b
2 , a, b ∈ Z, a ≥ 0.

Thus, setting

u1 = y1 + ρy−1
1 , u2 = y2

2 and w = (y1 − ρy−1
1 )y2,

we see that L has basis ua
1ub

2w
c, a ∈ Z≥0, b ∈ Z, c = 0, 1. Moreover, one checks

directly thatw2
= (u2

1−4ρ)u2, and so we have identified L with k[u1, u±1
2 , w]ρ . �

Remark 9.2. In Case (a) of the proof of Lemma 9.1, the conclusion is an immediate
consequence of a more general “erasing theorem” that was proved in [Allison et al.
2004, Theorem 5.1]. We have included the proof above since it is short and self-
contained.

Remark 9.3. If ρ, ρ ′
∈ k×, one can show that

k[u1, u±1
2 , w]ρ 'k k[u1, u±1

2 , w]ρ′ ⇐⇒ ρ ′ρ−1 is a square in k×.

In particular, if k is algebraically closed, the isomorphism class of k[u1, u±1
2 , w]ρ

does not depend on ρ. In that case Lemma 9.1 tells us that, up to isomorphism, there
are exactly two (one step) loop algebras based on k[y±1

1 ]. This fact is a special case
of a more general result about (one step) loop algebras based on the algebra A of
Laurent polynomials k[y±1

1 , . . . , y±1
q ] over an algebraically closed field k. Indeed,

using the fact that the abstract automorphism group of A is (k×)q o GLq(Z) and
some techniques from Galois cohomology (see Remark 4.8), one can show that
there is an injective map that attaches to each R-isomorphism class of loop algebras
based on A an invariant in the set of conjugacy classes of GLq(Z). (When q = 1,
GLq(Z) has exactly two conjugacy classes and one can show that R-isomorphism
coincides with k-isomorphism.) We omit proofs of the statements in this remark,
since we will not be using these statements here and since their proofs would take
us rather far afield.

Lemma 9.1 together with Theorem 6.2 implies the following more general result:

Proposition 9.4. Let L = L(A, 61, 62) be a 2-step iterated loop algebra based
on a finite dimensional central simple algebra A over k, where 6i has modulus mi

for i = 1, 2. Then exactly one of the following holds:

(a) C(L)'k k[t±1
1 , t±2

2 ].

(b) C(L)'k k[u1, u±1
2 , w]ρ for some ρ ∈ k×.

Moreover (a) holds if and only if zm1
1 z j

2 ∈ C̄(L) for some j ∈ Z (see Remark 6.5).

Definition 9.5. As in Proposition 9.4, let L = L(A, 61, 62) be a 2-step iterated
loop algebra based on a finite dimensional central simple algebra A over k, where
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6i has modulus mi for i = 1, 2. We say that L is of the first kind (resp. second
kind) if C(L) is isomorphic to k[t±1

1 , t±2
2 ] (resp. k[u1, u±1

2 , w]ρ for some ρ ∈ k×).

Remark 9.6. (a) It follows from Corollary 6.6 that any 2-step multiloop algebra
based on a finite dimensional central simple algebra is of the first kind.

(b) Suppose k is algebraically closed of characteristic 0 and L = L(A, σ1, σ2)

is a 2-step iterated loop algebra based on a finite dimensional central simple Lie
algebra A over k, where σi has period mi for i = 1, 2. Then L(A, σ1) is the
derived algebra modulo its centre of an affine Kac–Moody Lie algebra g [Kac
1990, Theorem 8.5]. Moreover one can show that the 2-step loop algebra L is
of the first kind in the sense of Definition 9.5 if and only if the automorphism σ2

of L(A, σ1) is induced by an automorphism of the first kind of g (as defined for
example in [Levstein 1988, Part III.1]). Indeed this example is the reason for our
choice of terminology.

We conclude by looking at two examples of 2-step iterated loop algebras. These
examples illustrate the above proposition (Proposition 9.4) as well as a number of
the concepts studied in this article.

Example 9.7. Suppose that k is of characteristic 0. In this example we consider a
2-step iterated loop algebra L= L(A, σ1, σ2) based on the Lie algebra A= sl`+1(k)
over k, where `≥ 1 and σ1 and σ2 have order m1 = m2 = 2.

Before beginning it will be convenient to define four commuting automorphisms
η1, η2, κ1 and κ2 of S⊗2 by

η1(z
i1
1 zi2

2 )= (−1)i1 zi1
1 zi2

2 , η2(z
i1
1 zi2

2 )= (−1)i2 zi1
1 zi2

2 ,

κ1(z
i1
1 zi2

2 )= z−i1
1 zi2

2 and κ2(z
i1
1 zi2

2 )= zi1
1 z−i2

2

for i1, i2 ∈ Z. Each of these automorphisms restricts to an automorphism of k[z±1
1 ]

which we also denote by η1, η2, κ1 and κ2 respectively.
To construct L we first let L0 = A. Next let σ1 ∈ Aut(A) be defined by σ1(a)=

−Jat J , where

J =

0 . . . 1
... . ..

...

1 . . . 0

 .
Then σ1 has order 2 and we set

L1 := L(A, σ1, z1),

using the notation of Remark 4.4. Thus L1 is the algebra of fixed points in A ⊗k

k[z±1
1 ] of the automorphism σ1 ⊗ η1. (If k is an algebraically closed field of char-

acteristic 0 and `≥ 2, then L1 is the derived algebra modulo its centre of the affine
Kac–Moody Lie algebra of type A(2)` [Kac 1990, Chapter 8].)
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Next the automorphisms 1A⊗κ1 and σ1⊗η1 of A⊗k k[z±1
1 ] commute, so 1A⊗κ1

stabilizes L1. We set σ2 = 1A ⊗κ1 |L1∈ Autk(L1). Then σ2 has order 2, and we set

L = L2 := L(L1, σ2, z2).

By construction L is a 2-step iterated loop algebra based on A.
It is clear from the above descriptions of L1 and L2, that L is the algebra of

common fixed points in A ⊗k S⊗2 of the automorphisms σ1 ⊗ η1 and 1A ⊗ κ1η2.
From this it follows easily that

(9–2) L = { x ∈ sl`+1(K ) | x∗
= −x },

where
K = (S⊗2)κ1η2

is the algebra of fixed points in S⊗2 of the automorphism κ1η2, and

(9–3) x∗
= −J (η1x)t J

for x ∈ Mn(K ). (Here η1x denotes the matrix obtained from x by applying η1 to
the entries of x .) In more geometric language, L can be viewed as the Lie algebra
of K -linear transformations of the free K -module K `+1 that are skew relative to
the hermitian form (u, v) 7→ (η1u)t Jv.

Now by Remark 6.5, the centroid of L is isomorphic to the algebra

(9–4) C̄(L)= { u ∈ S⊗2
| u · L ⊂ L }

of S⊗2. This together with (9–2) implies that C̄(L)⊂ K . But by (9–3), (u · x)∗ =

(η1u) · x∗ for u ∈ K and x ∈ sl`+1(K ). Hence it follows from (9–2) and (9–4) that
C̄(L)= K η1 . So we have

C̄(L)= (S⊗2)〈η1,κ1η2〉.

Note also that, by Theorem 7.1, S⊗2 is a free C̄(L)-module of rank 4 and

L ⊗C̄(L) S⊗2
' sl`+1(S⊗2).

Moreover, by Corollary 8.17, L is a prime pfgc Lie algebra of type A` (see Example
8.14).

Finally, note that κ1η2(z2
1z j

2) = (−1) j z−2
1 z j

2 6= z2
1z j

2 and so z2
1z j

2 /∈ C̄(L) for
j ∈ Z. Thus L is of the second kind. (In fact one can check directly that C̄(L) is
isomorphic to k[u1, u±1

2 , w]ρ for ρ = 1.) So C̄(L) is not isomorphic to the algebra
of Laurent polynomials in any number of variables (since C̄(L) is not spanned by
its units). Hence, by Corollary 6.6, L is not isomorphic to a multiloop algebra in
any number of steps based on a finite dimensional central simple Lie algebra.
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Example 9.8. Suppose that ` ≥ 1 and k is a field which contains a primitive `-th
root of unity ζ = ζ`. In this example we consider a 2-step multiloop loop algebra
L = M(A, σ1, σ2) based on the associative algebra A = M`(k) of `× `-matrices
over k, where σ1 and σ2 have order m1 = m2 = `.

First let

a1 =


1 0 . . . 0
0 ζ . . . 0
...
...
. . .

...

0 0 . . . ζ `−1

 and a2 =


0 1 . . . 0
...
...
. . .

...

0 0 . . . 1
1 0 . . . 0


in A. Then a2a1 = ζa1a2, a`1 = a`2 = 1, and it is well known that

{ ai1
1 ai2

2 | 0 ≤ i1, i2 ≤ `− 1 }

is a basis for A. (See for example [Draxl 1983, §11].)
Define σi ∈ Autk(A) by σi (x) = ai xa−1

i for x ∈ A, i = 1, 2. Then σi (ai ) = ai ,
σ1(a2)= ζ

−1a2 and σ2(a1)= ζa1. Hence σ1 and σ2 are commuting automorphisms
of A of order `. Let

L = M(A, σ1, σ2)

be the multiloop algebra of σ1, σ2 based on A (with m1 = m2 = `). To calculate L

explicitly, note that

σ1(a
−i1
2 ai2

1 )= ζ i1a−i1
2 ai2

1 and σ2(a
−i1
2 ai2

1 )= ζ i2a−i1
2 ai2

1

for i1, i2 ∈ Z. Thus Aı̄1,ı̄2 = ka−i1
2 ai2

1 for i1, i2 ∈ Z. Consequently

L = spank{ a−i1
2 ai2

1 ⊗ zi1
1 zi2

2 | i1, i2 ∈ Z } = spank{ x i1
1 x i2

2 | i1, i2 ∈ Z },

where

x1 = a−1
2 ⊗ z1 =


0 . . . 0 z1

z1 . . . 0 0
...
. . .

...
...

0 . . . z1 0

 and x2 = a1 ⊗ z2 =


z2 0 . . . 0
0 ζ z2 . . . 0
...

...
. . .

...

0 0 . . . ζ `−1z2


in L. Thus L is the subalgebra of M`(S⊗2) generated as an algebra by the matrices
x±1

1 , x±1
2 which satisfy the relations

(9–5) xi x−1
i = x−1

i xi = 1 and x2x1 = ζ x1x2.

It follows that L ' kq, where kq is the algebra presented by the generators x1, x2

subject to the relations (9–5). This algebra kq, which is called the quantum torus
determined by the matrix

q =

[
1 ζ

ζ−1 1

]
,
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has arisen in a number of different contexts; see for example [Magid 1978; Mc-
Connell and Pettit 1988; Berman et al. 1996; Gao 2000].

Note that by Corollary 6.6, the centroid (= centre) of L is isomorphic to C̄(L)=
k[t±1

1 , t±1
2 ], where t1 = z`1 and t2 = z`2. Moreover, by Theorem 6.1, S⊗2 is a free

C̄(L)-module of rank `2 and L⊗C̄(L)S
⊗2

' M`(S⊗2). Consequently (see Corollary
7.4) L ' kq is a prime Azumaya algebra of constant rank `2 that is split by the
extension S⊗2/k[t±1

1 , t±1
2 ].

Remark 9.9. The fact that the quantum torus kq (described in the preceding ex-
ample) is an Azumaya algebra was seen by a different method some time ago
in [Magid 1978, Lemma 4]. This information about the algebra kq is important
because it tells us that kq defines an element [kq] of the Brauer group of the ring
k[t±1

1 , t±2
2 ]. In fact `Br(k[t±1

1 , t±2
2 ]) is cyclic of order ` and the element [kq] is a

generator of this group [Magid 1978, Theorem 6].

Remark 9.10. The authors wish to thank John Faulkner for conversations that led
to Example 9.8. This example turns out to be a special case of a more general con-
struction of quantum tori and their nonassociative analogs as multiloop algebras.
This topic will be investigated in a article in preparation by the present authors
together with John Faulkner.
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HAMILTONIAN-MINIMAL LAGRANGIAN SUBMANIFOLDS IN
COMPLEX SPACE FORMS

ILDEFONSO CASTRO, HAIZHONG LI AND FRANCISCO URBANO

Using Legendrian immersions and, in particular, Legendre curves in odd-
dimensional spheres and anti-de Sitter spaces, we construct new examples of
Hamiltonian-minimal Lagrangian submanifolds in complex projective and
hyperbolic spaces, including explicit one-parameter families of embeddings
of quotients of certain product manifolds. We also give new examples of
minimal Lagrangian submanifolds in complex projective and hyperbolic
spaces. Making use of all these constructions, we get Hamiltonian-minimal
and special Lagrangian cones in complex Euclidean space as well.

1. Introduction

Let (M̃n, J, 〈 , 〉) be a Kähler manifold of complex dimension n, where J is the
complex structure and 〈 , 〉 the Kähler metric. The Kähler 2-form is defined by
ω( · , · )= 〈J · , · 〉. An immersion ψ : Mn

→ M̃n of an n-dimensional manifold M
is called Lagrangian if ψ∗ω ≡ 0. For this type of immersions, J defines a bundle
isomorphism between the tangent bundle TM and the normal bundle T ⊥M .

A vector field X on M̃ is a Hamiltonian vector field if there exists a smooth
function F : M̃ → R such that X = J ∇̃F , where ∇̃ is the gradient in M̃ . The
diffeomorphisms of the flux of a Hamiltonian vector field transform Lagrangian
submanifolds into Lagrangian ones.

In this setting, Oh [1990] studied the following natural variational problem. A
normal vector field ξ to a Lagrangian immersion ψ : Mn

→ M̃n is called Hamil-
tonian if ξ = J∇ f , where f ∈ C∞(M) and ∇ f is the gradient of f with respect
to the induced metric. Take f ∈ C∞

0 (M) and let {ψt : M → M̃} be a variation of
ψ , with ψ0 = ψ and d

dt

∣∣
t=0 ψt = ξ . The first variation of the volume functional is

given by
d
dt

∣∣∣
t=0

vol(M, ψ∗

t 〈 , 〉)= −

∫
M

f div JH d M

MSC2000: primary 53C42, 53B25; secondary 53A05, 53D12.
Keywords: Hamiltonian-minimal, Lagrangian submanifolds, Legendrian immersions.
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(see [Oh 1990]), where H is the mean curvature vector of the immersion ψ and
div denotes the divergence operator on M . Oh called the critical points of this
variational problem Hamiltonian minimal (or H-minimal) Lagrangian submani-
folds; they are characterized by the third-order differential equation div JH = 0.
In particular, minimal Lagrangian submanifolds (where “minimal” means that the
mean curvature vector vanishes) are trivially H-minimal; so is, more generally, any
Lagrangian submanifold with parallel mean curvature vector.

Even when M̃ is a simply connected complex space form, only few examples
of H-minimal Lagrangian submanifolds are known outside the class of Lagrangian
submanifolds with parallel mean curvature vector.

This can be a brief history of them: S1-invariant H-minimal Lagrangian tori
in the complex Euclidean plane C2 were classified in [Castro and Urbano 1998].
H-minimal Lagrangian cones in C2 were studied in [Schoen and Wolfson 1999].
Hélein and Romon [2000; 2002a] derived a Weierstrass-type representation for-
mula to describe all H-minimal Lagrangian tori and Klein bottles in C2. When
the ambient space is the complex projective plane CP2 or the complex hyperbolic
plane CH2, conformal parametrizations of H-minimal Lagrangian surfaces using
holomorphic data were obtained in [Hélein and Romon 2002b; 2003]. Making
use of this technique, Anciaux [2003] constructed H-minimal Lagrangian singly
periodic cylinders and H-minimal Lagrangian surfaces with a nonconical singular-
ity in C2. Only recently have examples of H-minimal Lagrangian submanifolds of
arbitrary dimension in Cn and CPn been found, in [Mironov 2004]. A classification
of H-minimal Lagrangian submanifolds foliated by (n−1)-spheres in Cn is given
in [Anciaux et al. 2006].

Our aim in this paper is the construction of H-minimal Lagrangian submanifolds
in complex Euclidean space Cn , complex projective space CPn and complex hy-
perbolic space CHn , for arbitrary n ≥ 2. The examples in CPn are constructed by
projection, via the Hopf fibration5 :S2n+1

→CPn , of certain family of Legendrian
submanifolds of the sphere S2n+1 (Corollary 3.2). The cones with links in this fam-
ily of Legendrian submanifolds provide new examples of H-minimal Lagrangian
submanifolds in Cn+1 (Section 5). Using the Hopf fibration 5 : H2n+1

1 → CHn

and a similar family of Legendrian submanifolds of the anti-de Sitter space H2n+1
1

(Corollary 6.5), we also find examples of H-minimal Lagrangian submanifolds in
CHn . In a certain sense, our construction is reminiscent of the Smith join method
(see [Eells and Ratto 1993]) for constructing harmonic maps between spheres.

In CPn , we emphasize two different one-parameter families of H-minimal La-
grangian immersions described in Corollaries 4.1 and 4.4; as a particular case, in
Corollary 4.2 we provide explicit Lagrangian H-minimal embeddings of certain
quotients of S1

× Sn1 × Sn2 , where n1 + n2 + 1 = n.
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In CHn , we also point out in Corollary 6.6 a one-parameter family of H-minimal
Lagrangian immersions, which (in the easiest cases) induce explicit Lagrangian H-
minimal embeddings of certain quotients of S1

×Sn1 ×RHn2 , for n1 +n2 +1 = n
(see Corollary 6.7). Here RHn2 denotes real hyperbolic space.

As a byproduct, using our method of construction, we also obtain new exam-
ples of minimal Lagrangian submanifolds in CPn (Corollary 4.1, Remark 4.3 and
Corollary 4.4) and CHn (Corollaries 6.5 and 6.9), as well as special Lagrangian
cones in Cn+1 (see Section 5).

2. Lagrangian submanifolds versus Legendrian submanifolds

Let Cn+1 be complex Euclidean space endowed with the Euclidean metric 〈 , 〉 and
standard complex structure J . The Liouville 1-form is given by 3z(v) = 〈v, J z〉
for all z ∈ Cn+1 and all v ∈ TzCn+1, and the Kähler 2-form is ω= d3/2. We denote
the (2n+1)-dimensional unit sphere in Cn+1 by S2n+1 and by 5 : S2n+1

→ CPn ,
5(z)= [z], the Hopf fibration of S2n+1 on the complex projective space CPn . We
denote the Fubini–Study metric, the complex structure and the Kähler two-form in
CPn by 〈 , 〉, J and ω. This metric has constant holomorphic sectional curvature 4.

We will also denote by 3 the restriction to S2n+1 of the Liouville 1-form of
Cn+1. So3 is the contact 1-form of the canonical Sasakian structure on the sphere
S2n+1. An immersion φ : Mn

→ S2n+1 of an n-dimensional manifold M is said
to be Legendrian if φ∗3≡ 0. In this case φ is isotropic in Cn+1, that is, φ∗ω ≡ 0;
in particular, the normal bundle T ⊥M splits as J (TM)⊕ span {Jφ}. This means
that φ is horizontal with respect to the Hopf fibration5 : S2n+1

→ CPn , and hence
8=5◦φ : Mn

→ CPn is a Lagrangian immersion and the metrics induced on Mn

by φ and 8 are the same. It is easy to check that Jφ is a totally geodesic normal
vector field, so the second fundamental forms of φ and 8 are related by

5∗(σφ(v,w))= σ8(5∗v,5∗w) for all v,w ∈ TM.

Thus the mean curvature vector H of φ satisfies 〈H, Jφ〉 = 0. In particular, φ :

Mn
→ S2n+1 is minimal if and only if 8=5 ◦φ : Mn

→ CPn is minimal.
In this way, we can construct (minimal) Lagrangian submanifolds in CPn by

projecting (minimal) Legendrian manifolds in S2n+1 via the Hopf fibration 5.
Conversely, any Lagrangian immersion 8 : Mn

→ CPn has a local horizontal
lift to S2n+1 with respect to the Hopf fibration 5; this local lift is unique up to
rotations. Only Lagrangian immersions in CPn have such lifts.

In this article we construct examples of Lagrangian submanifolds of CPn by
constructing examples of Legendrian submanifolds of S2n+1. We start with some
geometric properties of Legendrian submanifolds in S2n+1.
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Let � be the complex n-form on S2n+1 given by

�z(v1, . . . , vn)= detC {z, v1, . . . , vn}.

If φ : Mn
→ S2n+1 is a Legendrian immersion of a manifold M , then φ∗� is a

complex n-form on M . In the next result we analyze this n-form φ∗�.

Lemma 2.1. If φ : Mn
→ S2n+1 is a Legendrian immersion of a manifold M , then

(1) ∇(φ∗�)= αH ⊗φ∗�,

where αH is the one-form on M defined by αH (v)= n i〈H, Jv〉 and H is the mean
curvature vector of φ. Consequently, M is orientable if φ is minimal.

Proof. Let {E1, . . . , En} be an orthonormal frame on an open subset U ⊂ M
containing p, such that ∇vEi = 0 for all v ∈ Tp M and i = 1, . . . , n. We define
A : U → U (n + 1) by A = {φ, φ∗(E1), . . . , φ∗(En)}. Then

(∇vφ
∗�)(E1, . . . , En)= v(detC A)= detC A Trace (v(A)At),

where At denotes the transpose conjugate matrix of A. We easily see that

v(A)=
{
φ∗(v), σφ(v, E1(p))−〈v, E1(p)〉φ, . . . , σφ(v, En(p))−〈v, En(p)〉φ

}
,

and so we deduce that

(∇vφ
∗�)

(
E1(p), . . . , En(p)

)
= n i〈H(p), Jv〉(φ∗�)(E1, . . . , En)(p).

Using this in the preceding expression we get the result. �

Suppose that our Legendrian submanifold M is oriented. Then we can consider
the well defined map β : Mn

→ R/2πZ given by

eiβ(p)
= (φ∗�)p(e1, . . . , en),

where {e1, . . . , en} is an oriented orthonormal frame in Tp M . We will call β the
Legendrian angle map of φ. As a consequence of (1) we obtain

(2) J∇β = nH,

and so we deduce:

Proposition 2.2. A Legendrian immersion φ : Mn
→ S2n+1 of an oriented manifold

M is minimal if and only if the Legendrian angle map β of φ is constant.

A vector field X on S2n+1 is a contact vector field if LX3 = g3, for some
function g ∈ C∞(S2n+1), where L is the Lie derivative in S2n+1. As shown in
[McDuff and Salamon 1998], for instance, X is a contact vector field if and only
if there exists F ∈ C∞(S2n+1) such that

Xz = J (∇F)z + 2F J z, z ∈ S2n+1,
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where ∇F is the gradient of F . The diffeomorphisms of the flux {ϕt } of X are
contactomorphisms of S2n+1, that is, ϕ∗

t 3 = eht3, and so they transform Legen-
drian submanifolds into same. The Lie algebra of the group of contactomorphisms
of S2n+1 is the space of contact vector fields. In this setting, it is natural to study
the following variational problem.

Let φ : Mn
→ S2n+1 a Legendrian immersion with mean curvature vector H . A

normal vector field ξ f to φ is called a contact field if

ξ f = J∇ f + 2 f Jφ,

where f ∈ C∞(M) and ∇ f is the gradient of f with respect to the induced metric.
If f ∈C∞

0 (M) and {φt : M → S2n+1
} is a variation of φ with φ0 =φ and d

dt

∣∣
t=0φt =

ξ f , the first variation of the volume functional is given by

d
dt

∣∣∣
t=0

vol(M, φ∗

t 〈 , 〉)= −

∫
M

〈H, ξ f 〉 d M.

But using Stokes’ Theorem,∫
M

〈H, ξ f 〉 d M =

∫
M

〈H, J∇ f + 2 f Jφ〉 d M

= −

∫
M

〈JH,∇ f 〉 d M =

∫
M

f div JH d M.

This means that the critical points of the above variational problem are Legendrian
submanifolds such that

divJH = 0.

Definition 2.3. A Legendrian immersion φ : Mn
→ S2n+1 is said to be contact

minimal (or briefly C-minimal) if it is a critical point of the preceding variational
problem, that is, if divJH = 0.

Clearly, minimal Legendrian submanifolds and Legendrian submanifolds with
parallel mean curvature vector are C-minimal. As a consequence of (2) and the geo-
metric relationship between Legendrian and Lagrangian submanifolds mentioned
at the beginning of this section, we get:

Proposition 2.4. Let φ : Mn
→ S2n+1 be a Legendrian immersion of a Riemannian

manifold M.

(1) If M is oriented, φ is C-minimal if and only if the Legendrian angle β of φ is
a harmonic map.

(2) φ is C-minimal if and only if 8=5 ◦φ : Mn
→ CPn is H-minimal.
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3. A new construction of C-minimal Legendrian immersions

After Proposition 2.4, it is clear that constructing C-minimal Legendrian immer-
sions in odd-dimensional spheres is a good way to find H-minimal Lagrangian
submanifolds in CPn . This is the purpose of this section.

Let n1, n2 ≥ 0 be integers with n = n1 + n2 + 1. The product SO(n1 + 1)×

SO(n2 + 1) of special orthogonal groups acts on S2n+1
⊂ Cn+1 as a subgroup of

isometries:

(3) (A1, A2) ∈ SO(n1 + 1)× SO(n2 + 1) 7→

(
A1

A2

)
∈ SO(n + 1).

Theorem 3.1. Let n, n1, n2 be nonnegative integers with n = 1 + n1 + n2. For
i = 1, 2, let ψi : Ni → S2ni +1

⊂ Cni +1 be Legendrian isometric immersions of
ni -dimensional oriented Riemannian manifolds (Ni , gi ). Suppose γ = (γ1, γ2) :

I → S3
⊂ C2 is a Legendre curve, where I is an interval in R. The map

φ : I × N1 × N2 → S2n+1
⊂ Cn+1

= Cn1+1
× Cn2+1

defined by

(4) φ(s, p, q)=
(
γ1(s)ψ1(p), γ2(s)ψ2(q)

)
is a Legendrian immersion in S2n+1 whose induced metric is

(5) 〈 , 〉 = |γ ′
|
2ds2

+ |γ1|
2g1 + |γ2|

2g2

and whose Legendrian angle map is

(6) βφ ≡ n1π +βγ + n1 arg γ1 + n2 arg γ2 +βψ1 +βψ2 mod 2π,

where βγ , βψ1 and βψ2 are the Legendre angle maps of γ , ψ1 and ψ2.
If n1, n2 ≥2, a Legendrian immersion Mn

→ S2n+1 is invariant under the action
(3) of SO(n1+1)× SO(n2+1) if and only if it is locally of the form (4), where ψi

(i = 1, 2) is the totally geodesic Legendrian embedding of Sni in S2ni +1 and γ
is some Legendre curve in S3. That is, such immersions are locally congruent to
(s, x1, x2) 7→

(
γ1(s)x1, γ2(s)x2), where xi ∈ Sni .

Note that Legendrian immersions of the form (4) have singularities at the points
(s, p, q) ∈ I × N1 × N2 where either γ1(s)= 0 or γ2(s)= 0.

Proof. If ′ denotes differentiation with respect to s, and v and w are arbitrary
tangent vectors to N1 and N2 respectively, it is clear that

φs = φ∗(∂s, 0, 0)= (γ ′

1 ψ1, γ
′

2 ψ2),

φ∗(v) := φ∗(0, v, 0)= (γ1 ψ1∗(v), 0),

φ∗(w) := φ∗(0, 0, w)= (0, γ2 ψ2∗(w)).
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(Recall that g1, g2 are the metrics on N1, N2 induced by ψ1, ψ2.) Because ψ1 and
ψ2 are Legendrian immersions, we deduce from these equalities that the induced
metric on I × N1 × N2 by φ is |γ ′

|
2ds2

+ |γ1|
2g1 + |γ2|

2g2. It follows that, γ , ψ1

and ψ2 being Legendrian, so is the immersion φ.
To compute the Legendrian angle map βφ , let {e1, . . . , en1} and {e′

1, . . . , e′
n2

} be
oriented local orthonormal frames on N1 and N2. Then the frame

(7) {u1, v1, . . . , vn1, w1, . . . , wn2}

defined by

u1 =

( ∂s

|γ ′|
, 0, 0

)
, v j =

(
0,

e j

|γ1|
, 0
)
, wk =

(
0, 0,

e′

k

|γ2|

)
(with 1 ≤ j ≤ n1, 1 ≤ k ≤ n2) is a local oriented orthonormal frame on I ×N1×N2.
Putting

φ = γ1(ψ1, 0)+ γ2(0, ψ2),

φ∗(u1)=
γ ′

1

|γ ′|
(ψ1, 0)+

γ ′

2

|γ ′|
(0, ψ2),

we have

eiβφ = detC {φ, φ∗(u1), . . . , φ∗(v j ), . . . , φ∗(wk), . . . }

=
γ

n1
1 γ

n2
2 (γ1γ

′

2−γ
′

1γ2)

|γ ′||γ1|n1 |γ2|n2

× detC {(ψ1, 0), (0, ψ2), . . . , (ψ1∗(e j ), 0), . . . , (0, ψ2∗(e′

k)), . . . }.

In this way we obtain

eiβφ(s,p,q) = (−1)n1 ei(n1 arg γ1+n2 arg γ2)(s) (γ1γ
′

2 − γ ′

1γ2)(s)
|γ ′(s)|

detC A1(p) detC A2(q),

where A1 and A2 are the matrices

A1 = {ψ1, ψ1∗(e1), . . . , ψ1∗(en1)},

A2 = {ψ2, ψ2∗(e′

1), . . . , ψ2∗(e′

n2
)}.

Taking into account the definition of the Legendrian angle map given in Section 2,
we finally arrive at

eiβφ(s,p,q) = (−1)n1 ei(βγ+n1 arg γ1+n2 arg γ2)(s) eiβψ1 (p) eiβψ2 (q).

This proves the first part of the result.
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Conversely, let ψ : Mn
→ S2n+1

⊂ Cn+1 be a Legendrian immersion that is
invariant under the action (3) of SO(n1 +1)×SO(n2 +1). Let p be any point of M
and set z = (z1, . . . , zn+1) = ψ(p). By the invariance assumption, for any matrix
X = (X1, X2) in the Lie algebra of SO(n1 + 1)× SO(n2 + 1), the curve t 7→ zet X̂

given by

X̂ =

(
X1

X2

)
lies in the submanifold. Thus its tangent vector at t = 0 satisfies

z X̂ ∈ ψ∗(Tp M).

Since ψ is a Legendrian immersion, this implies that

Im(z X̂ Ŷ zt)= 0

for any matrices X = (X1, X2), Y = (Y1, Y2) in the Lie algebra of SO(n1 + 1)×
SO(n2 + 1). As n1 + 1 ≥ 3 and n2 + 1 ≥ 3, it is easy to see from the last equation
that Re(z1, . . . , zn1+1) and Im(z1, . . . , zn1+1) are linearly dependent, and so are
Re(zn1+2, . . . , zn+1) and Im(zn1+2, . . . , zn+1). But SO(n1 +1) acts transitively on
Sn1 and SO(n2+1) acts transitively on Sn2 ; hence z is in the orbit (under the action
of SO(n1 + 1)× SO(n2 + 1) described above) of a point of the form

(z0
1, 0, . . . , 0, z0

n1+2, 0, . . . , 0),

with

|z0
1|

2
=

n1+1∑
i=1

|zi |
2 and |z0

n1+2|
2
=

n+1∑
j=n1+2

|z j |
2.

This implies that locally ψ is the orbit under the action of SO(n1 +1)×SO(n2 +1)
of a curve γ in C2

≡ Cn
∩{z2 = · · · = zn1+1 = zn1+3 = · · · = zn+1 = 0}. Therefore

M is locally I × Sn1 × Sn2 , with I an interval in R. Moreover, ψ is given by

ψ(s, x, y)= (γ1(s) x, γ2(s) y),

where γ = (γ1, γ2) must be a Legendre curve in S3
⊂ C2. Finally, as ψ is a

Legendrian submanifold, the result follows using the first part of this theorem. �

In the next result we make use of the method described in Theorem 3.1 to obtain
new minimal and C-minimal Legendrian immersions, which will provide (project-
ing via the Hopf fibration) new nontrivial minimal and H-minimal immersions in
CPn .
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Corollary 3.2. Let ψi : Ni → S2ni +1, i = 1, 2, be C-minimal Legendrian im-
mersions of ni -dimensional oriented Riemannian manifolds Ni , i = 1, 2, and let
γ = (γ1, γ2) : I → S3

⊂ C2 be a Legendre curve. As before, set n = n1 + n2 + 1.
Then the Legendrian immersion φ : I × N1 × N2 → S2n+1 of Theorem 3.1, given by

φ(t, p, q)=
(
γ1(t)ψ1(p), γ2(t)ψ2(q)

)
,

is C-minimal if and only if there exist real constants λ,µ such that (γ1, γ2) is a
solution of the system of ordinary differential equations

(8) (γ ′

1γ 1)(t)= −(γ ′

2γ 2)(t)= − ei(λ+µt) γ 1(t)n1+1 γ 2(t)n2+1.

This Legendrian immersion φ is minimal if and only if ψ1 and ψ2 are minimal and
there exists some λ such that (γ1, γ2) is a solution of the system (8) with µ= 0.

Remark. If we apply a rotation through θ to a Legendre curve γ that is a solution
of (8) with parameters (λ, µ), the new Legendre curve is a solution of the same
equation with parameters (λ− (n + 1)θ, µ). The corresponding immersions given
in Corollary 3.2 are related by φ̃= eiθφ and are therefore congruent. By choosing θ
appropriately, then, we can assume that λ=π ; that is, it suffices (up to congruence)
to consider solutions of the one-parameter family of equations

(9) (γ ′

jγ j )(t)= (−1) j−1i eiµt γ 1(t)n1+1 γ 2(t)n2+1, with µ ∈ R, j = 1, 2.

Proof of Corollary 3.2. We know from Proposition 2.4 that φ is C-minimal if and
only if 1βφ = 0, where βφ is given by (6). So we must compute the Laplacian of
βφ . We use the orthonormal frame (7) and after a long but direct computation we
obtain

(10) 1βφ =
1

|γ ′|2

(
∂2βφ

∂s2 +
d
ds

(
log

|γ1|
n1 |γ2|

n2

|γ ′|

)
∂βφ

∂s

)
+
11βψ1

|γ1|2
+
12βψ2

|γ2|2
,

where the 1i are the Laplace operators in (Ni , gi ).
The assumptions of the Corollary 3.2 imply that 11βψ1 =12βψ2 = 0 again by

Proposition 2.4. So φ is C-minimal if and only if

(11)
∂2βφ

∂s2 +
d
ds

(
log

|γ1|
n1 |γ2|

n2

|γ ′|

)
∂βφ

∂s
= 0.

Since we want φ to be regular, we impose that γ1(0) and γ2(0) not vanish (see
after statement of Theorem 3.1). Up to a reparametrization, we can assume that γ
satisfies |γ ′(t)| = |γ1(t)|n1 |γ2(t)|n2 . Thus (11) becomes

∂2βφ

∂t2 = 0.
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This means that βφ(t, p, q)= f (p, q)+t g(p, q), for certain functions f, g defined
on N1 × N2. Using (6), we obtain that g(p, q) is constant and that

(12) (βγ + n1 arg γ1 + n2 arg γ2)(t)= λ+µt, with λ,µ ∈ R.

The definition of the Legendrian angle βγ of γ is given, in particular, by

eiβγ =
1

|γ ′|
(γ1γ

′

2 − γ2γ
′

1).

Using this, it is easy to rewrite (12) as

γ ′

1γ 1 = −γ ′

2γ 2 = − ei(λ+µt) γ
n1+1
1 γ

n2+1
2 ,

which is exactly (8).
Finally, by Proposition 2.2, φ is minimal if and only if βφ is constant. This is

equivalent to βψ1 , βψ2 being constant (i.e., the ψi are minimal, again by the same
proposition) and βγ +n1 arg γ1 +n2 arg γ2 is constant. But this corresponds to the
case µ= 0 in (12) and so to the case µ= 0 in (8). �

It is difficult to describe the general solution of (9). However it is an exercise to
check that for any δ ∈ (0, π/2) the Legendre curve

(13) γδ(t)=
(
cδ exp(isn1+1

δ cn2−1
δ t), sδ exp(−isn1−1

δ cn2+1
δ t)

)
,

satisfies (9) for µ = sn1−1
δ cn2−1

δ

(
(n1 + 1)s2

δ − (n2 + 1)c2
δ

)
, where cδ = cos δ and

sδ = sin δ. This value of µ vanishes if and only if tan2 δ = (n2+1)/(n1+1). In this
way we are able to obtain an explicit family of examples:

Corollary 3.3. Let ψi : Ni → S2ni +1, for i = 1, 2, be C-minimal Legendrian
immersions of ni -dimensional Riemannian manifolds Ni , and let n = n1 + n2 + 1.
Given δ ∈ (0, π/2), set cδ = cos δ and sδ = sin δ. Then the map φδ : R× N1 × N2 →

S2n+1 defined by

φδ(t, p, q)=
(
cδ exp(isn1+1

δ cn2−1
δ t) ψ1(p) , sδ exp(−isn1−1

δ cn2+1
δ t) ψ2(q)

)
is a C-minimal Legendrian immersion.

In particular, using minimal Legendrian immersions ψ1, ψ2 and the value δ =

δ0 := arctan
√
(n2+1)/(n1+1), we obtain a minimal Legendrian immersion φδ0 :

R × N1 × N2 → S2n+1.

Proof. We simply remark that we do not need the orientability assumption be-
cause, in the case at hand, the Legendrian immersions φδ are easily seen to satisfy
divJH = 0 and thus are C-minimal (see Definition 2.3). �

To finish this section, we turn our attention to Equation (9) with µ = 0. We
observe that this is exactly equation (6) in [Castro and Urbano 2004, Lemma 2]
(in the notation of that paper, put p = n1 and q = n2). If we choose the initial
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conditions γ (0) = (cos θ, sin θ), with θ ∈ (0, π/2), we can make use of the study
made in that reference.

Lemma 3.4. Let γθ = (γ1, γ2) : I ⊂ R → S3 be the unique curve solution of

(14) γ ′

jγ j = (−1) j−1 i γ n1+1
1 γ

n2+1
2 , j = 1, 2,

satisfying the real initial conditions γθ (0)= (cos θ, sin θ), θ ∈ (0, π/2).

(1) Re(γ n1+1
1 γ

n2+1
2 )= cosn1+1 θ sinn2+1 θ .

(2) For j = 1, 2 and any t ∈ I , we have γ j (t)= γ j (−t).

(3) The functions |γ1| and |γ2| are periodic with the same period T = T (θ), and
γθ is a closed curve if and only if

θ ∈ (0, π/2) and
cosn1+1 θ sinn2+1 θ

2π

(∫ T

0

dt
|γ1|2(t)

,

∫ T

0

dt
|γ2|2(t)

)
∈ Q2.

(4) If θ takes the value δ0 = arctan
√
(n2+1)/(n1+1) from Corollary 3.3, we

recover the curve of Equation (13), with δ = δ0.

Proof. (1) and (2) follow directly from parts 2 and 3 of [Castro and Urbano 2004,
Lemma 2]. To prove (3) we set f (θ)= cos2(n1+1) θ sin2(n2+1) θ , for θ ∈ (0, π/2). It
is easy to prove that f (θ)≤ (n1 + 1)n1+1(n2 + 1)n2+1/(n + 1)n+1 and the equality
holds if and only if θ = δ0. Using this in parts 4 and 5 of [Castro and Urbano 2004,
Lemma 2] completes the proof. �

4. H-minimal Lagrangian submanifolds in complex projective space

In Section 2 we explained that we can construct (minimal, H-minimal) Lagrangian
submanifolds in CPn by projecting (minimal, C-minimal) Legendrian submani-
folds in S2n+1 by the Hopf fibration 5 : S2n+1

→ CPn (Proposition 2.4). The aim
of this section is to analyze the Lagrangian immersions in CPn that we obtain just
by projecting the Legendrian ones deduced in Section 3.

First we mention that if n2 = 0 in Theorem 3.1, projection by the Hopf fibration
5 yields Examples 1 of [Castro et al. 2001]. In this sense, the construction given in
Theorem 3.1 can be considered as a generalization of the family introduced in that
reference. Some applications of our construction of Theorem 3.1 when n = 3 have
been used recently in [Montealegre and Vrancken 2006] to the study of minimal
Lagrangian submanifolds in CP3.

The Legendrian immersions described in Corollary 3.2 provide new examples
of Lagrangian H-minimal immersions in CPn when we project them via 5. If
we consider the case n2 = 0 (so n1 = n − 1) in the minimal case of Corollary
3.2, we recover (by projecting via the Hopf fibration 5) the minimal Lagrangian
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submanifolds of CPn described in [Castro et al. 2002, Proposition 6], although we
used there a unit speed parametrization for γ .

We write in more detail what we obtain with this procedure if we consider the
special case coming from Corollary 3.3.

Corollary 4.1. Let ψi : Ni → S2ni +1, for i = 1, 2, be C-minimal Legendrian
immersions of ni -dimensional Riemannian manifolds Ni , and let n = n1 + n2 + 1.
Suppose δ ∈ (0, π/2). Then the map 8δ : S1

× N1 × N2 → CPn given by

8δ(eis, p, q)=
[(

cos δ exp(is sin2 δ)ψ1(p), sin δ exp(−is cos2 δ)ψ2(q)
)]

is an H-minimal Lagrangian immersion. 8δ is minimal if and only ifψ1 andψ2 are
minimal and tan2 δ = (n2+1)/(n1+1). (Recall that the brackets denote the image
under 5.)

Proof. We consider the C-minimal Legendrian immersions

φδ : R × N1 × N2 → S2n+1

given in Corollary 3.3. Projecting via the Hopf fibration 5 : S2n+1
→ CPn and

using Proposition 2.4 we conclude that

5 ◦φδ : R × N1 × N2 → CPn

is a one-parameter family of H-minimal Lagrangian immersions. We study when
5 ◦φδ is periodic in its first variable. It is easy to see that there exists A > 0 such
that (5◦φδ)(t + A, p, q)= (5◦φδ)(t, p, q), ∀(t, p, q) ∈ R× N1 × N2 if and only
if there exists θ ∈ R satisfying

exp(isn1+1
δ cn2−1

δ A)= eiθ
= exp(−isn1−1

δ cn2+1
δ A).

We deduce that the smallest period A must equal A = 2π/(sn1−1
δ cn2−1

δ ). Applying
the change of variables

s 7→ t = s/(sn1−1
δ cn2−1

δ )

for s ∈ [0, 2π ], the equation for the Legendre curve γδ of (13) becomes

γδ(s)=
(
cδ exp(is2

δ s), sδ exp(−ic2
δ s)
)
, s ∈ [0, 2π ],

which leads to the expression of 8δ.
We conclude the proof by observing that 5 ◦ φδ is minimal if and only if φδ is

minimal (see Section 2) and using Corollary 3.3 again. �

We get H-minimal Lagrangian embeddings as a particular case:
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Corollary 4.2. Let δ∈ (0, π/2) and n = n1+n2+1. The immersion8δ of Corollary
3.3, where ψi , for i = 1, 2, is the totally geodesic Legendrian embedding of Sni

into S2ni +1, gives rise to an H-minimal Lagrangian embedding

(eis, x, y) 7→
[(

cos δ exp(is sin2 δ)x, sin δ exp(−is cos2 δ)y
)]

of the quotient (S1
×Sn1 ×Sn2)/(Z2×Z2) into CPn , the action of Z2 × Z2 being

generated by the involutions (eis,x,y) 7→(−eis,−x,y), (eis, x, y) 7→(−eis, x,−y).

Proof. Consider the H-minimal Lagrangian immersion8δ : S1
×Sn1 ×Sn2 → CPn

defined by

8δ(eis, x, y)=
[(

cos δ exp(i sin2 δ s) x, sin δ exp(−i cos2 δ s) y
)]
.

Take (eis, x, y), (ei ŝ, x̂, ŷ) ∈ S1
×Sn1 ×Sn2 . Then 8δ(eis, x, y)=8δ(ei ŝ, x̂, ŷ) if

and only if there exists θ ∈ R such that

(15) x̂ = exp
(
i(θ + sin2 δ(s − ŝ))

)
x, ŷ = exp

(
i(θ − cos2 δ(s − ŝ))

)
y.

Since some coordinate of x ∈ Sn1 and y ∈ Sn2 is nonzero, we deduce that

(16)
ε1 := exp

(
i(θ + sin2 δ(s − ŝ))

)
= ±1,

ε2 := exp
(
i(θ − cos2 δ(s − ŝ))

)
= ±1.

We distinguish two cases:

(i) ε1 = ε2: From (16) we get ei ŝ
= eis ; using (15) we obtain x̂ = x , ŷ = y if

ε1 = ε2 = 1 or x̂ = −x , ŷ = −y if ε1 = ε2 = −1. In either case (ei ŝ, x̂, ŷ) and
(eis, x, y) are equivalent under the Z2 × Z2 action.

(ii) ε1 = −ε2: From (16) we get ei ŝ
= −eis and using (15) we obtain that either

x̂ = x and ŷ =−y or x̂ =−x and ŷ = y. Again we see that (ei ŝ, x̂, ŷ) and (eis, x, y)
are equivalent under the Z2 × Z2 action. �

If tan2 δ= (n2+1)/(n1+1) the minimal Lagrangian embedding of Corollary 4.2
admits as a special case (n2 = 0) the example (S1

× Sn−1)/Z2 → CPn studied in
[Naitoh 1981].

Remark 4.3. As can easily be checked, the action of Z2 × Z2 on S1
× Sn1 × Sn2

preserves orientation (and hence the quotient is an orientable manifold) if and only
if both n1 and n2 are odd.

To conclude this section, we use the information given by Lemma 3.4 on the
solutions of equation (9) with µ= 0.

