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Wreath products such as Z o Z are not finitely presentable yet can occur as
subgroups of finitely presented groups. Here we compute the distortion of
ZoZ as a subgroup of Thompson’s group F and as a subgroup of Baumslag’s
metabelian group G. We find that Z o Z is undistorted in F but is at least
exponentially distorted in G.

1. Introduction

We consider aspects of the question of the distortion of infinitely related groups as
subgroups of finitely presented groups. Higman [1961] showed that every recur-
sively presentable group occurs as a subgroup of a finitely presented group, but it
is not clear in general what happens to the geometry of the group since this em-
bedding uses complicated algebraic methods and methods from recursive function
theory which may affect the geometry of the group severely. Ol’shanskiı̆ [1997]
constructed isometric embeddings of recursively presentable groups into finitely
presented groups using difficult methods that do not lead to easily constructed
examples. In the particular concrete cases here, we consider concrete embeddings
of one of the simplest finitely generated but not finitely presentable groups, Z o Z.
We consider two embeddings of Z oZ into finitely presented groups. The first is as
a subgroup of Thompson’s group F and the second is as subgroup of Baumslag’s
remarkable finitely presented metabelian group which contains ZoZ and thus a free
abelian subgroup of infinite rank. The distortion of the metric of Z o Z is linear in
Thompson’s group F but is at least exponential in Baumslag’s group.

2. Background

Metrics of wreath products. Two of the simplest infinite wreath products are the
lamplighter group Z2 o Z and Z o Z. Cleary and Taback [2005] analyzed aspects of
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the metric geometry of those groups and other wreath products. There are natu-
ral normal forms for elements in these groups which lead to geodesic words for
elements in these groups with respect to their standard generating sets.

For Z o Z, we consider the standard presentation

<<a, t | [at i
, at j

], for i, j ∈ Z>> ,

where ab denotes the conjugate b−1ab and [a, b] the commutator aba−1b−1.
Geometrically, we can think of this wreath product by imagining a string of

counters arranged from left to right and infinite in both directions, with one counter
distinguished as the origin. As in the lamplighter group, we imagine a cursor
that moves along the string of counters and will point to a particular one of these
counters as being of current interest. The generator a acts as a generator of Z in the
factor to which the cursor currently points and increases the counter in that factor,
and the generator t moves the cursor to the right to the next counter. A typical such
word is illustrated in Figure 1.

The starting configuration of these counters, corresponding to the identity ele-
ment in Z oZ, is with all of the counters at zero and the cursor resting at the counter
designated at the origin. We consider a word in these generators as a sequence of
instructions to move the cursor and change the counter in the current factor. After
application of a long string of the generators, we will be in a state where a finite
number of counters are nonzero and the cursor points at a particular counter, called
the final position of the cursor for that word.

We define an = atn
and note that an is a generator of the conjugate copy of Z

indexed by n. These an commute and, as described in [Cleary and Taback 2005],
we can put any word in the generators into one of two normal forms:

r f (w) = ae1
i1

ae2
i2

. . . aek
ik

a f1
− j1a f2

− j2 . . . a fl
− jl t

m (right-first),

l f (w) = a f1
− j1a f2

− j2 . . . a fl
− jl a

ei
i1

aei
i2

. . . aek
ik

tm (left-first),

2 3 −2 1

Figure 1. Diagram for w = a3
2a−2

3 a4a2
−3t−2. The origin in the

wreath product direction is indicated by a vertical line, empty cir-
cles denote counters which are zero, and the final cursor position
is indicated by the arrow.
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with ik > . . . i2 > i1 ≥ 0 and jl > . . . j2 > j1 > 0 and ei , f j 6= 0.
The final resting position of the cursor is easily seen to be m for either of these

normal forms, and we can see that the leftmost nonzero counter is in position − jl
and the rightmost nonzero counter is in position ik .

In the right-first form, r f (w), the cursor moves first to the right from the origin,
changing the counters in the appropriate factors as the cursor moves to the right.
Then the cursor moves back to the origin not affecting any of the counters until
passing the origin. Past the origin, the cursor continues to work leftwards, again
changing the counters in the appropriate factors. Finally, the cursor moves to its
ending location from the leftmost nonzero counter to the left of the origin.

The left-first form is similar, but instead of initially moving to the right, the
cursor begins by moving toward the left.

At least one of these normal forms will lead to minimal-length representation for
w, depending upon the final location of the cursor. If m is nonnegative, then the left-
first normal form will lead to a geodesic representative, and if m is nonpositive, the
right-first normal form will lead to a geodesic representative, giving the following
measurement of length:

Proposition 2.1 [Cleary and Taback 2005, Proposition 3.8]. If a word w ∈ Z o Z is
in either right-first or left-first normal form, the word length of w with respect to
{a, t} satisfies

|w| =

k∑
n=1

|ein | +

l∑
n=1

| f jn | + min
{
2 jl +ik +|m−ik |, 2ik + jl +|m+ jl |

}
.

