Vol. 227, No. 2, 2006

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Self-similar solutions of the p-Laplace heat equation: the fast diffusion case

Marie Françoise Bidaut-Véron

Vol. 227 (2006), No. 2, 201–269
Abstract

We study the self-similar solutions of the equation ut div(|∇u|p2u) = 0 in N, where N 1, p (1,2). We provide a complete description of the signed solutions of the form u(x,t) = (±t)α∕βw((±t)1∕β|x|), regular or singular at x = 0, with α,β real, β0, and possibly not defined on all of N × (0,±∞).

Keywords
degenerate parabolic equations, self-similar solutions
Mathematical Subject Classification 2000
Primary: 35K65
Milestones
Received: 4 February 2005
Revised: 2 January 2006
Published: 1 October 2006
Authors
Marie Françoise Bidaut-Véron
Laboratoire de Mathematiques et Physique Théorique
CNRS UMR 6083
Faculté des Sciences et Techniques
Parc Grandmont
37200 Tours
France