Assume θ ∈ (0, π/2) and let γθ be the only solution of (14) satisfying γθ (0) =

(cos θ, sin θ). Consider the C-minimal Legendrian immersions

φθ : I × N1 × N2 → S2n+1
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constructed with γθ . Projecting by the Hopf fibration 5 : S2n+1
→ CPn and using

Proposition 2.4 we obtain a one-parameter family

5 ◦φθ : I × N1 × N2 → CPn

of H-minimal Lagrangian immersions.
Lemma 3.4(3) tells us when γθ is a closed curve, but now we want to find when

5◦φθ is periodic of period T , say, in its first variable. Write γθ = (ρ1eiν1, ρ2eiν2);
then ρi (t + T )= ρi (t) for i = 1, 2. It is not hard to deduce that there exists A > 0
such that (5 ◦φθ )(t + A, p, q)= (5 ◦φθ )(t, p, q) if and only if there exist ν ∈ R

and m ∈ Z satisfying

(17) eiν j (t+mT )
= eiνeiν j (t), j = 1, 2

(and then A = mT ). From (14) we can deduce that

(18) ρ2
j ν

′

j = (−1) j−1cn1+1
θ sn2+1

θ , j = 1, 2.

Then it is easy to check that ν j (t + mT ) = ν j (t)+ mν j (T ), j = 1, 2, and (17) is
equivalent to eimν j (T ) = eiν , j = 1, 2. This means that (ν2(T )− ν1(T ))/2π must
be a rational number. In view of (18), this implies that θ lies in

0 :=

{
α ∈

(
0,
π

2

)
:

cosn1+1 α sinn2+1 α

2π

∫ T

0

dt
|γ1|2(t)|γ2|2(t)

∈ Q

}
.

Hence:

Corollary 4.4. For θ ∈ 0 and fixed C-minimal Legendrian immersions ψi : Ni →

S2ni +1, i = 1, 2, we obtain from φθ a one-parameter family of H-minimal La-
grangian immersions

8θ : S1
× N1 × N2 → CPn, n = n1 + n2 + 1, θ ∈ 0.

In particular, 8θ is minimal if and only if ψ1 and ψ2 are.

5. H-minimal Lagrangian cones in complex Euclidean space

Given a Legendrian immersion φ : Mn
→ S2n+1, the cone with link φ in Cn+1 is

the map C(φ) : R × Mn
→ Cn+1 given by

(s, p) 7→ s φ(p).

C(φ) is a Lagrangian immersion with singularities at s = 0.
M. Haskins [2004b; 2004a] has studied in depth special Lagrangian cones using

the fact that φ is minimal if and only if C(φ) is minimal. Following a reasoning
similar to Haskin’s, a straightforward computation leads to the next result.
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Proposition 5.1. Let φ : Mn
→ S2n+1 be a Legendrian immersion of an oriented

manifold M and C(φ) : R× M → Cn+1 the cone with link φ. Then φ is C-minimal
if and only if C(φ) is H-minimal.

Thanks to Proposition 5.1 we have a fruitful and simple construction method for
examples of H-minimal Lagrangian cones in Cn+1 using the C-minimal Legendrian
immersions described in Section 3.

6. The complex hyperbolic case

In this section we summarize the analogous results when the ambient space is
complex hyperbolic space. We omit proofs.

Let Cn+1
1 be complex Euclidean space Cn+1 endowed with the indefinite metric

〈 , 〉 = Re( , ), where

(z, w)=

n∑
i=1

ziwi − zn+1wn+1

for z, w ∈ Cn+1, here z stands for the conjugate of z. The Liouville 1-form is
given by 3z(v) = 〈v, J z〉, for all z ∈ Cn+1 and all v ∈ TzCn+1, and the Kähler
2-form is ω = d3/2. We denote by H2n+1

1 the anti-de Sitter space, defined as the
hypersurface of Cn+1

1 given by

H2n+1
1 = {z ∈ Cn+1 / (z, z)= −1},

and by 5 : H2n+1
1 → CHn , 5(z)= [z], the Hopf fibration of H2n+1

1 onto complex
hyperbolic space CHn . The metric, complex structure and Kähler two-form in CHn

are written 〈 , 〉, J and ω. This metric has constant holomorphic sectional curvature
−4. We also denote by 3 the restriction to H2n+1

1 of the Liouville 1-form of Cn+1
1 .

Thus3 is the contact 1-form of the canonical (indefinite) Sasakian structure on the
anti-de Sitter space H2n+1

1 . An immersion φ : Mn
→ H2n+1

1 of an n-dimensional
manifold M is said to be Legendrian if φ∗3 ≡ 0. So φ is isotropic in Cn+1

1 ,
that is, φ∗ω ≡ 0. In particular, the normal bundle T ⊥M has the decomposition
J (TM) ⊕ span {Jφ}. This means that φ is horizontal with respect to the Hopf
fibration 5 : H2n+1

1 → CHn , and hence 8 = 5 ◦ φ : Mn
→ CHn is a Lagrangian

immersion and the induced metrics on Mn by φ and 8 are the same.
It is easy to check that Jφ is a totally geodesic normal vector field, so the second

fundamental forms of φ and 8 are related by

5∗(σφ(v,w))= σ8(5∗v,5∗w) for all v,w ∈ TM.

Thus the mean curvature vector H of φ satisfies 〈H, Jφ〉 = 0. In particular, φ :

Mn
→ H2n+1

1 is minimal if and only if 8=5 ◦φ : Mn
→ CHn is minimal.
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In this way, we can construct (minimal) Lagrangian submanifolds in CHn by
projecting (minimal) Legendrian manifolds in H2n+1

1 via the Hopf fibration 5.
Let � be the complex n-form on H2n+1

1 given by

�z(v1, . . . , vn)= detC {z, v1, . . . , vn}.

If φ : Mn
→ H2n+1

1 is a Legendrian immersion of a manifold M , then φ∗� is a
complex n-form on M . In the following result we analyze this n-form φ∗�.

Lemma 6.1. If φ : Mn
→ H2n+1

1 is a Legendrian immersion of a manifold M , then

(19) ∇(φ∗�)= αH ⊗φ∗�,

where αH is the one-form on M defined by αH (v)= n i〈H, Jv〉 and H is the mean
curvature vector of φ. Consequently, M is orientable if φ is minimal.

Suppose that our Legendrian submanifold M is oriented. Consider the well
defined map β : Mn

→ R/2πZ given by

eiβ(p)
= (φ∗�)p(e1, . . . , en)

where {e1, . . . , en} is an oriented orthonormal frame in Tp M . We will call β the
Legendrian angle map of φ. As a consequence of (19) we obtain

J∇β = nH,

and so we deduce:

Proposition 6.2. Let φ : Mn
→ H2n+1

1 be a Legendrian immersion of an oriented
manifold M. Then φ is minimal if and only if the Legendrian angle map β of φ is
constant.

In this context we can also consider contact minimal (or briefly C-minimal)
Legendrian submanifolds of H2n+1

1 as critical points of the volume functional for
compactly supported variations with variational vector field a (normal) contact field
ξ f = J∇ f −2 f Jφ, where f lies in C∞

0 (M) and ∇ f is the gradient of f respect to
the induced metric. Such fields are also characterized by the equation divJH = 0,
and we have a counterpart to Proposition 2.4:

Proposition 6.3. Let φ : Mn
→ H2n+1

1 be a Legendrian immersion of a Riemannian
manifold M.

(1) If M is oriented, φ is C-minimal if and only if the Legendrian angle β of φ is
a harmonic map.

(2) φ is C-minimal if and only if 8=5 ◦φ : Mn
→ CHn is H-minimal.
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The identity component of the indefinite special orthogonal group will be de-
noted by SO1

0(m). So SO(n1 + 1)× SO1
0(n2 + 1) acts on H2n+1

1 ⊂ Cn+1, where
n = n1 + n2 + 1, as a subgroup of isometries:

(20) (A1, A2) ∈ SO(n1 + 1)× SO1
0(n2 + 1) 7→

(
A1

A2

)
∈ SO1

0(n + 1).

We now state the main results of Section 3 adapted to this context. We denote
by RHn

=
{
(y1, . . . , yn+1) ∈ Rn+1

:
∑n

i=1 y2
i − y2

n+1 = −1, yn+1 > 0
}

the real
hyperbolic space of dimension n.

Theorem 6.4. Let n, n1, n2 be nonnegative integers with n = 1 + n1 + n2. Let ψ1 :

N1 → S2n1+1
⊂ Cn1+1 and ψ2 : N2 → H

2n2+1
1 ⊂ Cn2+1 be Legendrian immersions

of ni -dimensional oriented Riemannian manifolds (Ni , gi ). Suppose γ = (γ1, γ2) :

I → H3
1 ⊂ C2 is a Legendre curve. The map

φ : I × N1 × N2 → H2n+1
1 ⊂ Cn+1

= Cn1+1
× Cn2+1

defined by

(21) φ(s, p, q)=
(
γ1(s)ψ1(p), γ2(s)ψ2(q)

)
is a Legendrian immersion in H2n+1

1 whose induced metric is

(22) 〈 , 〉 = |γ ′
|
2ds2

+ |γ1|
2g1 + |γ2|

2g2

and whose Legendrian angle map is

(23) βφ ≡ n1π +βγ + n1 arg γ1 + n2 arg γ2 +βψ1 +βψ2 mod 2π,

where βγ , βψ1 and βψ2 are the Legendre angle maps of γ , ψ1 and ψ2.
If n1, n2 ≥2, a Legendrian immersion Mn

→H2n+1
1 is invariant under the action

(20) of SO(n1+1)×SO1
0(n2+1) if and only if it is locally of the form (21), where ψ1

is the totally geodesic Legendrian embedding of Sn1 in S2n1+1 and ψ2 is the totally
geodesic Legendrian embedding of RHn2 in H

2n2+1
1 That is, such immersions are

locally congruent to φ(s, x, y)= (γ1(s)x, γ2(s)y), where x ∈ Sn1 , y ∈ RHn2 .

Remark. If n2 = 0 in the theorem, we recover Examples 2 of [Castro et al. 2001]
by projection via the Hopf fibration 5 : H2n+1

1 → CHn . When n1 = 0 we obtain
Examples 3.

Corollary 6.5. Letψ1 : N1 → S2n1+1
⊂ Cn1+1 andψ2 : N2 → H

2n2+1
1 ⊂ Cn2+1 be C-

minimal Legendrian immersions of ni -dimensional oriented Riemannian manifolds
Ni , i = 1, 2, and let γ = (γ1, γ2) : I → H3

1 ⊂ C2 be a Legendre curve. As before,
set n = n1 + n2 + 1. Then the Legendrian immersion φ : I × N1 × N2 → H2n+1

1 of



60 ILDEFONSO CASTRO, HAIZHONG LI AND FRANCISCO URBANO

Theorem 6.4, given by

φ(t, p, q)=
(
γ1(t)ψ1(p), γ2(t)ψ2(q)

)
,

is C-minimal if and only if , up to congruences, there exists a real constant µ such
that (γ1, γ2) is a solution of the system of ordinary differential equations

(24) (γ ′

1γ 1)(t)= (γ ′

2γ 2)(t)= i eiµt γ 1(t)n1+1 γ 2(t)n2+1.

This Legendrian immersion φ is minimal if and only if ψ1 and ψ2 are minimal and
(γ1, γ2) is a solution of (24) with µ= 0.

If we consider the particular cases n2 = 0 and n1 = 0 in the minimal case
of Corollary 6.5, we recover (projecting via the Hopf fibration 5) the minimal
Lagrangian submanifolds of CHn described in [Castro et al. 2002, Propositions 3
and 5], although we used there a unit speed parametrization for γ .

From these two last results we can get similar examples to the ones given in
Section 4 in the projective case. Concretely, it is easy to check that for any ρ > 0
the Legendre curve

(25) γρ(t)= (sρ exp(i sn1−1
ρ cn2+1

ρ t), cρ exp(i sn1+1
ρ cn2−1

ρ t)),

satisfies (24) for µ = sn1−1
ρ cn2−1

ρ

(
(n1 + 1)c2

ρ + (n2 + 1)s2
ρ

)
, where cρ = cosh ρ,

sρ = sinh ρ.
Hence an analogous reasoning to that in Corollary 4.1 yields following explicit

family of examples.

Corollary 6.6. Let ψ1 : N1 → S2n1+1
⊂ Cn1+1 and ψ2 : N2 → H

2n2+1
1 ⊂ Cn2+1 be

C-minimal Legendrian immersions of ni -dimensional Riemannian manifolds Ni ,
i = 1, 2, and let n = n1 + n2 + 1. Given ρ > 0, set cρ = cosh ρ and sρ = sinh ρ.
Then the map 8ρ : S1

× N1 × N2 → CHn given by

8ρ(ei t , p, q)=
[
(sρ exp(i t c2

ρ) ψ1(p) , cρ exp(i t s2
ρ) ψ2(q))

]
is a H-minimal Lagrangian immersion.

A particular case of Corollary 6.6 gives a one-parameter family of H-minimal
Lagrangian embeddings.

Corollary 6.7. Let ρ > 0 and n = n1+n2+1. The immersion 8ρ of Corollary 6.6,
where ψ1 (resp. ψ2) is the totally geodesic Legendrian embedding of Sn1 into
S2n1+1 (resp. of RHn2 into H

2n2+1
1 ), provides a H-minimal Lagrangian embedding

(ei t , x, y) 7→
[
(sρ exp(i t c2

ρ) x , cρ exp(i t s2
ρ) y)

]
of the quotient of S1

× Sn1 × RHn2 by the action of the group Z2 into CHn , the
action of Z2 being generated by the involution (eis, x, y) 7→ (−eis,−x, y).
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We finally turn our attention to (24) with µ= 0. We observe that this is exactly
equation (3) in [Castro and Urbano 2004, Lemma 2] (with p = n1 and q = n2). If
we choose the initial conditions γ (0) = (sinh %, cosh %), % > 0, we can make use
of the study made in that paper.

Lemma 6.8. Let γ% = (γ1, γ2) : I ⊂ R → H3
1 be the unique curve solution of

γ ′

jγ j = i γ n1+1
1 γ

n2+1
2 , j = 1, 2,

satisfying the real initial conditions γ%(0)= (sinh %, cosh %), % > 0.

(1) Re(γ n1+1
1 γ

n2+1
2 )= sinhn1+1% coshn2+1%.

(2) For j = 1, 2 and any t ∈ I , we have γ j (t)= γ j (−t).

(3) The curves γ1 and γ2 are embedded and can be parametrized by γ j (t) =

ρ j (t)eiθ j (t), where we have set (with c% = cosh %, s% = sinh %)

ρ1(t)=

√
t2 + s2

%,

θ1(t)=

∫ t

0

sn1+1
% cn2+1

% x dx

(x2 + s2
%)

√
(x2 + s2

%)
n1+1(x2 + c2

%)
n2+1 − s2(n1+1)

% c2(n2+1)
%

,

ρ2(t)=

√
t2 + c2

%,

θ2(t)=

∫ t

0

sn1+1
% cn2+1

% x dx

(x2 + c2
%)

√
(x2 + s2

%)
n1+1(x2 + c2

%)
n2+1 − s2(n1+1)

% c2(n2+1)
%

.

In this way, the immersions φ% constructed with the curves γ% of Lemma 6.8
induce a one-parameter family of H-minimal Lagrangian immersions

8% : R × N1 × N2 → CHn, n = n1 + n2 + 1, % > 0.

In particular,8% is minimal if and only ifψ1 andψ2 are minimal. We conclude with
the following particular case, which leads to a one-parameter family of minimal
Lagrangian embeddings.

Corollary 6.9. Let % > 0 and set c% = cosh %, s% = sinh %. Then

R × Sn1 × RHn2 → CHn, n = n1 + n2 + 1,

(s, x, y) 7→ [(
√

s2 + s2
% exp(i θ1(s))x ,

√
s2 + c2

% exp(i θ2(s))y)],

where the θi (s) are given in Lemma 6.8(3), is a minimal Lagrangian embedding.

Acknowledgements. The authors thank the referee for helpful comments and sug-
gestions.
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A SPECTRAL SEQUENCE DETERMINING THE HOMOLOGY
OF Out(Fn) IN TERMS OF ITS MAPPING CLASS SUBGROUPS

MATTHEW HORAK

We construct a covering of the spine of the Culler–Vogtmann outer space
Out(Fn) by complexes of ribbon graphs. By considering the equivariant
homology for the action of Out(Fn) on this covering, we construct a spectral
sequence converging to the homology of Out(Fn) that has its E1 terms given
by the homology of mapping class groups and their subgroups. This spectral
sequence can be seen as encoding all of the information of how the homology
of Out(Fn) is related to the homology of mapping class groups and their
subgroups

1. Introduction

Much is known about the cohomology of mapping class groups of surfaces. (All
surfaces considered in this work are assumed orientable.) Let 6 be a surface with
boundary, and let P0(6) be the group of isotopy classes, relative to the boundary,
of homeomorphisms of6 that fix the boundary pointwise. We call P0(6) the pure
mapping class group of 6. Harer [1985] proved that the k-th integral homology
group of P0(6) is independent of the genus and number of boundary components
of 6 if the genus of 6 is at least 3k. Later, Ivanov [1989] and Harer [1993]
improved these bounds, and Harer was able to find the exact location at which
the rational homology stabilizes. He also computed in [Harer 1986] the virtual
cohomological dimension (VCD) of P0(6) and showed that this group has no ra-
tional homology at its VCD. Madsen and Weiss [2002] have determined the entire
stable integral cohomology algebra of pure mapping class groups. In particular,
their result verifies the conjecture of Mumford that the stable rational cohomology
algebra is a polynomial algebra with a single generator in each even dimension.

For outer automorphism groups of free groups, much less is known. Culler and
Vogtmann [1986] have compute the VCD of Out(Fn) by considering the action
of this group on a contractible simplicial complex known as the spine of outer
space. Recently, Hatcher and Vogtmann [2004] have shown that the k-th integral
homology of Out(Fn) is independent of n if n ≥ 2k + 5, but the exact stability
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range remains unknown. Indeed, there are no nontrivial stable rational homology
or cohomology classes known for Out(Fn). For a good survey of current knowledge
about Out(Fn) and Aut(Fn), see [Vogtmann 2002].

Since the mapping class groups of surfaces appear as subgroups of Out(Fn), it is
natural to try to understand the homology of Out(Fn) in terms of the homology of
mapping class groups. This paper represents an attempt to clarify this relationship.
For a punctured surface, the mapping class group is simply the group of isotopy
classes of orientation preserving homeomorphisms of the surface. The group of all
isotopy classes of homeomorphisms of a punctured surface will be called the ex-
tended mapping class group of that surface, so that extended mapping class groups
contain orientation reversing homeomorphisms.

We construct a first quadrant spectral sequence that converges to H∗(Out(Fn)),
many of whose terms consist of the homology of mapping class groups. The spec-
tral sequence arises from a covering of the spine of outer space by a collection of
subcomplexes called ribbon graph subcomplexes. We prove that the nerve of this
covering is contractible. The spectral sequence mentioned above is the equivariant
homology spectral sequence of the action of Out(Fn) on this nerve.

All of the terms on the E1 page of this spectral sequence are given by the homol-
ogy simplex stabilizers. For a 0-simplex, the stabilizer is simply the extended map-
ping class group of a punctured surface 6, or equivalently the stabilizer of the set
conjugacy classes in Fn ∼=π16 that correspond to positively and negatively oriented
curves about the punctures of 6. For higher-dimensional simplices, stabilizers are
given by the generalized stabilizers AU,G of m-tuples of conjugacy classes, which
are studied in [McCool 1975]. (These groups are finite-index subgroups of the
ordinary stabilizers of certain sets of conjugacy classes in Fn .) We prove:

Theorem. For any Out(Fn)-module M there is a spectral sequence of the form

E1
pq =

⊕
σ∈1p

Hq(Gσ ; Mσ )⇒ Hp+q(Out(Fn); M),

where 10 is the set of homeomorphism classes of punctured orientable surfaces
with fundamental group Fn and where for a vertex v ∈10 corresponding to surface
6, the stabilizer Gv is the extended mapping class group MCG±(6). Moreover,
for p > 0, each Gσ is a generalized stabilizer of the form AUσ ,Hσ .

The rest of this paper is organized as follows. In Sections 2 and 3 we review
the definitions of outer space, the spine of outer space, ribbon graphs and some
related objects. In Section 4, we construct a covering of the spine of outer space by
subcomplexes of ribbon graphs. Section 5 is devoted to the proof of the fact that the
nerve of this covering is contractible. In Section 6 we determine simplex stabilizers
for the action of Out(Fn) on the nerve. The analysis of the equivariant homology
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spectral sequence for this action appears in final two sections where we prove the
above theorem and use Harer’s stability theorems to find rough upper bounds on
the dimensions of some portions of the E∞ page of the spectral sequence. These
bounds limit the possible contribution that the mapping class subgroups of Out(Fn)

can make to the homology of Out(Fn).

2. Outer space

For convenience and to set notation, we briefly review the construction in [Culler
and Vogtmann 1986] of outer space and its spine. A graph is a connected, one-
dimensional CW-complex. We will consider only finite graphs with all vertices
having valence at least 3. A subforest of a graph 0 is a subgraph of 0 that contains
no circuits; a forest is a disjoint union of trees.

Fix an integer n ≥ 2. Denote by R0 the standard n-petal rose; R0 has one
vertex and n edges. Fix an identification π1(R0)= Fn . A marking on a graph is a
homotopy equivalence, g : R0 → 0. We define an equivalence relation on the set
of markings by setting (01, g1)∼ (02, g2) if

there is a graph isomorphism h : 01 → 02 such that g2 ' h ◦ g1, that is, such
that the diagram

(1)

01

R0

g1 -

02

h

?g2
-

commutes up to free homotopy. An equivalence class of markings is called a
marked graph and can be denoted by (0, g). The marking g identifies π1(0) with
Fn up to composition with an inner automorphism.

The marked graph (0, g) is usually represented by a labeled graph as follows.
Fix an identification of π1(R0) with Fn . Choose a spanning tree T in 0 and a
homotopy inverse to g that collapses T to the vertex of R0 and maps each edge of
0 − T to a reduced edge path in R0. A directed edge Ee in the complement of T
corresponds, via this homotopy equivalence, to an of element in Fn . Label e with
a direction and the corresponding element of Fn . Note that the same marked graph
can be represented by many different labeled graphs, depending on the choice of
T and the particular representative of (0, g). For a marked rose, the spanning tree
must consist of the single vertex, so we get a label for each directed edge. The set
of labels on a marked rose is a basis of Fn , which is determined up to conjugacy.
Two labeled roses correspond to equivalent marked roses if and only if their edges
are labeled by conjugate bases of Fn .
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If 8 is a forest in the marked graph (0, g), then collapsing each component of
8 to a point produces another marked graph, denoted by (0/8, q ◦ g), where q is
the quotient map collapsing each component of 8 to a point. Passing from (0, g)
to (0/8, q ◦ g) is called a forest collapse. There is a partial order on the set of
marked graphs with fundamental group Fn defined by (01, g1) ≤ (02, g2) if there
is a forest collapse taking (02, g2) to (01, g1). The geometric realization of the
poset of marked graphs is the spine of outer space and is denoted by Kn .

The group Out(Fn) acts on Kn by changing the markings of the underlying
graphs. Explicitly, for ψ ∈ Out(Fn),

(2) (0, g) ·ψ := (0, g ◦ |ψ |),

where |ψ | : R0 → R0 is a homotopy equivalence inducing an automorphism of
Fn =π1(R0) that represents the outer automorphism class ψ . Culler and Vogtmann
observe that this action is cocompact and that vertex stabilizers are finite.

Culler and Vogtmann also define a larger space, called outer space, consisting of
metric marked graphs. This space has the disadvantages of not being a simplicial
complex and the Out(Fn) action not being cocompact. The complex Kn can be
constructed as a simplicial spine onto which of outer space deformation retracts.

3. Ribbon graphs

There are similar constructions for mapping class groups that use marked ribbon
graphs rather than ordinary marked graphs. A ribbon graph is a graph 0 together
with, at each vertex v, a cyclic ordering of the set h(v) of half-edges incident to v.
The collection of cyclic orderings at the vertices is called a ribbon structure for 0,
and is denoted by O. The term “ribbon graph” is used because one can construct a
bounded surface from a ribbon graph (0,O) by fattening its edges to ribbons. We
give a formal construction of this surface after Definition 3.1, but informally, the
surface is constructed from (0,O) by replacing each edge by a ribbon and gluing
the ribbons together at their ends according to the cyclic order of the corresponding
half-edges. The gluing is done in such a way as to produce an oriented surface.
Figure 1 shows this process for two different ribbon structures on a rose with 2
edges. In these figures, ribbon structures are specified by the given embeddings of
a neighborhood of the vertices into the plane. The ribbon graph (0,O1) produces
a pair of pants while (0,O2) produces a torus with one boundary component.

The boundary curves of the surface produced from (0,O) correspond to reduced
edge paths in 0 that follow the cyclic ordering at the vertices in the sense of the
following definition. Following [Mulase and Penkava 1998], we view a directed
edge Ee as an ordering (e+, e−) of the half-edges e+ and e− comprising e.
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→

→

≈

≈

(0,O1)

(0,O2)

Figure 1. Fattenings of ribbon graphs.

Definition 3.1. A boundary cycle in the ribbon graph (0,O) is a directed reduced
edge cycle,

(Ee1, Ee2, . . . , Eel−1, Eel = Ee1)

such that for each i the half-edges e+

i and e−

i+1 are incident to the same vertex, and
in the cyclic ordering at that vertex, e−

i+1 directly follows e+

i .

For our purposes, it will be more convenient to work with punctured surfaces,
so we now give a precise construction of a punctured surface |0,O| from a ribbon
graph (0,O). First note that each edge of 0 is traversed exactly once in each
direction by the set of boundary cycles of (0,O). Construct a space |0,O| by
gluing a once punctured disk to 0 along each boundary cycle γ of (0,O). By
verifying that a small neighborhood of each vertex in |0,O| is indeed a disk, one
can verify that |0,O| is a surface that deformation retracts onto 0. One can also
verify that |0,O| is orientable and we orient it such that a small positively oriented
simple closed curve around a vertex v of 0 intersects the half-edges in h(v) in the
cyclic order determined by O.

If 0 is marked by the homotopy equivalence g : R0 → 0, then the composition
of g with the inclusion i : 0 ↪→ |(0,O)| is a homotopy equivalence that identifies
π1(6) with Fn up to inner automorphism, just as in the case of marked graphs.
This gives the notion of a homotopy marked surface.

Definition 3.2. A homotopy marked surface is an equivalence class of pairs (6, s),
where 6 is a punctured, orientable surface with π1(6) ∼= Fn and s : R0 → 6 is a
homotopy equivalence. The equivalence relation on pairs is given by (61, s1) ∼

(62, s2) if there is an orientation preserving homeomorphism h : 61 → 62 with
h ◦ s1 ' s2.

Recall that we have fixed an integer n ≥ 2. Often we drop the word “homotopy”
and simply use “marked surface” for a homotopy marked surface. Unless otherwise
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stated, marked surfaces will always be punctured surfaces without boundary and
with fundamental group Fn . In Section 4, the equivalence relation defined by home-
omorphisms that do not necessarily preserve orientation will be useful. We will
denote this equivalence relation by ∼±, and use brackets to denote its equivalence
classes: [6, s]. We say that the marked graph (0, g) can be drawn in the marked
surface (6, s) is there is a ribbon structure O on 0 such that |(0, g,O)| ∼ (6, s).
In this case, there is an embedding i : 0 ↪→6 such that s ' i ◦ g.

Definition 3.3. The ribbon graph complex for the marked surface (6, s) is the
subcomplex of Kn spanned by graphs that can be drawn in (6, s). This complex
is denoted by R(6,s).

We will often identify a marked graph or ribbon graph with the corresponding
vertex of Kn or R(6,s). Thus for example, if ρ is a marked rose in R(6,s) then
lnkR(6,s)(ρ) will be the link in R(6,s) of the vertex corresponding to ρ.

The ribbon graph complex R(6,s) and related complexes have been important
tools in the study of mapping class groups surfaces. In particular, R(6,s) is a
subcomplex of the first barycentric subdivision of the arc complex that Harer uses
compute the VCD of the pure mapping class group of a surface with boundary
[Harer 1986]. Also, for a punctured surface 6, Bowditch and Epstein [1988] and
Penner [1987] use arc systems on 6 to give an open cell decomposition of a space
they call the decorated Teichmüller space of 6. By taking the dual graph of an
arc system in 6, this decomposition may be interpreted in terms of metric ribbon
graphs. In the same way that Kn is a simplicial spine of outer space, R6 is a
simplicial spine of the decorated Teichmüller space of 6.

4. The ribbon cover of Kn

The ribbon subcomplex of Kn associated to a marked surface does not depend on
the surface’s orientation. This is because if the ribbon structure O draws (0, g) in
(6, s), then Oop draws (0, g) in (6, s)op, where Oop is the ribbon structure obtained
by reversing all cyclic ordering of O and (6, s)op the marked surface obtained by
reversing the orientation of (6, s). Therefore there is a well-defined subcomplex
R[6,s] of Kn .

Proposition 4.1. Kn is covered by its ribbon graph subcomplexes.

Proof. Recall that Kn is the geometric realization of the poset of marked graphs
with fundamental group Fn , so the vertices of Kn are partially ordered. For a
vertex v of Kn , let st(v) be the star of v and let st+(v) be the subcomplex of st(v)
spanned by v together with vertices of st(v) that are greater than v in the partial
order. Similarly let st−(v) be the subcomplex of st(v) spanned by v and vertices
less than v. Thus if v corresponds to the marked graph (0, g), then st+(v) consists
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of the vertices of Kn corresponding to graphs that may be collapsed to (0, g) and
st−(v) consists of vertices corresponding to graphs to which (0, g) collapses.

Suppose that v ∈ R[6,s] corresponds to the marked graph (0, g). Then 0 has
a ribbon structure O that draws (0, g) in (6, s). If e is any edge in 0 that is not
a loop, the marked graph (0/e, q ◦ g) inherits a ribbon structure O/e from O that
draws (0/e, q ◦ g) in (6, s). Therefore st−(v)⊂ R[6,s].

To see that every simplex of Kn belongs to some ribbon graph subcomplex, let
σ be a simplex of Kn . If w is the vertex of σ that is the greatest in the partial
ordering of the vertices, then σ is contained in the complex st−(w). Suppose that
w corresponds to the marked graph (00, g0) Choose any ribbon structure O0 on 00

and set (6, s) := |(00, g0,O0)|. Then w ∈ R[6,s] so that st−(w) is contained in
R[6,s]. Since σ has w as its greatest vertex, σ is a simplex of st−(w)⊆ R[6,s]. �

We begin our study of the nerve of this cover with definitions and lemmas.

Definition 4.2. Suppose that the homotopy-marked, oriented surface (6, s) has k
punctures p1, . . . , pk . Let γ j be a simple closed curve in 6 that disconnects 6 by
cutting off a disk punctured at p j . By virtue of the marking and orientation of 6,
the curve γ j corresponds to a conjugacy class in Fn . The set of such conjugacy
classes is called the set of boundary classes of6 and is denoted by W(6,s) or simply
W6 . Similarly, the set of conjugacy classes in Fn represented by the boundary
cycles of the marked ribbon graph (0, g,O) is called the set of boundary classes
of (0, g,O).

The boundary classes carry a lot of information about the surface. For exam-
ple, if (6, s) = |(0, g,O)| then the boundary classes of (6, s) and the boundary
classes of (0, g,O) are the same. Another important observation about the bound-
ary classes is that if two (necessarily homeomorphic) marked surfaces have the
same boundary classes, they are equivalent marked surfaces. This is proved by
using a theorem of Zieschang [1980, Theorem 5.15.3] that states that an element
of Out(π16) is induced by a mapping class of 6 if and only if it stabilizes the
boundary classes of 6. The boundary classes are also used to prove the following:

Lemma 4.3. If the marked graph (0, g) can be drawn in (6, s), then (0, g) has
exactly one ribbon structure giving (6, s).

Proof. Since 0 can be drawn in (6, s), there is a ribbon structure O on (0, g)
with |(0, g,O)| = (6, s). Suppose that O′ is a different ribbon structure on 0. We
may choose a vertex v and half-edges e+, e−

1 and e−

2 of 0 with e−

1 6= e−

2 , with
e−

1 following e+ in the cyclic ordering O but with e−

2 following e+ in the cyclic
ordering O′. This means that the sequence EeEe1 appears in the boundary cycles of
(0,O) while the sequence EeEe2 appears in the boundary classes of (0,O′). Since
each directed edge of 0 appears exactly once in the set of boundary cycles for any
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given ribbon structure, the set of boundary cycles of (0, g,O′) must differ from
those of (0, g,O). Therefore the set of boundary classes of (0, g,O′) differ from
those of (0, g,O). Hence |(0, g,O′)| is different from (6, s), because equivalent
marked surfaces have the same boundary classes. �

Each of the two orientations of 6 gives a unique ribbon structure to (0, g).
These two ribbon structures are opposite of each other. We now prove that (6, s)
and (61, s1) give the same ribbon graph subcomplexes of Kn if and only if [6, s]=
[61, s1]. The main step is this:

Lemma 4.4. Let (6, s) be a marked surface and let R = R[6,s] be the corre-
sponding ribbon graph subcomplex of Kn . The ribbon structure given by (6, s) to
a marked rose ρ in R can be reconstructed, up to reversal of the cyclic order, by
the (nonribbon) marked graphs in lnkR(ρ).

Proof. Choose a direction for each edge in ρ. The marking of ρ determines a
labeling of the directed edges by a basis X = {a1, a2, . . . , an} of Fn . The basis X
and this labeling are determined up to composition with an inner automorphism
of Fn .

Consider the marked graphs in lnkKn (ρ) with exactly two vertices, one of which
is trivalent. These graphs are constructed from ρ as follows. Let e+ and f + be
any two half-edges of ρ. Construct a new marked graph ρ(e+, f +) by deleting the
vertex of ρ and replacing it with two new vertices v0 and v1 joined by a new edge
ẽ. Attach the half-edges e+ and f + to v0 and attach the rest of the half-edges of
ρ to v1. Mark ρ(e+, f +) so that collapsing ẽ to a point gives the original marking
on ρ.

By Lemma 4.3, ρ has exactly one ribbon structure giving (6, s). This means
that if we allow for orientation reversing homeomorphisms of the surface, ρ has
two ribbon structures giving [6, s], and these ribbon structures are opposite of each
other. A marked graph of the form ρ(e+, f +) lies in lnkR(ρ) if and only if e+

and f + are adjacent in these ribbon structures. Thus, given a half-edge a+

i in ρ,
exactly two graphs of the form ρ(a+

i , aε j
j ) and ρ(a+

i , aεk
k ) will lie in lnkR(ρ) and

they will be the graphs for which a+

i is adjacent to the half-edges aε j
j and aεk

k in
the ribbon structure on ρ. Therefore, for each i , the nonribbon graphs in lnkR(ρ)

determine the half-edges adjacent to a+

i and a−

i in the ribbon structure on ρ. There
are only two cyclic orderings of the half-edges that satisfy these adjacency data,
and they are opposites of each other. Example 4.5 works this out for a ribbon rose
with n = 3. �

Example 4.5. Figure 2 shows the graphs of the form ρ(e+, f +) in the link of a
marked ribbon rose in R6 . The fact that graphs (1) and (6) have the half-edges
a+ and c+, respectively, adjacent to the edge a− implies that the half-edges in
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a

ρ
b c

a

b c

(1)

a b

c

(2)

b

c a

(3)

b c

a

(4)

c

a b

(5)

c a

b

(6)

Figure 2. Some graphs in lnk+

R6
(ρ).

ρ adjacent to a− are a+ and c+. Similarly, the half-edges adjacent to any other
half-edge can be determined by some pair of the graphs in Figure 2.

Proposition 4.6. R[61,s1] = R[62,s2] if and only if [61, s1] = [62, s2].

Proof. First suppose that (61, s1) and (62, s2) are equivalent via the (possibly
orientation-reversing) homeomorphism h :61 →62. Then h can be used to draw
in (62, s2) any graph that can be drawn in (61, s1) and h−1 can be used to draw
in (61, s1) any graph that can be drawn in (62, s2), so R[61,s1] = R[62,s2].

Now suppose that R[61,s1] =R[62,s2]. Set R :=R[61,s1] =R[62,s2]. Fix a marked
rose ρ ∈R; it inherits a ribbon structure from R[61,s1] giving (61, s1), and a ribbon
structure from R[62,s2] giving (62, s2). By Lemma 4.4, these structures are deter-
mined up to reversal by the nonribbon graphs in lnkR[61,s1]

(ρ) and lnkR[62,s2]
(ρ),

respectively. But R[61,s1] = R[62,s2] ,so lnkR[61,s1]
(ρ) = lnkR[62,s2]

(ρ). There-
fore the ribbon structures must coincide or be opposites of each other. In the
first case, (61, s1) ∼ (62, s2), and in the second, (61, s1) ∼ (62, s2)

op. Thus
[61, s1] = [62, s2]. �
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This proposition gives a convenient description of the covering of Kn by its
ribbon graph subcomplexes. The covering is locally finite because each different
homotopy marked surface that contains a specific graph endows that graph with a
different ribbon structure. A graph has only finitely many different ribbon struc-
tures so a given marked graph can be drawn in only finitely many marked surfaces
and hence lies in only finitely many different ribbon graph subcomplexes.

Let Nn denote the nerve of the ribbon cover of Kn . That is, Nn is the sim-
plicial complex containing a k-simplex 〈R[60,s0], . . . ,R[6k ,sk ]〉 for every collec-
tion {R[60,s0], . . . ,R[6k ,sk ]} of ribbon graph complexes such that the intersection⋂k

i=0 R[6i ,si ] is nonempty. By Proposition 4.6, the vertex set of Nn is the set of
unoriented equivalence classes, [6, s].

The action of Out(Fn) on Kn permutes the ribbon graph subcomplexes because
if (0, g) can be drawn in (6, s), then (0, g) · ψ = (0, g ◦ |ψ |) can be drawn in
(6, s ◦ |ψ |). Therefore Out(Fn) maps intersections of ribbon graph subcomplexes
to intersections of ribbon graph subcomplexes, so it acts on Nn . The equivariant
homology of this action provides the spectral sequence, which we will study, that
relates the homology of Out(Fn) to that of mapping class groups.

Although it will not be necessary for the development here, we remark briefly
on the compactness properties of Nn and the Out(Fn) action. In general (n ≥ 3),
all vertices of Nn have infinite valence:

Proposition 4.7. For n ≥ 3, the ribbon complex for any homotopy marked surface
intersects the ribbon complexes of infinitely many other homotopy marked surfaces.

Proof. We first show that the ribbon graph subcomplex of a marked surface [6, s]
with fundamental group of rank at least 3, contains infinitely many different marked
roses. Choose a marked rose (ρ, r) ∈ R[6,s] and an automorphism ψ ∈ Out(Fn)

representing a Dehn twist about a nonboundary curve in6. Since vertex stabilizers
in the spine of outer space are finite and ψ has infinite order, there are infinitely
many different equivalence classes of marked roses of the form ψn

· (ρ, r). All of
these marked roses lie in R[6,s].

Recall from Section 2 that a marking of a rose is equivalent to a choice of
conjugacy class of basis labeling its directed edges. If ρ is a marked rose with
edges labeled by the basis X = {a1, . . . , an}, then ρ can be drawn in a marked
(n + 1)-times punctures sphere 61 with boundary classes

W61 = {a1, . . . , an, a−1
n , · · · , a−1

1 }.

By the discussion following Definition 4.2, two marked spheres with different
boundary classes cannot be equivalent. Therefore the infinitely many different
marked roses in R[6,s] give rise to infinitely many different marked spheres all of
whose ribbon complexes intersect R[6,s]. �
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Proposition 4.8. Out(Fn) acts cocompactly on Nn .

Proof. Fix a marked rose ρ. For each p-simplex 〈60, . . . , 6p〉, the subcomplex⋂p
i=0 R6i contains a rose. This rose may be taken to ρ by an element of Out(Fn),

so each orbit of p-simplex has a representative all of whose surfaces contain ρ.
Since a marked rose can be drawn in only finitely many different marked surfaces,
there are only finitely many orbits of p-simplices. �

5. Contractibility of Nn

To show that Nn is contractible, we will need the following result from Čech theory.

Lemma 5.1 [Hatcher 2002, Section 4.G]. Let U be a cover of the CW-complex
X by a family of subcomplexes. If every nonempty intersection of finitely many
complexes in U is contractible, then the nerve of the cover is homotopy equivalent
to X.

We will apply Lemma 5.1 to the covering of Kn by ribbon graph complexes.
Thus the remainder of this section is devoted to the proof of,

Proposition 5.2. For any finite collection {R60, . . . ,R6k } of ribbon graph sub-
complexes of Kn , the subcomplex

k⋂
i=0

R6i

of Kn is either empty or contractible.

The main tool in analyzing these intersections is the Kmin subcomplexes of Kn ,
which are used by Culler and Vogtmann [1986] to show that Kn is contractible.
The definition of the Kmin complexes involves the following norm defined for each
finite set of conjugacy classes of Fn . Let C denote the set of all conjugacy classes
of Fn . For a marked rose ρ, an element w ∈ C can be represented by a unique
reduced edge path in ρ.

Definition 5.3. Let W be a finite set of conjugacy classes of Fn and ρ a marked
rose in Kn . The norm ‖ρ‖W of ρ with respect to W is the sum of the number of
edges in each reduced edge path in ρ that corresponds to an element of W .

If X is a basis labeling the edges of ρ, then ‖ρ‖W is sometimes written ‖X‖W .
The Kmin subcomplex for W is defined as the union of the stars of the roses ρ
for which ‖ρ‖W is minimal over all marked roses. In [Vogtmann 2002] these
complexes are denoted KW , and we will follow that notation here. To prove that
the entire complex Kn is contractible, Culler and Vogtmann prove that KW ' Kn

for any finite set W . They then find a set of conjugacy classes such that KW is
the star of a single marked rose and therefore contractible. Putting these two facts
together we have:
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Lemma 5.4 [Culler and Vogtmann 1986]. KW is contractible for any finite set
W ⊆ C.

Proposition 5.2 is proved by finding a deformation retraction from a suitable
KW to

⋂
R6i . We begin by studying of the behavior of the norm with respect

to Whitehead automorphisms. For us, the traditional Whitehead automorphisms
are less convenient to work with than a slightly modified version, given in [Hoare
1979]. This is because the effect of an automorphism on the star graph of a set of
conjugacy classes (defined below), is easier to describe using this definition rather
than the classical definition of Whitehead automorphism.

Definition 5.5. For a basis X and a subset A ⊆ X ∪ X−1 for which there is a letter
a ∈ X ∪ X−1 such that a ∈ A but a−1 /∈ A, the automorphism mapping a to a−1

whose action on X ∪ X−1
− {a, a−1

} is given by

(3)


x 7→ axa−1 if x ∈ A and x−1

∈ A;

x 7→ xa−1 if x ∈ A and x−1 /∈ A;

x 7→ ax if x /∈ A and x−1
∈ A;

x 7→ x if x /∈ A and x−1 /∈ A

will be called a Whitehead automorphism and will be denoted by (A, a).

Warning. This definition differs from the classical Whitehead automorphism in
that the latter fix a. This is the only difference, but it allows us to prove the next
result.

Lemma 5.6. The totality of Whitehead automorphisms obtained as in the preceding
definition generate the group Aut(Fn).

Proof. The Neilson automorphisms generate Aut(Fn) [Magnus et al. 1966, Theo-
rem 3.2]. It is straightforward to write any Neilson automorphism as a product of
the Whitehead automorphisms of Definition 5.5. �

Another important fact about Whitehead automorphisms of this type is the peak
reduction lemma (for Whitehead automorphisms as defined here).

Peak reduction lemma [Hoare 1979, Lemma 3]. Fix a basis X of Fn and finite set
W ⊆ C. If there is an automorphism ψ ∈ Aut(Fn) such that ‖X‖W ≥ ‖X‖ψW then
ψ can be written as a product ψ = τ1τ2 · · · τk of Whitehead automorphisms such
that

(4) ‖X‖W > ‖X‖τk W > ‖X‖τk−1τk W > · · ·> ‖X‖τlτl+1···τk W

= ‖X‖τl−1τlτl+1···τk W = · · · = ‖X‖ψW .
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Figure 3. SW (X) for X = {a, b, c},W = {aba−1b−1c, c−1
}.

The star graph of W with respect to X will allow us to study the behavior of
‖ · ‖W with respect to Whitehead automorphisms. Recall that star graph of W ⊆ C

with respect to the basis X is the graph with vertex set X ∪ X−1 and with a directed
edge from x to y−1 for every time the subword xy appears among the conjugacy
classes in W , viewed as cyclic words in the alphabet X ∪ X−1; see Figure 3. The
star graph of W with respect to X will be denoted by SW (X), or by SW (ρ) if we
are thinking of X as a set of labels on the marked rose ρ.

To prove the peak reduction lemma, Hoare describes a three-step process for
constructing SτW (X) from SW (X) for a Whitehead automorphism τ . If τ = (A, a),
the steps are:

(1) Add two new vertices α, ᾱ. Replace every edge going from a vertex in A to
a vertex in A′ (the complement of A) by a pair of edges, one from the vertex
in A to α and another from ᾱ to the vertex in A′. Replace every edge going
from a vertex in A′ to a vertex in A by a pair of edges, one from the vertex in
A′ to ᾱ and another from α to the vertex in A.

(2) Switch the letter a with α, and a−1 with ᾱ.

(3) Do the reverse of (1), reconnecting edges incident to α and ᾱ according to the
cyclic words in W that produced them.

Because ‖X‖W is the number of edges in SW (X), this process gives the follow-
ing procedure for calculating the effect of a Whitehead automorphism on the norm.
Consider the Whitehead automorphism τ = (A, a). Draw a circle C in the plane
and immerse SW (X) in the plane in such a way that each vertex of A lies inside the
circle, each vertex of A′ lies outside the circle, no pair of edges of SW (X) intersect
each other at a point of C , and #(SW (X)∩C) is minimal over all such immersions.
Then

(5) ‖X‖W − ‖X‖τW = val(a)− #(SW (X)∩ C),

where val(a) is the valence of the vertex of SW (X) corresponding to a.
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When W = W6 is the set of boundary classes of a marked surface, we will be
more concerned with ‖X‖W −‖τ−1 X‖W than with ‖X‖W −‖X‖τW , because if X
is the set of labels on the edges of a marked rose ρ, then τ−1 X is the set of labels
on ρ · τ . (5) will suffice because

‖τ−1 X‖W = ‖X‖τW ;

the latter equality can be seen from the observation that if τ(a)= x1x2 · · · xk is an
expression for τ(a) in terms of the basis X , then a = τ−1(x1)τ

−1(x2) · · · τ
−1(xk)

is an expression for a in terms of the basis τ−1 X . The interpretation of this obser-
vation in terms of star graphs is

(6) SW (τ
−1 X)≈ SτW (X).