The first two terms are the minimum number of applications of a±1 needed to
put all of the counters into their desired states and the last term is the minimum
amount of movement required to visit the leftmost and rightmost nonzero counters
and then the final position of the cursor, counting the required applications of t±1.

The word w = a3
2a−2

3 a4a2
−3t−2 pictured in Figure 1 has geodesic representatives

in right-first normal form since the final position of the cursor is to the left of the
origin. One such minimal length representative is t2a3ta−2tat−7a2t , of length 20.

3. Z o Z as a subgroup of Thompson’s group F

Thompson’s group F is a remarkable finitely generated, finitely presented group
that can be understood via a wide range of perspectives. For an excellent overview
of its properties, see [Cannon et al. 1996]. The standard infinite presentation of F is

<< x0, x1, . . . | x xi
n = xn+1 for i < n>> .

Since x2 = x x0
1 and so on, F is generated by the first two generators and we can

define xn+1 = x x0
n to express all generators and thus all group elements in terms of
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x0 and x1. Furthermore, all of these infinitely many relations are consequences of
the first two nontrivial relations, so we have the standard finite presentation

<< x0, x1 | x x1
2 = x3, x x1

3 = x4>> .

Thompson’s group F can be described in terms of rooted tree pair diagrams, and
there is a straightforward method of converting between words in a normal form
with respect to the infinite generating set and tree pair diagrams, via the method of
leaf exponents, as described in [Cannon et al. 1996]. There is also an easy method
of converting from tree pair diagrams to piecewise-linear homeomorphisms of the
unit interval where F can be regarded as the subgroup of elements with dyadic
breakpoints and slopes which are powers of 2. There is a natural notion of a reduced
tree pair diagram described there and there are efficient means to convert between
the unique normal form for an element of F and the unique reduced tree pair
diagram for that word.

We consider a rooted binary tree with n leaves as being constructed of n−1
carets, which are interior nodes of the tree together with the two downward directed
edges from that node. The left side of a tree consists of nodes and edges connected
to the root by a path consisting only of left edges, and similarly for the right side
A tree pair diagram (S, T ) is made up of a “positive” tree T and a “negative” tree
S with the same number of leaves.

To understand the metric properties of F , we consider expressing words with
respect to the finite generating set. Burillo, Cleary and Stein [2001] estimated the
word length in terms of the number of carets and showed that the number of carets
is quasiisometric to the word length. Fordham [2003] developed a remarkable
method using tree pair diagrams to efficiently compute exact word length and find
minimal length representatives of words.

We can understand word length of elements represented as tree pair diagrams
by understanding how the generators change the tree pair diagram for w to that for
wg for the generators, as described in [Fordham 2003; Cleary and Taback 2004].
The right actions of the generators can be described as ‘rotations’ which change
the negative tree in a possibly unreduced representative of the element.

The wreath product Z o Z is a subgroup of F and can be realized in many
different ways. Perhaps the simplest is as the subgroup H generated by x0 and
h = x1x2x−2

1 , pictured in Figure 2. The element h, regarded as a piecewise-linear
homeomorphism of the unit interval, has support

[ 1
2 , 3

4

]
. The conjugates hxn

0 have
support [2n+1

− 1
2n+1 ,

2n+2
− 1

2n+2

]
for n ≥ 0,[ 1

21−n ,
1

2−n

]
for n < 0.
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4

0

1 2

3

4

0

1

2 3

Figure 2. Tree pair diagram for x1x2x−2
1 , the image of a under φ.

The isomorphism between this subgroup and Z o Z is given by the homomorphism
φ(w) : Z o Z → F where φ(a) = h = x1x2x−2

1 and φ(t) = x0. The conjugates of
φ(a) by x0 generate infinite cyclic groups, and these conjugates each have interiors
of their supports which are disjoint from the interiors of the supports of the other
conjugates. Thus they freely generate a free abelian group of countable rank. Since
x0 conjugates each of these abelian factors to the next, the isomorphism is readily
established with Z o Z.

To understand the distortion of the subgroup H in F , we compare the word
length of an element w = ae1

i1
ae2

i2
. . . aek

ik
a f1

− j1a f2
− j2 . . . a fl

− jl t
m with its image in F .

Theorem 3.1. The subgroup H isomorphic to Z o Z in F generated by x0 = φ(t)
and h = x2

1 x−1
2 x−1

1 = φ(a) is undistorted.

Proof. We count the number of carets of the image of a word w. First, we consider
the case when m = 0 and then the cases where m is nonzero.