Lemma 5.7. Let W be a finite set of conjugacy classes of Fn . Suppose that for
some basis X , the graph SW (X) is a cycle. Then ‖X‖W is minimal over all bases
of Fn , and if Y is another basis with ‖Y‖W = ‖X‖W , then SW (Y ) is also a cycle.

Proof. Since SW (X) is a cycle, any circle separating some generator from its inverse
must intersect at least two edges of the graph. Since all vertices have valence 2,
Equations (5) and (6) imply that no Whitehead automorphism can take X to a
basis that reduces the sum of the lengths of the minimal representatives for the
classes in W . But if there is any automorphism reducing the sum of the lengths of
the conjugacy classes in W , the peak reduction lemma implies that a Whitehead
automorphism reduces the length. Thus ‖X‖W must be minimal over all bases
for Fn .

Now suppose that Y is another basis with ‖Y‖W = ‖X‖W . Since Aut(Fn) acts
transitively on bases of Fn , we may choose ψ ∈ Aut(Fn) with Y = ψ−1 X . By the
peak reduction lemma and Equation (6), there is a sequence τ1, . . . , τl of White-
head automorphisms such that ψ = τ1, . . . , τl and ‖τ−1

l τ−1
l−1 · · · τ−1

i X‖W = ‖X‖W

for i = 1, . . . , l. Thus without loss of generality, we may assume that ψ = τ is a
Whitehead automorphism.

We now use Hoare’s method to construct the star graph SτW (X)≈ SW (τ
−1 X).

Since ‖τ−1 X‖W = ‖X‖W , the circle separating A from A′ in the star graph must
intersect only two edges of the graph; otherwise the norm would increase. There-
fore, the subgraph spanned by the vertices of A is a simple path, and the same is
true for the subgraph spanned by A′. Step (1) of Hoare’s procedure produces a
graph consisting of two disjoint cycles, one containing α and the other containing
ᾱ. Step (2) keeps α and ᾱ in separate cycles, but they may switch cycles. Step (3)
breaks these two cycles at α and ᾱ, and reconnects the ends of the resulting line
segments to form a cycle, which is SτW (X). Since SW (Y )= SW (τ

−1 X)≈ SτW (X),
SW (Y ) is a cycle. �
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We will use Lemma 5.7 to analyze which marked graphs can be drawn in a
particular surface (6, s). If 6 has genus g and s punctures, and if

X = {a1, b1, a2, b2, . . . , a2g, b2g, c1, . . . , cs−1}

is a standard, geometric basis of Fn = π1(6), we have

W(6,s) = {[a1, b1][a2, b2] · · · [a2g, b2g]c1 · · · cs−1, c−1
1 , c−1

2 , . . . , c−1
s−1}.

Thus SW (X) is a cycle, and as a consequence of Lemma 5.7 we have:

Corollary 5.8. If W is the set of boundary classes of a surface 6, then

min
ρ

‖ρ‖W = 2n

and SW (ρ
′) is a cycle for any rose ρ ′ minimizing ‖ · ‖W .

The next two lemmas characterize the marked graphs that lie in R[6,s].

Lemma 5.9. The marked graph 0= (0, g) can be drawn in (6, s) if and only if the
set of reduced edge cycles of 0 representing W6 traverses each edge of 0 exactly
once in each direction.

Proof. Suppose that (0, g) can be drawn in (6, s). Cutting 6 along 0 produces a
collection of punctured disks, one for each puncture. The oriented boundaries of
these disks correspond to the conjugacy classes of the boundary of 6. Together
they traverse each edge of 0 once in each direction. Thus, if (0, g) can be drawn
in (6, s), the set of reduced edge cycles of 0 representing the boundary classes of
(6, s) traverses each edge exactly once in each direction.

For the converse, we first construct another marked surface 6′ whose set of
oriented boundary classes is also W6 , by showing that the boundary cycles in 0
induce a ribbon structure. We then use this surface to draw 0 in 6. Let v be a
vertex of 0 and define a polycyclic order on the half-edges at v by declaring that
b− follows a+ if ab appears in the reduced boundary cycles in W6 . This definition
may give more than one cycle of half-edges at some vertices, so it may not provide
a cyclic order at each vertex. To show that it is indeed a cyclic order, we work by
induction on the number of vertices in 0.

If 0 has one vertex, then 0 is a rose and ‖0‖W6
= 2n. Since W6 is the set of

boundary classes for a surface, Corollary 5.8 implies that the star graph SW6
(0) is

a single connected cycle, which means that there is only one cycle of half-edges
at the vertex of 0, and our definition gives a cyclic ordering. Now, suppose that 0
has k vertices and assume by induction that any graph with fewer than k vertices
and with the boundary classes traversing each edge exactly once in each direction
has a single cycle at each vertex. Choose an edge e of 0 that is not a loop, and
collapse it to obtain the marked graph 0′

= 0/e. The reduced edge cycles of 0′
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representing the elements of W6 traverse each edge exactly once in each direction,
and 0′ has k − 1 vertices. Therefore 0′ has one cycle at each vertex. If v1 and v2

are the two vertices coalesced to the vertex v ∈ 0′ during the collapse of edge e,
then there is a single cycle at every vertex of 0 other than v1 and v2. A priori, the
cycles at v can be formed by taking the cycles v1 and v2 and combining the one
containing e+ with the one containing e−. Since there is only one cycle at v, each
of v1 and v2 must possess only one cycle, which finishes the induction step that we
have a cyclic ordering of the half-edges at each vertex.

Let O be the ribbon structure just constructed. Both 6 and the marked surface
6′

= |(0, g,O)| are orientable surfaces with the same number of punctures and the
same fundamental group; hence they are homeomorphic. By the construction of O,
the set of boundary classes of 6′ is W6 . Label each puncture of 6 and 6′ with the
corresponding conjugacy class of W6 and choose a homeomorphism f :6′

→6

that preserves the labels of the punctures. Now, f ◦ i embeds 0 into 6 as a strong
deformation retract, but this embedding may not induce the same marking as g.
That is to say, the diagram

0 ⊂
i- 6′

R0

g
6

s
- 6

f
?

may not commute up to homotopy. However, the outer automorphism given by
f∗ ◦ i∗ ◦ g∗ ◦ (s∗)

−1 stabilizes W6 . By [Zieschang et al. 1980, Theorem 5.15.3], it
is induced by an element θ in the orientation-preserving mapping class group of
6. Embedding 0 into 6 by θ−1

◦ f ◦ i gives the same marking as g. Thus 0 can
be drawn in 6. �

Lemma 5.10. Let (6, s) be a homotopy marked surface and ρ a marked rose.
Then ρ ∈ KW6

if and only if ρ ∈ R6 .

Proof. By Corollary 5.8, the minimal value of ‖ · ‖W6
is 2n. Any ρ ∈ R6 can be

drawn in 6. By cutting 6 along ρ, we see that ‖ρ‖W6
= 2n, so ρ ∈ KW6

.
Conversely, suppose that ρ ∈ KW6

. Since ρ minimizes ‖ · ‖W6
, Corollary 5.8

implies that the star graph SW6
(ρ) must be a cycle. Therefore each label in ρ

appears exactly once with exponent +1 and once with exponent −1 in the minimal
expressions for conjugacy classes of W6 in terms of a set of labels of ρ. This means
that the set of reduced edge cycles in ρ that represents W6 traverses each edge of
ρ exactly once in each direction. By Lemma 5.9, ρ can be drawn in (6, s). �

This lemma implies that the roses in R6 coincide with those in KW6
. Since

KW6
is the union of the stars of its roses, R6 ⊆ KW6

. To find a graph in R6 lying
near a particular graph in KW6

− R6 , we use the following lemma.
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Lemma 5.11. If 0 = (0, g) ∈ KW6
, there exists a (possibly empty) forest 86(0)

such that for any forest 8⊆ 0,

0/8 ∈ R6 ⇐⇒ 8⊇86(0).

Proof. Let 86(0) be the subgraph of 0 consisting of all the edges of 0 that
are not traversed exactly once in each direction by the set of reduced edge paths
representing the boundary classes of 6. Since 0 ∈ KW6

, and KW6
is the union

of the stars of its roses, there is a maximal tree T in 0 such that 0/T is a rose in
KW6

. By Lemma 5.10 this rose is in R6 , so it can be drawn in 6. Therefore every
edge of 0− T is traversed exactly once in each direction by the set of conjugacy
classes in W6 . This means that 86(0)⊆ T , so that 86(0) is a forest.

Given any forest8 in 0, Lemma 5.9 implies that 0/8 can be drawn in6 exactly
when the boundary cycles traverse each edge of 0/8 once in each direction. This
happens exactly when 86(0)⊆8. �

These lemmas would allow us, at this time, to define a retraction from KW6
to

R6 by taking a graph 0 ∈ KW to 0/86(0) proving the following well-known
proposition without having to appeal to the contractibility of Teichmüller space
or the identification of the ribbon graph complex with the decorated Teichmüller
space.

Proposition 5.12. For any marked surface [6, s], the ribbon graph complex R[6,s]

is contractible.

We postpone this proof until it is covered by the proof of contractibility for
arbitrary simplices of the nerve. For higher-dimensional simplices, we need a set
of conjugacy classes that captures the properties of a graph that can be drawn in
several different surfaces. This set emphasizes a conjugacy class according to the
number of the surfaces in question of which it is a boundary. We start by describing
some general properties of collections of finite sets of conjugacy classes of Fn . For
the proof of Proposition 5.2, we will specialize to the case that the sets of conjugacy
classes are actually the boundary classes of marked surfaces.

Definition 5.13. For a collection σ = {W0, . . . ,Wk} of finite sets of conjugacy
classes of Fn , define

Wσ :=
{
[α1]

n1, . . . , [αl]
nl
}
,

where
⋃k

i=0 Wi ={[α1], . . . , [αl]}, and n j is the number of times that the conjugacy
class [α j ] appears in the Wi .

Note that [α] and [α−1
] both may appear in Wσ . We use the letter σ for the set

{W0, . . . ,Wk} because this definition will be applied to a simplex σ =〈60, . . . , 6k〉

of N, with Wi = W6i . We will use the notation Wσ in this situation as well.
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Lemma 5.14. For σ and Wσ as above, let

A = min
ρ

‖ρ‖Wσ
and Ai = min

ρ
‖ρ‖Wi .

Then A = A0 + · · · + Ak if and only if
⋂k

i=0 KWi 6= ∅.

Proof. Suppose that Wσ = {w
n1
1 , . . . , w

nl
l }. For any marked rose ρ,

(7) ‖ρ‖Wσ
=

l∑
i=0

ni‖ρ‖{wi } =

k∑
j=0

‖ρ‖W j .

Choose any marked rose ρ1 with ‖ρ1‖Wσ
= A. Now, ρ1 may not minimize every

‖ · ‖Wi , so

(8) A0 + · · · + Ak ≤

k∑
j=0

‖ρ1‖W j = ‖ρ1‖Wσ
= A,

where the first equality comes from Equation (7).
If
⋂k

i=0 KWi is nonempty, there is a single marked rose ρ2 with ‖ρ2‖Wi = Ai

for all i . Thus

A ≤ ‖ρ2‖Wσ
=

k∑
i=0

‖ρ2‖Wi = A0 + · · · + Ak .

Together with (8) this implies that A = A0 + · · · + Ak .
Conversely, if A = A0 + · · · + Ak , then using the ρ1 from above we have

(9) A0 + · · · + Ak = A = ‖ρ1‖Wσ
=

k∑
j=0

‖ρ1‖W j .

Again the last equality comes from (7). Now, ‖ρ1‖Wi ≥ Ai , so by (9) we have
‖ρ1‖Wi = Ai for each i . Hence, ρ1 ∈ KWi for each i , and

⋂
KWi 6= ∅. �

Changing the viewpoint slightly we get:

Corollary 5.15. For any finite collection of finite sets of conjugacy classes, σ =

{W0, . . . ,Wk}, KWσ
=
⋂k

i=0 KWi if the right-hand side is nonempty.

Setting k = 0 here provides a proof of Proposition 5.12. The final lemma we
need for the proof of Proposition 5.2 is this:

Poset lemma [Quillen 1973]. Let f : P → P be a poset map from the poset P to
itself such that p ≤ f (p) for all p ∈ P. Then f induces a deformation retraction
from the geometric realization of P to the geometric realization of its image f (P).
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Proof of Proposition 5.2. Let σ = 〈60, . . . , 6k〉 be a simplex of Nn . Denote by
Rσ the intersection

Rσ :=

k⋂
i=0

R[6i ,si ],

and let Wσ be the set of conjugacy classes given by Definition 5.13. Now Rσ

contains a rose, since 〈60 . . . 6k〉 is a simplex of Nn . To simplify the notation,
set Wi := W6i . Since R6i ⊆ KWi , we have Rσ ⊆

⋂
KWi . Hence,

⋂
KWi 6= ∅,

and by Corollary 5.15,
⋂

KWi = KWσ
. We will define a deformation retraction

KWσ
→ Rσ by collapsing in each graph the minimal forest that takes that graph to

a graph in Rσ .
Let 0 ∈ KWσ

. Since
⋂

KWi = KWσ
, Lemma 5.11 implies that there exists a

minimal forest 86i ⊆ 0 collapsing 0 to a graph in R6i . Set

8σ (0) :=860(0)∪ · · · ∪86k (0).

Since 0 ∈ KWσ
, there is a spanning tree T collapsing 0 to a rose: 0/T ∈ KWσ

. By
Corollary 5.15, 0/T ∈ KWi for each i . So, by Lemma 5.10, 0/T ∈ R6i for each i
and therefore 86i (0)⊆ T for each i . Hence 8σ (0)⊆ T . Since T is a tree, 8σ (0)
is a forest.

Now we define a map r from the vertex set of KWσ
to the vertex set of Rσ by

r(0)= 0/8σ (0). We claim that r induces a simplicial map

r : KWσ
→ Rσ .

It will suffice to show that r takes adjacent vertices to the same vertex or adjacent
vertices because both KWσ

and Rσ are determined by their 1-skeletons. To do this,
suppose that 01 and 02 represent adjacent vertices in KWσ

. By possibly switching
the names of the graphs, we can write 02 = 01/8 for some forest 8. If 8 ⊆

8σ (01), then r(01) = r(02). If 8 6⊆ 8σ (0) then r(01) 6= r(02). The diagram
below represents a small portion of Kn in this case, with edges represented by
arrows.

r(02) � collapse 8′′

r(01)

02

collapse 8σ (02)

6

�
collapse 8

01

collapse 8σ (01)

6
�

collapse 8 ′

To show that r takes 01 and 02 to adjacent vertices, as the diagram suggests, we
need justify that there is such a forest 8′′, as indicated in the diagram. The forest
8′′ is constructed as follows. Let8′

=8σ (01)∪8. Then8′ is the subforest of 01
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such that r(02)= 01/8
′. If 8′′ is the subgraph of r(01) consisting of the images

of the edges in 8′
−8σ (01) then 8′′ is a forest and r(01)/8

′′
= r(02). Therefore

r(01) and r(02) are adjacent, proving that r induces a simplicial map.
That r is a retraction follows from the implication 0 ∈ Rσ ⇒ 8σ (0) = ∅

and the fact that, by Lemma 5.9, the image of r is contained in R6i for each i .
Therefore r(KWσ

)= Rσ . To see that r is a deformation retraction, we will use the
poset lemma. Partially order the vertices of KWσ

by setting 01 < 02 if 01 can be
collapsed to 02. Then KWσ

is the geometric realization of the poset of its vertices
under this partial order. With respect to this partial order, r has the property that
0 ≤ r(0). The poset lemma implies that r is a deformation retraction. Since KWσ

is contractible, this finishes the proof. �

By Lemma 5.1, Proposition 5.2 proves that Nn ' Kn . Since Kn is contractible
by [Culler and Vogtmann 1986], so is Nn . We record this:

Theorem 5.16. Nn is contractible for all n.

6. Simplex stabilizers

As mentioned before, the action of Out(Fn) on Kn gives an action of Out(Fn)

on Nn . To describe stabilizers of this action, we fix some notation. Let 6 be a
surface with boundary and/or punctures and with free fundamental group. As in the
introduction, the pure mapping class group of 6 is the group of homeomorphisms
of 6 that are the identity on the boundary and fix the punctures, up to isotopy
relative to the boundary. The extended mapping class group of 6 is the group
of isotopy classes of homeomorphisms of 6. Thus the extended mapping class
group contains orientation reversing homeomorphisms, while the pure mapping
class group does not, provided that 6 has boundary. We will use P0(6) and 0(6)
to represent the pure and extended mapping class groups of 6.

If (6, s) is a homotopy marked surface then the identification of π1(6) with
Fn given by the marking s induces a homomorphism from 0(6) to Out(Fn).
This homomorphism is defined by sending a homeomorphism of 6 to the outer
automorphism of π1(6) that it represents. By [Zieschang et al. 1980, Theorem
5.15.3], this homomorphism is injective, and its image is the subgroup of Out(Fn)

consisting of outer automorphisms that take W6 to W6 or (W6)
−1. Denote this

subgroup by MCG±(6, s). Denote the image of P0(6) by PMCG(6, s) and the
image of the orientation-preserving subgroup of 0(6) by MCG(6, s). Note that
these subgroups depend on the marking s. Thus the difference between 0(6) and
MCG±((6, s)) is that MCG±(6) is viewed as a subgroup of Out(Fn), and this
subgroup depends on the marking s. The same is true for the pure mapping class
groups.
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Finally, let Stab(R[6,s]) be the subgroup of Out(Fn) stabilizing R[6,s] setwise,
so Stab(R[6,s]) is the stabilizer of the vertex of Nn that corresponds to [6, s].

Theorem 6.1. Stab(R[6,s])= MCG±(6, s).

Proof. Since ψ ∈ MCG±(6, s) implies (6, s) ·ψ = (6, s ◦ |ψ |) ∼± (6, s) (and
hence R[6,s] ·ψ = R[6,s]), we have Stab(R[6,s]) ⊃ MCG±(6, s). For the other
inclusion, suppose that ψ ∈ Stab(R[6,s]). Then

R[6,s] = (R[6,s]) ·ψ = R[6,s◦|ψ |].

By Proposition 4.6, [6, s] = [6, s ◦|ψ |], so there is a homeomorphism h :6→6

that makes the diagram

R0
s - 6

R0

|ψ |

?

s
- 6

h
?

commute up to homotopy. Now, h takes the boundary classes W6 to W6 or
(W6)

−1. Thus ψ does also. By Zieschang’s theorem, ψ ∈ MCG±(6). �

To describe the stabilizer of a higher-dimensional simplex, we use a certain
kind of stabilizer of a set of conjugacy classes of Fn , as studied in [McCool 1975].
Following the definitions there, we consider ordered m-tuples

(w1, . . . , wm)

of conjugacy classes in Fn . The symmetric group Sm acts on the set of m-tuples
by permuting the coordinates. The inverting operations τ1, . . . , τm act on the set
of m-tuples by

τi (w1, . . . , wi , . . . , wm)= (w1, . . . , w
−1
i , . . . , wm).

The group Sm , together with the τi ’s, generates the subgroup �m ∼= Sm o Z2 of
permutations of the set of m-tuples of conjugacy classes of Fn known as the ex-
tended symmetric group. The group Out(Fn) also acts on the set of m-tuples of
conjugacy classes by acting individually on the coordinates. McCool [1975] makes
the following definition in the setting of Aut(Fn), but we will use it also in the
setting of Out(Fn).

Definition 6.2. For U an m-tuple of conjugacy classes and subgroup G ≤ �m ,
define the subgroup AU,G of Out(Fn) by

AU,G := {θ ∈ Out(Fn) : θU ∈ GU },

where GU = {gU : g ∈ G}.
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For a simplex σ of Nn , let Gσ denote the stabilizer of the simplex σ of Nn .
If σ = v is the vertex corresponding to the marked surface (6, s), then Gv =

MCG±(6, s)= AU,G where U is the m-tuple of boundary classes (in any order) of
a marked surface (6, s), and G ≤�m is the subgroup generated by Sm together with
the extended permutation τ1τ2 · · · τm . To describe Gσ for a higher-dimensional
simplex, we introduce some terminology.

Definition 6.3. Let σ = 〈60, . . . , 6k〉 be a simplex of Nn , and let Ui be the mi -
tuple of boundary classes of 6i (again in any order). Set m = m0 + · · · + mk and
denote by Uσ = (U0, . . . ,Uk) the m-tuple constructed by listing the conjugacy
classes from the Ui one after another, starting with those of U0. Define Hσ ≤�m

as the subgroup generated by extended permutations of the following types:

(1) α ∈ Sm such that there is a permutation λ ∈ Sk such that, for each i , α takes
Ui to Uλ(i), possibly with the entries of Uλ(i) permuted;

(2) τ ∈�m such that τUi = Ui or τUi = U−1
i for each i .

Proposition 6.4. For any simplex σ of N, Gσ has the form AUσ ,Hσ .

Proof. Formally, (1) can be written as αUi ∈ Smλ(i)Ui . An element θ ∈ Gσ permutes
the equivalence classes of the marked surfaces 6i . This means that θ takes W6i to
W6 j or W −1

6 j
for some j . Thus θUi ∈ Sm j U j or Sm j U

−1
j for some j . Since no two

surfaces are taken to the same surface by θ , this means precisely that θ ∈ AUσ ,Gσ

as defined above. �

7. Equivariant homology of the action of Out(Fn) on Nn

For a cellular action of a group G on a contractible cell complex X , the equivariant
spectral sequence for the action of G on X is a well-known spectral sequence that
converges to a grading of the homology of G; see [Brown 1982, Chapter VII.7].
To describe this spectral sequence, let M be any G-module. Consider, for each
p-cell σ of X , the Gσ -module Zσ . As an additive group, Zσ is isomorphic to Z.
The module structure of Zσ is given by having g ∈ Gσ act as multiplication by
+1 or −1, depending on whether g preserves or reverses the orientation of σ . The
module Zσ is called the orientation module of σ . Let

Mσ := Zσ ⊗Z M.

Fix a set 1p of representatives for the orbits of the p-cells of X under the action
of G. The equivariant spectral sequence for the action of G on X takes the form

(10) E1
pq =

⊕
σ∈1p

Hq(Gσ ; Mσ )⇒ Hp+q(G; M).
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Applying this to the action of Out(Fn) on Nn and any Out(Fn)-module M , we
get a spectral sequence converging to H∗(Out(Fn); M). Since vertex stabilizers
are extended mapping class groups and there is one orbit of vertex for each home-
omorphism type of surface, the p = 0 column of the spectral sequence consists of
direct sums of the homology groups of the extended mapping class groups. For
p > 0, the simplex stabilizers are given by Proposition 6.4 and we have:

Theorem 7.1. For any Out(Fn)-module M , there is a spectral sequence of the form

(11) E1
pq =

⊕
σ∈1p

Hq(Gσ ; Mσ )⇒ Hp+q(Out(Fn); M),

where 10 is the set of homeomorphism classes of punctured orientable surfaces
with fundamental group Fn , and for a vertex v ∈ 10 corresponding to surface 6
the stabilizer Gv is the extended mapping class group MCG±(6). For p> 0, each
Gσ is a generalized stabilizer of the form AUσ ,Hσ .

The map induced on homology by the inclusion MCG±(6) ↪→ Out(Fn) appears
in the spectral sequence as the left-hand edge map, which is defined for the general
spectral sequence (10) as follows. Since there is nothing but zeroes to the left of
the p = 0 column in the spectral sequence (10), E∞

pq is a quotient of E1
pq . The

spectral sequence converges to a grading of H∗(G; M), and the composition

(12)
⊕
v∈10

Hq(Gv; M)= E1
0q � E∞

0q = Gr0 Hq(G; M) ↪→ Hq(G; M)

is the left-hand edge map of this spectral sequence. The left hand edge map is
equal to the map induced on homology by the inclusion of Gv into G.

For sequence (11), if the vertex v corresponds to marked surface 6, we have
Gv = MCG±(6) and the restriction of the left-hand edge map to the subspace
Hq(Gv; M) is the map

Hq(MCG±(6); M)→ Hq(Out(Fn); M)

induced by the inclusion MCG±(6) ↪→ Out(Fn). Thus finding a bound on the
rank of the left-hand edge map gives an upper bound on the contribution that the
mapping class subgroups of Out(Fn) can make to the homology of Out(Fn). This
will be the subject of the next section.

8. Analysis of E∞

In this section, we specialize to rational coefficients and give a method for using
Harer’s homology stability theorems [1985] for mapping class groups to analyze
the E∞ page of spectral sequence (11). We continue to use MCG±(6, s) for the
image of0(6, s) in Out(Fn), but we extend this notation to surfaces with boundary.
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Hence, if 6 is a surface with boundary and s is a homotopy equivalence from the
standard rose R0 to 6, we use MCG±(6, s), PMCG(6, s), and MCG(6, s) to
denote the images in Out(Fn) of the extended, pure and orientation-preserving
mapping class groups of 6 in Out(Fn). As usual, these images depend on the
marking s. We remark that there is a natural inclusion P0(6) ↪→ 0(6), which
agrees with the inclusion of PMCG(6, s) into MCG±(6, s).

More generally, if 60 is a subsurface with boundary of the surface 6, the
inclusion 60 ↪→ 6 induces a map α : P0(60) → P0(6) defined by extending
a homeomorphism of 60 to all of 6 by the identity. Harer’s stability theorem,
quoted below, implies that α induces an isomorphism on homology in sufficiently
high dimensions.

Theorem 8.1 [Harer 1985, Theorem 0.1]. Let 60 be a subsurface of 6 such that
6 − 60 is connected, contains no punctures but is not simply connected. If the
genus of 60 is at least 3k − 1, then α∗ : Hk(P0(60); Q) → Hk(P0(6); Q) is an
isomorphism.

We will also need to analyze the effect of plugging a boundary component of 6
with a punctured disk. To this end, consider the maps 2, 2′, ϒ and 8 (between
the appropriate surfaces) defined, respectively, by plugging a boundary component
with a disk, plugging a boundary component with a punctured disk, plugging a
puncture, and sewing a pair of pants to a boundary component. In the stable range,
Theorem 8.1 applies to8. By making the appropriate identifications,2◦8 induces
the identity on homology, so in the stable range for 8, the map 2 must induce an
isomorphism. Since 2= ϒ ◦2′, we have:

Lemma 8.2. For g ≥ 3k − 2, (2′)∗ is injective and ϒ∗ is surjective on the k-th
homology.

In order to relate these stability maps to the d1 terms in the spectral sequence
of Theorem 7.1, consider two marked surfaces (6, s) and (6′, s ′). Let ρ and ρ ′

be the marked images in 6 and 6′ of the marking rose. Suppose that there are
separating simple closed curves γ ⊂6 and γ ′

⊂6′ cutting off subsurfaces 6̃ ⊂6

and 6̃′
⊂6′ with the following properties, illustrated in Figure 4.

(1) The basepoints of the marking roses lie on γ and γ ′.

(2) No edge of the marking roses meets γ or γ ′ anywhere but at the basepoints
of the roses.

(3) ρ ∩ 6̃ ' 6̃ and ρ ′
∩ 6̃′

' 6̃′.

(4) 6̃ and 6̃′ are homeomorphic by a homeomorphism taking each directed edge
of ρ ∩ 6̃ to a directed edge of ρ ′

∩ 6̃′ with the same labeling.
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Figure 4. Markings that agree on a subsurface.

Definition 8.3. If the marked surfaces (6, s) and (6′, s ′) satisfy conditions (1)–(4)
above, the markings are said to agree on the subsurfaces 6̃ and 6̃′.

If the marked surfaces 6 and 6′ agree on the subsurface 6̃ = 6̃′ then the cor-
responding vertices v6 and v6′ in N span an edge e. The group PMCG(6̃) can be
identified with a subgroup of the stabilizer of ve. If6 and6′ are not homeomorphic
surfaces, then the component of the d1 map in spectral sequence (11) from Stab(e)
to Stab(v6) is the map induced by inclusion of Stab(e) into Stab(v6). The same is
true for 6′. Therefore the following lemma will play the key role in determining
bounds on how much homology in the E1 page can survive until E∞.

Lemma 8.4. Let [6, s] and [6′, s ′
] be nonhomeomorphic marked surfaces such

that

(1) the markings s and s ′ agree on subsurfaces 6̃ and 6̃′ of genus 3k − 1,

(2) 6̃ contains all but one of the punctures of 6, and

(3) R[6,s] ∩ R[6′,s′] 6= ∅.

Let v and v′ be the vertices of Nn corresponding to 6 and 6′ and let e be the edge
of Nn between v and v′. Then Ge = Gv ∩ Gv′ and i∗ : Hk(Ge; Q) → Hk(Gv; Q)

has rank at least

dim Hk(Gv; Q)−
(
dim Hk(P0(6); Q)− dim Hk(P0(6̃); Q)

)
.

Proof. First, Ge = Gv ∩ Gv′ because no outer automorphism of Fn can switch
[6, s] with [6′, s ′

].
Since the Dehn twists generate P0(6̃), the map α : P0(6̃)→ P0(6) induced

by 6̃ ↪→6 is determined by its effect Dehn twists. Now, suppose that c is a simple
closed curve in 6̃ with corresponding simple closed curve c′ in 6̃′. When we use
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the maps is and is′ of Zieschang’s theorem to identify P0(6) and P0(6′) with
the subgroups PMCG(6) and PMCG(6′)⊆ Out(Fn), the Dehn twists δc ∈ P0(6̃)
and δc′ ∈ P0(6̃′) about c and c′ correspond to the same outer automorphism of
Fn . Therefore the image of the map α1 : P0(6̃) → P0(6) = PMCG(6) lies in
the intersection PMCG(6)∩ PMCG(6′)⊆ Gv ∩ Gv′ , and we have a commutative
diagram

(13)

P0(6̃)
α1- PMCG(6)

Ge

β1

?
⊂

i
- MCG±(6)= Gv

β2

?

∩

where β1 is the map α1 viewed with a different range. We claim that the composi-
tion β2 ◦α1 induces a map on homology that has rank at least

dim Hk(Gv; Q)−
(
dim Hk(P0(6); Q)− dim Hk(P0(6̃); Q)

)
.

To see this, note that β2 is the inclusion of a finite index subgroup into a super-
group. Therefore it induces a surjection on homology with rational coefficients.
By Theorem 8.1 and Lemma 8.2, the map α1 is injective, and the claim follows by
a dimension counting argument. Now, the rank of the map induced by i must be
at least the rank of the map induced by i ◦β1 = β2 ◦α1, finishing the proof. �

Our last proposition gives a bound on the rank of the restriction of the left-
hand edge map in spectral sequence (11) to surfaces of large rank. It bounds the
contribution that the homology of these surfaces’ mapping class groups can make
to the homology of Out(Fn). To simplify notation, let 0s

g,0 denote the extended
mapping class of the surface of genus g with s punctures and no boundary, and let
P0s

g,0 be the pure, orientation preserving mapping class group of this surface.

Proposition 8.5. Let k ≥ 0 and n ≥ 6k −2. For g ≥ 3k −1, let 6s
g be the punctured

surface of genus g with s punctures and with 2g+s −1 = n (so that π1(6
s
g)

∼= Fn).
By choosing particular markings of the 6s

g, we may identify the vector space

A :=

⊕
g≥3k−1

Hk(MCG(6s
g); Q)

with a subspace of the E1
0k term of spectral sequence (11) using trivial Q coeffi-

cients. The image of A in E∞

0k has dimension no larger than

dim Hk(0
t
3k−1,0; Q)+

∑
g≥3k

2g+s−1=n

(
dim Hk(P0s

g,0; Q)− dim Hk(P0s−1
g,0 ; Q)

)
,

where 2(3k − 1)+ t − 1 = n.
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Proof. Fix a marking [6t
3k−1, s3k−1] of 6t

3k−1. For each g> 3k −1 we may choose
a marking [6s

g, sg] of 6s
g satisfying the conditions of Lemma 8.4 with 6 = 6s

g
and 6′

= 6t
3k−1. For g ≥ 3k − 1 let vg denote the vertex of Nn corresponding to

[6s
g, sg] and for g ≥ 3k, let eg denote the edge between v3k−1 and vg. By choosing

the vg and eg as representatives for their Out(Fn) orbits, the vector spaces

(14) A :=

⊕
g≥3k−1

Hk(Gvg ; Qvg ) and B :=

⊕
g≥3k

Hk(Geg ; Qeg )

can be identified with subspaces of E1
0k and E1

1k respectively. Note that d1(B)⊆ A.
Now, Geg fixes eg pointwise since no outer automorphism can switch vg and
v3k . The same is true of Gvg , so the modules Qvg and Qeg are actually trivial
modules; Qvg = Q, Qeg = Q. Since Gvg = MCG(6s

g, sg), the above defini-
tion of A agrees with the definition in the statement of the proposition, A =⊕

g≥3k−1 Hk(MCG(6s
g); Q). Now, Geg = Gvg ∩ Gv3k−1 as in Lemma 8.4. With

these definitions, the (eg, vg)-component of d1 is simply the map induced by the
inclusion Geg ↪→ Gvg . By Lemma 8.4, this map has rank at least

(15) Rg = dim Hk(Gvg ; Q)−
(
dim Hk(P0s

g,0; Q)− dim Hk(P0s−1
3k−1,1; Q)

)
,

where 2g+s−1=n. Note that Rg depends on g because, even though Hk(P0s
g,0; Q)

is independent of g, it depends on s, and s depends on g.
By (15), for each g ≥3k we may choose Rg vectors {w

g
1 , . . . , w

g
Rg

} in (im d1
∩A)

such that their projections onto Hk(Gvg ; Q) are linearly independent. Let Ag be the
subspace of A spanned by {w

g
1 , . . . , w

g
Rg

}. By the first direct sum decomposition
in (14) and the choice of the vectors wg

i , the subspaces A3k, . . . , Ab
n
2 c are linearly

independent. Let A∞ denote the image of A in E∞. Since A∞ is a quotient of
A/d1(B), this means that

(16) dim(A∞)≤ dim(A)−
∑
g≥3k

Rg.

By Harer’s stability theorems, Hk(P0s−1
3k−1,1)

∼= Hk(P0s−1
g,0 ). Now, substituting

dim A =

∑
g≥3k−1

dim Hk(Gvg ; Q)

and (15) with dim Hk(P0s−1
3k−1,1)= dim Hk(P0s−1

g,0 ) into (16) gives

dim(A∞)≤

dim Hk(MCG(63k−1); Q) +

∑
g≥3k

2g+s−1=n

(
dim Hk(P0s

g,0; Q)− dim Hk(P0s−1
g,0 ; Q)

)
,

as required. �
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AN OPTIMAL SYSTOLIC INEQUALITY FOR CAT(0) METRICS
IN GENUS TWO

MIKHAIL G. KATZ AND STÉPHANE SABOURAU

We prove an optimal systolic inequality for CAT(0) metrics on a genus 2
surface. We use a Voronoi cell technique, introduced by C. Bavard in the
hyperbolic context. The equality is saturated by a flat singular metric in
the conformal class defined by the smooth completion of the curve y2 =

x5 − x. Thus, among all CAT(0) metrics, the one with the best systolic ratio
is composed of six flat regular octagons centered at the Weierstrass points
of the Bolza surface.

1. Hyperelliptic surfaces of nonpositive curvature

Over half a century ago, a student of C. Loewner’s named P. Pu [1952] presented
in this journal the first two optimal systolic inequalities, which came to be known
as the Loewner inequality for the torus and Pu’s inequality for the real projective
plane. (See (5–2) on page 104 for the latter.)

The last couple of years have seen the discovery of a number of new systolic
inequalities [Ammann 2004; Bangert and Katz 2003; 2004; Bangert et al. 2005;
2006a; 2006b; Ivanov and Katz 2004; Katz 2006; Katz and Lescop 2005; Katz
and Sabourau 2006; Katz et al. 2006; Sabourau 2004], as well as near-optimal
asymptotic bounds [Hamilton 2005; Katz 2003; Katz and Sabourau 2005; Katz
et al. 2005; Rudyak and Sabourau ≥ 2006; Sabourau 2006; ≥ 2006]. A number
of questions posed in [Croke and Katz 2003] have thus been answered. A general
framework for systolic geometry in a topological context is proposed in [Katz and
Rudyak 2005; 2006]. See [Katz ≥ 2006] for an overview of systolic problems.
The homotopy 1-systole, denoted sysπ1(X), of a compact metric space X is the
least length of a noncontractible loop of X .

Given a metric G on a surface, let SR(G) denote its systolic ratio

SR(G)=
sysπ1(G)

2

area(G)
.

MSC2000: 53C20, 53C23.
Keywords: Bolza surface, CAT(0) space, hyperelliptic surface, Voronoi cell, Weierstrass point,

systole.
Katz was supported by the Israel Science Foundation (grants no. 620/00-10.0 and 84/03).

95

http://pjm.berkeley.edu
http://dx.doi.org/10.2140/pjm.2006.227-1
http://www.ams.org/msnmain?fn=705&pg1=CODE&op1=OR&s1=53C20, 53C23


96 MIKHAIL G. KATZ AND STÉPHANE SABOURAU

The optimal systolic ratio of a compact Riemann surface 6 is defined as SR(6)=
supG SR(G), where the supremum is over all metrics in the conformal type of 6.
Finally, given a smooth compact surface M , its optimal systolic ratio is defined by
setting SR(M) = sup6 SR(6), where the supremum is over all conformal struc-
tures 6 on M . The latter ratio is known for the Klein bottle — see the bound (5–1)
on page 104 — in addition to the torus and real projective plane already mentioned.

In the class of all metrics without any curvature restrictions, no singular flat
metric on a surface of genus 2 can give the optimal systolic ratio in this genus
[Sabourau 2004]. The best available upper bound for the systolic ratio of an arbi-
trary genus 2 surface is γ2 ' 1.1547 [Katz and Sabourau 2006].

The precise value of SR for the genus 2 surface has so far eluded researchers
[Calabi 1996; Bryant 1996]. We propose an answer in the framework of negatively
curved, or more generally, CAT(0) metrics.

The term “CAT(0) space” evokes an extension of the notion of a manifold of
nonpositive curvature to encompass singular spaces. We will use the term to refer
to surfaces with metrics with only mild quotient singularities, defined below. Here
the condition of nonpositive curvature translates into a lower bound of 2π for the
total angle at the singularity. We need such an extension so as to encompass the
metric that saturates our optimal inequality (1–1).

A mild quotient singularity is defined as follows. Consider a smooth metric
on R2. Let q ≥ 1 be an integer. Consider the q-fold cover Xq of R2

\ {0} with the
induced metric. We compactify Xq in the neighborhood of the origin to obtain a
complete metric space X c

q = Xq ∪ {0}.

Definition 1.1. Suppose X c
q admits an isometric action of Zp fixing the origin.

Then we can form the orbit space Yp,q = X c
q/Zp. The space Yp,q is then called

mildly singular at the origin.

The total angle at the singularity is then 2πq/p, and the CAT(0) condition is
q/p ≥ 1.

Remark 1.2. Alternatively, a point is singular of total angle 2π(1+β) if the metric
is of the form eh(z)

|z|2β |dz|2 in its neighborhood, where |dz|2 = dx2
+ dy2. See

[Troyanov 1990, p. 915].

Theorem 1.3. Every CAT(0) metric G on a surface 62 of genus 2 satisfies the
optimal inequality

(1–1) SR(62,G)≤
1
3

cot π
8

=
1
3
(√

2 + 1
)
= 0.8047 . . .

The inequality is saturated by a singular flat metric, with 16 conical singularities,
in the conformal class of the Bolza surface.
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The Bolza surface is described in Section 2. The optimal metric is described
in more detail in Section 3. Theorem 1.3 is proved in Section 4 based on the
octahedral triangulation of S2.

Remark 1.4. A similar optimal inequality can be proved for hyperelliptic surfaces
of genus 5 based on the icosahedral triangulation [Bavard 1986].

2. Distinguishing 16 points on the Bolza surface

The Bolza surface B is the smooth completion of the affine algebraic curve

(2–1) y2
= x5

− x .

It is the unique Riemann surface of genus 2 with a group of holomorphic automor-
phisms of order 48. (A way of passing from an affine hyperelliptic surface to its
smooth completion is described in [Miranda 1995, p. 60–61].)

Definition 2.1. A conformal involution J of a compact Riemann surface 6 of
genus g is called hyperelliptic if J has precisely 2g + 2 fixed points. The fixed
points of J are called the Weierstrass points of 6.

The quotient Riemann surface 6/J is then necessarily the Riemann sphere,
denoted henceforth S2. Let Q : 6 → S2 be the conformal ramified double cover,
with 2g + 2 branch points. Thus, J acts on 6 by sheet interchange. Recall that
every surface of genus 2 is hyperelliptic, that is, admits a hyperelliptic involution
[Farkas and Kra 1992, Proposition III.7.2].

We make note of 16 special points on B. We call a point special if it is a fixed
point of an order 3 automorphism of B.

Consider the regular octahedral triangulation of S2
= C ∪∞. Its set of vertices

is conformal to the set of roots of the polynomial x5
−x of formula (2–1), together

with the unique point at infinity. Thus the six points in question can be thought of as
the ramification points of the ramified conformal double cover Q : B → S2, while
the 16 special points of B project to the eight vertices of the cubic subdivision dual
to the octahedral triangulation.

In other words, the x-coordinates of the ramification points are

{0,∞, 1,−1, i,−i} ,

which stereographically correspond to the vertices of a regular inscribed octahe-
dron. The conformal type therefore admits the symmetries of the cube. If one
includes both the hyperelliptic involution and the real (antiholomorphic) involution
of B corresponding to the complex conjugation (x, y)→ (x̄, ȳ) of C2, one obtains
the full symmetry group Aut(B), of order

(2–2) |Aut(B)| = 96;
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see [Kuusalo and Näätänen 1995, p. 404] for more details.

Lemma 2.2. The hyperbolic metric of B admits 12 systolic loops. The 12 loops
are in one-to-one correspondence with the edges of the octahedral decomposition
of S2. The correspondence is given by taking the inverse image under Q of an edge.
The 12 systolic loops cut the surface into 16 hyperbolic triangles. The centers of
the triangles are the 16 special points.

See [Schmutz 1993, §5] for further details. The Bolza surface is extremal for
two distinct problems:

• systole of hyperbolic surfaces [Bavard 1992; Schmutz 1993, Theorem 5.2];

• conformal systole of Riemann surfaces [Buser and Sarnak 1994].

The square of the conformal systole of a Riemann surface is also known as its Se-
shadri constant [Kong 2003]. The Bolza surface is also conjectured to be extremal
for the first eigenvalue of the Laplacian. Such extremality has been verified nu-
merically [Jakobson et al. 2005]. The evidence above suggests that the systolically
extremal surface may lie in the conformal class of B, as well. Meanwhile, we have
the following result, proved in Section 5.

Theorem 2.3. The Bolza surface B satisfies SR(B)≤
π
3 .

Note that Theorems 2.3 and 1.3 imply that SR(B) ∈ [0.8, 1.05].

3. A flat singular metric in genus two

The optimal systolic ratio of a genus 2 surface (62,G) is unknown, but it satisfies
the Loewner inequality [Katz and Sabourau 2006]. Here we discuss a lower bound
for the optimal systolic ratio in genus 2, briefly described in [Croke and Katz 2003].

The example of M. Berger (see [Gromov 1983, Example 5.6.B′]) in genus 2 is
a singular flat metric with conical singularities. It has systolic ratio SR = 0.6666.
This ratio was improved by F. Jenni [Jenni 1984], who identified the hyperbolic
genus 2 surface with the optimal systolic ratio among all hyperbolic genus 2 sur-
faces (see also C. Bavard [Bavard 1992] and P. Schmutz [Schmutz 1993, The-
orem 5.2]). The surface in question is a (2,3,8) triangle surface. Its confor-
mal class is that of the Bolza surface (Section 2). It admits a regular hyper-
bolic octagon as a fundamental domain, and has 12 systolic loops of length 2x ,
where x = cosh−1(1 +

√
2). It has

sysπ1 = 2 log
(
1 +

√
2 +

√
2 + 2

√
2
)
,
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area 4π , and systolic ratio SR ' 0.7437. This ratio can be improved to 0.8047, as
we shall see. The history for genus 2 so far can be summarized as follows:

SR(G)=
sysπ1(G)

2

area(G)
=


0.6666 (Berger)

0.7437 (Jenni)

0.8047 (our metric GO on Bolza surface)

Proposition 3.1. The conformal class of the Bolza surface B admits a metric,
denoted GO, with the following properties:

(1) the metric is singular flat, with conical singularities precisely at the 16 special
points of Section 2;

(2) each singularity is of total angle 9
4π , so that the metric GO is CAT(0);

(3) the metric is glued from six flat regular octagons, centered on the Weierstrass
points, while the 1-skeleton projects under Q : B → S2 to that of the dual cube
in S2;

(4) the systolic ratio equals SR(GO)=
1
3

(√
2 + 1

)
> 4

5 .

Proof. The octahedral triangulation of the sphere, discussed in Section 2, lifts
to a triangulation of B consisting of 16 triangles, which we think of as being
“equilateral”. Here eight equilateral triangles are connected cyclically around each
of the six Weierstrass vertices of the triangulation of B.

We further subdivide each equilateral triangle into three isosceles triangles, with
a common vertex at the center of the equilateral triangle. We equip each of the 48
isosceles triangles with a flat metric with obtuse angle 3

4π .
Each of the six Weierstrass vertices of the original triangulation is a smooth

point, since the total angle is eight times π/4. Each equilateral triangle possesses a
singularity at the center with total angle 9

4π > 2π . Alternatively, we can apply the
Gauss–Bonnet formula

∑
σ α(σ)= 2g−2 in genus 2, with 16 isometric singulari-

ties. Here the sum is over all singularities σ of a singular flat metric on a surface of
genus g, where the cone angle at singularity σ is 2π(1+α(σ)). Since the metric GO

is smooth at a Weierstrass point of B, the metric has only 16 singularities, precisely
at the special points of Section 2, proving items 1 and 2 of the proposition.

Let x denote the side length of the equilateral triangle. The barycentric subdivi-
sion of each equilateral triangle consists of six copies of a flat right angle triangle,
denoted R, with side x/2 and adjacent angle π/8. We thus obtain a decomposition
of the metric GO into 96 copies of the triangle R, which can be thought of as a
fundamental domain for the action of Aut(B); see (2–2).

We have sysπ1(GO)= 2x by Lemma 3.2, proving item 4 of the proposition. To
prove item 3, note that the union of the 16 triangles R with a common Weierstrass
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Figure 1. Flat regular octagon obtained as the union of 16 right
triangles R with side x/2 and adjacent angle π/8. The shaded
interior octagon represents the region with four geodesic loops
through every point.

vertex is a flat regular octagon. The latter is represented in Figure 1, together with
the systolic loops passing through it. �

Lemma 3.2. The systole of the singular flat CAT(0) metric on the Bolza surface
equals twice the distance between a pair of adjacent Weierstrass points.

Proof. Consider the smooth closed geodesic γ ⊂ B that is the inverse image under
the map Q : B → S2 of an edge of the octahedron; see Lemma 2.2. Let x be
the distance between a pair of opposite sides of the regular flat octagon in B, or
equivalently, the distance between a pair of adjacent Weierstrass points. Thus,
length(γ )= 2x . Consider a loop α ⊂ B whose length satisfies

(3–1) length(α) < 2x .

We will prove that there are two possibilities for α: it is either contractible, or
freely homotopic to one of the 12 geodesics γ of the type described above. On the
other hand, γ is necessarily length minimizing in its free homotopy class, by the
CAT(0) property of the metric [Bridson and Haefliger 1999, Theorem 6.8]. This
will rule out the second possibility, and prove the lemma.

Denote by B(1) the graph on B given by the inverse image under Q of the 1-
skeleton of the cubic subdivision of S2. The graph B(1) partitions the surface into
six regular octagons, denoted �k :

(3–2) B =

6⋃
k=1

�k .

We will deform α to a loop β ⊂ B(1) as follows. The partition (3–2) induces a
partition of the loop α into arcs αi , each lying in its respective octagon �ki . We
deform each αi , without increasing length, to the line segment [pi , qi ] ⊂�ki . The
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boundary points pi , qi of αi split the boundary closed curve ∂�ki ⊂ B(1) into a pair
of paths. Let βi ⊂ ∂�ki be the shorter of the two paths. Denote by y the distance
between adjacent vertices of the octagon. Then clearly

(3–3) length(βi )≤
4y
x

length(αi ).

We first deform the loop α into the graph B(1). The deformation fixes the intersec-
tion points α∩ B(1). Inside �ki we deform the arc αi to the path βi . The length of
the resulting loop is at most

4y
x

length(α) < 8y

by (3–1) and (3–3). Therefore, its homotopy class in B(1) can be represented by
an imbedded loop β ⊂ B(1) of length at most 8y. Thus, β contains fewer than
eight edges of B(1). Since the number of edges must be even, its image under Q
must retract to a circuit with at most six edges in the 1-skeleton of the cubical
subdivision of S2. If the number is four, then the circuit lies in the boundary of a
square face of the cube in S2. But the boundary of a face does not lift to B, since
it surrounds a single ramification point, namely the center of the square face.

Hence there must be six edges in the circuit. There are two types of circuits
with six edges in the 1-skeleton of the cubical subdivision of S2:

(a) the boundary of the union of a pair of adjacent squares;

(b) a path consisting of the edges meeting a suitable great circle.

However, a path of type (b) surrounds an odd number, namely 3, of ramification
points, and hence does not lift to the genus 2 surface. Meanwhile, a path of type
(a) surrounds two ramification points, and hence does lift to the surface. Such a
path is freely homotopic in B to one of the 12 geodesics of type γ (Lemma 2.2),
completing the proof. �

4. Voronoi cells and Euler characteristic

The following proposition provides a preliminary lower bound on the area of hy-
perelliptic surfaces with nonpositive curvature.

Proposition 4.1. Every J -invariant CAT(0) metric G on a closed hyperelliptic
surface 6g of genus g satisfies the bound

SR(6g,G)≤ 8((g + 1)π)−1.

Proof. To prove this scale-invariant inequality, we normalize the metric on 6=6g

to unit systole, that is, sysπ1(6,G) = 1. The preimage by Q : 6 → S2 of an arc
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of S2 joining two distinct branch points forms a noncontractible loop on 6. There-
fore the distance between two Weierstrass points is at least 1

2 sysπ1(6,G) =
1
2 .

Thus we obtain 2g+2 disjoint disks of radius 1
4 , centered at the Weierstrass points.

Since the metric is CAT(0), the area of each disk is at least π
16 . Thus,

area(6,G)≥
g + 1

8
π. �

An optimal lower bound requires a more precise estimate on the area of the
Voronoi cells. The idea is to replace area of balls by area of polygons, where
control over the number of sides is provided by the Euler characteristic [Bavard
1992].

Denote by u : 6̃ → 6 its universal cover. Let {xi | i ∈ N} be an enumeration
of the lifts of Weierstrass points on 6̃. The Voronoi cell Vi ⊂ 6̃ centered at xi is
defined as the set of points closer to xi than to any other lift of a Weierstrass point.
In formulas,

Vi =
{

x ∈ 6̃
∣∣ d(x, xi )≤ d(x, x j ) for every j 6= i

}
.

The Voronoi cells on 6̃ are polygons whose edges are arcs of the equidistant
curves between a pair of lifts of Weierstrass points. Note that these edges are not
necessarily geodesics. The Voronoi cells on 6̃ are topological disks, while their
projections u(Vi )⊂6 may have more complicated topology. Thus, the surface 6
decomposes into 2g+2 images of Voronoi cells, centered at the 2g+2 Weierstrass
points. By the number of sides of u(V ) we will mean the number of sides of the
polygon V .

Lemma 4.2. Let G1 and G2 be two CAT(0) metrics lying in the same conformal
class. Then, the averaged metric G =

1
2(G1 + G2) is CAT(0), as well.

Proof. Choose a point x ∈ 6 and a metric G0 in its conformal class, which is flat
in a neighborhood of x . Every metric G = H G0 conformal to it satisfies

KG H = KG0 −
1
21 log H

(see [Gallot et al. 1990, p. 265]), where KG and KG0 are the Gaussian curvatures
of G and G0, and 1 is the Laplacian of G0 with 1 f = div∇ f . Thus, the metrics Gi

can be written as Gi = ehi G0, where hi is subharmonic in the neighborhood of x ,
that is, 1hi ≥ 0. A simple computation shows that

1 log H ≥
eh11h1 + eh21h2

2H
≥ 0,

where H =
1
2(e

h1 +eh2), proving the lemma if both points are regular. For singular
points with positive angle excess, the CAT(0) property for the averaged metric is
immediate from Remark 1.2. �
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Proof of Theorem 1.3. Since averaging by J can only improve the systolic ratio,
we may assume without loss of generality that our metric is already J -invariant.

There exists an extension of the notions of tangent plane and exponential map
to surfaces with singularities. Namely, let A ∈6. There exists a CAT(0) piecewise
flat plane TA with conical singularities and a covering expA : TA → 6 with the
following properties:

(1) expA sends the origin O of TA to A;

(2) expA takes the conical singularities of TA to the singularities of 6;

(3) expA sends every pair of geodesic arcs issuing from the origin O ∈ TA to a
pair of geodesic arcs of the same lengths and forming the same angle at their
basepoint A.

By the Rauch Comparison Theorem, the exponential map expA does not de-
crease distances.

Now assume A ∈6 is a Weierstrass point, and let B ∈6 be another Weierstrass
point. Fix a lift B0 of B to the tangent plane TA, along a minimizing arc. Consider
the equidistant line

L O,B0 ⊂ TA

between the origin O ∈ TA and the point B0. Consider a point X0 ∈ L O,B0 . Let
X = expA(X0). Since the exponential map does not decrease distances, we have

dist6(A, X)= distTA(O, X0)= distTA(B0, X0)≤ dist6(B, X).

Now consider the polygon in the tangent plane TA, obtained as the intersection
of the half-spaces containing the origin, defined by the lines L O,B0 , as B runs over
all Weierstrass points. It follows from the preceding equality that the exponential
image of this polygon is contained in the Voronoi cell of A. Since the exponential
map does not decrease distances, the area of the polygon is a lower bound for the
area of the Voronoi cell. If k is the number of sides of V , then V is partitioned
into k triangles with angle θi at O , whose area is bounded below by

(4–1)
(sysπ1

4

)2
tan

θi

2

since dist(A, B)≥
1
2 sysπ1.

Consider the graph on S2 defined by the projections of the Voronoi cells to the
sphere. Thus we have f = 6 faces. Applying the formula v− e + f = 2 and the
well-known fact that 3v ≤ 2e, we obtain

e ≤ 3 f − 6 = 12.

Hence the spherical graph has at most 12 edges. Note that the maximum is attained
by the 1-skeleton of the cubical subdivision.
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The area of a flat isosceles triangle with third angle θ and with unit altitude from
the third vertex is tan(θ/2) . This formula provides a lower bound for the area of
the Voronoi cells as in (4–1). The proof is completed by Jensen’s inequality applied
to the convex function tan(x/2) when 0< x <π . In the boundary case of equality,
we have e = 12, all angles θi as in (4–1) must be equal, curvature must be zero
because of equality in the Rauch Comparison Theorem, and we easily deduce that
each Voronoi cell is a regular octagon. To minimize the area of the octagon, we
must choose θ as small as possible. The CAT(0) hypothesis at the center of the
octagon imposes a lower bound θ ≥

π
4 . Hence the optimal systolic ratio is achieved

for the regular flat octagon with a smooth point at the center. �

5. Arbitrary metrics on the Bolza surface

The conformal class of the Bolza surface B of Section 2 is likely to contain a
systolically optimal surface in genus 2, as discussed in Section 1.

Theorem 5.1. Every metric G in the conformal class of the Bolza surface satisfies
the bound

SR(G)≤
π

3
= 1.0471 . . . .

Remark 5.2. In particular, every metric G in the conformal class of the Bolza
surface satisfies Bavard’s inequality

(5–1) SR(G)≤
π

23/2 ' 1.1107

for the Klein bottle [Bavard 1986]. This suggests a possible monotonicity of χ(6)
as a function of SR(6).

Lemma 5.3. Let G be an Aut(B)-invariant metric on B. Let

δ(J )= min
x∈B(1)

dist(x, J (x))

be the displacement on the 1-skeleton B(1) of the Voronoi subdivision of B. Then

area(B,G)≥ 6
( 2
π

)
δ(J )2.

Proof. Consider the Voronoi subdivision with respect to the set of six Weierstrass
points on B. Since each Voronoi cell � ⊂ B is J -invariant, we can identify all
pairs of opposite points of the boundary ∂�, to obtain a projective plane

RP2
=�/∼ .

We now apply Pu’s inequality [Pu 1952] to each of the six Voronoi cells, to obtain

(5–2) area(RP2)≥
2
π

sysπ1(RP2)2.
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The lemma now follows from the bound sysπ1(RP2)≥ δ(J ). �

Lemma 5.4. Every Aut(B)-invariant metric G on B satisfies the bound

2δ(J )≥ sysπ1(B,G).

Proof. Let p, J (p) ∈ ∂� satisfy dist(p, J (p))= δ(J ). Let α⊂� be a minimizing
path joining p to J (p). Let�′

⊂B be the adjacent Voronoi cell containing this pair
of boundary points, and r : B → B the anticonformal involution that switches �
and �′, and fixes their common boundary. The loop α ∪ r(α) belongs to the free
homotopy class of the noncontractible loop γ ⊂ B obtained as the inverse image
under Q : B → S2 of the edge of the octahedral decomposition of S2 joining the
images of the centers of � and �′ (Lemma 2.2). Since the length of α ∪ r(α) is
2δ(J ), the lemma follows. �

Proof of Theorem 5.1. We may assume that the metric on B is Aut(B)-invariant,
since averaging the metric by a finite group of holomorphic and antiholomorphic
diffeomorphisms can only improve the systolic ratio. We combine the inequalities
of Lemmas 5.4 and 5.3 to prove the theorem. �
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OPERATOR MULTIPLIERS

EDWARD KISSIN AND VICTOR S. SHULMAN

We introduce a noncommutative version of Schur multipliers relative to an
operator ideal. In this setting the functions of two variables are replaced
by elements from a tensor product of C*-algebras, and the measures (or
spectral measures) by representations. For commutative C*-algebras this
approach agrees with Birman and Solomyak’s theory of double operator
integrals. We study the dependence of the spaces of multipliers on the choice
of representations and find that the question is closely related to Voiculescu
and Arveson’s theory of approximately equivalent representations. The
space of multipliers universal with respect to the chosen measures is related
to the Haagerup tensor product of the algebras.

1. Introduction

Let H and K be Hilbert spaces, let B(H, K ) be the Banach space of all bounded
linear operators from H into K , and let S2(H, K ) be the Hilbert space of Hilbert–
Schmidt operators. Each symmetrically normed ideal I induces the norm | · |I on
XI = I (H, K ) ∩ S2(H, K ). Let 8 : ϕ → 8ϕ be a map from a set G into the
algebra B(S2(H, K )) of all bounded operators on S2(H, K ). If for some ϕ ∈ G,
the operator8ϕ preserves XI and is bounded in | · |I , so that |8ϕ(R)|I ≤C |R|I , for
all R ∈ XI , then ϕ is called a (8, I )-multiplier. Below we consider some examples
of (8, I )-multipliers with increasing generality.

Let X, Y be arbitrary sets, let H = l2(X), K = l2(Y ), and let B(X × Y ) be
the set of all bounded complex-valued functions on X × Y . Identify each T in
S2(H, K )with the corresponding matrix (t (x, y)). For ϕ∈ B(X × Y ), set Sϕ(T )=
(ϕ(x, y)t (x, y)). Then S : ϕ 7→ Sϕ is a map from B(X × Y ) into B(S2(H, K )),
and we call (S, I )-multipliers Schur I -multipliers. It is not difficult to check that,
at least for separable ideals I , they coincide with Schur I -multipliers as defined in
[Bennett 1977] and, for I = B(H, K ), in [Pisier 2001].

More generally, for arbitrary measures µ on X and ν on Y , let H = L2(X, µ)
and K = L2(Y, ν). Then S2(H, K ) consists of integral operators R with kernels
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Keywords: C*-algebra, representation, approximate equivalence, tensor product, Schur multiplier,

operator ideal, ω-continuity.
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r(x, y) on X × Y such that

(1–1) |R|2 =

(∫
X×Y

|r(x, y)|2 dµ(x) dν(y)
)1/2

<∞.

Each ϕ ∈ L∞(X ×Y, µ×ν) defines a bounded linear map8ϕ on S2(H, K ), where
8ϕ(R) is the integral operator with kernel ϕ(x, y)r(x, y). The (8, I )-multipliers
in this case are called (µ, ν, I )-multipliers.

Birman and Solomyak [1967; 1973; 1989] developed a powerful machinery of
double operator integrals (DOI) in their study of multipliers related to various
problems arising in mathematical physics. Starting with two spectral measures E

and F on sets X and Y , respectively, they define, for each bounded measurable
function ϕ, a map 8ϕ on S2(H, K ) by

8ϕ(R)=

∫
X

∫
Y
ϕ(x, y) dF(y)R dE(x).

The corresponding (8, I )-multipliers are called “functions that define bounded
DOI on I ”; we will call them (E,F, I )-multipliers or DOI I -multipliers. For
multiplicity-free spectral measures, they coincide with (µ, ν, I )-multipliers.

We consider now a noncommutative version of the example above. In this setting
the functions of two variables are replaced by elements of the tensor product A ⊗ B

of C*-algebras, and the spectral measures by representations π, ρ of these algebras.
For ϕ ∈ A ⊗ B, the operator (π ⊗ ρ)(ϕ) acts on the tensor product H = Hπ ⊗ Hρ .
Identifying H with S2(H d

π , Hρ), where H d
π is the dual of Hπ , we may consider this

operator as an operator 8ϕ on S2(H d
π , Hρ) and, in the sense above, speak about

I -multipliers. We call them (π ⊗ ρ, I )-multipliers. For commutative C*-algebras
A = C0(X) and B = C0(Y ), the (π ⊗ ρ, I )-multipliers coincide with (E,F, I )-
multipliers, where E and F are the spectral measures corresponding to the repre-
sentations π and ρ. Even for commutative algebras the precise description of the
spaces of multipliers is known only for I = B(H); for Schur multipliers it was
obtained in [Grothendieck 1953], for DOI B(H)-multipliers in [Peller 1985].

In this paper we mainly study the dependence of the spaces of multipliers on
the choice of the representations and, in the commutative case, on the choice of
spectral or scalar measures. Our initial aim was to prove that a continuous function
ϕ(x, y) is a (µ, ν, B(H))-multiplier if and only if it is a Schur multiplier on the
product of the supports of µ and ν. In other words, we were going to prove that the
space of continuous (µ, ν, B(H))-multipliers depends only on the supports of the
measures. This was conjectured by B. E. Johnson in a discussion with the second
author and previously proved in [Kissin and Shulman 1996] for functions of the
form ( f (x)− f (y))/(x −y). Here this result will be deduced from a result of much
more general nature: the space of all (π, ρ, I )-multipliers does not change if the
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representations π and ρ are replaced by approximately equivalent representations.
For its proof we use Voiculescu’s noncommutative Weyl–von Neumann theorem.
As far as we know, this is the first application of a deep result of the theory of
C*-algebras to multipliers and, in particular, to Schur multipliers. In fact, the
desire to understand the relation between these branches of the operator theory
was our main motivation during this work.

The restriction to the C*-tensor products of C*-algebras reflects our interest in
continuous multipliers. However, in the last sections we go further and study “non-
continuous” multipliers. More precisely, we consider (µ, ν, I )-multipliers contin-
uous in a pseudotopology instead of a topology. It was shown in [Erdos et al. 1998]
that each pair µ and ν of standard measures on X and Y defines a pseudotopology
ω on X × Y , and we study (µ, ν, I )-multipliers that are ω-continuous functions. It
should be noted that the space of such multipliers is much wider than C0(X × Y )
and, moreover, all (µ, ν, B(H))-multipliers are necessarily ω-continuous. The
main result here states that an ω-continuous function is a (µ, ν, I )-multiplier if
and only if it becomes a Schur multiplier after deleting from X and Y suitable null
subsets. As a consequence we show how one can deduce Peller’s theorem on DOI
B(H)-multipliers from Grothendieck’s description of Schur multipliers. We also
prove that the space of all ω-continuous (µ, ν, I )-multipliers does not change if
the measures µ and ν are replaced by equivalent measures.

2. Preliminaries

We need some notions and results from the theory of symmetrically normed (s.n.)
ideals. The general reference for this topic is Gohberg and Kreı̆n [1965]. We
denote the dual space of a Banach space X by Xd and the conjugate operator of
A ∈ B(X) by Ad . Let F and C(H) be the ideals of finite rank operators and of
compact operators in the Banach algebra (B(H), ‖·‖) of all bounded operators on
a Hilbert space H . A two-sided ideal I of B(H) is symmetrically normed if it is a
Banach space with respect to a norm | · |I , and

|AX B|I ≤ ‖A‖|X |I ‖B‖, for A, B ∈ B(H) and X ∈ I.

Such an ideal I is selfadjoint and, by the Calkin theorem, F ⊆ I ⊆ C(H).
There is a one-to-one correspondence between the set of symmetrically normed

functions (see [Gohberg and Kreı̆n 1965]) on the space c0 of all sequences of real
numbers converging to 0 and the set J of all pairs (J0, J ) of s.n. ideals, where
J0 is a separable ideal that coincides with the closure of F in | · |J0 , and J is the
largest s.n. ideal such that J0 ⊆ J and the norms | · |J0 and | · |J coincide on J0. We
call J coseparable because there is another, “dual” pair ( Ĵ0, Ĵ ) in J such that J is
isometrically isomorphic to the dual space of Ĵ0 via the following correspondence:
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every bounded linear functional on Ĵ0 has the form

(2–1) FT (X)= (X, T )2 = Tr(T ∗X), with T ∈ J and ‖FT ‖ = |T |J .

In turn, the ideal Ĵ is isometrically isomorphic to the dual space of J0.
Many ideals are separable and coseparable simultaneously. An important class

of such ideals consists of the Schatten ideals Sp, with 1 ≤ p<∞. We will denote
C(H) by S∞ and B(H) by Sb. The dual ideal Ŝp of the Schatten ideal Sp is
Sp′ , where

1
p

+
1
p′

= 1 if 1< p <∞; p′
= 1 if p = ∞; p′

= b if p = 1.

For each s.n. ideal I , there is a unique pair (J0, J ) in J such that J0 ⊆ I ⊆ J
and the norms | · |J0 , | · |I and | · |J coincide on J0.

If I, J are s.n. ideals and J ⊆ I , Proposition 2.1 of [Kissin and Shulman 2005b]
tells us that there is c > 0 such that

(2–2) |A|I ≤ c|A|J , for A ∈ J.

For their dual spaces I d , J d , we have I d
⊆ J d and

(2–3) ‖F‖J d ≤ c‖F‖I d , for F ∈ I d .

Lemma 2.1. (i) For coseparable ideals I, J , the following conditions are equiv-
alent:

1) I ⊆ J ; 2) I0 ⊆ J ; 3) I0 ⊆ J0; 4) Ĵ ⊆ Î .

In particular, the following conditions are equivalent:

1) S2 ⊆ J0; 2) S2 ⊆ J ; 3) Ĵ ⊆ S2; 4) Ĵ0 ⊆ S2.

(ii) Let J ⊆ I be s.n. ideals. If a bounded map M : I → I preserves J , its
restriction to J is bounded.

Proof. Part (i) follows from (2–1)–(2–3).
Let An → A and M(An) → B in (J, | · |J ). By (2–2), |An − A|I → 0, so

|M(An)− M(A)|I → 0. Therefore,

|M(A)− B|I ≤ |M(A)− M(An)|I + |M(An)− B|I

≤ |M(A)− M(An)|I + c|M(An)− B|J −→ 0.

Thus M(A)= B. Hence M is closed on J and, therefore, bounded. �

Let H , K be Hilbert spaces and I be an s.n. ideal of B(H). Then

I (H, K )= {A ∈ B(H, K ) : (A∗ A)1/2 ∈ I }
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is a closed left B(K )- and right B(H)-module supplied with norm

|A|I =
∣∣(A∗ A)1/2

∣∣
I .

If U is an isometry from H onto K , then I (H, K ) = U I . For R ∈ B(H1, H),
S ∈ B(K , K1), and A ∈ I (H, K ),

S AR ∈ I (H1, K1) and |S AR|I ≤ ‖S‖|A|I ‖R‖.

If S and R are isometries, then |S AR|I = |A|I .
The dual space H d of H is a Hilbert space; there is an antiisometry map ∂ from

H onto H d , where xd
:= ∂(x) is given by xd(y)= (y, x)= (xd , yd) [Wegge-Olsen

1993]. The space S2(H d , K ), being a Hilbert space with respect to the scalar
product (T, R)= T r(R∗T ), is isometrically isomorphic to the tensor product space
H ⊗ K . More precisely, the linear map θ from the algebraic tensor product H � K
into the set of all finite rank operators in B(H d , K ) defined by

θ(h ⊗ k)xd
= xd(h)k = (h, x)k for x ∈ H,

extends to an isometric isomorphism from H ⊗ K to S2(H d , K ):

(θ(ξ), θ(η))2 = Tr(θ(η)∗θ(ξ))= (ξ, η) for ξ, η ∈ H ⊗ K .

Let θ1 be the isomorphism from H1 ⊗ K1 on S2(H d
1 , K1). For R ∈ B(H, H1),

denote by R∗ its adjoint, acting from H1 to H , and by Rd its conjugate from H d
1

to H d . Then

‖Rd
‖ = ‖R‖, Rd xd

= (R∗x)d for x ∈ H1,

and

(2–4) (RT )d = T d Rd , (R∗)d = (Rd)∗, (λR)d = λRd for λ ∈ C.

The second of these equalities can be written in the form

(2–5) Rd
= ∂R∗∂−1

1 .

Let S ∈ B(K , K1). We have θ1
(
(R ⊗ S)(h ⊗ k)

)
= Sθ(h ⊗ k)Rd for h ∈ H and

k ∈ K , so

(2–6) θ1((R ⊗ S)ξ)= Sθ(ξ)Rd , for ξ ∈ H ⊗ K .

3. Multipliers and approximate equivalence

A normed subspace X of a Hilbert space H is a linear subspace supplied with
its own norm ‖ · ‖X . By b1(X) we denote the closed unit ball of (X, ‖ · ‖X ). As
important classes of normed subspaces we mention full and normal subspaces:
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(1) X is full if X = H , while ‖ · ‖X need not coincide with the norm of H ;

(2) X is normal if b1(X) is closed in H .

We define the dual normed subspace X \ of a normed subspace X in H by setting

(3–1) X \
= {y ∈ H : ‖y‖X \ <∞}, where ‖y‖X \ = sup

x∈X

|(x, y)|
‖x‖X

.

Then X ⊆ X \\ and ‖x‖X \\ ≤ ‖x‖X , for x ∈ X . Thus b1(X)⊆ b1(X \\).

Proposition 3.1. (i) For a normed subspace X of H the following conditions are
equivalent:

(1) X is normal;
(2) X is a dual of some normed subspace;
(3) b1(X)= b1(X \\).

(ii) Let X be full. It is normal if and only if

(3–2) ‖x‖X ≤ C‖x‖, for all x ∈ H and some C > 0.

Proof. (3)⇒ (2). Set Y = X \. 2)⇒ 1) follows from (3–1).
(1) ⇒ (3). Let z ∈ b1(X \\) \ b1(X). Since b1(X) is closed in H , then, by the

Hahn–Banach theorem, there is y ∈ H such that |(z, y)| > 1 and |(x, y)| ≤ 1, for
all x ∈ b1(X). Therefore, by (3–1), y ∈ X \ and ‖y‖X \ ≤ 1, so ‖z‖X \\ > 1. This
contradiction shows that b1(X)= b1(X \\). Part (i) is proved.

Let X be full: H = X =
⋃

∞

n=1 n b1(X). If X is normal, then b1(X) is closed.
By Baire’s theorem, b1(X) contains an open subset of H and this implies (3–2).
The converse is evident. �

Let X be a normed subspace of H . An operator M ∈ B(H) is called bounded
on the pair (X, H), if it preserves X and is bounded on X in ‖ · ‖X . The proof of
the following result is straightforward.

Lemma 3.2. Let X be a normed subspace of H , and let M be bounded on (X, H).

(i) M∗ is bounded on (X \, H) and ‖M∗
‖B(X \) ≤ ‖M‖B(X).

(ii) M is bounded on (X \\, H).

(iii) If X is normal, then ‖M∗
‖B(X \) = ‖M‖B(X).

Let π be a representation of a C*-algebra A on H and X be a normed subspace
of H . An element a ∈ A is a (π, X)-multiplier if π(a) is bounded on (X, H). Set

(3–3) |a|
π
X = ‖π(a)‖B(X) = sup

x∈X

‖π(a)x‖X

‖x‖X
.

We now recall the notions of approximate equivalence and approximate subor-
dination for representations of C*-algebras, introduced in [Voiculescu 1976] (see
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also [Arveson 1974]) and [Hadwin 1981], respectively. Among the various possible
definitions, we use the one given in this last reference.

Definition 3.3. (i) Let π and π ′ be ∗-representations of a C∗-algebra A on Hilbert
spaces H and H ′. The representation π ′ is approximately subordinate to π
(we write π ′

�a π) if there is a net {Uλ} of isometries from H ′ into H such
that

(3–4) ‖π(a)Uλ − Uλπ
′(a)‖ → 0, for all a ∈ A.

(ii) If the operators Uλ are unitary, then π and π ′ are approximately equivalent,
and we write π∼a π

′.

Let X ′ and X be normed subspaces of H ′ and H , respectively. We say that
an approximate subordination π ′

�a π or approximate equivalence π ′ ∼a π) is
(X ′, X)-consistent if the operators Uλ in Equation (3–3) can be chosen in such a
way that

(3–5) UλX ′
⊆ X, U∗

λ X ⊆ X ′, ‖Uλx ′
‖X ≤ C‖x ′

‖X ′, ‖U∗

λ x‖X ′ ≤ C‖x‖X ,

for some C > 0 and all x ′
∈ X ′, x ∈ X .

Proposition 3.4. Let π ′ and π be ∗-representations of A on H ′ and H , let X ′ and
X be normed subspaces of H ′ and H , and let there exist an (X ′, X)-consistent
approximate subordination π ′

�a π . Suppose that X ′ is normal. Then any (π, X)-
multiplier a in A is also a (π ′, X ′)-multiplier, and

(3–6) |a|
π ′

X ′ ≤ C2
|a|

π
X .

Proof. Set Fλ = π(a)Uλ − Uλπ
′(a). Given x ′

∈ X ′, we have U∗

λπ(a)Uλx ′
∈ X ′,

‖U∗

λπ(a)Uλx ′
‖X ′ ≤ C‖π(a)Uλx ′

‖X ≤ C |a|
π
X‖Uλx ′

‖X ≤ C2
|a|

π
X‖x ′

‖X ′,

and π ′(a)x ′
= U∗

λUλπ
′(a)x ′

= U∗

λπ(a)Uλx ′
− U∗

λ Fλx ′.
Set C1 = C2

|a|
π
X‖x ′

‖X ′ . Then all U∗

λπ(a)Uλx ′ belong to C1b1(X ′). Since X ′ is
normal, the ball C1b1(X ′) is closed in H . Since ‖U∗

λ Fλx ′
‖H ′ → 0, we obtain that

π ′(a)x ′
∈ C1b1(X ′). Thus π ′(a) preserves X ′, and

‖π ′(a)x ′
‖X ′ ≤ C1 = C2

|a|
π
X‖x ′

‖X ′,

which gives (3–6). �

4. Operators bounded on normed subspaces of S2

For an s.n. ideal I , define a normed subspace XI of S2(H, K ) by setting

XI = I (H, K )∩ S2(H, K ), with ‖X‖XI = |X |I for X ∈ XI .
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As in general (see Section 2), set

X∼

I = {T ∈ S2(H, K ): the map X → (X, T )2 = Tr(T ∗X) is bounded on XI }.

Let a pair (J0, J ) in J be such that J0 ⊆ I ⊆ J and the norms | · |J0 and | · |I coincide
on J0. If S2 ⊆ I , then, by Lemma 2.1(i), S2 ⊆ J0, so XI = XJ0 . Let ( Ĵ0, Ĵ ) be
the corresponding “dual” pair.

Lemma 4.1. (i) (XJ0)
\
= X Ĵ .

(ii) If S2 ⊆ I or if I is coseparable (I = J ), then the normed space XI is normal.

(iii) If J ⊆ S2, then (XJ )
\
= (XI )

\
= (XJ0)

\
= X Ĵ = X Ĵ0

and (XI )
\\

= XJ .

Proof. Since J0 is separable and the space F(H, K ) of all finite rank operators
from H into K lies in XJ0 , we see that XJ0 is dense in J0(H, K ). From this, from
(2–1) and (3–1) we obtain (XJ0)

\
= X Ĵ . Part (i) is proved.

If S2
⊆ I , then XI is full. By (2–2) and Proposition 3.1, XI is normal.

Let I = J . By (i), (X Ĵ0
)\ = XJ . Thus, by Proposition 3.1, XI is normal. Part

(ii) is proved.
Let I ⊆ S2. By Lemma 2.1, J ⊆ S2, so that XJ0 ⊆ XI ⊆ XJ . It follows from

(2–2) that
(XJ )

\
⊆ (XI )

\
⊆ (XJ0)

\.

By (i), (XJ0)
\
= X Ĵ . By Lemma 2.1, S2 ⊆ Ĵ0 ⊆ Ĵ , so X Ĵ = X Ĵ0

. From (2–1) we
have X Ĵ0

⊆ (XJ )
\. Combining all, we obtain

(XJ )
\
= (XI )

\
= (XJ0)

\
= X Ĵ = X Ĵ0

.

Applying (i) again, we complete the proof. �

Denote by L(I ) the algebra of all operators bounded on (XI ,S2(H, K )). Recall
that this means that they are bounded operators on S2(H, K ), preserve XI and are
bounded on XI in ‖ · ‖XI . Set

(4–1) L(I )∗ = {M∗: M ∈ L(I )} and ‖M‖I = ‖M‖B(XI ).

If there is an s.n. ideal J such that XJ = (XI )
\, then it follows from Lemma 3.2

that

(4–2) L(I )∗ ⊆ L(J ) and ‖M∗
‖J ≤ ‖M‖I , for M ∈ L(I ).

If XI is normal, then

(4–3) ‖M∗
‖J = ‖M‖I .

Let (J0, J ) ∈ J and let ( Ĵ0, Ĵ ) be the corresponding “dual” pair.

Proposition 4.2. (i) L(J0)
∗
⊆ L( Ĵ ) and ‖M∗

‖ Ĵ ≤ ‖M‖J0 , for all M ∈ L(J0).
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(ii) If J0 = J , then ‖M∗
‖ Ĵ = ‖M‖J , for all M ∈ L(J ). If J is reflexive (that is,

J0 = J and Ĵ0 = Ĵ ), then also L(J )∗ = L( Ĵ ).

(iii) Let J ⊆ S2 and let I be an s.n. ideal such that Ĵ0 ⊆ I ⊆ Ĵ and the norms
| · | Ĵ0

, | · |I , coincide on Ĵ0. Then

L(J0)⊆ L( Ĵ0)
∗
= L(I )∗ = L( Ĵ )∗ = L(J ),

and the inclusion and the equalities are isometric.
In particular, L(Sp)

∗
= L(Sp′), if 1 < p < ∞, where p′

= p/(p − 1);
L(S1)

∗
= L(S∞)= L(Sb) and the norms coincide.

Proof. Part (i) follows from Lemma 3.2(i) and (4–2).
If J0 = J , then, by Lemma 4.1(ii), the space XJ0 = XJ is normal, and part (ii)

follows from (4–3) and (i).
By Lemma 2.1, S2 ⊆ Ĵ0, so that X Ĵ0

= XI = X Ĵ (=S2) and the norms coincide.
Hence L( Ĵ0)=L(I )=L( Ĵ ) and the norms coincide. By Lemma 4.1, X Ĵ is normal
and (X Ĵ )

\
= (X Ĵ0

)\ = XJ . It follows from (4–2) and (4–3) that

(4–4) L( Ĵ )∗ ⊆ L(J ) and ‖M‖ Ĵ = ‖M∗
‖J for M ∈ L( Ĵ ).

Combining this with (i), we have

L(J0)⊆ L( Ĵ0)
∗
⊆ L(J ),(4–5)

‖M‖J = ‖M∗
‖ Ĵ0

= ‖M∗
‖ Ĵ ≤ ‖M‖J0 for M ∈ L(J0).(4–6)

By Lemma 4.1(iii), (XJ )
\
= X Ĵ0

. Hence, by (4–2),

L(J )∗ ⊆ L( Ĵ0) and ‖M∗
‖ Ĵ0

≤ ‖M‖J for M ∈ L(J ).

Since XJ0 ⊆ XJ and the norms | · |J and | · |J0 coincide on J0, we have ‖M‖J0 ≤

‖M‖J , for M ∈ L(J0). Combining this with (4–4)–(4–6), we conclude the proof
of (iii). �

Let I ⊂ R ⊂ J be s.n. ideals. The ideal R is called an interpolation ideal for
the pair (I, J ), if every bounded operator T on J preserving I also preserves R. It
follows from Lemma 2.1 that T |I and T |R are bounded operators. All coseparable
ideals are interpolation ideals for the pair (S1,S∞) (see [Mitjagin 1965]).

Using the results of [Boyd 1969], Arazy [1978] associated the Boyd indices
(pJ0, qJ0), where 1 ≤ pJ0 ≤ qJ0 ≤ ∞, with each separable ideal J0 and proved
that J0 is an interpolation ideal for a pair (Sp,Sq) if p < pJ0 and qJ0 < q . For
J0 = Sp, one has pJ0 = qJ0 = p. In particular, Sr is an interpolation ideal for
(Sp,Sq) if p < r < q .
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Corollary 4.3. If R is an interpolation ideal for a pair (I, I1) of separable ideals,
then L(I )∩ L(I1)⊆ L(R). In particular,

L(S∞)
∗
∩ L(S∞)⊆ L(J ) for each coseparable ideal J,

L(Sr )⊆ L(Sp) if 2 ≤ p < r or 1 ≤ r < p ≤ 2,

L(Sp)∩ L(Sq)⊆ L(J0) if p < pJ0 and qJ0 < q.

5. Multipliers for tensor products of representations

Let A ⊗ B be the minimal tensor product of C*-algebras A and B — the comple-
tion of the algebraic tensor product A � B in the minimal C*-norm ‖ · ‖min . If π
and ρ are *-representations of A and B on Hilbert spaces H and K , we denote by
π ⊗ ρ their tensor product; it is a *-representation of A ⊗ B on H ⊗ K .

Let ξ ∈ H ⊗ K . Then θ(ξ)∈S2(H d , K ). It follows from (2–6) that, for a � b ∈

A � B,

θ((π ⊗ ρ)(a � b)ξ)= θ((π(a)⊗ ρ(b))ξ)= ρ(b)θ(ξ)π(a)d ,

where π(a)d is the conjugate of π(a) on H d . Thus the representation π ⊗ ρ is
equivalent to the representation σπ,ρ of A ⊗ B on S2(H d , K ) such that

(5–1) σπ,ρ(a � b)T = ρ(b)Tπ(a)d , for a ∈ A, b ∈ B, T ∈ S2(H d , K ).

We say that ϕ ∈ A ⊗ B is a (π ⊗ ρ, I )-multiplier if it is a (σπ,ρ, I )-multiplier, that
is, σπ,ρ(ϕ) ∈ L(I ). Recall that it means that σπ,ρ(ϕ) preserves XI = I (H d , K )∩
S2(H d , K ), and its restriction to XI is bounded in | · |I .

Denote by Mπ,ρ
I (A ⊗ B) (or just Mπ,ρ

I ) the algebra of all (π ⊗ ρ, I )-multipliers,
and by ‖ϕ||

π,ρ
I the norm of σπ,ρ(ϕ) on XI (see (4–1)):

‖ϕ||
π,ρ
I = ‖σπ,ρ(ϕ)‖I .

Then Mπ,ρ

S2
= A ⊗ B. We have Mπ,ρ

S∞
= Mπ,ρ

Sb
and, omitting the subscript, write

Mπ,ρ and ‖ϕ‖
π,ρ .

Remark. It follows immediately from our definitions that all results of Proposition
4.2 and Corollary 4.3 hold if L(I ) is replaced by Mπ,ρ

I .

Clearly, all algebras Mπ,ρ
I contain A � B, so they are dense in A ⊗ B. We will

see now (and use later on) that the unit ball of Mπ,ρ
I is norm closed in A ⊗ B. In

fact, it is closed in a much stronger sense — with respect to a weaker convergence,
which can be considered as the analog of the point convergence in the case of usual
Schur multipliers.

Let X and Y be Banach spaces. Probably the weakest condition for an operator
T from X into Y to be considered as a “limit point” for a set W of operators is the
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condition that T x ∈ W x , for any vector x ∈ X. In this case one says that T belongs
to the reflexive hull Ref(W ) of W .

Let τ be a *-representation of a C*-algebra D on a Hilbert space H. We say that
ϕ ∈ D is a τ -cluster point of a convex subset W of D, if τ(ϕ) ∈ Ref(τ (W )). For
H = S2(H1, H2), this means that there are ϕn ∈ W such that

(5–2) lim
n→∞

∣∣τ(ϕ)(T )− τ(ϕn)(T )
∣∣
2 = 0 for all T ∈ S2(H1, H2).

We say that ϕ is a weak τ -cluster point of W if, for each T ∈ S2(H1, H2), the
operator τ(ϕ)(T ) ∈ S2(H1, H2) belongs to Ref{τ(w)(T ): w ∈ W }. By the Hahn–
Banach theorem, this means that, for each x ∈ H1 and y ∈ H2, there are ϕn ∈ W
such that

(5–3) (τ (ϕn)(T )x, y)→ (τ (ϕ)(T )x, y).

Recall that, for any normed space (X, ‖ · ‖), we denote by br (X) the closed ball
{x ∈ X: ‖x‖ ≤ r}.

Proposition 5.1. (i) If S2 ⊆ I , then br (M
π,ρ
I ) contains all its σπ,ρ-cluster points.

(ii) br (Mπ,ρ) contains all its weak σπ,ρ-cluster points.

Proof. Let ϕ be a σπ,ρ-cluster point of br (M
π,ρ
I ). Then, for T ∈ S2(H d , K ), there

are ϕn ∈ br (M
π,ρ
I ) such that (5–2) holds. Hence, by (2–2),

|σπ,ρ(ϕ)(T )|I ≤ |σπ,ρ(ϕ−ϕn)(T )|I + |σπ,ρ(ϕn)(T )|I

≤ c|σπ,ρ(ϕ−ϕn)(T )|2 + ‖ϕn‖
π,ρ
I |T |I ≤ c|σπ,ρ(ϕ−ϕn)(T )|2 + r |T |I ,

for some c > 0. Thus |σπ,ρ(ϕ)(T )|I ≤ r |T |I , so ϕ ∈ br (M
π,ρ
I ). Part (i) is proved.

Let I = S∞ and let ϕ be a weak σπ,ρ-cluster of br (Mπ,ρ). For T ∈ S2(H d , K ),
x ∈ H d , y ∈ K , choose ϕn ∈ br (Mπ,ρ) satisfying (5–3). Then a similar argument
gives

|(σπ,ρ(ϕ)(T )x, y)| ≤ r‖T ‖‖x‖‖y‖.

Hence ϕ ∈ b(Mπ,ρ). �

We consider now how the space of multipliers depends on the choice of repre-
sentations. The next theorem establishes that Mπ,ρ

I does not change if π and ρ are
replaced by approximately equivalent representations.

Theorem 5.2. Let π ′
�a π and ρ ′

�a ρ. If I is either a coseparable ideal or
contains S2, then

Mπ,ρ
I ⊆ Mπ ′,ρ′

I and ‖ϕ‖
π ′,ρ′

I ≤ ‖ϕ‖
π,ρ
I for ϕ ∈ Mπ,ρ

I .

As a consequence, if π ′∼a π and ρ ′∼a ρ, then

Mπ,ρ
I = Mπ ′,ρ′

I and ‖ϕ‖
π ′,ρ′

I = ‖ϕ‖
π,ρ
I for ϕ ∈ Mπ,ρ

I .
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Proof. Let isometries Uλ : H ′
→ H and Vµ : K ′

→ K satisfy (3–4). Then, for
a ∈ A and b ∈ B, ‖π(a)Uλ − Uλπ

′(a)‖ → 0 and ‖ρ(b)Vµ − Vµρ ′(b)‖ → 0. The
operators Wλµ = Uλ ⊗ Vµ are isometries from H ′

⊗ K ′ into H ⊗ K , and∥∥(π ⊗ ρ)(a ⊗ b)Uλ ⊗ Vµ − Uλ ⊗ Vµ(π ′
⊗ ρ ′)(a ⊗ b)

∥∥
≤
∥∥(π(a)Uλ − Uλπ

′(a))⊗ ρ(b)Vµ
∥∥ +

∥∥Uλπ
′(a)⊗ (ρ(b)Vµ − Vµρ ′(b))

∥∥,
which tends to 0. By linearity, ‖(π ⊗ ρ)(x)Wλµ − Wλµ(π

′
⊗ ρ ′)(x)‖ → 0, for all

x ∈ A � B. Since ‖Wλµ‖ = 1, it also holds for all x ∈ A ⊗ B. Thus

π ′
⊗ ρ ′

�a π ⊗ ρ.

By Lemma 4.1(ii), the normed space XI ((H ′)d , K ′) is normal. Identifying
H ⊗ K with S2(H d , K ) and H ′

⊗ K ′ with S2((H ′)
d
, K ′), we have from (2–6)

that,

WλµT = (Uλ ⊗ Vµ)T = VµT U d
λ and W ∗

λµR = (U∗

λ ⊗ V ∗

µ)R = V ∗

µ R(U∗

λ )
d ,

for T ∈ S2((H ′)d , K ′) and R ∈ S2(H d , K ). Since I is an ideal,

WλµXI ((H ′)d , K ′)⊆ XI (H d , K );

see (4–6). By (2–4),

|WλµT |I ≤ ‖Vµ‖|T |I ‖U d
λ ‖ ≤ |T |I and |W ∗

λµR|I ≤ ‖V ∗

µ‖|R|I ‖(U∗

λ )
d
‖ ≤ |R|I .

Hence the approximate subordination π ′
⊗ ρ ′

�a π ⊗ ρ satisfies (3–5). Applying
Proposition 3.4, we complete the proof. �

Remark. We do not know whether Theorem 5.2 extends to all separable ideals
contained in S2. Proposition 4.2(i) only gives that (Mπ,ρ

J0
)∗ ⊆ Mπ ′,ρ′

J , if J0 ⊆ S2.

Recall that for T ∈ B(H), rank(T )=dim (T H). Let π and π ′ be representations
of a C*-algebra A. It was proved in Theorem 5.1 of [Hadwin 1981] that

(5–4) π ′
�a π ⇐⇒ rank(π ′(a))≤ rank(π(a)) for each a ∈ A.

Thus it follows from Theorem 5.2 and (5–4) that, if

rank(π ′(a))= rank(π(a)) and rank(ρ ′(b))= rank(ρ(b))

for all a ∈ A and b ∈ B, then Mπ,ρ
I = Mπ ′,ρ′

I , and the corresponding norms are
equal.

For some applications (see Section 6) it is important that, for representations of
separable algebras on the spaces of arbitrary dimension, one need not distinguish
infinite values of the rank.
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Corollary 5.3. Let an s.n. ideal I be either coseparable or contain S2. Let π, π ′

and, respectively, ρ, ρ ′ be representations of separable C∗-algebras A and B on
Hilbert spaces H, H ′ and K , K ′. If

min{ℵ0, rank(π ′(a))} ≤ min{ℵ0, rank(π(a))}

and
min{ℵ0, rank(ρ ′(b))} ≤ min{ℵ0, rank(ρ(b))},

for all a ∈ A, b ∈ B, then Mπ,ρ
I ⊆ Mπ ′,ρ′

I and ‖ϕ‖
π ′,ρ′

I ≤ ‖ϕ‖
π,ρ
I , for ϕ ∈ Mπ,ρ

I .

Proof. Let ϕ ∈ Mπ,ρ
I and ‖ϕ‖

π,ρ
I = C . We have to prove that for every T ∈

I (H ′d , K ′),
‖σπ ′,ρ′(ϕ)(T )‖I ≤ C‖T ‖I .

Since T is compact, there are separable subspaces K0 ⊂ K ′ and G0 ⊂ H ′d such that
T = PK0 T PG0 , where PK0 , PG0 are the corresponding projections. The subspaces
K1 = ρ ′(B)K0 of K ′ and G1 = π ′d(A)G0 of H ′d are also separable because A

and B are separable. We denote by H1 the orthogonal complement in H ′ of the
annihilator of G1.

Since H1 and K1 are invariant for π ′ and ρ ′, respectively, define new represen-
tations π ′

1 and ρ ′

1 of A and B by

π ′

1(a)= π ′(a)|H1 ⊕ 0 and ρ ′

1(b)= ρ ′(b)|K1 ⊕ 0 for a ∈ A, b ∈ B.

Since H1 and K1 are separable, it follows from our assumptions that rank(π ′

1(a))
≤ rank(π(a)) and rank(ρ ′

1(b)) ≤ rank(ρ(b)), for all a ∈ A, b ∈ B. By (5–4),

π ′

1�a π and ρ ′

1�a ρ.

Hence, by Theorem 5.2,

ϕ ∈ Mπ ′

1,ρ
′

1
I and ‖ϕ‖

π ′

1,ρ
′

1
I ≤ ‖ϕ‖

π,ρ
I .

Thus ‖σπ ′

1,ρ
′

1
(ϕ)(T )‖I ≤ C‖T ‖I . But by the construction of π ′

1 and ρ ′

1, we have

σπ ′

1,ρ
′

1
(ϕ)(T )= σπ ′,ρ′(ϕ)(T ),

whence ‖σπ ′,ρ′(ϕ)(T )‖I ≤ C‖T ‖I . �

Corollary 5.4. Let an ideal I be either coseparable or contain S2, let π, π ′ be
representations of A, and ρ, ρ ′ be representations of B. Suppose that π(A) and
ρ(B) contain no nonzero finite rank operators, and that π ′ and ρ ′ are separable
and satisfy the condition

(5–5) Ker(π)⊆ Ker(π ′) and Ker(ρ)⊆ Ker(ρ ′).

Then Mπ,ρ
I ⊆ Mπ ′,ρ′

I and ‖ϕ‖
π ′,ρ′

I ≤ ‖ϕ‖
π,ρ
I , for ϕ ∈ Mπ,ρ

I .
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Proof. It follows from (5–5) that rank(π ′(a)) ≤ rank(π(a)), for a ∈ A, and
rank(ρ ′(b))≤ rank(ρ(b)), for b ∈ B. Hence, by (5–4),

π ′
�a π and ρ ′

�a ρ,

and it remains now only to apply Theorem 5.2. �

Remark 5.5. (1) The first condition in Corollary 5.4 can be replaced by the
conditions

rank(π ′(a))≤ rank(π(a)) and rank(ρ ′(b))≤ rank(ρ(b)),

whenever π(a) and ρ(b) are nonzero finite rank operators.

(2) If A and B are separable, the condition in Corollary 5.4 that π ′ and ρ ′ are
separable can be omitted.

Applying Corollary 5.4 to simple C*-algebras we get the following result.

Corollary 5.6. Let I be either a coseparable ideal, or S2 ⊆ I . If A and B are
simple C∗-algebras different from S∞, then Mπ,ρ

I is the same for all separable
representations π of A and ρ of B.

For I = S∞ or Sb, the conditions in Corollary 5.4 can be further simplified if
the representations π, ρ have separating vectors. This simplification is based on
the results of Smith [1991].

Recall that a vector x ∈ H is separating for a representation π of A if the map
T → T x is injective on the second commutant π(A)′′. This is equivalent to the
existence of a cyclic vector for the commutant π(A)′. In the lemma below, 1 is the
identity operator on a fixed Hilbert space H. The representations π ⊗ 1 and ρ⊗ 1
act on H ⊗ H and K ⊗ H, respectively.

Lemma 5.7. Let ∗-representations π and ρ of C∗-algebras A and B on H and K
have separating vectors. Then Mπ,ρ

= Mπ ⊗ 1,ρ⊗ 1 and the norms coincide.

The proof of the lemma follows along the lines of the proof of in [Smith 1991,
Theorem 2.1] and we omit it.

Corollary 5.8. Let representations π of A and ρ of B have separating vectors.
Then Mπ,ρ

⊆ Mπ ′,ρ′

and ‖ϕ‖
π ′,ρ′

≤ ‖ϕ‖
π,ρ , for ϕ ∈ Mπ,ρ , if representations π ′

and ρ ′ satisfy (5–5).

Proof. If dim H is sufficiently large, then condition (5–5) implies

rank(π ′(a))≤ rank(π(a)⊗ 1) and rank(ρ ′(b))≤ rank(ρ(b)⊗ 1),

for all a ∈ A and b ∈ B. Hence, by (5–4), π ′
�a π ⊗ 1 and ρ ′

�a ρ⊗ 1, and to
complete the proof it remains only to apply Theorem 5.2 and Lemma 5.7. �
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6. Universal multipliers

In this section we consider only the case I = Sb. We saw in Corollary 5.8 that
in this case all multipliers for a pair of faithful representations with separating
vectors are multipliers for all pairs of representations. Let us denote by M(A ⊗ B)

the algebra of “universal” multipliers; it consists of all elements of A ⊗ B that are
(π ⊗ ρ,Sb)-multipliers for all pairs (π, ρ). Clearly A � B⊆M(A ⊗ B)⊆A ⊗ B.
For ϕ ∈ M(A ⊗ B), set

(6–1) ‖ϕ‖r = sup
π,ρ

‖ϕ‖
π,ρ .

It is not difficult to see that ‖ϕ‖r < ∞. Indeed, if ‖ϕ‖
πn,ρn → ∞, consider the

representations π =
⊕
πn and ρ =

⊕
ρn . Then ‖ϕ‖

πn,ρn ≤ ‖ϕ‖
π,ρ for all n, a

contradiction.
As usual, we denote by Aop the C*-algebra that consists of all elements of A

and has the same norm and involution, but the reverse multiplication: a◦b = ba. If
π is a *-representation of A on H , the map πop

: a → π(a)d is a *-representation
of Aop on H d .

Recall that the Haagerup norm on A � B is defined by

‖w‖h = inf
{∥∥∑ ai a∗

i

∥∥1/2∥∥∑ b∗

i bi
∥∥1/2

: w =
∑

ai ⊗ bi

}
.

It is known that

‖w‖min ≤ ‖w‖h, for w ∈ A � B.

Define a “pseudo-Haagerup” norm on A � B by setting

(6–2) ‖w‖ph = inf
{∥∥∑ ai a∗

i

∥∥1/2∥∥∑ bi b∗

i )
∥∥1/2

: w =
∑

ai ⊗ bi

}
.

It is a norm, because ‖w‖ph = ‖0w‖h , where 0: A � B → B � Aop is a linear
bijection defined by 0(a ⊗ b)= b ⊗ a.

Theorem 6.1. The Haagerup and pseudo-Haagerup norms satisfy ‖w‖r = ‖w‖ph

for w ∈ A � B.

Proof. Let π and ρ be representations of A and B on H and K . For w=
∑

ai ⊗ bi

in A � B, set Ai = π(ai ), Bi = ρ(bi ). Take T ∈ S2(H d , K ), x ∈ H , y ∈ K . By
(5–1),

|(σπ,ρ(w)T x, y)| =

∣∣∣∑
i
(Bi T Ad

i x, y)
∣∣∣≤∑

i

∣∣(T Ad
i x, B∗

i y)
∣∣

≤
∑

i
‖T Ad

i x‖‖B∗

i y‖ ≤ ‖T ‖

(∑
i
‖Ad

i x‖
2
)1/2(∑

i
‖B∗

i y‖
2
)1/2

.
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We have ∑
i

‖B∗

i y‖
2
=
∑

i
(B∗

i y, B∗

i y)=

(
y,
(∑

i
Bi B∗

i

)
y
)

≤

∥∥∥ρ(∑
i

bi b∗

i

)∥∥∥‖y‖
2
≤

∥∥∥∑
i

bi b∗

i

∥∥∥‖y‖
2.

We see from (2–4) that (π(a)d)∗π(a)d = π(aa∗)d for a ∈ A. From this, and using
(2–4) again, we get

∑
i‖Ad

i x‖
2
≤
∥∥∑

i ai a∗

i

∥∥‖x‖
2. Therefore∣∣(σπ,ρ(w)T x, y)

∣∣≤ ‖T ‖

∥∥∥∑
i

ai a∗

i

∥∥∥1/2∥∥∥∑
i

bi b∗

i

∥∥∥1/2
‖x‖‖y‖.

Hence
‖σπ,ρ(w)T ‖ ≤ ‖w‖ph‖T ‖,

so ‖w‖
π,ρ

≤ ‖w‖ph . Thus

(6–3) ‖w‖r ≤ ‖w‖ph for w ∈ A � B.

To prove the converse inequality, denote by G the space of all linear functionals
g on A � B such that

|g(w)| ≤ ‖w‖ph, for w ∈ A � B.

For g ∈G, let ĝ be the linear functional on B � Aop acting by the rule ĝ(w)=g(0w)
for w ∈ B � Aop. By (6–2), |ĝ(w)| ≤ ‖w‖h . Hence ĝ extends to a bounded
functional on the Haagerup tensor product B ⊗ hAop and ‖ĝ‖ ≤ 1. Consider now
the bilinear map on B × Aop defined by the formula: G(b, a) = ĝ(b ⊗ a), for
b ∈ B and a ∈ Aop. It follows from Theorems 1.5.2 and 1.5.4 of [Sinclair and
Smith 1995] that there exist *-representations ρ of B on K and τ of Aop on L , a
bounded operator T : L → K , and elements x ∈ L and y ∈ K with ‖x‖ = ‖y‖ = 1,
such that

G(b, a)= (ρ(b)T τ(a)x, y), for b ∈ B, a ∈ Aop,

and ‖G‖cb = ‖ĝ‖h = ‖T ‖ ≤ 1.
Set H = Ld and π(a)= τ(a)d . Then π is a *-representation of A on H and

(6–4) g(a ⊗ b)= ĝ(b ⊗ a)= G(b, a)= (ρ(b)Tπ(a)d x, y),

for a ∈ A and b ∈ B. For w =
∑

i ai ⊗ bi , denote by σ∞
π,ρ(w) the extension of

σπ,ρ(w) from S2(H d , K ) to S∞(H d , K ). Let λπ,ρ(w) be the second adjoint of
σ∞
π,ρ(w) acting on the second dual space B(H d , K ). By (6–1),

(6–5) ‖λπ,ρ(w)‖ = ‖σ∞

π,ρ(w)‖ = ‖w‖
π,ρ

≤ ‖w‖r .

For T ∈ S∞(H d , K ), we have σ∞
π,ρ(w)T =

∑
ρ(bi )Tπ(ai )

d . This implies that
λπ,ρ(w)T =

∑
ρ(bi )Tπ(ai )

d for all T ∈ B(H d , K ). Hence, by (6–4), g(w) =
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(λπ,ρ(w)T x, y). Using (6–5), we obtain |g(w)| ≤ ‖λπ,ρ(w)T ‖ ≤ ‖w‖r . Thus

|g(w)| ≤ ‖w‖r for g ∈ G and w ∈ A � B.

Making use of the Hahn–Banach theorem, we have ‖w‖ph =supg∈G |g(w)|≤‖w‖r ,
for w ∈ A � B. Combining this with (6–3), we complete the proof. �

We say that a net {dν} of elements of a C*-algebra D point-weakly converges to
d ∈ D, and write

dν
pw
→ d,

if for each irreducible representation τ of D, τ(dν) → τ(d) in the weak operator
topology. Denote by (A � B)∼ the linear space of all ϕ ∈ A ⊗ B for which there
is a net {wν} in A � B point-weakly converging to ϕ such that sup ‖wν‖ph <∞.

Theorem 6.2. (A � B)∼ ⊆ M(A ⊗ B).

Proof. Let wν ∈ A � B, wν
pw
→ ϕ ∈ A ⊗ B and D = sup ‖w‖ph <∞. To prove that

ϕ ∈ M(A ⊗ B), we have to check that ‖ϕ‖
π,ρ

≤ D for all representations π , ρ.
Let firstly π and ρ be direct sums of irreducible representations: π =

⊕
λ∈3 πλ

and ρ =
⊕

γ∈0 ργ act on Hilbert spaces H =
⊕

Hλ and K =
⊕

Kλ, respectively.
By Theorem 6.1, ‖wν‖

π,ρ
≤ D, for each ν, so ‖σπ,ρ(wν)(T )‖ ≤ ‖wν‖

π,ρ
‖T ‖ ≤

D‖T ‖, for any operator T ∈ S2(H d , K ). To prove that ‖σπ,ρ(ϕ)(T )‖ ≤ D‖T ‖,
it suffices to show that the operators σπ,ρ(wν)(T ) tend to σπ,ρ(ϕ)(T ) in the weak
operator topology. Moreover, the standard boundedness arguments show that it
suffices to prove that

(6–6) (σπ,ρ(wν)(T )x, y)→ (σπ,ρ(ϕ)(T )x, y),

for each x ∈ U =
⋃

H d
λ and y ∈ V =

⋃
Kγ , since U, V are generating subsets in

H d and K , respectively.
For x ∈ H d

λ and y ∈ Kγ , set R = x ⊗ y. We have from (5–1) that, for each
ψ ∈ A ⊗ B, σπ,ρ(ψ)(R)= σπλ,ργ (ψ)(R). Hence, we obtain from (2–1) that

(σπ,ρ(ψ)(T )x, y)= Tr(y ⊗ σπ,ρ(ψ)(T )x)= Tr(σπ,ρ(ψ)(T )(x ⊗ y)∗)

= (x ⊗ y, σπ,ρ(ψ)(T ))2 = (σπ,ρ(ψ∗)(R), T )2

= (σπλ,ργ (ψ
∗)(R), T )2 .

Since σπλ,ργ is an irreducible representation A ⊗ B and w∗
ν

pw
→ ϕ∗, it follows that

(6–6) holds.
Now let π and ρ be arbitrary. Consider the representation τ of A, which is the

direct sum of all irreducible representations of A repeated dim(Hπ ) times. Then,
for each a ∈ A, we have rank(π(a)) ≤ rank(τ (a)), whence π�a τ ; see (5–4).
Similarly, there is a representation χ of B, which is a direct sum of irreducible
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representations, such that ρ �a χ . By Theorem 5.2, Mτ,χ
⊆ Mπ,ρ , so ϕ ∈ Mπ,ρ .

Thus ϕ ∈ M(A ⊗ B) and (A � B)∼ ⊆ M(A ⊗ B). �

Problem 6.3. Does (A � B)∼ coincide with M(A ⊗ B)?

We will see further that for commutative C*-algebras the answer is positive.

7. Multipliers of commutative algebras; (µ, ν)-multipliers

The commutativity of the C*-algebras A and B implies significant simplifications
to the previous results and constructions. To begin with, each representation of a
commutative algebra has a separating vector. Hence, by Corollary 5.8, the algebra
Mπ,ρ(A ⊗ B) depends only on the kernels of the representations π, ρ. In particular,
if π, ρ are faithful, then Mπ,ρ(A ⊗ B) = M(A ⊗ B) and ‖ϕ‖

π,ρ
= ‖ϕ‖r . Since

‖ϕ‖ph = ‖ϕ‖h for commutative algebras, Theorem 6.1 shows that, for faithful π
and ρ,

‖ϕ‖
π,ρ

= ‖ϕ‖h, for ϕ ∈ A � B.

It was proved in [1953] that the norm ‖ · ‖h on A ⊗ B is equivalent to the pro-
jective tensor norm ‖ · ‖γ . Thus in the case of commutative algebras our Theorem
6.2 implies that the Varopoulos tensor algebra V (X, Y ) = C(X) ⊗̂ C(Y ) and its
“tilde-algebra” (see [Graham and McGehee 1979]) are topologically included into
M(C(X)⊗ C(Y )). In fact, this theorem deals with a wider “tilde-extension” con-
sisting of pointwise limits of ‖ ·‖γ -bounded nets. We will return to this topic later.

Let U be a commutative operator C*-algebra on H with the space 3 of all
maximal ideals. Then

H =

⊕
γ∈0

Hγ ,

where all Hγ ≈ L2(3,µγ ) are invariant for U, and each f ∈ U acts on Hγ as a
multiplication operator. The antiisometric involution j : {gγ (λ)} 7→ {gγ (λ)} on H
induces an involution on U given by j A j = A∗, for A ∈ U. Taking into account
(2–5), which here becomes ∂A∗∂−1

= Ad , we see that the unitary operator V = ∂ j
from H to H d establishes a unitary equivalence of A and Ad : Ad

= V AV −1.
For representations π of A on H and ρ of B on K , we identify S2(H d , K ) with
S2(H, K ) by the formula U (T )= T V , for T ∈ S2(H d , K ). Using this and (5–1),
we will assume that σπ,ρ acts on S2(H, K ) by the formula

σπ,ρ(a ⊗ b)R = ρ(b)Rπ(a).

We now prove that, for commutative A,B, the subalgebras Mπ,ρ
I in A ⊗ B are

involutive.
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Proposition 7.1. If A and B are commutative, then Mπ,ρ
I (A ⊗ B) is a ∗-subalgebra

of A ⊗ B for each pair of representations π, ρ and each s.n. ideal I . Moreover,

‖ϕ∗
‖
π,ρ
I = ‖ϕ‖

π,ρ
I , for ϕ ∈ Mπ,ρ

I (A ⊗ B).

Proof. Consider the antiisometric involutions j on Hπ and i on Kρ such that
π(a∗)= jπ(a) j and ρ(b∗)= iρ(b)i , for all a ∈A, b ∈B. Then, for T ∈S2(H, K ),

σπ,ρ(a∗
⊗ b∗)(T )= ρ(b∗)Tπ(a∗)= i{σπ,ρ(a ⊗ b)(iT j)} j.

Hence σπ,ρ(ϕ∗)(T ) = i{σπ,ρ(ϕ)(iT j)} j , for all ϕ ∈ A ⊗ B. For any s.n. ideal I
and any operator T ∈ I (H, K ), iT j ∈ I (H, K ) and |iT j |I = |T |I . Thus it follows
that ϕ ∈ Mπ,ρ

I (A ⊗ B) implies ϕ∗
∈ Mπ,ρ

I (A ⊗ B), and ‖ϕ∗
‖
π,ρ
I = ‖σπ,ρ(ϕ

∗)‖I =

‖σπ,ρ(ϕ)‖I = ‖ϕ‖
π,ρ
I . �

Let X be the space of all maximal ideals of a commutative C*-algebra A. Then
A = C0(X) and each representation π of A corresponds to a spectral measure Eπ
on X , that is, a σ -additive map from the σ -algebra of all Borel subsets of X to the
lattice of projections in Hπ . An isolated point x in the support, supp(Eπ ), of Eπ
must be an atom: Eπ ({x}) 6= 0. To apply the results of the previous sections we
need to express rank(π( f )) in terms of the spectral measure. Set

S( f,Eπ )= {x ∈ supp(Eπ ) : f (x) 6= 0}.

Lemma 7.2. For f ∈ C0(X), rank(π( f )) <∞ if and only if S( f,Eπ ) consists of
a finite number of points of finite multiplicity (dim(Eπ ({x})) <∞). In this case

rank(π( f ))=

∑
x∈S( f,Eπ )

dim(Eπ ({x})).

Proof. If S( f,Eπ ) is infinite, it contains a countable set of points with disjoint
neighbourhoods. Hence rank(π( f )) is infinite. Let S( f,Eπ )={x1, . . . , xn}. Since
f is continuous, Eπ ({xi }) 6= 0 and π( f )=

∑
i f (xi )Eπ ({xi }). �

It follows from Lemma 7.2 that the kernel of a representation depends only on the
support of the corresponding spectral measure.

Corollary 7.3. Let π, π ′ and ρ, ρ ′ be, respectively, representations of commutative
C*-algebras A = C0(X) and B = C0(Y ). Let

(7–1) supp(Eπ ′)⊂ supp(Eπ ) and supp(Eρ′)⊂ supp(Eρ).

Then

(i) Mπ,ρ(A ⊗ B)⊆ Mπ ′,ρ′

(A ⊗ B), and the inclusion is contractive.
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(ii) Suppose that I is either a coseparable s.n. ideal or S2 ⊆ I . Let the represen-
tations π ′ and ρ ′ be separable, and let, for all isolated points x ∈ supp(Eπ )
and y ∈ supp(Eρ),

dim(Eπ ′({x}))≤ dim(Eπ ({x})) and dim(Eρ′({y}))≤ dim(Eρ({y})).

Then Mπ,ρ
I (A ⊗ B)⊆ Mπ ′,ρ′

I (A ⊗ B), and the inclusion is contractive.

Proof. The inclusions (7–1) imply (5–4). Since all representations of commutative
C*-algebras have separating vectors, (i) follows from Corollary 5.8.

Applying Lemma 7.2, Corollary 5.4 and Remark 5.5, we get (ii). �

Let µ and ν be measures on X and Y , let H = L2(X, µ) and K = L2(Y, ν). Then
S2(H, K ) consists of integral Hilbert–Schmidt operators R with kernels r(x, y)
on X × Y satisfying (1–1). Each ϕ ∈ L∞(X × Y, µ× ν) defines a bounded linear
map 8ϕ on S2(H, K ): 8ϕ(R) is the integral operator with kernel ϕ(x, y)r(x, y).
Recall from the Introduction that if 8ϕ preserves XI and is bounded in | · |I , then
ϕ is called a (µ, ν, I )-multiplier. We denote by ‖8ϕ‖I the norm of the operator
8ϕ acting on XI , and by Mµ,ν(I ) the set of all (µ, ν, I )-multipliers.

Every multiplicity-free representation of C0(X) is defined by a regular σ -finite
Borel measure µ on X , and acts on L2(X, µ) by multiplication operators:

πµ( f )h(x)= f (x)h(x).

Let ρν be a multiplicity-free representation of C0(Y ) defined by a regular σ -finite
Borel measure ν on Y . Then C0(X)⊗ C0(Y ) = C0(X × Y ) and, for each ϕ in
C0(X × Y ), σπµ,ρν (ϕ), acts on S2(H, K ) by multiplying the integral kernels of
operators R ∈ S2(H, K ) by ϕ. Thus

σπµ,ρν (ϕ)=8ϕ for ϕ ∈ C0(X × Y ).

Therefore (πµ ⊗πν, I )-multipliers are continuous (µ, ν, I )-multipliers, and

Mπµ,ρν
I (C0(X)⊗ C0(Y ))= Mµ,ν(I )∩ C0(X × Y ).

We will use the simplified notations and write

Mµ,ν
I instead of Mπµ,ρν

I and ‖ϕ‖
µ,ν
I instead of ‖ϕ‖

πµ,ρν
I .

Thus

‖ϕ‖
µ,ν
I

def
= ‖ϕ‖

πµ,ρν
I

def
= ‖σπµ,ρν (ϕ)‖I = ‖8ϕ‖I for ϕ ∈ C0(X × Y ).

Corollary 7.4. Let X, Y be locally compact spaces with countable bases. Let
µ,µ′ and ν, ν ′ be σ -finite Borel measure on X and Y , respectively. Let I be either
a coseparable s.n. ideal or S2 ⊆ I . If

supp(µ′)⊆ supp(µ) and supp(ν ′)⊆ supp(ν),
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then Mµ,ν
I (C0(X)⊗ C0(Y )) ⊆ Mµ′,ν′

I (C0(X)⊗ C0(Y )), and the inclusion is con-
tractive.

Proof. Since X, Y have countable bases and all measures are σ -finite, the corre-
sponding L2( · , · ) spaces are separable. For any A ⊂ X , Eπµ(A) is the multipli-
cation operator by the characteristic function of A. Hence supp(µ) coincides with
supp(Eπµ). Since dim(Eπµ({x}))=1 for each isolated point x ∈ supp(µ), our result
follows from Corollary 7.3. �

Our next aim is to relate continuous (µ, ν, I )-multipliers to Schur I -multipliers.
Let H = l2(X) be the Hilbert space of all complex-valued functions g on X such
that

∑
x∈X |g(x)|2 < ∞. Denote by τX the representation of C0(X) on l2(X) by

diagonal operators

(τX (h)g)(x)= h(x)g(x) for h ∈ C0(X), g ∈ l2(X).

Let K = l2(Y ). Each T ∈ S2(H, K ) corresponds to a matrix (t (x, y)) with∑
|t (x, y)|2 < ∞. For a bounded complex-valued function ϕ on X × Y , the

operator Sϕ(T ) = (ϕ(x, y)t (x, y)) is bounded on S2(H, K ). If Sϕ preserves
XI = I (H, K ) ∩ S2(H, K ) and is bounded in | · |I , then ϕ is called a Schur
I -multiplier and ‖Sϕ‖I denotes the norm of the operator Sϕ acting on XI . Clearly,
Schur I -multipliers on X × Y are exactly (τX , τY , I )-multipliers.

Theorem 7.5. Let X, Y be locally compact spaces with countable bases and let
µ, ν be Borel σ -finite measures on X and Y , with supp(µ) = X , supp(ν) = Y .
Suppose that an s.n. ideal I is either coseparable or S2 ⊆ I . A function ϕ ∈

C0(X × Y ) is a (µ, ν, I )-multiplier on X × Y if and only if it is a Schur I -multiplier
on X × Y . In this case ‖Sϕ‖I = ‖ϕ‖

µ,ν
I .

Proof. Since L2(X, µ) is a separable space, rank(πµ( f ))≤ ℵ0, for f ∈ C0(X). Let
us show that

(7–2) rank(πµ( f ))= min{ℵ0, rank(τX ( f ))}.

If rank(τX ( f ))≥ ℵ0, then, by Lemma 7.2, rank(πµ( f )) can not be finite, so (7–2)
holds. If rank τX ( f ) = n < ∞, then the set S( f,Eτ ) consists of n points. By
the continuity of f , these points must be isolated in X . Hence, by Lemma 7.2,
rank(πµ( f )) = n, and (7–2) holds. Since the same equality holds for πν and τY ,
and the C*-algebras C0(X),C0(Y ) are separable, our result follows from Corollary
5.3. �

Problem 7.6. Let X and Y be locally compact spaces with countable bases and
I = Sp. Is each Schur I -multiplier ϕ ∈ C0(X × Y ) a (π ⊗ ρ, I )-multiplier for all
separable representations π of C0(X) and ρ of C0(Y )?
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The positive answer to this problem follows from the previous results in two
cases: if X and Y have no isolated points, and if I = S∞.

(1) Assume X and Y have no isolated points. Let µ, ν be Borel σ -finite measures
without atoms, with supp(µ)= X , supp(ν)= Y . Then πµ(C0(X)) and ρν(C0(Y ))
have no nonzero finite rank operators, and Ker(πµ)= Ker(ρν)= {0}. By Theorem
7.5, ϕ is a (µ, ν, I )-multiplier on X × Y . By Corollary 5.4, it is a (π ⊗ ρ, I )-
multiplier for all separable representations π of C0(X) and ρ of C0(Y ).

(2) Assume I = S∞. Let I = S∞. Every cyclic representation of C0(X)
is of the form πµ. Each separable representation π of C0(X) is equivalent to a
subrepresentation of πµ ⊗ 1H, for separable H and some cyclic representation πµ.
By Theorem 7.5, ϕ is a (µ, ν, I )-multiplier on X × Y . By Lemma 5.7, it is a
((πµ ⊗ 1H)⊗ (ρν ⊗ 1H), I )-multiplier. Hence it is a (π ⊗ ρ, I )-multiplier.

For I = S∞ (or equivalently Sb, S1), Schur I -multipliers were described by
Grothendieck in [1953] (see also Theorems 5.1 and 5.5 in [Pisier 2001]): ϕ is a
Schur S∞-multiplier if and only if there are bounded families {uλ} and {vλ} of
functions on X and Y , such that ϕ belongs to the pointwise closure of the convex
hull of {uλ(x)vλ(y)}. It can be easily seen from the proof in [Pisier 2001] that if
ϕ ∈ C0(X, Y ), one can choose uλ, vλ among Borel functions. Since each Borel
function u(x) with |u(x)| ≤ 1 can be pointwise approximated by functions from
b1(C0(X)), the inclusion of Theorem 6.2 is, in fact, an equality for commutative
A and B .

Corollary 7.7. If A and B are commutative, then (A � B)∼ = M(A ⊗ B).

Recall one of the equivalent definitions (cf. [Birman and Solomyak 1967]) of
a double operator integral (DOI). Let E, F be spectral measures on X and Y with
values in the sets P(H) and P(K ) of all projections in B(H) and B(K ), respec-
tively. One defines their direct product G as a spectral measure on X × Y with
values in P(S2(H, K )) by G(A × B)(T ) = F(B)T E(A), and further extends it
from rectangulars to all Borel sets. For a bounded Borel function ϕ on X ×Y , one
defines the operator Iϕ on S2(H, K ) by

Iϕ =

∫
ϕ(x, y) dG.

If Iϕ is bounded on I ∩ S2 in | · |I , then one says that ϕ defines DOI on I .
Let now ϕ ∈ C0(X × Y ), and let spectral measures Eπ , Fρ correspond to rep-

resentations π and ρ of C0(X) and C0(Y ), respectively. Then ϕ defines DOI on
I if and only if ϕ ∈ Mπ,ρ

I (C0(X)⊗ C0(Y )). Thus the DOI theory, restricted to
continuous functions, can be considered as a part of the general operator multi-
pliers theory for tensor products of representations of C*-algebras. In particular,
Corollary 7.3 states that the space of continuous functions that define bounded DOI
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depends only on the supports of the spectral measures and (if I 6= S1,S∞,Sb)
on the multiplicity of their atoms.

Some results in this section are known or can be deduced from the DOI theory.
Proposition 7.1 was, in fact, proved by Birman and Solomyak [1967; 1973]. We
presented the proof here because it is short and “coordinate free”. For functions
that define DOI on S∞ (or, equivalently, on S1, Sb), a precise description was
obtained by Peller [1985], completing previous results of Birman and Solomyak
[1967; 1973] (a transparent proof of Peller’s theorem can be found in the recent
book [Hiai and Kosaki 2003]). Without stating this directly, Peller’s theorem shows
that only supports of the spectral measures are essential in the description of Mπ,ρ .
No definitive description of Mπ,ρ

I is known for other I . We will discuss Peller’s
theorem at the end of Section 8.

8. The notion of ω-continuity and an analog of Luzin’s theorem

Our goal now is to remove the restriction of continuity on (µ, ν, I )-multiplier in
the main results of Section 6. Moreover, we are going to extend these results to
functions on the product of measure spaces (X, µ) and (Y, ν)without distinguished
topologies. On the other hand, even in this case, in order to be a (µ, ν, I )-multiplier
(at least if I = S∞; see Proposition 9.1), a function still has to be “continuous”
in some natural pseudotopology, called ω-pseudotopology, associated in [Erdos
et al. 1998] with the product of measure spaces. In this section we establish some
auxiliary results on ω-continuous functions.

Recall that a pseudotopology on a set is defined by a family of its subsets (called
pseudoopen), which is closed under finite intersections and countable unions. The
complements of pseudoopen sets are called pseudoclosed. A complex-valued func-
tion is pseudocontinuous if the preimages of open sets are pseudoopen.

Theω-pseudotopology on the product of measure spaces is defined as follows. A
subset N of X × Y is called marginally null if there are subsets F ⊆ X and S ⊆ Y
of zero measure such that N ⊆ (F × Y ) ∪ (X × S). A set E is ω-open if there
is a countable family of measurable rectangles An × Bn such that the symmetric
difference of

⋃
(An × Bn) and E is marginally null. The space of all ω-continuous

functions on X × Y is denoted by Cµ,ν(X × Y ).
A measure space (X, µ) is called standard if there is a topology on X (called

admissible) with respect to which µ is a σ -finite Radon measure, that is, for each
measurable set A of finite measure and each ε > 0, there is a compact set F such
that F ⊆ A and µ(A \ F) < ε. A standard space (X, µ) is separable if there is an
admissible topology in which X has a countable base.

Lemma 8.1. Let Z × W ⊆
⋃n

i=1(Ai × Bi ) for Ai ⊆ X , Bi ⊆ Y and n <∞. Then
there are finite families of disjoint sets {X p}

m
p=1 in Z and {Y j }

k
j=1 in W such that
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each X p × Y j is contained in at least one of Ai × Bi and

Z =

m⋃
p=1

X p , W =

k⋃
j=1

Y j .

Proof. When z spans Z , there is only a finite number of different sets

Az = Z ∩

( ⋂
z∈Ai

Ai

)
∩

( ⋂
z /∈Ai

(Z \ Ai )
)
.

Denote them by X1, . . . , Xm . Choosing, similarly, sets Y1, . . . , Yk in W , we obtain
the sets {X p}, {Y j } satisfying all conditions of the lemma. �

Denote by χE the characteristic function of a set E . We say that a function g
on X × Y is simple if there are measurable, disjoint sets {X i }

n
i=1, {Y j }

m
j=1, with

n,m <∞, such that

X =

n⋃
i=1

X i , Y =

m⋃
j=1

Y j , and g =
∑
i, j
αi jχX iχY j with αi j ∈ C.

Let ϕ be a function on X × Y and let Z ⊆ X , W ⊆ Y be measurable. Set

λ(ϕ, Z × W )= sup
{
|ϕ(x, y)−ϕ(x ′, y′)| : x, x ′

∈ Z , y, y′
∈ W

}
.

For ε > 0, a function ϕ is called ε-decomposable on Z ×W if there are measurable
sets {X i }

n
i=1, {Y j }

m
j=1, with n,m <∞, such that

Z ⊆

n⋃
i=1

X i , W ⊆

m⋃
j=1

Y j , and λ(ϕ, X i × Y j ) < ε for all i, j.

Theorem 8.2. Let (X, µ) and (Y, ν) be standard finite measure spaces. For a
function ϕ on X × Y , the following conditions are equivalent.

(i) ϕ is ω-continuous.

(ii) For each ε > 0, there are measurable sets Xε and Yε such that µ(X \ Xε) < ε,
ν(Y \ Yε) < ε and ϕ is ε-decomposable on Xε × Yε.

(iii) For each ε > 0, there are measurable sets Xε and Yε such that µ(X \ Xε) < ε,
ν(Y \ Yε) < ε and ϕ|Xε × Yε is a uniform limit of simple functions.

Proof. (i) H⇒ (ii). Choosing admissible topologies on X, Y and compacts Q ⊂ X
and K ⊂ Y such that µ(X \ Q) < ε/2 and ν(Y \ K ) < ε/2, we only need to prove
the implication for Q, K and ε/2. Thus we may assume that X and Y are compacts
in these topologies.

Cover the range of ϕ by open disks Dk of radius ε/2. Since ϕ is continuous,
the sets ϕ−1(Dk) are ω-open. Hence, for each k, there are marginally null sets Nk
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in X × Y and measurable sets Ak
i in X and Bk

i in Y such that

ϕ−1(Dk)= Nk ∪

∞⋃
i=1
(Ak

i × Bk
i )

Thus
X × Y = N ∪

∞⋃
i=k=1

(Ak
i × Bk

i ),

where N is a marginally null set, and λ(ϕ, Ak
i × Bk

i ) < ε, for all i, k.
Choose U ⊂ X, V ⊂ Y such that

N ⊆ (X × V )∪ (U × Y ), µ(U )≤ ε/2, ν(V )≤ ε/2.

The set κ = (X \ U )× (Y \ V ) is ω-closed and

κ ⊆

∞⋃
i=k=1

(Ak
i × Bk

i ).

By [Erdos et al. 1998, Lemma 3.4], there are sets Rε ⊂ X and Tε ⊂ Y , with
µ(X \ Rε) < ε/2 and ν(Y \ Tε) < ε/2, such that the set

κ ∩ (Rε × Tε)= (Rε \ U )× (Tε \ V )

is covered by a finite number of the rectangles Ak
i × Bk

i . Setting Xε = Rε \ U ,
Yε = Tε \ V , we obtain what we need.

(ii) H⇒ (iii). For εn = 2−nε, choose Xεn , Yεn as in (ii): µ(X \ Xεn ) < εn ,
ν(Y \ Yεn ) < εn and Xεn × Yεn is covered by a finite family of rectangles

{An
j × Bn

j }
p(n)
j=1 , with λ(ϕ, An

j × Bn
j ) < εn.

Set

Xε =

∞⋂
n=1

Xεn , Yε =

∞⋂
n=1

Yεn .

Then µ(X \ Xε) < ε, ν(Y \ Yε) < ε, and, for each n,

Xε × Yε ⊆ Xεn × Yεn ⊆

p(n)⋃
j=1
(An

j × Bn
j ).

It follows from Lemma 8.1 that there is a simple function ϕn on X × Y such that
sup

{
|ϕ(x, y)−ϕn(x, y)| : (x, y) ∈ Xε × Yε

}
< εn .

(iii) H⇒ (i). Every simple function is ω-continuous. By [Erdos et al. 1998,
Lemma 3.3], the uniform limit of ω-continuous functions is ω-continuous. Hence,
for each ε > 0, the function ϕ|Xε × Yε is ω-continuous. The set

N = (X × Y ) \
∞⋃

n=1

(
X1/n × Y1/n

)
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is marginally null. Hence, for any open set G ⊂ C,

ϕ−1(G) \
∞⋃

n=1
(ϕ−1(G)∩

(
X1/n × Y1/n

)
)= ϕ−1(G)∩ N

is a marginally null set. Since all ϕ−1(G)
⋂(

X1/n × Y1/n
)

are ω-open, ϕ−1(G) is
ω-open and ϕ is ω-continuous. �

A sequence {Xn} of measurable sets in (X, µ) is exhaustive if

Xn ⊆ Xn+1 and µ
(

X −

∞⋃
n=1

Xn

)
= 0.

Fix an admissible topology on a standard measure space (X, µ). Then X has an
exhaustive sequence {Xn} of compact sets. For each n, there are disjoint compacts
{Ki (n)} in Xn+1 such that K1(n)= Xn and µ

(
Xn+1 −

⋃
i Ki (n)

)
= 0. Hence there

are disjoint compact sets {Kn} in X such that µ
(
X −

⋃
n Kn

)
= 0.

The following result can be considered as an ω-version of Luzin’s theorem.

Theorem 8.3. Let µ and ν be Radon σ -finite measures on topological spaces X
and Y . For a function ϕ on X × Y the following conditions are equivalent.

(i) ϕ is ω-continuous.

(ii) For any ε > 0, there are measurable sets Xε ⊆ X and Yε ⊆ Y such that
µ(X − Xε) < ε, ν(Y − Yε) < ε and ϕ is continuous on X × Y .

(iii) There are exhaustive sequences {Xn} and {Yn} of compacts in X and Y such
that ϕ is continuous on each Xn × Yn .

Proof. Step 1. First we will prove the theorem for compact X and Y .

(i) ⇒ (ii). Let E be a measurable subset of X . By Luzin’s theorem, for δ > 0, there
is a compact subset K of X such that µ(X \ K ) < δ and χE is continuous on K .
Hence if g is a simple function on X × Y , there are compacts K ⊆ X , R ⊆ Y such
that µ(X \ K ) < δ, ν(Y \ R) < δ and g is continuous on K × R.

Let ϕ be ω-continuous. For ε > 0, let sets Xε and Yε be chosen as in Theorem
8.2 (iii) and let simple functions ϕn uniformly converge to ϕ|Xε × Yε. Set εn =

2−nε. By the argument above, there are compacts Kn ⊆ X , Rn ⊆ Y such that
µ(X \ Kn) < εn , ν(Y \ Rn) < εn and the functions ϕn are continuous on Kn × Rn .
Set

L(ε)= Xε ∩

∞⋂
n=1

Kn and M(ε)= Yε ∩

∞⋂
n=1

Rn.

Thenµ(X\L(ε))≤2ε and ν(Y\M(ε))≤2ε. All ϕn are continuous on L(ε)× M(ε)
and uniformly converge to ϕ|L(ε)× M(ε). Hence ϕ is continuous on L(ε)× M(ε).
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(ii) ⇒ (iii). Set

Ln =

∞⋂
k=n

L(εk) and Mn =

∞⋂
k=n

M(εk).

Then Ln ⊆ Ln+1, Mn ⊆ Mn+1, and ϕ is continuous on Ln × Mn . Furthermore,

µ(X \ Ln)≤

∞∑
k=n

µ(X \ L(εk)) < ε22−n,

ν(Y \ Mn)≤

∞∑
k=n

ν(Y \ M(εk)) < ε22−n.

Thus {Ln}, {Mn} are exhaustive sequences. Since µ, ν are Radon measures, there
are compacts En ⊆ Ln and Fn ⊆ Mn such that µ(Ln\En)<1/n, ν(Mn\Fn)<1/n.
Hence

Xn =

n⋃
k=1

Ek and Yn =

n⋃
k=1

Fk

form exhaustive sequences of compacts in X and Y .

Step II. Now assume that X and Y are not compact spaces. Let {Fn} and {Gn} be
disjoint compact sets in X and Y such that µ(X \

⋃
n Fn)= ν(Y \

⋃
nGn)= 0. For

ε > 0, set εn = ε2−n .

(i) ⇒ (ii). It follows from step I that, for each pair (n,m), there are sets Rn,m(ε)⊂

Fn and Tn,m(ε) ⊂ Gm such that ϕ is continuous on Rn,m(ε)× Tn,m(ε), µ(Fn \

Rn,m(ε))≤ εnεm , and ν(Gm \ Tn,m(ε))≤ εnεm . Set

(8–1) Rn(ε)=

∞⋂
m=1

Rn,m(ε) and Tm(ε)=

∞⋂
n=1

Tn,m(ε).

Then µ(Fn \ Rn(ε))≤ εnε, µ(Gm \ Tm(ε))≤ εmε, and the map ϕ is continuous on
Rn(ε)× Tm(ε) for each pair (n,m). Set

(8–2) Xε =

∞⋃
n=1

Rn(ε) and Yε =

∞⋃
m=1

Tm(ε).

These are the sets we need.

(ii) ⇒ (iii). We preserve the notations above. Let εk = 2−k . It follows from
step I that, for each pair (n,m), there are increasing sequences of compact sets
{Rn,m(εk)}

∞

k=1 in Fn and {Tn,m(εk)}
∞

k=1 in Gm such that

µ(Fn \ Rn,m(εk))≤ εnεmεk, ν(Gm \ Tn,m(εk))≤ εnεmεk,

and ϕ is continuous on Rn,m(εk)× Tn,m(εk). The compact sets Rn(εk) ⊆ Fn and
Tm(εk)⊆ Gm (see (8–1)) increase with k, µ(Fn \ Rn(εk))≤ εnεk , µ(Gm \Tm(εk))≤

εmεk , and ϕ is continuous on Rn(εk)× Tm(εk). The compact sets Xk = Xεk and
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Yk = Yεk (see (8–2)) form exhaustive sequences in X and Y , and ϕ is continuous
on each Xk × Yk .

The proof of (iii) ⇒ (i) is the same as in Theorem 8.2. �

9. Schur multipliers and discontinuous (µ, ν)-multipliers

In contrast to Schur multipliers, (µ, ν, I )-multipliers are not sensitive to changes on
null sets. Therefore one cannot expect that the classes of noncontinuous (µ, ν, I )-
multipliers and of Schur I -multipliers coincide. In this section we will show that
for any I , ω-continuous (µ, ν, I )-multipliers coincide marginally a.e. with Schur
I -multipliers. More precisely, an ω-continuous function is a (µ, ν, I )-multiplier if
and only if it becomes a Schur I -multiplier after deleting a marginally null subset.

Remark. Two ω-continuous functions ϕ, ϕ′ coincide a.e. if and only if they coin-
cide marginally a.e. Indeed, set ψ = ϕ− ϕ′. If ψ ≡ 0 marginally a.e., then ψ ≡ 0
a.e. Suppose that ψ vanishes a.e. The set L = {z ∈ C : ψ(z) 6= 0} is ω-open and
(µ⊗ ν)(L)= 0. Therefore it coincides with some union of rectangles An × Bn up
to a marginally null set. Hence µ(An)ν(Bn) = 0, so all An × Bn are marginally
null. Thus L is a marginally null set.

Our restriction to ω-continuous functions is strongly motivated by the following
result.

Proposition 9.1. If (X, µ) and (Y, ν) are standard measure spaces, then

Mµ,ν(S∞)⊆ Cµ,ν(X × Y ).

Proof. Choose admissible topologies on X and Y , so that X =
⋃

n Xn and Y =⋃
n Yn , with µ(Xn) < ∞ and ν(Yn) < ∞. Let ϕ ∈ Mµ,ν(S∞) and let G be an

open set in C. Since

ϕ−1(G)=
⋃
n

(
ϕ−1(G)∩ (Xn × Yn)

)
,

we only need to show that each set ϕ−1(G)∩ (Xn ×Yn) is ω-open. Hence we may
assume that µ(X) <∞ and ν(Y ) <∞.

Set H = L2(X, µ) and K = L2(Y, ν). All results of Proposition 4.2 hold if
L(I ) is replaced by Mµ,ν(I ). Hence ϕ ∈ Mµ,ν(S1). The operator A with kernel
a(x, y)≡ 1 is a rank one operator. Hence the operator 8ϕ(A) with kernel ϕ(x, y)
belongs to S1(H, K ). Hence ϕ(x, y) belongs to the projective tensor product
H ⊗̂ K and is ω-continuous by Theorem 6.5 of [Erdos et al. 1998]. �

Let {Xn}, {Yn} be exhaustive sequences of measurable subsets of (X, µ) and
(Y, ν), and let χn and χ ′

n be the characteristic functions of Xn and Yn . Let µn and



OPERATOR MULTIPLIERS 137

νn be the restrictions of µ and ν to Xn and Yn . For ϕ ∈ L∞(X × Y, µ⊗ ν), set

ϕn = χnχ
′

nϕ and ϕ̂n = ϕ|Xn × Yn.

Lemma 9.2. (i) Let an s.n. ideal I be either coseparable, or contain S2. Then
ϕ is a (µ, ν, I )-multiplier if and only if all ϕn are (µ, ν, I )- multipliers and
supn ‖8ϕn‖I <∞. In this case

‖8ϕ‖I = sup
n

‖8ϕn‖I .

(ii) Let I be either a separable or coseparable s.n. ideal, or Sb. Let X =
⋃

n Xn

and Y =
⋃

n Yn . Then ϕ is a Schur I -multiplier if and only if all ϕn are Schur
I -multipliers and supn ‖Sϕn‖I <∞. In this case ‖Sϕ‖I = supn ‖Sϕn‖I .

(iii) ϕn is a (µ, ν, I )-multiplier on X×Y if and only if ϕ̂n is a (µn, νn, I )-multiplier
on Xn × Yn . Moreover, ‖8ϕn‖I = ‖8ϕ̂n‖I .

(iv) ϕn is a Schur I -multiplier on X × Y if and only if ϕ̂n is a Schur I -multiplier
on Xn × Yn . Moreover, ‖Sϕn‖I = ‖Sϕ̂n‖I .

Proof. Set 8=8ϕ and 8n =8ϕn . The operators Pn on H = L2(X, µ) (identified
with H d as usual) and Qn on K = L2(Y, ν), acting by the multiplication by χn and
χ ′

n , respectively, are projections, and

(9–1) 8n(R)= Qn8(R)Pn, for R ∈ S2(H, K ).

Since Pn and Qn strongly converge to the identity operators, 8n(R) strongly con-
verge to 8(R).

Let I be coseparable. If ϕn are (µ, ν, I )-multipliers, then8n(R)∈ I , for R ∈XI .
If supn ‖8n‖I <∞, then supn |8n(R)|I <∞, and it follows from Theorem III.5.1
of [Gohberg and Kreı̆n 1965] that 8(R)∈ I and |8(R)|I ≤ supn |8n(R)|I . On the
other hand, by (9–1), all

|8n(R)|I ≤ ‖Qn‖|8(R)|I ‖Pn‖ ≤ |8(R)|I .

Hence ‖8‖I = supn ‖8n‖I . The proof of the converse statement follows from
(9–1) immediately.

If S2 ⊆ I , then S2 ⊆ I ⊆ J , for some coseparable ideal J . Since all results
of Proposition 4.2 hold, if L(I ) is replaced by Mµ,ν(I ), the sets of (µ, ν, I )- and
(µ, ν, J )-multipliers coincide. Part (i) is proved.

Let I be a coseparable ideal, let I0 be the corresponding separable ideal and
( Î0, Î ) be the pair of the dual ideals. It is well known and follows from duality
(see, for example, [Kissin and Shulman 2005a, Lemma 5.1]) that the sets of Schur
I -, I0-, Î - and Î0-multipliers (in particular, Sb-, S1- and S∞-multipliers) coincide
and the norms of the multipliers are equal. Hence we only need to prove (ii) for
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coseparable ideals. This proof is identical to the proof of (i) with 8 replaced by S,
L2(X, µ) by l2(X) and L2(Y, ν) by l2(Y ).

Set Hn = L2(Xn, µn), Kn = L2(Yn, νn). For R ∈ S2(H, K ) with kernel r , let
δn(R) be the integral operator from Hn into Kn with kernel r̂ = r |Xn × Yn . Then
δn maps XI (H, K ) onto XI (Hn, Kn), and it is an isometry from QnXI (H, K )Pn

onto XI (Hn, Kn). Conversely, for R̂ ∈ S2(Hn, Kn) with kernel r̂ , let1n(R̂) be the
integral operator from H into K with kernel r that vanishes outside Xn × Yn and
r |Xn × Yn = r̂ . Then 1n is an isometry from XI (Hn, Kn) onto QnXI (H, K )Pn ,
and

δn(1n(R̂))= R̂ for R̂ ∈ XI (Hn, Kn),

1n(δn(R))= R for R ∈ QnXI (H, K )Pn.

We also have 8ϕn (R) ∈ QnXI (H, K )Pn for R ∈ XI (H, K ), δn8ϕn = 8ϕ̂nδn ,
8ϕn1n =1n8ϕ̂n , and

‖8ϕn‖I = sup{
∣∣8ϕn (R)

∣∣
I : R ∈ QnXI (H, K )Pn, |R|I = 1}.

Making use of these formulae, one obtains a proof of (iii). Part (iv) is evident. �

We will prove now an analogue of Theorem 7.5 for ω-continuous functions.

Theorem 9.3. Let I be either a coseparable ideal, or a separable ideal containing
S2. Let (X, µ) and (Y, ν) be standard measure spaces with countable bases. An
ω-continuous function ϕ on X × Y is a (µ, ν, I )-multiplier if and only if there are
null sets X0 ⊂ X , Y0 ⊂ Y such that ϕ is a Schur I -multiplier on (X \ X0)× (Y \Y0).
In this case the sets X0, Y0 can be chosen in such a way that ‖ϕ‖

µ,ν
I = ‖Sϕ̃‖I ,

where ϕ̃ = ϕ|(X \ X0)× (Y \ Y0).

Proof. Choose admissible topologies on X and Y . By Theorem 8.3, there are
exhaustive sequences {Xn} and {Yn} of compact sets in X and Y such that ϕ is
continuous on each Xn × Yn . Let µn and νn be the restrictions of µ and ν to Xn

and Yn . One can assume that supp(µn)= Xn and supp(νn)= Yn . Indeed, set Kn =

supp(µn). If Kn 6= Xn , replace Xn by Kn . If x ∈ Kn then, for each neighbourhood
Ux of x in X , we have µ(Xn ∩ Ux) 6= 0. Hence µ(Xn+1 ∩ Ux) 6= 0, so x ∈ Kn+1.
Thus Kn ⊆ Kn+1. Since Xn = Kn ∪ Nn and µ(Nn) = 0, the sequence {Kn} is
exhaustive and supp(µ|Kn)= Kn .

By Lemma 9.2(i), ϕ is a (µ, ν, I )-multiplier if and only if all its restrictions
ϕn to Xn × Yn are (µ, ν, I )-multipliers and the norms are bounded. Moreover,
‖8ϕ‖I = supn ‖8ϕn‖I . Since ϕ̂n is continuous on Xn × Yn , it follows from The-
orem 7.5 that ϕ̂n is a (µn, νn, I )-multiplier if and only ϕ̂n is a Schur I -multiplier
on Xn × Yn; in this case ‖Sϕ̂n‖I = ‖ϕ̂n‖

µn,νn
I . By Lemma 9.2(ii), the restriction ϕ̃

of ϕ to
(⋃

n Xn
)

×
(⋃

n Yn
)

is a Schur I -multiplier if and only if all ϕn are Schur
I -multipliers and the norms are bounded. In this case, ‖Sϕ̃‖I = supn ‖Sϕn‖. Taking
now into account Lemma 9.2(iii) and (iv), we complete the proof. �
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Remark. Theorem 9.3 allows us to deduce Peller’s [1985] description of dou-
ble operator integrable functions from Grothendieck’s description of Schur S∞-
multipliers. Indeed, let E, F be spectral measures on locally compact spaces X and
Y . Denote by π and ρ the representations of C0(X) and C0(Y ) corresponding to E

and F. Then (see the discussion at the end of Section 6) the set of double operator
integrable functions with respect to E, F coincides with Mπ,ρ . Let µ, ν be scalar
measures such that supp(E) = supp(µ) and supp(F) = supp(ν). Then it follows
from Corollary 7.3 that Mπ,ρ

= Mµ,ν . By Proposition 9.1, every function ϕ ∈ Mµ,ν

is ω-continuous. Hence, by Theorem 9.3, ϕ becomes a Schur S∞-multiplier after
deleting some null subsets from X and Y . Applying [Pisier 2001, Theorem 5.1], we
get ϕ(x, y)= (a(x), b(y)), where a, b are bounded Hilbert space valued functions.
This is the first part of Peller’s theorem. Furthermore, by the proof of Theorem
5.5 of [Pisier 2001], there are a probability space (T, τ ) and bounded functions
a(x, t), b(y, t) on X × T and Y × T such that ϕ(x, y)=

∫
T a(x, t)b(y, t) dτ . This

is the second (much stronger) statement in Peller’s result.

We now relateω-continuous (µ, ν, I )-multipliers for different pairs of measures,
just as we did for continuous (µ, ν, I )-multipliers in Corollary 7.4. Let µ be a σ -
finite Radon measure on a topological space X and let 6 be the σ -algebra of all
µ-measurable sets in (X, µ). Let a measure µ′ on 6 be absolutely continuous with
respect to µ, that is, µ(E) = 0 implies µ′(E) = 0 for E ∈ 6. Then, for every
µ-measurable subset Z of X , supp(µ′

|Z)⊆ supp(µ|Z).

Theorem 9.4. Let I be either a coseparable ideal, or S2 ⊆ I . Let µ and ν be
σ -finite Radon measures on topological spaces X and Y with countable bases. Let
σ -finite measures µ′ and ν ′ on X and Y be absolutely continuous with respect to µ
and ν, respectively. Then every (µ, ν, I )-multiplier ϕ is also a (µ′, ν ′, I )-multiplier
and ‖8ϕ,µ′,ν′‖I ≤ ‖8ϕ,µ,ν‖I .

Proof. By Theorem 8.3, there are exhaustive (with respect to µ and ν) sequences
{Xn} and {Yn} of compact sets in X and Y such that the functions

ϕ̂n = ϕ|Xn × Yn

are continuous. Then {Xn} and {Yn} are also exhaustive sequences with respect to
µ′ and ν ′. Let µn and µ′

n be the restrictions of µ and µ′ to Xn , and let νn and ν ′
n

be the restrictions of ν and ν ′ to Yn . By Lemma 9.2(i) and (iii), the functions ϕ̂n

are (µn, νn, I )-multipliers and ‖8ϕ,µ,ν‖I = supn ‖8ϕ̂n,µn,νn‖I .
Since supp(µ′

n)⊆ supp(µn) and supp(ν ′
n)⊆ supp(νn), it follows from Corollary

7.4 that ϕ̂n are also (µ′
n, ν

′
n, I )-multipliers and ‖8ϕ̂n,µ′

n,ν
′
n
‖I ≤ ‖8ϕ̂n,µn,νn‖I . Ap-

plying again Lemma 9.2(i) and (iii), we conclude that ϕ is a (µ′, ν ′, I )-multiplier
and ‖8ϕ,µ′,ν′‖I ≤ ‖8ϕ,µ′,ν′‖I . �
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AN EICHLER–ZAGIER MAP FOR JACOBI FORMS OF
HALF-INTEGRAL WEIGHT

M. MANICKAM AND B. RAMAKRISHNAN

We construct an Eichler–Zagier map for Jacobi cusp forms of half-integral
weight. As an application, we show there exists no Hecke-equivariant map
from index 1 to index p ( p prime), when the weight is half-integral.

The aim of this paper is to generalize the Eichler–Zagier map for Jacobi forms
of half-integral weight, which is formally defined as

Zm :

∑
0>D,r∈Z

D≡r2 (4m)

c(D, r) e
(

r2
−D

4m
τ + r z

)
7→

∑
0>D∈Z

( ∑
r (2m)

r2
≡D (4m)

c(D, r)

)
e(|D|τ).

We prove that it is a Hecke-equivariant map from Jacobi cusp forms of weight k+
1
2

on 00(4M), index m and character χ (k and χ are even) into a certain subspace of
cusp forms of weight k on 01(16m2 M). First we derive this assertion for m = 1
by proving that Z1 maps respective Poincaré series. For the general index m, we
apply certain operator Im (see (2) for the definition) which changes the index m
into index 1 and then apply Z1 to obtain the required mapping property.

In order to give a Maass relation for each prime p for Siegel modular forms
of half-integral weight and degree two, Y. Tanigawa [1986] obtained a Hecke-
equivariant map from the space of index 1 Jacobi forms of half-integral weight
into certain modular forms of integral weight and he constructed the map Vp2 from
the space of Jacobi forms of index 1 into index p2. As a natural question, he
asked the existence of a connection between Jacobi forms of index 1 and index p
(p is a prime) in the case of half-integral weight. We show that there is no such
Hecke-equivariant map as an application of the nature of the map Zm .

Notation and background. Throughout this paper, unless otherwise specified, the
letters k,m,M, N will stand for natural numbers and τ for an element of H, the
complex upper half-plane.

MSC2000: primary 11F11, 11F50; secondary 11F37.
Keywords: Modular forms, Siegel modular forms, Jacobi forms.
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For a complex number z, we write
√

z for the square root with argument in
(−π/2, π/2], and we set zk/2

= (
√

z)k for any k ∈ Z.
For integers a, b, let

(a
b

)
denote the generalized quadratic residue symbol. Let

Sk(N ,ψ) denote the space of cusp forms of weight k and level N with character ψ .
We write the Fourier expansion of a modular form f as

f (τ )=

∑
n≥1

a f (n)e2π inτ .

For z ∈ C and c, d ∈ Z, we put ec
d(z) = e2π icz/d . We also write ec

1(z) = ec(z),
e1

c(z) = ec(z), and e1
1(z) = e(z). The symbol a ≡ � (b) means that a is a square

modulo b. For two forms f and g (either in the space of modular forms of integral
weight or in the space of Jacobi forms of half-integral weight), 〈 f, g〉 denotes the
Petersson inner product of f and g. For a Dirichlet character ψ modulo 4m, the
twisting operator on modular forms of integral weight is given by

(1) Rψ =
1

Wψ

∑
u mod 4m

ψ(u)
(

4m u
0 4m

)
,

where Wψ =
∑

u mod (4m) ψ(u)e(u/4m). It follows that 〈 f
∣∣ Rψ , g〉 = 〈 f, g

∣∣ Rψ 〉,
where f, g ∈ Sk(01(16mM)) and

Rψ :

∑
n≥1

a f (n)e(nτ) 7→

∑
n≥1

ψ(n)a f (n)e(nτ).

For a natural number d, the operators U (d) and B(d) are defined on formal
power series by

U (d) :

∑
n≥1

a(n)e(nτ) 7→

∑
n≥1

a(nd)e(nτ),

B(d) :

∑
n≥1

a(n)e(nτ) 7→

∑
n≥1

a(n)e(ndτ).

For n ≥ 1, let Pn denote the n-th Poincaré series in Sk(N , ψ) whose `-th Fourier
coefficient is given by

gn(`)= δ(`, n)+ 2π i−k(`/n)(k−1)/2
∑

c≥1, N |c

KN ,χ (n, `; c)Jk−1

(
4π

√
n`

c

)
,

where δ(`, n) is the Kronecker-delta function, Jk−1(x) is the Bessel function of
order k − 1 and KN ,χ (n, `; c) is the Kloosterman sum defined by

KN ,χ (n, `; c)=
1
c

∑
d(c)∗

dd−1
≡1 (c)

ψ(d)ec(nd−1
+ `d).
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1. A certain space of cusp forms of integral weight

For m,M ∈ N, let χ mod M be a Dirichlet character and χm(n) =
(m

n

)
be the

quadratic character modulo m or 4m according as m ≡ 1 or m ≡ 3 (mod 4).
Let

S =
{
` ∈ N : 1 ≤ `≤ 4m, `≡ � (4m)

}
,

S∗
=
{
` ∈ S : p2

| 4mM implies p - `, with p prime
}
.

If ` ∈ S, define

S �,`
k (16mM, χχm) := Sk(16mM, χχm)

∣∣ R`,

where
R` :

∑
n≥1

a(n)e(nτ) 7→

∑
n≥1

−n≡` (4m)

a(n)e(nτ).

For ` ∈ S, let t = (`, 4m). A formal computation shows that

R` = U (t)R(`)B(t),
with

R(`)=
1

ϕ(4m/t)

∑
ψ mod 4m/t

ψ(−`/t)Rψ ,

where ϕ(n) is the Euler totient function. Using the mapping properties of U (t),
Rψ and B(t) in the said order, we verify that S �,`

k (16mM, χχm) is a subspace of
Sk(01(16m2 M)). Finally we define

S �
k (16mM, χχm)=

∑
`∈S

S �,`
k (16mM, χχm).

2. Jacobi forms of half-integral weight

For α=
(a

c
b
d

)
∈SL2(R), let α̃= (α, φ(τ)), where φ(τ) is a holomorphic function on

H such that φ2(τ )= t (cτ+d), with t ∈ {1,−1}. Then the set G ={α̃ : α ∈ SL2(R)}

is a group with group law(
α1, φ1(τ )

)
(α2, φ2(τ )

)
=
(
α1α2, φ1(α2τ)φ2(τ )

)
.

If α ∈ 00(4), set

j (α, τ )=

( c
d

) (
−4
d

)−1/2
(cτ + d)1/2.

We set α∗
=
(
α, j (α, τ )

)
; the association α 7→ α∗ is an injective map from 00(4)

into G. Let G J be the set of all triplets [α̃, X, s], α ∈ SL2(R), X ∈ R2, s ∈ C,
|s| = 1. Then G J is a group, with group law given by

[α̃1, X1, s1] [α̃2, X2, s2] =

[
α̃1α̃2, X1α2 + X2, s1s2 ·

(
det

(
X1α2

X2

))]
.
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The stroke operator
∣∣

k+1/2,m is defined on functions φ : H × C → C by

φ
∣∣

k+1/2,m[α̃, X, s] =

smφ(τ)−2k−1em
(

−c(z+λτ+µ)2

cτ+d
+ 2λ2τ + 2λz + λµ

)
φ

(
aτ+b
cτ+d

,
z+λτ+µ

cτ+d

)
,

where [α̃, X, s] ∈ G J .
The Jacobi group for 00(4N ) is a subgroup 0 J

0 (4N )∗ of G J , given by

0 J
0 (4N )∗ =

{
[α∗, X ] : α ∈ 00(4N ), X ∈ Z2} .

A Jacobi form φ(τ, z) of weight k +
1
2 and index m for the group 00(4M), with

character χ , is a holomorphic function φ : H × C → C satisfying the following
conditions:

(i) φ
∣∣

k+1/2,m[γ ∗, X ](τ, z)= χ(d)φ(τ, z), where χ is a Dirichlet character mod

4M and γ =
(a

c
b
d

)
∈ 00(4M).

(ii) For every α =
(a

c
b
d

)
∈ SL2(Z), the image φ

∣∣
k+1/2,m[α̃, (0, 0)](τ, z) has a

Fourier development of the form∑
n,r∈Q

r2
≤4nm

cα(n, r)e (nτ + r z) ,

where the sum ranges over rational numbers n, r with bounded denominators
subject to the condition r2

≤ 4nm.

Further, if r2 < 4nm whenever cα(n, r) 6= 0, then φ is called a Jacobi cusp
form. We denote by Jk+1/2,m(4M, χ) the space of Jacobi forms of weight k +

1
2 ,

index m for 00(4M) with character χ , and by J cusp
k+1/2,m(4M, χ) the subspace of

Jk+1/2,m(4M, χ) consisting of Jacobi cusp forms. A Jacobi form φ has a Fourier
expansion of the form

φ(τ, z)=

∑
n,r∈Z

r2
≤4nm

c(n, r)e (nτ + r z) .

Since c(n, r)= c(n′, r ′) if r ′2
− 4n′m = r2

− 4nm and r ′
≡ r (mod 2m), we write

the Fourier expansion of φ as

φ(τ, z)=

∑
0≥D, r∈Z

D≡r2 (4m)

cφ(D, r)e
(

r2
− D

4m
τ + r z

)
.



AN EICHLER–ZAGIER MAP FOR JACOBI FORMS OF HALF-INTEGRAL WEIGHT 147

Let D < 0 be a discriminant and r an integer modulo 2m with D ≡ r2 (4m) .
Then the (D, r)-th Poincaré series, denoted by P(D,r), is defined by

P(D,r)(τ, z)=

∑
γ∈00(4M)J

∞\00(4M)J

χ(γ )e(nτ + r z)
∣∣

k+1/2,mγ.

We state the following proposition without proof.

Proposition 2.1. The Poincaré series P(D,r) lies in J cusp
k+1/2,m(4M, χ) and satisfies

〈φ, P(D,r)〉 = αk,m |D|
−k+1 cφ(D, r),

for each φ ∈ J cusp
k+1/2,m(4M, χ), where αk,m = 0(k − 1)mk−3/2/(2π k−1). It has a

Fourier development of the form

P(D,r)(τ, z)=

∑
0>D′, r ′

∈Z

D′
≡r ′2 (4m)

(
gD,r (D

′, r ′)+χ(−1)gD,r (D
′,−r ′)

)
e
(

r ′2
− D′

4m
τ + r ′z

)
,

where D = r2
− 4mn, D′

= r ′2
− 4mn′, and gD,r (D

′, r ′) is given by

δm(D, r, D′, r ′)+ i−k−3/2π

√
2
m

(D′

D

)k/2 ∑
c≥1

4M |c

Hm,c,χ (D, r, D′, r ′) Jk

(
π

√
DD′

mc

)
,

with

δm(D, r, D′, r ′)=

{
1 if D′

= D and r ′
≡ r (mod 2m) ,

0 otherwise.
and

Hm,c,χ (D, r, D′, r ′) = c−3/2e−rr ′/(2mc)

×

∑
d,λ(c)

dd−1
≡1 (c)

χ(d)
( c

d

)(
−4
d

)1/2
ec
(
d−1(mλ2

+ rλ+ n)+ dn′
− λr ′

)
.

3. The Eichler–Zagier map

First we consider the space J cusp
k+1/2,1(4M, χ). Put D = D0`

2, r = r0` in Proposition
2.1. In the Fourier coefficient of P(D0`2,r0`), the Kloosterman-type sum is periodic
as a function of ` of period 2c. Hence, for any h (mod 2c), its Fourier transform
(after replacing ` by `d and λ by λd) becomes

1
2c5/2

∑
`(2c),d(c)∗

λ(c)

χ(d)
( c

d

)(
−4
d

)1/2

× e2c
(
d(2λ2

+ 2r0`λ+ 2n0`
2
+ 2n − 2rλ− r0`r − h`)

)
.
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Since 4|c, the sum over λ is nonzero only if r0`≡ r (mod 2). Hence, the sum over
λ becomes ∑

λ(c)

ec(dλ2) ec

(
−d
(

r0`− r
2

)2)
.

Again, the fact that 4|c and gcd(c, d)= 1 gives the identity

1
√

2ic

∑
λ(c)

ec(dλ2)=

( c
d

)(
−4
d

)−1/2
.

Thus, the Fourier transform simplifies to
√

i
√

2c2

∑
`(2c),d(c)∗

χ(d)e4c
(
d(D0`

2
+ D − 2h`)

)
=

√
i

4
√

2c2

∑
`(2c),d(4c)∗

χ(d)e4c
(
d(D0`

2
+ D − 2h`)

)
,

which is the Fourier transform of the corresponding Kloosterman sum of integral
weight.

More precisely:

Theorem 3.1. The Eichler–Zagier map Z1 maps J cusp
k+1/2,1(4M,χ) into S �

k (16M,χ).

Proof. We shall prove that the (D, r)-th Fourier coefficient of P(D0`2,r0`) is equal
(up to constant) |D|-th Fourier coefficient of P|D0|`2 . It is easy to see that

δ1(D0`
2, r0`, D, r)= δ|D0|`2,|D|.

We consider both the Kloosterman sums as periodic functions of period 2c.
The arguments put forth above shows that for each c ≥ 1, with 4M |c, the Fourier
transform of H1,c,χ (D0`

2, r0`, D, r) is equal to (up to the required constants)
the Fourier transform of the Kloosterman sum (corresponding to integral weight)
K16M,χ (|D0|`

2, |D|; 4c). This proves the theorem. �

The index-changing operator Im. If φ ∈ J cusp
k+1/2,m(4M, χ), define Im by

(2) φ
∣∣ Im(τ, z)=

∑
λ (mod m)

e(λ2τ + 2λz)φ(mτ, z + λτ).

Proposition 3.2. Im maps J cusp
k+1/2,m(4M, χ) into J cusp

k+1/2,1(4mM, χχm). The Fourier
development of φ

∣∣ Im is of the form

φ
∣∣ Im(τ, z)=

∑
0<D, r∈Z

D≡ r2 (mod 4)

( ∑
s (mod 2m)
s≡r (mod 2)

cφ(D, s)

)
e
(

r2
− D
4

τ + r z
)
.
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Proof. It is easy to see that

φ
∣∣ Im(τ, z)= m−k/2−1/4

∑
λ (mod m)

φ1/
√

m
∣∣

k,1

[
1̃m, (λ, 0)

]
(τ, z),

where φ1/
√

m(τ, z)=φ(τ, z/
√

m) and1m is the diagonal matrix diag
(√

m, 1/
√

m
)
.

The proposition now follows directly from the preceding expression. �

Using the equality Zm = Im Z1, together with Theorem 3.1 and Proposition 3.2,
we have:

Theorem 3.3. The map Zm takes J cusp
k+1/2,m(4M, χ) into S �

k (16mM, χχm).

4. Half-integral weight Jacobi forms of index 1 and index p

In the case of integral weight Jacobi forms, the well-known map Vp is a Hecke-
equivariant map from Jk,1 into Jk,p (p is a prime). If we replace k by k+

1
2 , then we

have a Hecke-equivariant map Vp2 from Jk+1/2,1(4M) into Jk+1/2,p2(4M), which
was given by Tanigawa [1986]. Therefore, existence of a Hecke-equivariant map
from index 1 into p in the case of half-integral weight Jacobi forms seems to be a
natural question.

As an application of the map Zm , we show that there does not exist a Hecke-
equivariant map from J cusp

k+1/2,1(4) into J cusp
k+1/2,p(4).

Let

N =

{
p if p ≡ 1 (mod 4),

p2 if p ≡ 3 (mod 4).

Let ψ(mod N ) be a primitive Dirichlet character such that ψ2
=χp. Let Rψ be the

twisting operator defined as in (1). Then, Rψ maps Sk(16N 2, χp) into Sk(16N 2)

and commutes with Hecke operators Tn , (n, p)= 1. Further, if f ∈ Sk(16N 2, χp),
we have (

f
∣∣ Rψ

) ∣∣Wp = f
∣∣ Rψ ,

where Wp is the W -operator on Sk(16N 2) for the prime p.

Case 1: p ≡ 3 (mod 4). Let f ∈ Sk(4p, χp) be a normalized Hecke eigenform.
Since f

∣∣ Rψ ∈ Sk(4p4) and it is an eigenform for all the Hecke operators and the
W operators, it is a newform in Snew

k (4p4). Hence, by the theory of newforms, it
is not equivalent to a level-1 Hecke eigenform.

Case 2: p ≡ 1 (mod 4). Let f ∈ Snew
k (4p, χp) be a normalized Hecke eigenform.

Then, f
∣∣ Rψ ∈ Snew

k (4p2). Since f
∣∣ Rψ ∈ Snew

k (4p2), and ψ3
= ψ (as ψ2 is

quadratic), we get f
∣∣ Rψ and f

∣∣ Rψ
∣∣ Rχp are newforms in Snew

k (4p2). Thus, the
form f is not equivalent to a level-1 Hecke eigenform. Now, we let f ∈ Sk(p, χp).



150 M. MANICKAM AND B. RAMAKRISHNAN

Arguments as above again show that f is not equivalent to a level-1 Hecke eigen-
form.

Thus, we conclude that a normalized Hecke eigenform in Sk(4p, χp) is not
equivalent to a normalized Hecke eigenform in Sk(4). In view of the mapping
property proved in Theorem 3.3, we have proved:

Theorem 4.1. There is no Hecke-equivariant map from the space J cusp
k+1/2,1(4) into

the space J cusp
k+1/2,p(4).

In this connection the following question seems natural.

What contribution do half-integral weight Jacobi forms of square-free index make
to the construction of a “Maass space” (if one exists) for degree-2 Siegel modular
forms of half-integral weight?
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THE TANGENT GRUPOID OF A HEISENBERG MANIFOLD

RAPHAËL PONGE

As a step towards proving an index theorem for hypoelliptic operators on
Heisenberg manifolds, including for those on CR and contact manifolds, we
construct an analogue for Heisenberg manifolds of Connes’ tangent group-
oid of a manifold. As is well known for a Heisenberg manifold (M, H) the
relevant notion of tangent bundle is rather that of a Lie group bundle of
graded 2-step nilpotent Lie groups G M. We define the tangent groupoid of
(M, H) as a differentiable groupoid GH M encoding the smooth deforma-
tion of M × M to G M. In particular, this construction makes a crucial use
of a refined notion of privileged coordinates and of a tangent-approximation
result for Heisenberg diffeomorphisms.

1. Introduction

A somewhat long standing open question is the existence of an index theorem for
geometric operators on contact and CR manifolds. In this context the operators
are not elliptic, so we cannot apply the classical index theorem of Atiyah–Singer
[1968a; 1968b]. The natural pseudodifferential tool to deal with hypoelliptic opera-
tors on contact and CR manifolds is provided by the Heisenberg calculus of Beals–
Greiner [1988] and Taylor [1984]. The latter holds in full generality for Heisenberg
manifolds, that is, manifolds M together with a distinguished hyperplane bundle
H ⊂ TM . This definition includes that of CR and contact manifolds, as well as
that of codimension one foliations and confoliations. Therefore, what we would
like to have is an analogue of the Atiyah–Singer theorem for hypoelliptic operators
on Heisenberg manifolds.

There are various proofs of the Atiyah–Singer index theorem. A simple and
fairly general proof is that of Connes [1994, Sect. II.5]. A salient feature in Connes’
proof is the use of the tangent groupoid of a manifold, that is, the differentiable
groupoid encoding the smooth deformation of M × M to TM (see [Connes 1994;
Hilsum and Skandalis 1987]).

In this paper, as a step towards proving an index theorem for hypoelliptic opera-
tors on Heisenberg manifolds, we construct an analogue for Heisenberg manifolds

MSC2000: primary 58H05; secondary 53C10, 53D10, 32V05.
Keywords: differentiable groupoid, Heisenberg group, foliation, contact structure, CR structure.
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of Connes’ tangent groupoid. The existence of such a tangent groupoid was conjec-
tured by Bellaı̈che [1996, p. 74] for Carnot–Carathéodory manifolds and by Ponge
[2000, p. 37] for Heisenberg manifolds. We also refer to Van Erp [2005] for an
alternative description of this groupoid.

Our construction of the tangent groupoid of a Heisenberg manifold is carried out
in two steps. The first step consists in giving a suitable description of the tangent
Lie group bundle G M of a Heisenberg manifold (M, H). The latter is a bundle of
graded 2-step nilpotent Lie groups and provides us with a more accurate tangent
structure for Heisenberg manifolds than the classical tangent tangent space TM .
There are various descriptions of G M in the literature (see, e.g., [Bellaı̈che 1996;
Beals and Greiner 1988; Epstein et al. 1991; Folland and Stein 1974; Gromov
1996; Rockland 1987]).

Our description of G M stems from the existence of an intrinsic real-valued Levi
form,

(1-1) L : H × H −→ TM/H.

This is a 2-form on H with values in the normal bundle TM/H (see Lemma 2.3).
It allows us to define the tangent Lie group bundle G M as the bundle (TM/H)⊕H
together with the grading and Lie group law, such that for sections X0, Y0 of TM/H
and sections X ′, Y ′ of H , we have

t.(X0 + X ′)= t2 X0 + t X ′, t ∈ R,(1-2)

(X0 + X ′).(Y0 + Y ′)= X0 + Y0 +
1
2 L(X ′, Y ′)+ X ′

+ Y ′.(1-3)

This description of G M is simple and is completely intrinsic. What is crucial,
and more difficult, in the construction of the tangent groupoid is to relate the above
description to the extrinsic tangent nilpotent approximations of some previous ap-
proaches (see, e.g., [Bellaı̈che 1996; Beals and Greiner 1988; Epstein et al. 1991;
Folland and Stein 1974; Gromov 1996; Rockland 1987]). More precisely, given
a point x ∈ M the tangent Lie group Gx M in these approaches is obtained as the
Lie group associated to a Lie algebra of model vector fields in some privileged
coordinates centered at x . We point out that by using a refined notion of priv-
ileged coordinates, which we call Heisenberg coordinates (see Definition 2.18),
this approach coincides with ours (Proposition 2.20).

An important consequence of the equivalence between these two descriptions
of G M is a tangent approximation result for Heisenberg diffeomorphisms (Propo-
sition 2.21). Namely, in Heisenberg coordinates a Heisenberg diffeomorphism is
well approximated by a Lie group isomorphism between the tangent groups at the
points. We really do need to use Heisenberg coordinates, because in general privi-
leged coordinates we only get a Lie algebra isomorphism between the Lie algebras
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of the tangent group, and the corresponding Lie group isomorphism need not ap-
proximate the Heisenberg diffeomorphism (compare [Bellaı̈che 1996, Prop. 5.20]).

The second step is the construction of the tangent groupoid GH M of a Heisen-
berg manifold (M, H) as the b-differentiable groupoid GH M that encodes the
smooth deformation of M × M to G M (Theorem 3.7). As an abstract groupoid the
definition of GH M is similar to that of Connes’ tangent groupoid. In particular, at
the set-theoretic level we have

(1-4) GH M = G M t (M × M × (0,∞)).

In order to endow GH M with a consistent topology, with a differentiable structure,
as well as with a smooth composition map, we make crucial uses of the Heisenberg
coordinates and of the tangent approximation of Heisenberg diffeomorphisms al-
luded to above. In this sense our construction differs from the usual construction of
Connes’ tangent groupoid. In addition, this construction is functorial with respect
to Heisenberg diffeomorphisms (see Proposition 3.8 for the precise statement).

Beside potential applications towards an index theorem for hypoelliptic oper-
ators on Heisenberg manifolds, the construction of the tangent groupoid GH M is
also interesting from the point of view of Carnot–Carathéodory geometry. Namely,
Gromov [1996] and Bellaı̈che [1996] proved that the tangent group at a point of
a Carnot–Carathéodory manifold is tangent to the manifold in a topological sense
(i.e. in terms of Gromov–Hausdorff limits). However, our tangent groupoid con-
struction shows that, in the special case of Heisenberg manifolds, this tangency
occurs in a differentiable sense.

More generally, it would be interesting to construct a tangent groupoid for more
general Carnot–Carathéodory manifolds. As mentionned earlier this has been con-
jectured by Bellaı̈che, but it is believed that the approach of this paper could be
extended to deal with such a construction. Notice that in this setting the tangent Lie
group bundle G M should rather be an orbifold-bundle of Lie groups, but it should
be an actual Lie group bundle when the Carathéodory distribution is equiregular
in the sense of [Gromov 1996]. We hope to address these issues in a subsequent
paper.

The remainder of the paper is organized as follows. In Section 2, after recalling
the main facts about Heisenberg manifolds, we describe the tangent group bundle
G M of a Heisenberg manifold (M, H) and prove our approximation result for
Heisenberg diffeomorphisms. In Section 3 we construct the tangent groupoid of
(M, H) as a the differentiable groupoid that encodes the smooth deformation of
M × M to G M .

Acknowledgements. I am grateful to Alain Connes, Pierre Julg, Henri Moscovici,
Jean Renault and Erik Van Erp for discussions related to the subject matter of this
paper. I also thank the hospitality of the IHÉS, where part of this paper was written.
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2. The tangent Lie group bundle of a Heisenberg manifold

In this section, after recalling the main definitions and examples of Heisenberg
manifolds, we describe the tangent Lie group bundle of a Heisenberg manifold
in terms of an intrinsic Levi form. We then relate this approach to the nilpotent
approximation of vector fields from previous approaches by using Heisenberg co-
ordinates, which refine the privileged coordinates of [Beals and Greiner 1988] and
[Bellaı̈che 1996]. As a consequence we get a tangent-approximation result for
Heisenberg diffeomorphism which will be crucial later in the construction of the
tangent groupoid of a Heisenberg manifold.

2.1. Heisenberg manifolds.

Definition 2.1. (1) A Heisenberg manifold is a smooth manifold M equipped
with a distinguished hyperplane bundle H ⊂ TM .

(2) A Heisenberg diffeomorphism φ from a Heisenberg manifold (M, H) onto
another Heisenberg manifold (M, H ′) is a diffeomorphism φ : M → M ′ such
that φ∗H = H ′.

Definition 2.2. Let (Md+1, H) be a Heisenberg manifold. Then:

(1) A (local) H-frame for TM is a (local) frame X0, X1, . . . , Xd such that X1,
. . . , Xd span H .

(2) A local Heisenberg chart is a local chart with a local H -frame of TM over its
domain.

Following are the main examples of Heisenberg manifolds.

Heisenberg group. The (2n+1)-dimensional Heisenberg group H2n+1 consists in
R2n+1

= R × R2n equipped with the group law,

x · y =
(
x0 + y0 +

∑
1≤ j≤n

(xn+ j yj−xj yn+ j ), x1 + y1, . . . , x2n + y2n
)
.

A left-invariant basis for its Lie algebra h2n+1 is provided by the vector fields,

X0 = ∂x0, X j = ∂xj + xn+ j∂x0, Xn+ j = ∂xn+ j − xj∂x0,

where j ranges over 1, . . . , n. In particular, for j, k=1, . . . , n and k 6= j we have
the Heisenberg relations,

(2-1) [X j , Xn+k] = −2δjk X0, [X0, X j ] = [X j , Xk] = [Xn+ j , Xn+k] = 0.

In particular, the subbundle spanned by the vector fields X1, . . . , X2n gives rise to
a left-invariant Heisenberg structure on H2n+1.
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Foliations. A (smooth) foliation is a manifold M together with a subbundle F ⊂

TM which is integrable in the Frobenius sense, that is, the space of sections of F

is closed under the Lie bracket of vector fields. Thus any codimension-1 foliation
is a Heisenberg manifold.

Contact manifolds. Opposite to foliations are contact manifolds. A contact mani-
fold is a Heisenberg manifold (M2n+1, H) such that H can be locally realized as
the kernel of a contact form, that is, a 1-form θ such that dθ|H is nondegenerate.
When M is orientable it is equivalent to require H to be globally the kernel of
a contact form. Furthermore, by Darboux’s theorem any contact manifold is lo-
cally Heisenberg-diffeomorphic to the Heisenberg group H2n+1 equipped with the
standard contact form θ0

= dx0 +
∑n

j=1(x j dxn+ j − xn+ j dx j ).

Confoliations. According to Eliashberg and Thurston [1998], a confoliation on an
oriented manifold M2n+1 is given by a global nonvanishing 1-form θ on M such
that (dθ)n∧ θ ≥ 0. In particular, if we let H = ker θ then (M, H) is a Heisenberg
manifold which turns to be a foliation when dθ ∧ θ = 0 and a contact manifold
when (dθ)n ∧ θ > 0.

CR manifolds. A CR structure on an orientable manifold M2n+1 is given by a
rank-n complex subbundle T1,0 ⊂ TC M such that T1,0 is integrable in Frobenius’
sense and we haveT1,0 ∩ T0,1 = {0}, where we have let T0,1 = T1,0. Equivalently,
the subbundle H = <(T1,0 ⊕ T0,1) has the structure of a complex bundle of (real)
dimension 2n. In particular, (M, H) is a Heisenberg manifold.

The main example of a CR manifold is that of a (smooth) boundary M = ∂D
of a complex domain D ⊂ Cn . In particular, when D is strongly pseudoconvex (or
strongly pseudoconcave) with defining function ρ then θ = i(∂ − ∂̄)ρ is a contact
form on M .

2.2. The tangent Lie group bundle. The tangent Lie group bundle of a Heisenberg
manifold (Md+1, H) can be described as follows.

First, we have:

Lemma 2.3. The Lie bracket on vector fields induces a TM/H-valued 2-form on H

L : H × H −→ TM/H,

such that, for any sections X and Y of H near a point m ∈ M , we have

Lm
(
X (m), Y (m)

)
= [X, Y ](m) mod Hm .

Proof. We only need to check that given two sections X and Y of H near m ∈ M
the value of [X, Y ](m) modulo Hm depends only on X (m) and Y (m). Indeed, if
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f and g are smooth functions near m then we have

[ f X, gY ](m)= f (m)g(m)[X, Y ](m)− Y( f )(m)X (m)+ X(g)(m)Y (m)

= f (m)g(m)[X, Y ](m) mod Hm .

This shows that if X (m) or Y (m) vanish then so does the class of [X, Y ](m)modulo
Hm . Therefore, the latter only depends on the values of X (m) and Y (m). Hence
the result. �

Definition 2.4. The 2-form L is called the Levi form of (M, H).

The Levi form L allows us to define a bundle gM of graded Lie algebras by
endowing (TM/H)⊕ H with the smooth fields of Lie Brackets [ . , . ]gM and grad-
ings X → t.X , t ∈ R, such that, for m ∈ M and X0, Y0 in Tm M/Hm and X ′, Y ′ in
Hm , we have

[X0 + X ′, Y0 + Y ′
]gm M = Lm(X ′, Y ′),

t.(X0 + X ′)= t2 X0 + t X ′.

Definition 2.5. The bundle gM is called the tangent Lie algebra bundle of M .

Proposition 2.6. The tangent Lie algebra bundle is 2-step nilpotent and contains
the normal bundle TM/H in its center.

Proof. It follows from 2.2 that TM/H is contained in the center of gM and that
the Lie bracket [ . , . ]gM maps to TM/H , so gM is 2-step nilpotent. �

Since gM is nilpotent its associated graded Lie group bundle G M can be de-
scribed as follows. As a bundle G M is (TM/H)⊕ H and the exponential map is
merely the identity. In particular the grading of G M is as in 2.2. Moreover, as gM
is 2-step nilpotent the Campbell–Hausdorff formula gives

(exp X)(exp Y )= exp
(
X + Y +

1
2 [X, Y ]

)
for sections X , Y of gM .

We thus deduce that the product on G M is such that, for m ∈ M , and X0, Y0 in
Tm M/Hm and X ′, Y ′ in Hm , we have

(2-2) (X0 + X ′) · (Y0 + X ′)= X0 + Y0 +
1
2 L(X ′, Y ′)+ X ′

+ Y ′.

Definition 2.7. The bundle G M is called the tangent Lie group bundle of M .

The fibers of G M are classified by the Levi form L as follows:

Proposition 2.8. (1) The form Lm at m ∈ M has rank 2n if , and only if , Gm M is
isomorphic to H2n+1

× Rd−2n as a graded Lie group.

(2) The Levi form L has constant rank 2n if , and only if , G M is a fiber bundle
with typical fiber H2n+1

× Rd−2n .
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Proof. Let g be a Riemannian metric on H . Notice that (1) is a pointwise statement
and that (2) is a local statement, since G M is a Lie group bundle already. Therefore,
without any loss of generality, we may suppose that TM/H is orientable, so that
it admits a global nonvanishing section X0. Then let A denote the smooth section
of End H such that

(2-3) L(X, Y )= g(X, AY )X0 for sections X , Y of H .

Let m ∈ M . Since Lm is real-antisymmetric its rank has to be an even integer,
say rk Lm = 2n. Let us first assume that Lm is nondegenerate, i.e., Am is invertible.
Let Am = Jm |Am | be the polar decomposition of Am and on Hm define the positive
definite scalar product,

(2-4) hm(X, Y )=
1
2 gm(X, |Am |Y ) X, Y ∈ Hm .

Notice that Jm is antisymmetric and unitary with respect to hm , so we have J 2
m =

−J t
m Jm = −1, that is, Jm is a unitary complex structure on Hm . Therefore, we can

construct a basis X1, . . . , X2n of Hm which is orthonormal with respect to hm and
such that Xn+ j = Jm X j for j = 1, . . . , n.

On the other hand, for X and Y in Hm ⊂ gm M we have

(2-5) [X, Y ]gm M = Lm(X, Y )= gm(X, AmY )X0 = 2hm(X, JmY )X0.

Thus, for j = 1, . . . , n and k = 1, . . . , n + j − 1, n + j + 1, . . . , 2n we get

[X j , Xn+ j ]gm M = 2hm(X j , J 2
m X j )X0 = −2hm(X j , X j )X0 = −2X0,(2-6)

[X j , Xk]gm M = hm(X j , Jm Xk)X0 = −hm(Xn+ j , Xk)X0 = 0.(2-7)

These relations are the same as those in (2-1) for the Lie algebra of H2n+1. Thus
Gm M is isomorphic to H2n+1 as a graded Lie group.

Next, assume that Am has a nontrivial kernel. Then as Am is real antisymmetric
with respect to gm we have an orthogonal direct sum Hm = im Am ⊕ ker Am . In
fact, it follows from (2-3) that if X ∈ ker Am and Y ∈ Hm then

(2-8) [X, Y ]gm M = Lm(X, Y )= gm(X, AmY )X0 = 0.

Thus ker Am is contained in the center of gm M . Moreover, as Am is invertible on
im Am the same reasoning as above shows that the Lie subalgebra (Tm M/Hm)⊕

im Am is isomorphic to the (graded) Lie algebra h2n+1 of H2n+1. Therefore, gm M =

(Tm M/Hm)⊕ im Am ⊕ ker Am is isomorphic to h2n+1
× Rd−2n , and so Gm M is

isomorphic to H2n+1
× Rd−2n .

Conversely, suppose that Gm M is isomorphic to h2n+1
× Rd−2n . Then gm M is

isomorphic to h2n+1
× Rd−2n , so admits a basis X0, . . . , Xd such that

(2-9) [X j , Xn+ j ]gm M = −2X0 and [X j , Xk]gm M = [Xl, Xk]gm M = 0,
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for j = 1, . . . , n and k = 1, . . . , d with k 6= n + j and l = 2n + 1, . . . , d. Since
Lm(X, Y ) = [X, Y ]gm M for X and Y in Hm it follows from this that Lm has rank
2n. The proof of the first part of the proposition is thus complete.

Now, suppose that L has constant rank 2n. We have rk Am = 2n everywhere,
so we get a vector bundle splitting H = im A ⊕ ker A. Furthermore, the polar de-
composition of Am is smooth with respect to m, i.e., J and |A| are smooth sections
of End H . Therefore, the above process for constructing the basis X0, X1, . . . , Xd

can be carried out near every point m ∈ M in such way to yield a smooth H -frame
satisfying the relations (2-6)–(2-7). Thus, near every point of M we get a Lie group
bundle trivialization of G M as a trivial fiber bundle with fiber H2n+1

× Rd−2n .
Consequently, G M is fiber bundle with typical fiber H2n+1

× Rd−2n .
Conversely, assume that G M is a fiber bundle with typical fiber H2n+1

×Rd−2n .
Then at every point m ∈ M the Lie group Gm M is isomorphic to H2n+1

× Rd−2n ,
so it follows from the first part of the proposition that L has constant rank 2n. �

In presence of a foliation or contact structure we have more precise results.

Proposition 2.9. Let (M, H) be a Heisenberg manifold. Then the following are
equivalent:

(1) (M, H) is a foliation.

(2) (M, H) is Levi flat, i.e., L vanishes.

(3) As a Lie group bundle G M agrees with (TM/H)⊕ H.

Proof. It follows from its definition that L vanishes if, and only if, for any sections
X and Y of H the Lie bracket vector field [X, Y ] is again a section of H , that is,
if, and only if, H defines a foliation.

On the other hand, in view of the definition of the group law of G M the Levi
form L vanishes if, and only if, the group law is X.Y = X +Y , that is, if, and only
if, G M is the Abelian Lie group bundle (TM/H)⊕ H . �

Proposition 2.10. Suppose that (M2n+1, H) is a Heisenberg manifold. Then the
following are equivalent:

(1) (M, H) is a contact manifold.

(2) The Levi form L is (everywhere) nondegenerate.

(3) The Lie group tangent bundle G M is a fiber bundle with typical fiber H2n+1.

Proof. Since the equivalence of (2) and (3) follows from Proposition 2.8, we only
have to prove that (1) and (2) are equivalent. Since these are local statements we
may assume that TM/H is orientable, i.e., there exists a global nonzero 1-form θ

such that H = ker θ . As any nonzero 1-form annihiliting H is a nonzero multiple
of θ we see that (M, H) is a contact manifold if, and only if, θ is a contact form.
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Now, for any sections X and Y of H we have

(2-10) L(X, Y )= θ([X, Y ])X0 = −dθ(X, Y )X0.

This shows that L and dθ|H have same rank, so θ is a contact form if, and only
if, L is everywhere nondegenerate. This proves the equivalence of (1) and (2) and
thus completes the proof of the proposition. �

Finally, let φ : (M, H) → (M ′, H ′) be a Heisenberg diffeomorphism from
(M, H) onto another Heisenberg manifold (M ′, H ′). Since we have φ∗H = H ′,
we see that φ′ induces a smooth vector bundle isomorphism φ̄ from TM/H onto
TM ′/H ′.

Definition 2.11. We let φ′

H : (TM/H)⊕ H → (TM ′/H ′)⊕ H ′ denote the vector
bundle isomorphism such that

(2-11) φ′

H(m)(X0 + X ′)= φ̄′(m)X0 +φ′(m)X ′,

for any m ∈ M , X0 ∈ Tm/Hm , and X ′
∈ Hm .

Proposition 2.12. The vector bundle isomorphism φ′

H is an isomorphism of graded
Lie group bundles from G M onto G M ′.

Proof. If X and Y are sections of H then we have

(2-12) L(φ′

H (X), φ
′

H (Y ))=[φ∗X, φ∗Y ]=φ′

∗
[X, Y ]=φ′

H (Lm(X, Y )) mod H ′.

In view of (2-2) this implies that φ′

H is a Lie group bundle isomorphism from G M
onto G M ′. Furthemore, it follows from (2-11) that, for any t ∈ R and any section
X of G M , we have φ′

H (t.X)= t.φ′

H (X), i.e., φ′

H is graded. �

Corollary 2.13. The Lie group bundle isomorphism class of G M depends only on
the Heisenberg diffeomorphism class of (M, H).

2.3. Heisenberg coordinates and nilpotent approximations of vector fields. In
the sequel it will be useful to combine the above intrinsic description of G M with
a more extrinsic description of the tangent Lie group at a point in terms of the
Lie group associated to a nilpotent Lie algebra of model vector field. Incidentally,
this will show that our approach is equivalent to previous ones [Beals and Greiner
1988; Bellaı̈che 1996; Epstein et al. 1991; Folland and Stein 1974; Gromov 1996;
Rockland 1987].

First, pick m ∈ M and let us describe gm M as the graded Lie algebra of left-
invariant vector field on Gm M by identifying any X ∈ gm M with the left-invariant
vector field LX on Gm M given by

LX f (x)=
d
dt f

(
t exp(X) · x

)∣∣
t=0 =

d
dt f (t X · x)

∣∣
t=0, f ∈ C∞(Gm M).



160 RAPHAËL PONGE

This allows us to associate, to any vector field X near m, a unique left-invariant
vector field Xm on Gm M such that

(2-13) Xm
=

{
LX0(m) if X (m) 6∈ Hm,

LX(m) otherwise,

where X0(m) denotes the class of X (m) modulo Hm .

Definition 2.14. The left-invariant vector field Xm is called the model vector field
of X at m.

Let us look at this construction in terms of an H -frame X0, . . . , Xd near m, i.e.,
of a local trivialization of the vector bundle (TM/H)⊕ H . For j, k = 1, . . . , d set

L(X j , Xk)= [X j , Xk] = L jk X0 mod H.

With respect to the coordinate system (x0, . . . , xd) corresponding to X0(m), . . . ,
Xd(m) we can write the product law of Gm M as

x · y =
(
x0 +

1
2

d∑
j,k=1

L jk xj yk, x1+y1, . . . , xd+yd
)
.

The vector fields Xm
j , j =1, . . . , d, in (2-13) are just the left-invariant vector fields

corresponding to the vectors of the canonical basis e1, . . . , ed , i.e., we have

(2-14) Xm
0 = ∂x0 and Xm

j = ∂xj −
( 1

2

d∑
k=1

L jk xk
)
∂x0, 1 ≤ j ≤ d.

In particular, for j, k =1, . . . , d , we have the relations

(2-15) [Xm
j , Xm

k ] = L jk(m)Xm
0 and [Xm

j , Xm
0 ] = 0.

Let X be a vector field near m. Then X is of the form X = a0(x)X0 + · · · +

ad(x)Xd near m, and its model vector field Xm is thus given by the formula

(2-16) Xm
=

{
a0(m)Xm

0 if a0(m) 6= 0,

a1(m)Xm
1 + · · · + ad(m)Xm

d otherwise.

Now, let κ : dom κ → U be a Heisenberg chart near m = κ−1(u) and let
X0, . . . , Xd be the associated H -frame of T U . There exists a unique affine coordi-
nate change v→ψu(v) such thatψu(u)=0 andψu∗X j (0)= ∂xj for j =0, 1, . . . , d.
Indeed, if for j = 1, . . . , d we set X j (x)=

∑d
k=0 B jk(x)∂xk then we have

ψu(x)= A(u)(x − u), where A(u)=
(
B(u)t

)−1
.
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Definition 2.15 [Beals and Greiner 1988].

(1) The coordinates provided byψu are called the privileged coordinates at u with
respect to the H -frame X0, . . . , Xd .

(2) The map ψu is called the privileged coordinate map at u with respect to the
H -frame X0, . . . , Xd .

Remark 2.16. In [Beals and Greiner 1988] the privileged coordinates at u are
called u-coordinates, but in the special case of a Heisenberg manifold they corre-
spond to the privileged coordinates of [Bellaı̈che 1996] and [Gromov 1996].

Notice that in the privileged coordinates at u we can write

X j = ∂xj +

d∑
k=0

ajk(x)∂xk , j = 0, 1, . . . d,

where the ajk’s are smooth functions such that ajk(0)= 0.
Next, on Rd+1 we consider the dilations

(2-17) δt(x)= t ·x = (t2x0, t x1, . . . , t xd), t ∈ R,

with respect to which ∂x0 is homogeneous of degree −2, while ∂x1, . . . , ∂xd are
homogeneous of degree −1. Therefore, we may let

X (u)
0 = lim

t→0
t2δ∗t X0 = ∂x0,(2-18)

X (u)
j = lim

t→0
tδ∗t X j = ∂xj +

d∑
k=1

bjk xk ∂x0, j = 1, . . . , d,(2-19)

where bjk = ∂xk aj0(0) for j, k = 1, . . . , d. In fact, for any vector field X =

a0(x)X0 + · · · + ad(x)Xd we have

lim
t→0

t2δ∗t X = a0(0)X (u)
0 ,

lim
t→0

t−1δ∗t X = a1(0)X (u)
1 + · · · + ad(0)X (u)

d when a0(0)= 0.(2-20)

Observe that X (u)
0 is homogeneous of degree −2 and X (u)

1 , . . . , X (u)
d are homo-

geneous of degree −1. Moreover, for j, k =1, . . . , d , we have

(2-21) [X (u)
j , X (u)

0 ] = 0 and [X (u)
j , X (u)

0 ] = (bk j − bjk)X
(u)
0 .

Thus, the linear space spanned by X (u)
0 , X (u)

1 , . . . , X (u)
d is a graded 2-step nilpo-

tent Lie algebra g(u). In particular, g(u) is the Lie algebra of left-invariant vector
fields over the graded Lie group G(u), consisting of Rd+1 equipped with the grad-
ing (2-17) and the group law

x · y =

(
x0 +

d∑
j,k=1

bk j xj yk, x1+y1, . . . , xd+yd

)
.
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Now, if near m we set L(X j , Xk)= [X j , Xk] = L jk X0 mod H , then we have

(2-22) [X (u)
j , X (u)

k ] = lim
t→0

[
tδ∗t X j , tδ∗t Xk

]
= lim

t→0
t2δ∗t (L jk X0) = L jk(m)X

(u)
0 .

Comparing this with (2-15) and (2-21) shows that g(u) has the same constants
of structure as gm M , and is therefore isomorphic to it. Consequently, the Lie
groups G(u) and Gm M are isomorphic. An explicit isomorphism can be obtained
as follows.

Lemma 2.17. Consider a diffeomorphism φ : Rd+1
→ Rd+1 of the form

(2-23) φ(x0, . . . , xd)= (x0 +
1
2 c jk x j xk, x1, . . . , xd),

where c = (c jk), ct
= c, is a symmetric matrix in Md(R). Then φ is a graded

isomorphism from G(u) onto the Lie group G consisting of Rd+1 equipped with the
group law,

(2-24) x .y = (x0 + y0 +

d∑
j,k=1

(bk j + ck j )x j yk, x1 + y1, . . . , xd + yd).

Moreover, under φ the vector fields X (u)
0 , . . . , X (u)

d transform into

φ∗X (u)
0 =

∂

∂x0
,(2-25)

φ∗X (u)
j = ∂x j +

d∑
k=1

(b jk + c jk)xk∂x0, j = 1, . . . , d.(2-26)

Proof. First, since φ(t ·x)= t ·φ(x) for any t ∈ R, we see that φ is graded. Second,
for x and y in Rd+1 the product φ(x) ·φ(y) is equal to

φ
(
x0 + y0 +

d∑
j,k=1

bk j xj yk, x1 + y1, . . . , xd + yd
)

=
(
x0 + y0 +

d∑
j,k=1

bk j xj yk +
1
2

d∑
j,k=1

cjk(xj+yj )(xk+yk), x1 + y1, . . . , xd + yd
)

=
(
x0 +

1
2

d∑
j,k=1

cjk xj xk + y0 +
1
2

d∑
j,k=1

(
cjk yj yk+(bk j+ck j )xj yk

)
, x1+y1, . . . , xd+yd

)
.

Thus, in view of the law group of G we have φ(x · y)= φ(x) ·φ(y) and φ is a Lie
group isomorphism. Consequently, for each j = 0, . . . , d, the vector field

φ∗X (u)
j = φ′

(
φ−1(x)

)(
X j (φ

−1(x))
)

is left-invariant on G. In fact, as φ′(0)= id and X (u)
j (0)= ∂xj we see that φ∗X (u)

j is
the left-invariant vector field on G that coincides with ∂xj at x = 0. Therefore, by
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substituting bjk + cjk for bjk in (2-18)–(2-19), we get the formulas (2-25)–(2-26)
for φ∗X (u)

j . The lemma is thus proved. �

Since by (2-21) and (2-22) we have L jk = bk j − bjk for j, k = 1, . . . , d , we
deduce from Lemma 2.17 that an isomorphism of graded Lie groups from G(u)

onto Gm M is given by

(2-27) φu(x0, . . . , xd)=
(
x0 −

1
4

d∑
j,k=1

(bjk+bk j)xj xk, x1, . . . , xd
)
.

Definition 2.18. Let εu = φu ◦ψu .

(1) The new coordinates provided by εu are called Heisenberg coordinates at u
with respect to the H -frame X0, . . . , Xd .

(2) The map εu is called the u-Heisenberg coordinate map.

Remark 2.19. The Heisenberg coordinates were first introduced in [Beals and
Greiner 1988], where they were called “antisymmetric u-coordinates” and used as
a technical tool for inverting the principal symbol of a hypoelliptic sublaplacian.

Next, Lemma 2.17 also tells us that

φ∗X (u)
0 = ∂x0 = Xm

0 ,

φ∗X (u)
j = ∂xj −

1
2

d∑
k=1

L jk xk∂x0 = Xm
j , j = 1, . . . , d.

Since φu commutes with the Heisenberg dilations (2-17), by using (2-18) and
(2-19) we get

lim
t→0

t2δ∗t φu∗X (u)
0 = Xm

0 and lim
t→0

tδ∗t φu∗X (u)
j = Xm

j , j = 1, . . . , d.

Combining this with (2-16) and (2-20) shows that, for any vector field X near m,
in Heisenberg coordinates at m we have, as t → 0,

(2-28) δ∗t X =

{
t−2 Xm

+ O(t−1) if X (m) ∈ Hm,

t−1 Xm
+ O(1) otherwise.

Therefore, we obtain:

Proposition 2.20. In Heisenberg coordinates centered at m = κ−1(u), the tangent
Lie group Gm M coincides with G(u).

2.4. Tangent approximation of Heisenberg diffeomorphisms. If φ : M → M ′

is a smooth map between (standard) smooth manifolds, then for any m ∈ M the
derivative φ′(m) yields a tangent linear approximation for φ in local coordinates
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around m. We shall now prove an analogous result in the Heisenberg setting. To
this end, it will be useful to endow Rd+1 with the pseudonorm,

‖x‖ =
(
x2

0 + (x2
1+ . . .+x2

d)
2)1/4, x ∈ Rd+1,

so that, for any x ∈ Rd+1 and any t ∈ R, we have

(2-29) ‖t · x‖ = |t |‖x‖.

From now on we let φ : (M, H)→ (M ′, H ′) be a Heisenberg diffeomorphism
from (M, H) to another Heisenberg manifold (M ′, H ′).

Proposition 2.21. Let m ∈ M and set m′
= φ(m). Then, in Heisenberg coordinates

at m and at m′, the diffeomorphism φ(x) has a behavior near x = 0 of the form

(2-30) φ(x)= φ′

H(0)x +
(
O(‖x‖

3), O(‖x‖
2), . . . , O(‖x‖

2)
)
,

where φH is as in Definition 2.11. In particular, there is no term of the form xj xk ,
1 ≤ j, k ≤ d, in the Taylor expansion of φ0(x) at x = 0.

Proof. Let X0, . . . , Xd be an H -frame of TM over a Heisenberg chart κ near
m and let Y0, . . . , Yd be an H ′-frame of TM ′ over a Heisenberg chart κ1 near
m′. Set u = κ(m), so that in privileged coordinates at u we have X j (0) = ∂xj

for j = 0, . . . , d. As the change of variables φu from privileged coordinates to
Heisenberg coordinates at u is such that φu(0) = 0 and φ′

u(0) = id, we see that in
Heisenberg coordinates at m we also have X j (0)= ∂xj for j = 0, . . . , d. Similarly,
in Heisenberg coordinates at m′ we have Yj (0) = ∂xj for j = 0, . . . , d . As φ′(0)
maps H0 to H ′

0 it then follows that, with respect to the basis ∂x0, . . . , ∂xd , the
matrices of φ′(0) and φ′

H (0) take the forms

(2-31) φ′(0)=

(
a00 0
b A‖

)
and φ′

H (0)=

(
a00 0
0 A‖

)
,

for some scalar a00 6= 0 and some matrices b ∈ Md1(R) and A‖ ∈ GLd(R). In par-
ticular, we have φ′(0)x = φ′

H(0)x + x0(0, b1, . . . , bd). Thus, the Taylor expansion
of φ(x) at x = 0 takes the form

(2-32) φ(x)= φ̂(x)+ θ(x), φ̂(x)=
(
x0 +

1
2

d∑
j,k=1

cjk xj xk, x1, . . . , xd
)
,

where cjk = ∂2
xj,xk

φ0(0) and θ(x)=
(
θ0(x), . . . , θd(x)

)
is such that

θ0(x)= O
(
|x0||x | + |x |

3)
= O(‖x‖

3),(2-33)

θj (x)= O
(
|x0| + |x |

2)
= O(‖x‖

2), j = 1, . . . , d.(2-34)

To complete the proof we need only to show that cjk = 0 for j, k = 1, . . . , d.
Possibly after replacing φ by φ′

H (0)
−1

◦φ we may assume that φ′

H (0)= id. Since
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by Proposition 2.12 φ′

H (0) is a Lie group isomorphism from G = G0 M onto G ′
=

G0 M ′, this implies that G and G ′ have the same group law, namely,

x · y =

(
x0 + y0 +

1
2

d∑
j,k=1

L jk xj xk, x1+ y1, . . . , xd + yd

)
,

where the structure constants L jk are such that

L(X j , Xk)(0)= L(Yj , Yk)(0)= L jk X0(0).

Therefore, using (2-14) we see that, at the level of the model vector fields (2-13),
we have

(2-35)
Xm

0 = Y m′

0 = ∂x0,

Xm
j = Y m′

j = ∂xj −
1
2

d∑
k=1

L jk xk∂x0, j = 1, . . . , d.

As in (2-31) φ′

H (0) is the diagonal part of φ′(0) we have φ∗X0(0)= Yj (0) mod H ′

0
and φ∗X0(0)= Yj (0) for j = 1, . . . , d . Therefore, using (2-13) we obtain

(2-36) (φ∗X j )
m′

= Y m′

j = Xm
j for j = 0, . . . , d.

On the other hand, as we are using Heisenberg coordinates both at m and m′,
from (2-28) we get

Xm
j = lim

t→0
tδ∗t X j and (φ∗X j )

m′

= lim
t→0

tδ∗t φ∗X j = lim
t→0

(δ−1
t ◦φ ◦ δt)∗(tδ∗t X j ).

Since (2-32)–(2-34) imply that limt→0 δ
−1
t ◦φ ◦ δt = φ̂, we see that

(φ∗X j )
m′

= lim
t→0

(δ−1
t ◦φ ◦ δt)∗ lim

t→0
(tδ∗t X j ) = φ̂∗Xm

j .

Combining this with (2-36) we then get

(2-37) φ̂∗Xm
j = (φ∗X j )

m′

= Xm
j for j = 1, . . . , d.

Now, the form of φ̂ in (2-32) allows us to apply Lemma 2.17 to get

φ̂∗Xm
j = ∂xj +

d∑
k=1

(
−

1
2 L jk + cjk

)
xk∂x0 .

Combining with (2-35) and (2-37) then gives L jk = L jk − 2cjk , from which we
deduce that cjk = 0 for j, k = 1, . . . , d . The proof is thus complete. �

Remark 2.22. An asymptotics similar to (2-30) is given in [Bellaı̈che 1996, Propo-
sition 5.20] by using privileged coordinates at u and u′

= κ1(m′), but the leading
term there is only a Lie algebra isomorphism from g(u) onto g(u

′). It is only in
Heisenberg coordinates that we recover the Lie group isomorphism φ′

H (m) as the
leading term of the asymptotics.

Finally, for future use we mention the following version of Proposition 2.21.
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Proposition 2.23. In local coordinates and as t → 0 we have

t−1
· εφ(u) ◦φ ◦ ε−1

u (t ·x)= (εφ(u) ◦φ ◦ ε−1
u )′H(0)x + O(t),

locally uniformly with respect to u and x.

Proof. By combining Proposition 2.21 and (2-29) we get

(2-38) t−1
· εφ(u) ◦φ ◦ ε−1

u (t ·x)= (εφ(u) ◦φ ◦ ε−1
u )′H(0)x + O(t).

A priori this holds only pointwise with respect to u and x . However, the asymp-
totic bound above comes from remainder terms in Taylor formulas at t = 0 for
components of 9(u, x, t) := εφ(u) ◦ φ ◦ ε−1

u (t ·x). Since 9 is smooth with respect
to u and x , it follows that the bounds in (2-38) are locally uniform with respect to
u and x . Hence the result. �

3. The tangent groupoid of a Heisenberg manifold

In this section we construct the tangent groupoid of a Heisenberg manifold (M, H)
as a groupoid encoding the smooth deformation of M × M to G M . In this con-
struction a crucial use is made of Heisenberg coordinates and of the tangent ap-
proximation of Heisenberg diffeomorphisms provided by Proposition 2.21.

3.1. Differentiable groupoids. Here we recall the main definitions on groupoids
and illustrate them with the example of Connes’ tangent groupoid.

Definition 3.1. A groupoid consists of a set G, a distinguished subset G(0)⊂ G, two
maps r and s from G to G(0) (called the range and source maps) and a composition
map,

◦ : G(2)=
{
(γ1, γ2) ∈ G × G

∣∣ s(γ1)= r(γ2)
}

−→ G,

such that the following properties are satisfied:

(1) s(γ1 ◦ γ2)= s(γ2) and r(γ1 ◦ γ2)= r(γ1), for any (γ1, γ2) ∈ G(2);

(2) s(x)= r(x)= x for any x ∈ G(0);

(3) γ ◦ s(γ ) = r(γ ) ◦ γ = γ for any γ ∈ G;

(4) (γ1 ◦ γ2) ◦ γ3 = γ1 ◦ (γ2 ◦ γ3);

(5) each element γ ∈ G has a two-sided inverse γ−1 so that γ ◦ γ−1
= r(γ ) and

γ−1
◦ γ = s(γ ).

The groupoids interpolate between spaces and groups. This aspect especially
pertains in the construction by Connes [1994, Section II.5] (see also [Hilsum and
Skandalis 1987]) of the tangent groupoid G = GM of a smooth manifold M .

At the set-theoretic level we let

G = TM t
(
M × M × (0,∞)

)
and G(0) = M × [0,∞),
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where TM denotes the (total space) of the tangent bundle of M . The inclusion ι of
G(0) into G is given by

(3-1) ι(m, t)=

{
(m,m, t) for t > 0 and m ∈ M,

(m, 0) ∈ TM for t = 0 and m ∈ M .

The range and source maps of G are such that

r(p, q, t)= (p, t) and s(p, q, t)= (q, t) for t > 0 and p, q ∈ M,

r(p, X)= s(p, X)= (p, 0) for t = 0 and (p, X) ∈ TM ,

while the composition law is given by

(p,m, t) ◦ (m, q, t)= (p, q, t) for t > 0 and m, p, q ∈ M,(3-2)

(p, X) ◦ (p, Y )= (p, X + Y ) for t = 0 and (p, X), (p, Y ) ∈ TM .(3-3)

In fact, GM is a b-differentiable groupoid in the sense of the definition below.

Definition 3.2. A b-differentiable groupoid is a groupoid G so that G and G(0) are
smooth manifolds with boundary and the following properties hold:

(1) the inclusion of G(0) into G is smooth;

(2) the source and range maps are smooth submersions, so that G(2) is a subman-
ifold (with boundary) of G × G;

(3) the composition map ◦ : G(2) → G is smooth.

In the case of the tangent groupoid G = GM the topology is such that:

• the inclusions of G(0) and G(1) := M × M × (0,∞) into G are continuous and
G(1) is an open subset of G;

• a sequence (pn, qn, tn) from G(1) converges to (p, X) ∈ TM if, and only if,
lim(pn, qn, tn)= (p, p, 0) and for any local chart κ near p we have

lim
n→∞

t−1
n
(
κ(qn)− κ(pn)

)
= κ ′(p)X.

One can check that this condition does not depend on the choice of a particular
chart near p.

The differentiable structure of GM is obtained by gluing those of TM and of
G(1) = M × M × (0,∞) by means of a chart of the form,

(3-4) γ (p, X, t)=

{(
p, expp(−t X), t

)
if t > 0 and (p, t X) ∈ dom exp,

(p, X) if t = 0 and (p, X) ∈ dom exp.

Here exp : dom exp → M × M denotes the exponential map associated to an ar-
bitrary Riemannian metric on M , so that γ maps an open subset of TM × [0,∞)



168 RAPHAËL PONGE

onto an open neighborhood in G of the boundary TM (see [Connes 1994], [Hilsum
and Skandalis 1987], [Cariñena et al. 1999]).

3.2. The tangent groupoid of a Heisenberg manifold. We now construct the tan-
gent groupoid G = GH M of a Heisenberg manifold (Md+1, H).

As an abstract groupoid GH M is defined as follows. First, we set

G = G M t
(
M × M × (0,∞)

)
and G(0) = M × [0,∞),

where G M denotes the (total space) of the tangent Lie group bundle of M . We
have an inclusion ι : G(0) → G as in (3-1), namely,

ι(m, t)=

{
(m,m, t) for t > 0 and m ∈ M,

(m, 0) ∈ G M for t = 0 and m ∈ M .

The range and source maps are defined similarly to (3-2)–(3-3) by letting

r(p, q, t)= (p, t) and s(p, q, t)= (q, t) for t > 0 and p, q ∈ M,

r(p, X)= s(p, X)= (p, 0) for t = 0 and (p, X) ∈ G M .

In addition, we endow G with the composition law

(p,m, t) ◦ (m, q, t)= (p, q, t) for t > 0 and m, p, q ∈ M,(3-5)

(p, X) ◦ (p, Y )= (p, X.Y ) for t = 0 and (p, X), (p, Y ) ∈ G M .(3-6)

It is immediate to check the properties (1)–(5) of Definition 3.1, noticing that
the inverse map is here given by

(p, q, t)−1
= (q, p, t) for t > 0 and p, q ∈ M,

(p, X)−1
= (p, X−1)= (p,−X) for t = 0 and (p, X) ∈ G M .

Therefore, G = GH M is a groupoid.

Definition 3.3. The groupoid GH M is called the tangent groupoid of (M, H).

We now turn the groupoid G = GH M into a b-differentiable groupoid. First, we
endow G with the topology such that:

• the inclusions of G(0) and G(1) := M × M × (0,∞) into G are continuous and
make G(1) an open subset of G;

• a sequence (pn, qn, tn) from G(1) converges to (p, X) ∈ G M if, and only if,
lim(pn, qn, tn)= (p, p, 0) and for any local Heisenberg chart κ : dom κ → U
near p we have

(3-7) lim
n→∞

t−1
n · εκ(pn)

(
κ(qn)

)
= (εκ(p) ◦ κ)

′

H (p)X,
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where t ·x is the Heisenberg dilation (2-17) and εu denotes the coordinate
change to the Heisenberg coordinates at u ∈ U with respect to the H -frame
of the Heisenberg chart κ (see Definition 2.18).

Lemma 3.4. The condition (3-7) is independent of the choice of Heisenberg chart.

Proof. Assume that (3-7) holds for κ . Let κ1 be another Heisenberg chart near p,
and let φ = κ1 ◦ κ−1. Letting xn = κ(pn) and yn = κ(qn), we have

t−1
n · εκ1(pn)(κ1(qn))= t−1

n · εφ(xn)(φ(yn))(3-8)

= δ−1
tn ◦ εφ(xn) ◦φ ◦ ε−1

xn
◦ δtn

(
tn · εxn (yn)

)
.

On the other hand, since φ is a Heisenberg diffeomorphism it follows from
Proposition 2.23 that as t goes to zero we have

δ−1
t ◦ εφ(x) ◦φ ◦ ε−1

x ◦ δt(y)− ∂y(εφ(x) ◦φ ◦ ε−1
x )H (0) y −→ 0,

locally uniformly with respect to x and y. Since (xn, yn, tn)→
(
κ(p), κ(p), 0

)
and t−1

n · εκ(pn)(κ(qn))→ (εκ(p) ◦ κ)
′

H (p)X , by combining this with (3-8) we get

lim
n→∞

t−1
n · εκ1(pn)(κ1(qn))=

(
εφ(κ(p)) ◦φ ◦ ε−1

κ(p)

)′
H (0)

(
(εκ(p) ◦ κ)

′

H (p)X
)

= (εκ1(p) ◦ κ1)
′

H (p)X.

Hence the lemma. �

Next, in order to endow GH M with a manifold structure we cannot make use
of an exponential chart as in (3-4) because, unless G M is a fiber bundle, the Lie-
algebraic structures of its fibers vary from point to point. Instead we can proceed
as follows.

Let κ : dom κ → U be a local Heisenberg chart near m ∈ M . We get a local
coordinate system near G M| dom κ ⊂ G by letting

γκ(x, X, t)=

{(
κ−1(x), κ−1

◦ ε−1
x (t ·X), t

)
if t > 0 and x, ε−1

x (t ·X) ∈ U ,(
κ−1(x), (κ−1

◦ ε−1
x )′H (0)X

)
if t = 0 and (x, X) ∈ U×Rd+1.

The map γκ is one-to-one from an open neighborhood of the boundary U×Rd+1
×0

in U × Rd+1
× [0,∞). Moreover, γκ is continuous off the boundary. It is also

continuous near any boundary point (x, X, 0) because if a sequence (xn, Xn, tn) ∈
dom γκ with tn > 0 converges to (x, X, 0) then (pn, qn, tn) = γκ(xn, Xn, tn) has
limit

(
κ−1(x), (κ−1)′H (x)X

)
= γκ(x, X, 0), for we have

t−1
n · εκ(pn)(κ(qn))= Xn −→ X = κ ′

H (κ(x))(κ
−1)′H(x)X.
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The inverse γ−1
κ is given by

γ−1
κ (p, q, t)=

(
κ(p), t−1

· εκ(p) ◦ κ(q), t
)

for t > 0,(3-9)

γ−1
κ1
(p, X)=

(
κ(p), κ ′

H (p)X
)

for (p, X) ∈ G M in the range of γκ1 .(3-10)

Therefore, if κ1 is another local Heisenberg chart near m then, in terms of φ =

κ−1
1 ◦ κ , the transition map γ−1

κ ◦ γκ1 is

γ−1
κ ◦ γκ1(x, X, t)=

{(
φ(x), t−1

· εφ(x) ◦φ ◦ ε−1
x (t ·X), t

)
for t > 0,(

φ(x), φ′

H(x)X, 0
)

for t = 0.

This shows that γ−1
κ ◦γκ1(x, X, t) is smooth with respect to x and X and is meromor-

phic with respect to t with at worst a possible singularity at t = 0 only. However,
by Proposition 2.23 we have

lim
t→0

t−1
· εφ(x) ◦φ ◦ ε−1

x (t ·X)= φ′

H (x)X,

so there is no singularity at t = 0. Hence γ−1
κ ◦ γκ1 is a smooth diffeomorphism

between open subsets of Rd+1
×[0,∞). Therefore the coordinates system γκ allows

us to glue together the differentiable structures of G M and G(1) = M × M ×(0,∞)

to turn G into a smooth manifold with boundary.
Next, G(0)=M×[0,∞) is a manifold with boundary and the inclusion ι:G(0)→G

is smooth. In addition, the range map r and the source maps s are submersions
off the boundary. Moreover, in a coordinate system γκ near the boundary of G the
maps r and s are given by

(3-11) r(x, X, t)= (x, t) and s(x, X, t)=
(
ε−1

x (t ·X), t
)
,

which shows that ∂x,tr and ∂X,t s are invertible near the boundary. Hence r and s
are submersions on all G.

Let us now look at the smoothness of the composition map.

Proposition 3.5. The composition map ◦ : G2
→ G is smooth.

Proof. Since ◦ is clearly smooth off the boundary we only need to understand what
happens near the boundary. Using (3-11) we see that in a local coordinate system
γκ near the boundary two elements (x, X, t) and (y, Y, t) can be composed if, and
only if, we have y = εx(t · X). Then for t > 0 using (3-5) and (3-9) we see that
(x, X, t) ◦

(
ε−1

x (t ·X), Y, t
)

is equal to

γ−1
κ

((
κ−1(x), κ−1ε−1

x (t ·X), t
)
◦
(
κ−1ε−1

x (t ·X), κ
−1

◦ ε−1
ε−1

x (t ·X)
(t ·Y ), t

))
= γ−1

κ

((
κ−1(x), κ−1

◦ ε−1
ε−1

x (t ·X)
(t ·Y ), t

))
=
(
x, t−1

· εx ◦ ε−1
ε−1

x (t ·X)
(t ·Y ), t

)
.
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On the other hand, for t =0 from (3-6) and (3-10) we see that (x, X, 0)◦(x, Y, 0)
is equal to

γ−1
κ

((
κ−1, (κ−1

◦ ε−1
x )′H(0)X

)
◦
(
κ−1, (κ−1

◦ ε−1
x )′H(0)Y

))
= γ−1

κ

((
κ−1(x),

(
(κ−1

◦ ε−1
x )′H(0)X

)
·
(
(κ−1

◦ ε−1
x )′H(0)Y

))
= γ−1

κ

(
κ−1(x), (κ−1

◦ ε−1
x )′H(0)(X ·Y )

)
= (x, X ·Y, 0),

where we have used the fact that (κ−1
◦ε−1

x )′H (0) is a morphism of Lie groups (cf.
Proposition 2.12). Therefore, we get

(x, X, t) ◦
(
ε−1

x (t ·X), Y, t
)
=

{(
x, t−1

· εx ◦ ε−1
ε−1

x (t ·X)
(t ·Y ), t

)
for t > 0,

(x, X ·Y, 0) for t = 0.

This shows that ◦ is smooth with respect to x , X , and Y and is meromorphic with
respect to t with at worst a singularity at t = 0. Therefore, in order to show the
smoothness of ◦ at t = 0 it is enough to prove that

(3-12) lim
t→0+

t−1
· εx ◦ ε−1

ε−1
x (t ·X)

(t ·Y )= X · Y.

Lemma 3.6. Let ψu denote the affine change to the privileged coordinates at u as
in Definition 2.15. Then with respect to the law group of the u-group G(u) we have

(3-13) lim
t→0

t−1.ψu ◦ψ−1
ψ−1

u (t.v)
(t.w)= v.w,

locally uniformly with respect to w.

Proof. Let λv(w)= v ·w and µt(w)= t−1
·ψu ◦ψ−1

ψ−1
u (t ·v)

(t ·w). For w= 0 we have

(3-14) µt(0) = t−1
·ψu ◦ψ−1

ψ−1
u (t ·v)

(0) = t−1
·ψu

(
ψ−1

u (t ·v)
)

= v = λv(0).

Remark also that µt and λv are both affine maps and we have

(3-15) µ′

t = δ−1
t ◦ψ ′

u ◦
(
ψ−1
ψ−1

u (t ·v)

)′
◦ δt .

Let X0, . . . , Xd be the H -frame associated to the Heisenberg chart κ (seen as
an H -frame on U = range κ) and set w0 = 2 and w1 = · · · = wd = 1. By (2-18)
and (2-19) we have X j (u)= (ψ−1

u )′(∂xj ) for j = 0, . . . , d . Therefore, we get

(δ∗t ψu∗X j )(v) = δ−1
t ◦ψ ′

u
(
X j (ψ

−1
u ◦ δt(v))

)
= δ−1

t ◦ψ ′

u ◦
(
ψ−1
ψ−1

u (t ·v)

)′
(∂xj ).
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Combining with (3-15) we thus obtain

twj (δ∗t ψu∗X j )(v)= δ−1
t ◦ψ ′

u ◦
(
ψ−1
ψ−1

u (t ·v)

)′
(twj ∂xj )

= δ−1
t ◦ψ ′

u ◦
(
ψ−1
ψ−1

u (t ·v)

)′
◦ δt(∂xj ) = µ′

t(∂xj ).

Now, for j = 1, . . . , d , let X (u)
j be the left-invariant field on G(u) with X (u)

j = ∂xj .
Recall that, by the very definition of G(u) we have X (u)

j = limt→0 twj (δ∗t ψu∗X j ).
Thus,

X (u)
j (v)= lim

t→0
µ′

t(∂xj ).

In fact, as X (u)
j is left-invariant, we have

X (u)
j (v) =

(
λv∗X (u)

j

)
(v) = λ′

v

(
X (u)

j (0)
)

= λ′

v(∂xj ).

Therefore, we have limt→0 µ
′
t(∂xj )= λ′

v(∂xj ) for j = 0, . . . , d , which yields

lim
t→0

µ′

t = λ′

v.

Since by (3-14) we have µt(0) = λv(0) and since µt and λv are affine maps, it
follows that as t goes to zero µt(w)= t−1

·ψu ◦ψ−1
ψ−1

u (t ·v)
(t ·w) converges to λv(w)=

v ·w locally uniformly with respect to w. Hence the lemma. �

Next, let φx be the map (2-27), that is, the transition map from x-coordinates to
Heisenberg coordinates centered at x . Recall that φx is an isomorphism of graded
Lie groups from G(x) to the tangent group Gx = (κ∗G M)x . Therefore, as εx =

φx ◦ψx we get

t−1
· εx ◦ ε−1

ε−1
x (t ·X)

(t ·Y )= δ−1
t ◦φx ◦ψx ◦ψ−1

ψ−1
x ◦φx (t ·X)

◦φε−1
x (t ·X) ◦ δt(Y )

= φx
(
δ−1

t ◦ψx ◦ψ−1
ψ−1

x (t ·v)
◦ δt(wt)

)
,

where we have let v = φ−1
x (X) and wt = φε−1

x (t ·X)(Y ). Combining this with (3-13)
we get

lim
t→0

t−1
· εx ◦ ε−1

ε−1
x (t ·X)

(t ·Y ) = φx(v · lim
t→0

wt) = φx
(
φ−1

x (X) ·φ
−1
x (Y )

)
= X · Y.

This proves (3-12) and thus completes the proof of Proposition 3.5. �

Summarizing all this we have proved:

Theorem 3.7. The groupoid GH M is a b-differentiable groupoid.

Finally, let φ be a Heisenberg diffeomorphism from (M, H) onto a Heisenberg
manifold (M ′, H ′) and let us compare the tangent groupoids GH M and GH ′ M ′. To
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this end consider the map 8H : GH M → GH ′ M ′ given by

8H (p, q, t)= (φ(p), φ(q), t) for t > 0 and p, q ∈ M,(3-16)

8H (p, X)= (φ(p), φ′

H (p)X) for (p, X) ∈ G M .(3-17)

For t > 0 and p, q ∈ M we have

rM ′ ◦8H (p, q, t)= (φ(q), t)=8H ◦ rM(p, q, t),

sM ′ ◦8H (p, q, t)= (φ(p), t)=8H ◦ sM(p, q, t),

while for (p, X) ∈ G M we have

sM ′ ◦8H (p, X)= rM ′ ◦8H (p, X) = (φ(p), 0)

=8H ◦ rM(p, X) = 8H ◦ sM(p, X).

Hence rM ′◦8H =8H◦rM and sM ′◦8H =8H◦sM . Incidentally8H (G
(2)
H M) agrees

with G(2)H ′ M ′.
Moreover, for t > 0 and m, p, q ∈ M we have

8H (m, p, t) ◦M ′ 8H (p, q, t)=
(
φ(m), φ(q), t

)
=8H

(
(m, p, t) ◦M (p, q, t)

)
,

and for p ∈ M and X, Y ∈ G p M we get

8H (p, X) ◦M ′ 8H (p, Y )=
(
φ(p), φ′

H (p)(X ·Y )
)

=8H
(
(p, X) ◦M 8H (p, Y )

)
.

All this shows that 8H is a morphism of groupoids. In fact, the map defined by
replacing φ with φ−1 in (3-16) and (3-17) is an inverse for 8H , so 8H is in fact a
groupoid isomorphism from GH M onto GH ′ M ′.

Next, it follows from (3-16) that8H is continuous off the boundary. To see what
happens at the boundary consider a sequence (pn, qn, tn) converging to (p, X) ∈

G M and let κ be a local Heisenberg chart for M ′ near p′
= φ(p). By pulling

back the H ′-frame of κ by φ we turn κ ◦ φ into a Heisenberg chart so setting
(p′

n, q ′
n, tn)=8H (pn, qn, tn) we get

t−1
n · εκ(p′

n)
(κ(q ′

n))= tn · εκ◦φ(pn)(κ ◦φ(qn))−→ (κ ◦φ)′H (p)X = κ ′

H (p)(φ
′

H (p)X).

Thus, 8H is continuous from GH M to GH ′ M ′.
It also follows from (3-16) that 8H is smooth off the boundary. Moreover, if κ

is a local Heisenberg chart for M ′ then 8H ◦γκ◦φ(p, X, t) coincides for t > 0 with(
φ
(
φ−1

◦ κ−1(x)
)
, φ
(
φ−1

◦ κ−1
◦ ε−1

x (t ·X)
)
, t
)

=
(
κ−1(x), κ−1

◦ ε−1
x (t ·X), t

)
= γκ(x, X, t),
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while for t = 0 it is equal to(
φ
(
φ−1

◦ κ−1(x)
)
, φ′

H
(
φ−1

◦ κ−1(x)
)(
(κ−1

◦ ε−1
x )′H (0)X

)
, 0
)

=
(
κ−1(x), (κ−1

◦ ε−1
x )′H (0)X, t

)
= γκ(x, X, 0).

Hence γκ ◦ 8 ◦ γκ◦φ = id, which shows that 8H is smooth map. Since similar
arguments show that 8−1

H is smooth, it follows that 8H is a diffeomorphism. We
have thus proved:

Proposition 3.8. The map 8H : GH M → GH ′ M ′ given by (3-16)–(3-17) is an iso-
morphism of b-differentiable groupoids. Hence the isomorphism class of b-group-
oids of GH M depends only on the Heisenberg diffeomorphism class of (M, H).
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MOSER–TRUDINGER TRACE INEQUALITIES ON A COMPACT
RIEMANNIAN SURFACE WITH BOUNDARY

YUNYAN YANG

Let (M, g) be a compact smooth Riemannian surface with boundary. In
this paper, we use blowing-up analysis to prove that some Moser–Trudinger
trace inequalities hold on certain function spaces, and that the extremal
functions exist in those function spaces without any additional hypothesis
on (M, g).

1. Introduction and main results

Let (M, g) be a compact smooth Riemannian surface, and H 1,2(M) the completion
of C∞(M) under the norm

‖u‖H1,2(M) =

(∫
M
(|∇u|

2
+ |u|

2) dVg

)1/2

.

A result of N. Trudinger [1967] implies that there exists a constant α such that

sup
‖u‖H1,2(M)=1

∫
M

eαu2
dVg <+∞.

J. Moser proved the following theorems:

Theorem A [Moser 1970/71]. Let � be an open domain in Rn , n ≥ 2. There
exists a constant C which depends only on n such that if u is smooth, has compact
support contained in � and its gradient ∇u satisfies

∫
M |∇u|

ndx ≤ 1, then∫
�

eαn |u|
n/(n−1)

dx ≤ C |�|,

where αn = n(ωn−1)
1/n−1 and ωn−1 is the surface measure of the unit sphere in

Rn . If αn is replaced by any α > αn , the integral on the left-hand is still finite, but
can be made arbitrarily large by an appropriate choice of u.
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Theorem B [Moser 1970/71]. There exists an absolute constant c0 such that if u
is a smooth function on S2 with

∫
S2 |∇u|

2 d S = 1 and
∫

S2 u dVg = 0, then∫
S2

e4πu2
d S ≤ c0.

The constant 4π is the best possible in the same sense as αn in Theorem A.

Recall that Sobolev’s theorems, see e.g. [10], assert existence of imbedding
W 1,p

0 (�) → Lq(�) for 1 < p < n and W 1,p
0 (�) → C0(�) for p > n, where

1/q = 1/p −1/n. Thus Theorem A represents a sharp way to fill in the gap at the
critical exponent p = n. Theorem B plays the same role for the Sobolev theorems
on S2.

Moser’s work was extended in [Adams 1988; Fontana 1993; Nolasco and Taran-
tello 1998; Chang and Yang 1988; Ding et al. 1997]. Generally, the inequalities
obtained by those mathematicians are also called Moser–Trudinger inequalities.

It is well known that Moses–Trudinger inequalities play an important role in the
study of partial differential equations, especially those that arise in geometry and
physics. There has been much work on such inequalities and their applications;
see, for example, [Trudinger 1967; Cohn and Lu 2002; Carleson and Chang 1986;
Chang 1996; Flucher 1992; Lin 1996; Jost and Wang 2001] and the references
therein.

Li and Zhu [1997] established some sharp Sobolev trace inequalities on n-
dimensional compact Riemannian manifolds with smooth boundaries. Recently,
Liu generalized a result of Osgood, Phillips and Sarnak [Osgood et al. 1988]:

Theorem C [Liu 2002]. Let (M, g) be a compact Riemannian surface with bound-
ary ∂M , then there exists a constant C , which depends only on the geometry of M ,
such that for all u ∈ H 1,2(M)

(1–1) log
∫
∂M

eudsg ≤
1

4π

∫
M

|∇u|
2dVg +

∫
∂M

u dsg + C.

The value
1

4π
is sharp.

A strong version of (1–1) has also been obtained:

Theorem D [Li and Liu 2005]. Let (M, g) be a compact Riemannian surface with
boundary ∂M. Then
(1–2) sup∫

M |∇u|
2 dVg=1∫

∂M u d Sg=0

∫
∂M

eπu2
d Sg <+∞,

and
sup∫

M |∇u|
2dVg=1∫

∂M u d Sg=0

∫
∂M

eαu2
d Sg = +∞
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for any α > π . Moreover, there is a function u ∈ C∞(M̄) which satisfies that∫
M |∇u|

2dVg = 1,
∫
∂M u = 0, and∫
∂M

eπu2
d Sg = sup∫

M |∇v|2dVg=1∫
∂M v d Sg=0

∫
∂M

eπv
2
d Sg.

Theorems C and D are proved by blowing-up analysis, a method closely related
to those used by Schoen [1984] in his solution of the Yamabe problem, Escobar and
Schoen [1986] for finding conformal metrics with prescribed curvatures in higher
dimensions, and Ding, Jost, Li and Wang [Ding et al. 1997] in their solution of the
differential equation 1u = 8π − 8πheu on a compact Riemannian surface.

In this paper we study some trace inequalities similar to (1–2). Let

H1 =
{
u ∈ H 1,2(M) :

∫
M |∇u|

2dVg = 1,
∫

M u dVg = 0
}
,

H2 =
{
u ∈ H 1,2(M) :

∫
M(|∇u|

2
+ u2) dVg = 1

}
.

Theorem 1.1. Let (M, g) be a compact Riemannian surface with boundary ∂M.
Then

sup
u∈H1

∫
∂M

eπu2
d Sg <+∞

and supu∈H1

∫
∂M eαu2

d Sg = +∞ for any α > π . Moreover, there is a function
u ∈ C∞(M̄)∩ H1 such that

(1–3)
∫
∂M

eπu2
d Sg = sup

v∈H1

∫
∂M

eπv
2
d Sg.

Our method to prove Theorem 1.1 is similar to that of [Li and Liu 2005]. Pre-
cisely speaking, we divide the proof into two steps. Firstly, for any ε > 0, let
uε ∈ H1 be a maximizer of the functional

Jπ−ε(u)=

∫
∂M

e(π−ε)u2
d Sg

on the space H1. Let G be a Green’s function on M . Then G takes the form

G(x, p)= −
1
π

log r(x)+ Ap + O(r)

in a normal coordinate system around p, where r(x) = dist(x, p) and Ap is a
constant. If the sequence {uε} blows up, i.e.,

|uε|(xε)= sup
x∈M

|uε|(x)→ +∞ as ε→ 0,
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we obtain

(1–4) sup
u∈H1

∫
∂M

eπu2
d Sg ≤ Vol ∂M + 2πeπ Ap .

In the second step, we construct a blowing up sequence φε ∈ H1 such that

Jπ (φε)=

∫
∂M

eπφ
2
ε d Sg > Vol ∂M + 2πeπ Ap

for sufficiently small ε. This contradicts step 1, and implies that blowing up cannot
occur. The weak compactness of L p(M) (p>1) gives the existence of the extremal
function, i.e., (1–3) holds.

It should be mentioned that xε lies on ∂M naturally in [Li and Liu 2005] because
uε is a harmonic function there. But in our case, passing to any subsequence, we
cannot assume xε ∈ ∂M and uε(xε) → +∞ simultaneously. Also, in the second
step, the blowing up sequence we constructed (see Section 5) is different from that
of [Li and Liu 2005].

Using the same idea described above, we also obtain:

Theorem 1.2. Let (M, g) be as in Theorem 1.1. Then

sup
u∈H2

∫
∂M

eπu2
d Sg <+∞

and supu∈H2

∫
∂M eαu2

d Sg = +∞ for any α > π . Moreover, there is a function
u ∈ C∞(M)∩ H2 such that∫

∂M
eπu2

d Sg = sup
u∈H2

∫
∂M

eπv
2
d Sg.

Clearly, Theorem C is a corollary of Theorem D. Similar results can also be
derived from Theorems 1.1 and 1.2; for instance, we can substitute

∫
M u dVg for∫

∂M u dsg, or (1/4π) ‖u‖H1,2(M) for (1/4π)
∫

M |∇u|
2dVg +

∫
∂M u dsg in the right

side of inequality (1–1). Theorems 1.1 and 1.2 are independent of Theorems C
and D. They are more interesting than Theorem C because we obtain boundary
estimates without direct boundary conditions.

For simplicity, we often omit the volume elements dVg and d Sg when we write
the integrals on M and ∂M respectively, and sometimes denote different constants
by the same c. The reader can distinguish them easily from the context.

Most of the remainder of this paper is devoted to the proof of Theorem 1.1.
In Section 2, we establish two regularity lemmas for use later. In Section 3, we
prove that π is the best constant. And we derive an upper bound of Jπ (u) under the
assumption that uε blows up in Section 4. A blowing up sequence φε is constructed
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to reach a contradiction in Section 5, and this completes the proof of Theorem 1.1.
In Section 6 we outline the proof of Theorem 1.2.

2. Regularity lemmas

Lemma 2.1. Suppose f ∈ Lq(M), h ∈ H 1,q(M), 1<q<2, and 2< p<2q/(2−q).
let u ∈ H 1,2(M) be a solution of the equation 1u = f in M̊

∂u
∂n

= h on ∂M,

where M̊ denotes the interior of M. Then u lies in L∞(M) and we have

‖u‖L∞(M) ≤ c
(
‖ f ‖Lq (M) + ‖h‖L p(M) + ‖∇h‖Lq (M) + ‖u‖L2(M)

)
,

where c is a constant depending only on M.

Proof. We use De Giorgi iteration. Choose a C∞ vector field ζ whose restriction
on ∂M is the outward unit normal vector field. By Stokes’ theorem we have, for
any ϕ ∈ C∞(M),

(2–1) −

∫
M

∇u∇ϕ =

∫
M

f ϕ−

∫
∂M
ϕ
∂u
∂n

=

∫
M

f ϕ−

∫
M

div(ϕhζ )

=

∫
M

(
f − h div ζ − 〈ζ,∇h〉g

)
ϕ−

∫
M

h〈ζ,∇ϕ〉g

≡

∫
M

f 0ϕ−

∫
M

〈Eh,∇ϕ〉g,

where 〈 · , · 〉 denotes the Riemannian inner product, f 0
= f − h div ζ − 〈ζ,∇h〉g,

and Eh = hζ . Clearly, f 0
∈ Lq(M) and Eh ∈ L p(M).

For 0< k <+∞, define vk = (u −k)+, Mk = {x ∈ M : vk(x) > 0}. By Hölder’s
inequality,

(2–2) |Mk | ≤
‖u‖L1(M)

k
≤

|M |
1/2

‖u‖L2(M)

k
,

where |Mk | and |M | represent the 2-dimensional measure of Mk and M respec-
tively. Inserting ϕ = vk into (2–1), one has
(2–3)∫

M
|∇vk |

2
=

∫
M

∇u∇vk = −

∫
M

f 0vk +

∫
M

〈Eh,∇vk〉g

≤

(∫
M
( f 0)q

)1/q(∫
M
v

q ′

k

)1/q ′

+

(∫
Mk

|Eh|
2
)1/2(∫

M
|∇vk |

2
)1/2

,
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where | · | =
√

〈 · , · 〉 and 1/q ′
+1/q = 1. Since 1< q < 2, we have q ′> 2. Choose

r sufficiently large that 1/q ′
− 1/r > 1/2 − 1/p and r(1/2 − 1/p) > 1. By the

Sobolev imbedding theorem,

‖vk‖Lr (M)≤ c(‖vk‖L2(M)+‖∇vk‖L2(M))≤ c(‖vk‖Lr (M)|Mk |
1/2−1/r

+‖∇vk‖L2(M)),

where c is a constant depending only on M .
Without loss of generality we assume that ‖u‖L2(M) = 1. According to (2–2),

there exists a large integer number k0 such that c|Mk |
1/2−1/r < 1 for k > k0. Hence

(2–4) ‖vk‖Lr (M) ≤ c‖∇vk‖L2(M) for k ≥ k0.

By (2–3), we have

‖∇vk‖
2
L2(M) ≤ ‖ f 0

‖Lq (M)‖vk‖Lr (M)|Mk |
1/q ′

−1/r
+ ‖Eh‖L2(Mk)‖∇vk‖L2(M)

≤ c‖ f 0
‖Lq (M)|Mk |

1/q ′
−1/r

‖∇vk‖L2(M) + ‖Eh‖L2(Mk)‖∇vk‖L2(M),

which gives

‖∇vk‖L2(M) ≤ c‖ f 0
‖Lq (M)|Mk |

1/q ′
−1/r

+ ‖Eh‖L p(M)|Mk |
1/2−1/p.

Note that 1/q ′
− 1/r > 1/2 − 1/p. We have

(2–5) ‖∇vk‖L2(M) ≤ cτ |Mk |
1/2−1/p,

where τ = ‖ f 0
‖Lq (M) + ‖Eh‖L p(M).

On the other hand, for h > k, we have∫
M
vr

k ≥

∫
Mh

(u − k)r ≥ |Mh|(h − k)r .

Combining this with (2–4) and (2–5), we get |Mh| ≤ K (h − k)−r
|Mk |

β , with K ≡

c̃τ r for some constant c̃, β ≡ (1/2 − 1/p)r > 1, and k0 < k < h < h1 < +∞ for
any sufficiently large h1. By [Troianiello 1987, Lemma 2.9], |Mk0+k̂ | = 0 for some
k̂ > 0; that is, u ≤ k0 + k̂ in M . With the same argument, one can deduce that
−u ≤ k0 + k̂ in M . �

Theorem 3.17 of [Troianiello 1987] yields an immediate consequence:

Lemma 2.2. Suppose that f ∈ L p(M) and h ∈ H 1,p(M) for some p ≥ 2, and that
u ∈ H 1,2(M) is a solution of  1u = f in M̊

∂u
∂n

= h on ∂M.

Then u ∈ H 2,p(M).
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3. The best constants

We now prove that the best constant in Theorem 1.1 is π . Here best means that

supu∈H1

∫
∂M eαu2

<+∞ for α < π,

supu∈H1

∫
∂M eαu2

= +∞ for α > π.

The following lemma is well known:

Lemma 3.1. Let M be a compact Riemannian surface with boundary. Then there
exists a positive number α such that supu∈H1

∫
M eαu2

<∞.

Lemma 3.2. Set α2 = sup
{
α : supu∈H1

∫
M eαu2

<+∞
}
. Then α2 = 2π .

Proof. Step 1. We first prove that α2 ≥ 2π .
Suppose α2<2π . There exists a sequence uε ∈H1 such that

∫
M e(α2+ε)u2

ε →+∞

as ε→ 0. One can see that there exists a p ∈ M such that for any r > 0,

(3–1)
∫

Br (p)
e(α2+ε)u2

ε → +∞ as ε→ 0,

where Br (p) is a geodesic ball centered at p with radius r . For otherwise, using a
covering argument, one has

∫
M e(α2+ε)u2

ε ≤ c for ε small enough, which contradicts
the definition of uε. By the Poincaré inequality, {uε} is bounded in H 1,2(M), and
so is {|uε|}. Hence there is u ∈ H 1,2(M) such that |uε|⇁ u (weak convergence) in
H 1,2(M) and |uε| → u (strong convergence) in L2(M) as ε → 0. For any η > 0,
we claim that

(3–2) lim
ε→0

∫
M

|∇(|uε| − η)+|
2
= 1,

where (|uε| − η)+ is the positive part of |uε| − η. Suppose (3–2) does not hold.
Clearly, lim infε→0

∫
M |∇(|uε| − η)+|

2 < 1. By the definition of α2, passing to a
subsequence, we can choose α′ > α2 such that∫

M
exp

(
α′

(
(|uε| − η)+ −

1
Vol M

∫
M
(|uε| − η)+

)2)
≤ c

for sufficiently small ε. Using the Poincaré inequality and the inequality ab ≤

δa2
+b2/(4δ) for any δ>0, we can choose some ε′>0 such that α′/(1+ε′)>α2 and∫

M eα
′u2
ε/(1+ε′)

≤ c, which contradicts (3–1) for ε small enough, and implies (3–2).
Let vε = min{|uε|, η}. Then vε is bounded in H 1,2(M). So there exists v ∈

H 1,2(M) such that vε ⇁ v weakly in H 1,2(M) and vε → v strongly in L2(M).
Obviously,

(3–3) |uε| = vε + (|uε| − η)+.
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Note that

1 =

∫
M

|∇uε|2 ≥

∫
M

∣∣∇|uε|
∣∣2 =

∫
M

|∇vε|
2
+

∫
M

∣∣∇(|uε| − η)+∣∣2.
By (3–2), we have

∫
M |∇vε|

2
→ 0 as ε → 0. By the Poincaré lemma,

∫
M |vε −

v̄ε|
2

→ 0 as ε → 0, where v̄ε = (Vol M)−1
∫

M vε. Note that vε → v strongly in
L2(M). One has v = v̄ almost everywhere in M . From (3–3), we know that

u = v+ (u − η)+ a.e. in M.

By an appropriate choice of η, one easily derives that v = 0 and u = 0 a.e. in M .
Recall that |uε| → u strongly in L2(M). One has

(3–4) |uε| → 0 strongly in L2(M) as ε→ 0.

Now we turn to (3–1). Take p ∈ ∂M . Choose an isothermal coordinate system
(U, ψ) around p such that ψ : U → B+

2r . Choose a cut-off function ϕ ∈ C∞(M)
such that ϕ ≡ 1 on Br (p) and ϕ ≡ 0 outside B4r/3(p). By (3–4), we have∫

Br (p)
|∇(ηuε)|2 ≤

∫
M

|∇(ηuε)|2 ≤ 1 + ε′′

for some ε′′> 0 with 2π/(1+ε′′)>α2, provided that ε is sufficiently small. Define

ũε(s, t)=

{
(ηuε)(s, t) for t ≥ 0,

(ηuε)(s,−t) for t < 0.
Then

∫
B2r

|∇ũε|2 ds dt ≤ 2+2ε′′. By Moser’s inequality, we then obtain the bound∫
B2r

e4π ũ2
ε/(2+2ε′) ds dt ≤ c. Hence

(3–5)
∫

Br (p)
e2πu2

ε/(1+ε′)
≤ 2

∫
B2r

e4π ũ2
ε/(2+2ε′) ds dt ≤ 2c

for sufficiently small r . This contradicts (3–1).
When p is an interior point in M , one can get a contradiction as above without

any difficulty. In this case, ũε is not needed any more; one need only consider uε
itself. This completes the proof of step 1.

Step 2. To prove the opposite inequality, α2 ≤ 2π , take any p ∈ ∂M and choose
an isothermal coordinate system around p. Set

(3–6) uε =


−

√
1

2π
log 1

ε
in Bδ√ε(p),

√
2√

−π log ε
log r

δ
in Bδ(p) \ Bδ√ε(p),

Cεϕ in M \ Bδ(p),
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where ϕ ∈ C∞

0 (M\Bδ(p)), 0 ≤ ϕ ≤ 1, and Cε is chosen to satisfy
∫

M uε = 0. It is
easy to check that ∫

M
|∇uε|2 → 1 as ε→ 0

and that∫
M

exp
(
α
( uε
‖uε‖L2

)2
)

≥ exp
(

α

2π‖∇uε‖2
L2

log
1
ε

)
Vol Bδ√ε ≥ Cε1−α/(2π‖∇uε‖2

L2)

for any α > 2π ; the latter lower bound approaches +∞ as ε → 0. Therefore
α2 ≤ 2π . �

Lemma 3.3. Set Jα(u)=
∫
∂M eαu2

. Then

sup
u∈H1

Jα(u) <+∞ for α < π and sup
u∈H1

Jα(u)= +∞ for α > π .

Proof. Take a smooth vector field ζ whose restriction on ∂M is the outward unit
normal vector field. Using the divergence theorem and Lemma 3.2, one has∫

∂M
e(π−ε)u2

=

∫
M

div(ζe(π−ε)u2
)=

∫
M

(
div(ζ )+ 2(π − ε)u〈ζ,∇u〉g

)
e(π−ε)u2

≤ C
(

1 +

∫
M

|∇u||u|e(π−ε)u2
)

≤ C
(

1 + ‖∇u‖L2(M)‖u‖L p(M)‖e(π−ε)u2
‖L(2π−ε)/(π−ε)(M)

)
for all u ∈ H1, where 1/p +1/2+ (π − ε)/(2π − ε)= 1. Combining this estimate
with the Sobolev imbedding theorem, one has supu∈H1

Jπ−ε(u) < +∞ for any
ε > 0, which implies that supu∈H1

Jα(u) <+∞ for any α < π .
To complete the proof of the lemma, we employ (3–6) to check that for any

α > π , Jα(uε) diverges to +∞ as ε→ 0. �

4. Blowing up analysis

We now use the method of blowing up to prove (1–4). The same method has also
been used in [Li 2001; Li 2005].

The proof consists of several lemmas.

Lemma 4.1. The functional Jπ−ε(u) defined in the space H1 admits a smooth
maximizer uε ∈ H1.

Proof. It is obvious that there exists uε ∈ H1 such that

Jπ−ε(uε)= sup
u∈H1

Jπ−ε(u).
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The function uε satisfies the Euler–Lagrange equation

(4–1)


1uε =

µε
2λε

in M̊,

∂uε
∂n

=
π−ε

λε
uεe(π−ε)u2

ε on ∂M,

where

(4–2) λε = (π−ε)

∫
∂M

u2
εe
(π−ε)u2

ε and µε =
2(π−ε)

Vol M

∫
∂M

uεe(π−ε)u2
ε .

Write h(uε)= (π − ε)/λεuεe(π−ε)u2
ε . By the Orlicz space imbedding (see [Struwe

1988]), eu2
ε ∈ L p(M) for any p > 0. Hence h(uε) ∈ H 1,q(M) for any 1 < q < 2.

By Lemma 2.1 we have uε ∈ L∞(M), hence h(uε) ∈ H 1,2(M). By Lemma 2.2,
uε ∈ H 2,2(M). The Sobolev imbedding theorem then implies that h(uε)∈ H 1,p(M)
for some p > 2. Again, by Lemma 2.2, uε ∈ H 2,p(M). The Sobolev imbedding
theorem gives uε ∈ C1(M). Using Lemma 2.2 repeatedly, we conclude that uε ∈

C∞(M). �

Lemma 4.2. lim infε→0 λε > 0.

Proof. The following estimate is elementary

Vol ∂M < sup
u∈H1

∫
∂M

eπu2
= lim
ε→0

∫
∂M

e(π−ε)u2
ε ≤ Vol ∂M + lim inf

ε→0
λε,

which gives lim infε→0 λε > 0. �

Lemma 4.3. µε/λε is bounded with respect to ε.

Proof. By (4–2) and Lemma 4.2, we have

|µε|

λε
≤

2(π − ε)

Vol M

∫
∂M

|uε|
λε

e(π−ε)u2
ε ≤

2(π − ε)

Vol M

(
eπ−ε

λε
+

1
π − ε

)
≤ C. �

Write cε = |uε|(xε) = maxx∈M(x). If {cε} is bounded, then by the standard
elliptic estimate with respect to Equation (4–1), there exists u ∈ H1 ∩ C∞(M)
such that uε → u in C∞(M) as ε → 0, and Theorem 1.1 follows immediately.
Henceforth we assume cε → +∞ as ε→ 0.

Passing to a subsequence, we may assume that µε ≥ 0 for all ε > 0, for oth-
erwise we consider −uε instead of uε in (4–1)–(4–2). We consider separately the
possibilities that {uε(xε)} approaches +∞ or −∞ or as ε→ 0.

Take first the case uε(xε) → +∞. Applying the maximum principle to (4–1),
we see that xε ∈ ∂M . Passing to a subsequence, we may assume xε → p for some
p ∈ ∂M .
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Lemma 4.4. Define

(4–3) rε =
1

π−ε

λε

c2
ε

e−(π−ε)c2
ε .

Then rεcε → 0 as ε→ 0.

Proof. By the first equality in (4–2), we have

1 =
π−ε

λε

∫
∂M

u2
εe
(π−ε)u2

ε ≤
π−ε

λε
eπc2

ε

∫
∂M

u2
ε ≤ c

π−ε

λε
eπc2

ε

for some constant c, where we have used the Sobolev trace imbedding theorem.
This implies that rεcε → 0 as ε→ 0. �

Choose an isothermal coordinate system (U, φ) near p such that φ(p) = 0, φ
maps U to R2

+
:= {x = (x1, x2) ∈ R2

: x2 > 0} and φ(U ∩ ∂M)⊂ ∂R2
+

.
Set

(4–4) ψε(x)= uε(xε + rεx)/cε, ϕε(x)= cε
(
uε(xε + rεx)− cε

)
.

Lemma 4.5. ψε → 1 in C2
loc(R

2
+) as ε→ 0.

Proof. By (4–1), for ε is sufficiently small we have
1ψε =

r2
ε

cε
µε
2λε

in B+

R (0),

∂ψε
∂n

=
rε
cε
π−ε

λε
uεe(π−ε)u2

ε on BR(0)∩ ∂R2
+
,

for any R > 0. As in the proof of Lemma 4.1, it is not hard to see that ψε → 1 in
C2(B+

R/2(0)) as ε→ 0. �

Lemma 4.6. The functions ϕε converge in C2
loc(R

2
+) as ε→ 0 to some ϕ satisfying

−1R2ϕ = 0 in R2
+

∂ϕ

∂n
= e2πϕ on ∂R2

+
,

ϕ(0)= supϕ = 0.

Proof. By (4–1), we have
1ϕε(x)= cεr2

ε

µε

2λε
in B+

R (0),

∂ϕε

∂n
=

uε
cε

exp
(
(π−ε)ϕε

(
1 +

uε
cε

))
on ∂R2

+
∩ BR(0)

for any R > 0. Using Lemma 2.2, we have ϕε → ϕ in C2(B+

R/2(0)) as ε → 0 for
some u ∈ C2(B+

R/2(0)). Clearly u satisfies the required conditions. �
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It is not difficult to see that∫
BR(0)∩∂R2

+

e2πϕ
≤ lim inf

ε→0

∫
BRrε (xε)∩∂M

π−ε

λε
u2
εe
(π−ε)u2

ε ≤ 1,

which gives ∫
∂R2

+

e2πϕ
≤ 1.

By a result in [Li and Zhu 1995], we have

ϕ(x)= −
1

2π
log
(
π2x2

1 + (1 +πx2)
2).

A direct calculation gives ∫
∂R2

+

e2πϕ
= 1.

Following [Li and Liu 2005], we define uc
ε = min{

cε
c , uε}.

Lemma 4.7. For any c > 1, we have limε→0
∫

M |∇uc
ε|

2
=

1
c .

Proof. Using Stokes’ formula, (4–1) and Lemma 4.5, we have∫
M

∣∣∣∣∇(uε −
cε
c

)+∣∣∣∣2 =

∫
M

∇uε∇
((

uε −
cε
c

)+)
=

∫
∂M

(
uε −

cε
c

)+ ∂uε
∂n

−

∫
M

(
uε −

cε
c

)+
1uε

=

∫
∂M

(
uε −

cε
c

)+ π−ε

λε
uεe(π−ε)u2

ε −

∫
M

(
uε −

cε
c

)+ µε
2λε

≥

∫
∂M∩BRrε(xε)

(
uε − cε/c

)+ π−ε

λε
uεe(π−ε)u2

ε + oε(1)

=
c − 1

c

∫
∂R2+∩BR(0)

e2πϕ
+ oε(R)+ oε(1),

where oε(1) → 0 as ε → 0, and oε(R) → 0 for any fixed R as ε → 0. Letting
ε→ 0 first, and then R → +∞, we obtain

lim inf
ε→0

∫
M

∣∣∣∣∇(uε −
cε
c

)+∣∣∣∣ 2

≥
c − 1

c
.

With the same argument, we get

lim inf
ε→0

∫
M

|∇uc
ε|

2
≥

1
c
.
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Note that since ∫
M

∣∣∣∣∇(uε −
cε
c

)+∣∣∣∣2 +

∫
M

|∇uc
ε|

2
= 1,

we have lim infε→0
∫

M |∇uc
ε|

2
= c−1. �

Lemma 4.8. Under the assumption that cε → +∞ as ε→ 0, we have the estimate

sup
u∈H1

Jπ (u)≤ Vol ∂M +
1
π

lim sup
ε→0

λε

c2
ε

.

Proof. For any c > 1, we have∫
∂M

e(π−ε)u2
ε =

∫
∂M∩{uε≤cε/c}

e(π−ε)u2
ε +

∫
∂M∩{uε>cε/c}

e(π−ε)u2
ε

≤

∫
∂M

e(π−ε)(uc
ε)

2
+ c2λε

c2
ε

∫
∂M

u2
ε

λε
e(π−ε)u2

ε .

By Lemma 4.7, according to step 1 in the proof of Lemma 3.2, one can see that
uc
ε → 0 a.e. in M as ε→ 0. Substituting uc

ε for u in (3–5), one immediately has∫
∂M

e(π−ε)(uc
ε)

2
→ Vol ∂M as ε→ 0.

Hence

sup
u∈H1

Jπ (u)= lim
ε→0

∫
∂M

e(π−ε)u2
ε ≤ Vol ∂M +

c2

π
lim sup
ε→0

λε

cε
.

Letting c → 1, the conclusion of the lemma follows. �

The next result is an immediate consequence of Lemma 4.8:

Corollary 4.9. λε/cε → +∞ as ε→ 0.

Lemma 4.10. For any φ ∈ C∞(∂M), we have

(4–5) lim
ε→0

∫
∂M
φ
π−ε

λε
cεuεe(π−ε)u2

ε = φ(p).

Proof. For any fixed c > 1, we partition ∂M into its intersections with

D1 =

({
uε >

cε
c

}
\ BRrε(xε)

)
, D2 =

({
uε ≤

cε
c

}
\ BRrε(xε)

)
, D3 = BRrε(xε).

Denote by I1, I2, I3 the partial integrals in (4–5) taken over D1, D2, D3. Then

|I1| ≤ c sup
∂M

|ϕ|

∫
∂M∩({uε> cε

c }\BRrε (xε))

π − ε

λε
u2
εe
(π−ε)u2

ε

≤ c sup
∂M

|ϕ|

(
1 −

∫
∂M∩BRrε (xε)

π − ε

λε
u2
εe
(π−ε)u2

ε

)
≤ c sup

∂M
|ϕ|

(
1 −

∫
∂B+

R (0)∩∂R2
+

e2πϕ
+ oε(R)

)
,
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where oε(R)→ 0 as ε→ 0 for any fixed R. Letting ε→ 0 first, and then R →+∞,
one has I1 → 0. Next,

|I2| ≤ (π − ε) sup
∂M

|ϕ|
cε
λε

∫
∂M

|uε|e(π−ε)(uc
ε)

2

≤ π sup
∂M

|ϕ|
cε
λε

‖uε‖L(c+1)/(c−1)(∂M)‖e(π−ε)(uc
ε)

2
‖L(c+1)/2(∂M)

≤ C̃ sup
∂M

|ϕ|
cε
λε
,

where C̃ is a constant depending on M and c, here we have used Hölder’s inequality
and Sobolev imbedding theorem. By Corollary 4.9, we get I2 → 0 as ε → 0.
Finally,

I3 =

∫
∂M∩BRrε (xε)

ϕ
π−ε

λε
cεuεe(π−ε)u2

ε =

∫
∂R2

+∩∂B+

R (0)
ϕ

uε
cε

e(π−ε)ϕε(1+uε/cε)

= ϕ(p)
(∫

∂B+

R (0)∩∂R2
+

e2πϕ
+ oε(R)

)
.

As before, letting ε → 0 first, then R → +∞, we get I3 → ϕ(p). Combining all
three estimates, we get the conclusion of the lemma. �

Lemma 4.11. |∇uε|2 ⇁ δp weakly in the sense of measure.

Proof. Set

A =

{
q ∈ M : lim

r→0
lim inf
ε→0

∫
Br (q)

|∇uε|2 > 0
}
.

We claim that A contains only one point.
Suppose not. Then, for any q ∈ M , we have limr→0 lim infε→0

∫
Br (q)

|∇uε|2< 1.
There exist positive numbers r and δ such that∫

Br (q)
|∇uε|2 ≤ δ(q) < 1.

With the assumption cε → +∞ as ε→ 0, step 1 in the proof of Lemma 3.2 implies
that uε → 0 in L2(M), and hence

∫
Br (q)

uε → 0 as ε→ 0. It is not difficult to see
that there exists a constant α(q) > π such that∫

∂M∩∂Br (q)
eα(q)u

2
ε ≤ Cq

for some constant Cq depending on q . By a covering argument, there exists an
α > π such that ∫

∂M
eαu2

ε ≤ C
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for some constant C . This contradicts the choice of uε, and our claim follows.
Next we claim that A = {p}. Let q be the unique point in A, and suppose q 6= p.

Choose a smooth function ψ such that ψ(p) 6= ψ(q). By Stokes’ theorem and
Equation (4–1), we have∫

M
ψ |∇uε|2 =

∫
∂M
ψ
π − ε

λε
u2
εe
(π−ε)u2

ε −

∫
M

uε
µε

2λε
−

∫
M

uε∇ψ∇uε.

Clearly the last two terms here tend to 0 as ε→ 0. As in the proof of Lemma 4.10,
we can show that

lim
ε→0

∫
∂M
ψ
π − ε

λε
u2
εe
(π−ε)u2

ε = ψ(p).

On the other hand, limε→0
∫

M ψ |∇uε|2 = ψ(q). Hence ψ(p) = ψ(q), which
contradicts the choice of ψ . This completes the proof of the lemma. �

Lemma 4.12. cεuε ⇁ G weakly in H 1,q(M) for any q : 1 < q < 2. For any
�b M \ {p}, we have cεuε → G in C∞(�), where G satisfies

(4–6)


−1G = δp −

1
Vol M

in M,∫
M

G = 0, ∂G
∂n

∣∣∣
∂M\{p}

= 0.

Proof. By Equation (4–1), we have
1(cεuε) = cε

µε

2λε
in M,

∂(cεuε)
∂n

=
π − ε

λε
cεuεe(π−ε)u2

ε on ∂M.

Integrating both sides on M , one has∫
M

cε
µε

2λε
=

∫
M
1(cεuε)=

∫
∂M

π − ε

λε
cεuεe(π−ε)u2

ε .

By Lemma 4.10, we immediately get cεµε/(2λε)→ 1/Vol M as ε→ 0.
For any q in the range 1< q < 2, denote its conjugate by q ′, so 1/q +1/q ′

= 1.
It is well known that∫

M
|∇(cεuε)|q ≤ sup

{∫
M

∇φ∇(cεuε) dVg : ‖φ‖H1,q′ = 1
}
.
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The Sobolev embedding theorem yields ‖φ‖C0(M) ≤ C , where C is a constant
depending only on M . Using the divergence theorem and (4–1), we have∫

M
∇φ ∇(cεuε)=

∫
∂M
φ
∂(cεuε)
∂n

−

∫
M
φ1(cεuε)

=

∫
∂M
φ
π−ε

λε
cεuεe(π−ε)u2

ε − cε
µε

2λε

∫
M
φ.

By Lemma 4.10 again, we obtain∫
M

|∇(cεuε)|q ≤ C‖φ‖C0(M) ≤ C.

This, together with Poincaré’s inequality, implies that cεuε is bounded in H 1,q(M).
Hence there exists G ∈ H 1,q(M) such that cεuε⇁G weakly in H 1,q(M) as ε→ 0.
For any φ ∈ C∞(M), we have∫

M
∇φ∇(cεuε)=

∫
∂M
φ
∂(cεuε)
∂n

−

∫
M
φ1(cεuε)

=

∫
∂M
φ
π − ε

λε
cεuεe(π−ε)u2

ε − cε
µε

2λε

∫
M
φ

−→ φ(p)−
1

Vol M

∫
M
φ as ε→ 0.

Hence ∫
M

∇G ∇φ = φ(p)−
1

Vol M

∫
M
φ,

and Equation (4–6) holds.
For any � b M \ {p}, we choose a smooth function η on M such that η ≡ 1

on �, and η ≡ 0 near p. By Lemma 4.11, ηuε → 0 in L2(M) as ε → 0. This,
together with the convergence uε → 0 in L2(M) as ε → 0, implies that e(π−ε)u2

ε

is uniformly bounded in Lr (�) with respect to ε for any r > 1. Standard elliptic
estimates imply that cεuε → G in Ck(�) for any positive integer k. This completes
the proof of the lemma. �

In the following, we use the capacity technique to derive the upper bound of
Jπ (u). Take an isothermal coordinate system (U, φ) near p such that φ(p) = 0
and φ maps U inside R2

+
and U ∩ ∂M inside ∂R2

+
. In this coordinate system

we can write g = e2 f (dx2
1 + dx2

2), with f (0) = 0. Set φ(xε) = (x1
ε , 0). Let

Br = Br (x1
ε , 0)⊂ R2 be the standard ball centered at (x1

ε , 0) with radius r . Define

iε = inf
∂B+

Rrε \∂R2
+

uε ◦φ−1, sε = sup
∂B+

δ \∂R2
+

uε ◦φ−1, ũε = max{sε,min{uε ◦φ−1, iε}}.



MOSER–TRUDINGER TRACE INEQUALITIES 193

Clearly,

(4–7)
∫

B+

δ \B+

Rrε

|∇ũε|2 ≤

∫
φ−1(B+

δ )\φ
−1(B+

Rrε )

|∇uε|2

≤ 1 −

∫
φ−1(B+

δ )

|∇uε|2 −

∫
φ−1(B+

Rrε )

|∇uε|2.

Define a function space

3ε =

{
u ∈ H 1,2(B+

δ \ B+

Rrε) : u|∂B+

δ \∂R2
+

= sε, u|∂B+

Rrε \∂R2
+

= iε,
∂u
∂n

∣∣∣
∂R2

+

= 0
}
.

It is easy to see that inf
u∈3ε

∫
B+

δ \B+

Rrε

|∇R2u|
2 is attained by the unique solution of the

equation {
18= 0 in B+

δ \ B+

Rrε

8 ∈3ε.

One can check that

8=
sε(log r − log(Rrε))+ iε(log δ− log r)

log δ− log(Rrε)
,

whence

(4–8)
∫

B+

δ \B+

Rrε

|∇8|
2
= π

(sε − iε)2

log δ− log Rrε
.

By Lemma 4.7, we have∫
φ−1(B+

Rrε )

|∇uε|2 =
1
c2
ε

(
1
π

log R +
1
π

log
π

2
+ O

( log R
R

)
+ oε(1)

)
.

Lemma 4.12 then yields

(4–9)
∫

M\φ−1(B+

δ )

|∇uε|2 =
1
c2
ε

(
−

1
π

log δ+ Ap + O(δ log δ)+ oε(1)
)
.

By (4–7) and (4–8), we have

(4–10)
πs2

ε − 2πsεiε +π i2
ε

log δ− log(Rrε)
< 1 −

1
c2
ε

(
−

1
π

log δ+Ap+O(δ log δ)+oε(1)
)

−
1
c2
ε

(
1
π

log R+
1
π

log
π

2
+O

( log R
R

)
+oε(1)

)
.

From Lemma 4.7 and Lemma 4.12, one can see that

iε = cε −
log(1 +π2 R2)+ oε(R)

2πcε
, sε =

− log δ+π Ap + O(δ)+ oε(R)
πcε

.
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Adding this and (4–3) to (4–10), we have

log
λε

c2
ε

≤ −εc2
ε + log(2π2)+π Ap + oε(δ)+ oε(R)+ oε(1)+ oδ(1)+ oR(1).

Letting ε→ 0 first, then δ → 0 and R → +∞, we obtain

lim sup
ε→0

λε

c2
ε

≤ 2π2eπ Ap .

Together with Lemma 4.8, this estimate yields supu∈H1
Jπ (u)≤ Vol ∂M +2πeπ Ap .

In fact, we have proved the following:

Proposition 4.13. Under the assumption that µε ≥ 0 and uε(xε)→ +∞ as ε→ 0,
we obtain

sup
u∈H1

Jπ (u)≤ Vol ∂M + 2πeπ maxp∈∂M Ap .

For the other case, µε ≥ 0 and uε(xε) → −∞, we only need to replace (4–4)
by ϕε(x)= −cε

(
uε(xε+rεx)+cε

)
. Using the same arguments we have used from

Lemma 4.5 to Proposition 4.13, we also get:

Proposition 4.14. Under the assumption that µε ≥ 0 and uε(xε)→ −∞ as ε→ 0,
we obtain

sup
u∈H1

Jπ (u)≤ Vol ∂M + 2πeπ maxp∈∂M Ap .

5. Existence results

Assume Ap = maxp∈∂M Ap for some p ∈ ∂M . In this section, we will construct a
blowing up sequence φε with

∫
M |∇φε|

2
= 1, and∫

∂M
eπ(φε−φ̄ε)

2
> Vol ∂M + 2πeπ Ap , where φ̄ε =

1
Vol M

∫
∂M
φε.

Take an isothermal coordinate system (U, ψ) around p such that ψ(p) = (0, 0),
ψ maps ∂M ∩ U ) inside ∂R2

+
, and g = e2 f (ds2

+ dt2) with f (0) = 0. Let R be
a function of ε such that R → +∞ and Rε → 0 as ε → 0. For sufficiently small
r > 0, write B+

r = B+
r (0,−ε/π)= Br (0,−ε/π)∩ R2

+, B+
r = ψ−1(B+

r ) and

φ̃ε(s, t)= c +
−(1/2π) log(π2s2/ε2

+ (π t/ε+ 1)2)+ B
c

in B+

Rε,

for some constants B, c.
Set

φε =


φ̃ε ◦ψ(x) if x ∈ B+

Rε,

(G−ηβ)/c if x ∈ B+

2Rε \ B+

Rε,

G/c if x ∈ M \ B+

2Rε,
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where B, c are constants to be defined later, β = G + (1/π) log r − Ap = O(r),
η ∈ C∞

0 (B2Rε) with η ≡ 1 on BRε, and max |∇η| = O(1/(Rε)).
To ensure that φε ∈ H 1,2(M), we assume

c +
−(1/2π) log(π2 R2)+ B

c
=

−(1/π) log(Rε)+ Ap

c
,

which gives

(5–1) 2πc2
= 2 logπ − 2πB − 2 log ε+ 2π Ap.

By (4–9), we have∫
B+

Rε

|∇φε|
2
=

1
πc2 log

π

2
+

1
πc2 log R + O

( log R
R

)
,

∫
M\B+

Rε

|∇φε|
2
=

∫
M\B+

Rε

|∇G|
2

c2 +

∫
B+

2Rε\B+

Rε

|∇(ηβ)|2

c2 −
2
c2

∫
B+

2Rε\B+

Rε

∇G∇(ηβ).

Let I1, I2, I3 be the three summands on the right-hand side of the last equation.
Clearly, I2 = c−2O(Rε) and I3 = c−2O(Rε). Next,

I1 =
1
c2

∫
∂(M\B+

Rε)

G
∂G
∂n

−
1
c2

∫
M\B+

Rε

G1G

=
1
c2

∫
∂M\∂B+

Rε

G
∂G
∂n

−
1
c2

∫
∂B+

Rε\∂M
G
∂G
∂n

+
1
c2

1
Vol M

(∫
B+

Rε

G
)

+
1
c2 O(

1
R
)

=
1
c2

(
−

1
π

log(Rε)+ Ap + O(Rε log(Rε))+ O
( 1

R

))
,

whence∫
M\B+

Rε

|∇φε|
2
=

1
c2

(
−

1
π

log(Rε)+ Ap + O(Rε log(Rε))+ O
( 1

R

))
.

Combining the two estimates above, one has∫
M

|∇φε|
2
=

1
c2

(
−

1
π

log ε+
1
π

log
π

2
+ Ap + O(Rε log(Rε))+ O

( log R
R

))
.

To ensure that
∫

M |∇φε|
2
= 1, we set

c2
= −

1
π

log ε+
1
π

log
π

2
+ Ap + O(Rε log(Rε))+ O

( log R
R

)
.

By (5–1), one can determine B as

B =
1
π

log 2 + O(Rε log(Rε))+ O
( log R

R

)
.
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A straightforward computation gives

φ̄ε =
1

Vol M

∫
M
φε =

1
c

(
O
(
(Rε)2 log R

)
+ O

(
(Rε)2 log ε

)
+ O

(
(Rε)2 log(Rε)

))
.

Then∫
∂B+

Rε∩∂M
exp

(
π(φε − φ̄ε)

2)
=

∫
∂B+

Rε∩∂R2
+

exp
(
π

(
c −

log (π2s2/ε2
+(1+π t/ε)2)+cφ̄ε − 2πB

2πc

)2

+ O(Rε)
)

ds

≥

∫
∂B+

Rε∩∂R2
+

exp
(
πc2

− log
(
π2 s2

ε2 + 1
)

+ 2πB − cφ̄ε

)
eO(Rε)ds

= 2πeπ Ap
( 2
π

arctan(πR)
)

exp
(

O(Rε log Rε)+ O
( log R

R

))
= 2πeπ Ap

(
1 + O(Rε log (Rε))+ O

( log R
R

))
.

Moreover,∫
∂M\∂B+

Rε

exp
(
π(φε−φ̄ε)

2)
≥

∫
∂M\∂B+

Rε

(
1 +π2(φε − φ̄ε)

2)
≥ Vol ∂M − Vol(∂M ∩ ∂B+

Rε)+π
2
∫
∂M\B+

2Rε

(G−cφ̄ε)2

c2 .

Therefore∫
∂M

eπ(φε−φ̄ε)
2
≥ Vol ∂M +

π2

c2

∫
∂M\B+

2Rε

(
G − O(Rε log Rε)

)2

+O
(
Rε log(Rε)

)
+ O

( log R
R

)
.

Set R = log2 ε. Then R → +∞, Rε→ 0, c2(log R)/R → 0, c2 Rε log Rε→ 0.
Hence ∫

∂M
eπ(φε−φ̄ε)

2
> Vol ∂M + 2πeπ Ap

when ε is sufficiently small. This contradicts Proposition 4.13 or Proposition 4.14.
Hence Theorem 1.1 holds. �

6. Proof of Theorem 1.2

Lemma 6.1. Set α̃2 = sup
{
α; sup

u∈H2

∫
M

eαu2
<+∞

}
. Then α̃2 = 2π .
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Proof. We first show that α̃2 ≥ 2π . For any α < 2π and u ∈ H2, we set

ũ = u −
1

Vol M

∫
M

u.

Then ũ ∈ H1. So, by Lemma 3.2,∫
M

eαũ2
≤ sup
v∈H1

∫
M

eαv
2
<+∞.

For any u ∈ H2, we have ∫
M

eαu2
≤ ec(ε′)

∫
M

eα(1+ε′)ũ2

for some ε′ > 0. One can choose ε′ such that α(1 + ε′) < 2π , which gives∫
M

eαu2
≤ sup
v∈H1

∫
M

eα(1+ε′)v2
<+∞.

Hence
sup

u∈H2

∫
M

eαu2
<+∞.

Next we prove that α̃2 cannot be greater than 2π . To do this, the example in the
proof of Lemma 3.2 still works here. For p ∈ ∂M , we set

uε =


−

√
1

2π
log 1

ε
in Bδ√ε(p),

√
2√

−π log ε
log r

δ
in Bδ(p) \ Bδ√ε(p)

Cεϕ in M \ Bδ(p),

where ϕ ∈ C∞

0 (M \ Bδ(p)), 0 ≤ ϕ ≤ 1, and Cε is chosen to satisfy
∫

M uε = 0. It is
easy to check that

‖uε‖2
H1,2(M) =

∫
M

(
|∇uε|2 + u2

ε

)
→ 1 as ε→ 0,

and for any α > 2π∫
M

exp
(
α
( uε
‖uε‖H1,2(M)

)2
)

≥ exp
(

α

2π‖uε‖2
H1,2(M)

log
1
ε

)
Vol Bδ√ε

≥ Cε
1−

α

2π‖uε‖2
H1,2(M)

,

which approaches +∞ as ε→ 0. Therefore α̃2 ≤ 2π , as needed. �

Using the same argument as in the proof of Lemma 3.3, we obtain:
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Lemma 6.2.

sup
u∈H2

Jα(u) <+∞ for α < π and sup
u∈H2

Jα(u)= +∞ for α > π.

Similarly to Lemma 4.1, one has:

Lemma 6.3. The functional Jπ−ε(u) defined in the space H2 admits a smooth
maximizer uε ∈ H2.

Proof. The proof of the existence of uε is the same as that of Lemma 4.1. The
Euler–Lagrange equation of uε is

(6–1)


1uε = uε in M̊,

∂uε
∂n

=
π − ε

λε
uεe(π−ε)u2

ε on ∂M,

where

λε = (π − ε)

∫
M

u2
εe
(π−ε)u2

ε .

Using Lemmas 2.1 and 2.2 repeatedly, we get uε ∈ C∞(M). �

The rest of the proof of Theorem 1.2 is almost the same as that of Theorem
1.1; we only give its outline. Without loss of generality, we may assume uε ≥ 0
in M . Set cε = uε(xε) = maxx∈M uε(x). If {cε} is bounded, it is not difficult to
see that Theorem 1.2 holds. Hence we assume that cε → +∞ as ε → 0. This is
equivalent to saying

∫
M eαu2

ε → +∞ for any α > 2π , which implies that uε → 0
strongly in L2(M) (see the first step in the proof of Lemma 3.2). Applying the
maximum principle to (6–1), we find that xε ∈ ∂M . Assume that xε converges to
p, so p ∈ ∂M . Let rε, ϕε(x) and ψε(x) be as in Section 4. Then

ϕε → ϕ = −
1

2π
log
(
π2x2

1 + (1 +πx2)
2) in C2

loc(R
2
+
).

Moreover cεuε ⇁ G weakly in H 1,q(M) for any q such that 1 < q < 2. The
function G ∈ C∞(M \ {p}) satisfies{

−1G + G = δp in M,∫
M G = 1.

In a normal coordinate system around p, the Green’s function G has the repre-
sentation G = −(1/π) log r + Ap + O(r), where r(x)= dist(p, x) is the distance
function, Ap is a constant depending only on p, and Ap+O(r) is called the regular
part. Repeating the other steps taken in Section 4, we obtain

(6–2) sup
u∈H2

(u)≤ Vol ∂M + 2πeπ Ap .
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The blowing up sequence we constructed in Section 5 still works here; one can
check that

Jπ

(
φε

‖φε‖H1,2(M)

)
> Vol ∂M + 2πeπ Ap

for sufficiently small ε, which contradicts (6–2) and so proves Theorem 1.2. �
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