Case m = 0. Here, the image of the word as a tree pair diagram has a characteristic
form where the root of the positive tree is paired with the root of the negative tree,
such as that shown in Figure 3. In the general case, where both k and l are positive,
we have

• a single root caret,

• ik + 1 right carets,

•

k∑
n=1

(|en| + 1) interior carets below the right arm of the tree,

• jl left carets, and

•

l∑
n=1

(| fn| + 1) interior carets below the left arm of the tree.
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z+1 carets

a+
1 c

are
ts

z+
1 c

are
ts

Z+1 c
are

ts

A+1 c
are

ts A+1 carets

Z+1 carets

a+1 carets

Figure 3. The tree pair diagram for the image φ(w) of a word w=

aa
0 ab

1 . . . az
na A

−1aB
−2 . . . aZ

−m with t exponent sum 0 and all positive
exponents for ai .

This gives a total of

N (φ(w)) = ik + jl + 2 +

k∑
n=1

(|en| + 1) +

l∑
n=1

(| fn| + 1)

carets in the image of w. By [Burillo et al. 2001], the number of carets is quasi-
isometric to the word length in F with respect to {x0, x1} and since the length of
w in Z o Z is

2 jl + 2ik +

k∑
n=1

|en| +
l∑

n=1
| fn|,

we see that these lengths are quasiisometric.
The image of a typical word with all en and fn positive is shown in Figure 3,

corresponding to a series of rightward rotations at nodes distance one from the
sides of the tree.

Case m > 0. Here we start with the same tree pair diagram for the m = 0 case and
apply x0 on the right m times. Each application of x0 will change the negative tree
by moving the root caret to a right caret and the topmost left caret to the root, if
there is a left caret. If there is no left caret, a new caret will need to be added for
each such application. For each application of x0 which requires a new caret, in
the negative tree, that new caret will become the root caret and in the positive tree,
the new caret will be added as the left child of the leftmost caret. Since there are
jl left carets, if m ≤ jl , we do not need to add any carets and the number of carets
is

ik + jl + 2 +

k∑
n=1

(|en| + 1) +

l∑
n=1

(| fn| + 1)

as before. If m > jl , we will need to add m − jl new carets and will have

ik + jl + 2 +

k∑
n=1

(|en| + 1) +

l∑
n=1

(| fn| + 1) + m − jl
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carets. Again, these quantities give lengths which are comparable to word length
in Z o Z.

Case m < 0. This works in the same way as the case m > 0.

Thus in all cases φ does not distort distances more than linearly, so the subgroup
H isomorphic to Z o Z is undistorted in F . �

We can obtain more precise estimates of the quasiisometry constants using Ford-
ham’s method [2003] for computing exact lengths in F . We can keep track of the
particular caret pairings and their weights and we find that the caret pairings that
occur are easily computed. Caret pairing types are described in [Fordham 2003;
Cleary and Taback 2004]. For example, in the case where m = 0 and both l and k
are positive, we have the following caret pairs:

• One caret pair of type (L0, L0) from the leftmost carets, contributing no
weight.

• jl caret pairs of type (L L , L L) from the left side and root, contributing weight
2 jl .

• ik − 1 caret pairs of types (R∗, R∗) not of type (R0, R0), contributing weight
2(ik − 1).

• One caret pair of type (R0, R0) from the rightmost carets, contributing no
weight.

• For each en > 0, there will be a single pairing of type (I0, I0) contributing
weight 2 and en − 1 pairings of type (I0, IR), contributing weight 4(en − 1).

• For each en < 0, there will be a single pairing of type (I0, I0) contributing
weight 2 and |en|−1 pairings of type (IR, I0), contributing weight 4(|en|−1).

• Similarly, for the interior carets from the left side of the tree, we have for each
fn , there will be a single pairing of type (I0, I0) contributing weight 2 and
| fn| − 1 pairings of type (I0, IR) or (IR, I0), contributing weight 4(| fn| − 1).

These will give a total weight of

2 jl + 2(ik − 1) + 2k + 4
∑

|en| + 2l + 4
∑

| fn|

= 2 jl + 2ik + 2k + 2l + 4
∑

|en| + 4
∑

| fn| − 2

in the case when m = 0, which compares to the corresponding length in Z o Z of
2 jl + 2ik +

∑
|en| +

∑
| fn|.

Again, these give lengths comparable to word length in Z o Z. After a similar
analysis for other cases, we see that for a word w in Z o Z, we have

|w|ZoZ − 2 ≤ |φ(w)|F ≤ 4|w|ZoZ.
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4. Z o Z as a subgroup of Baumslag’s metabelian group

Baumslag [1972] introduced the group G = <<a, s, t | [s, t], [at , a], as
= aat

>> to
show that a finitely presented metabelian group can contain free abelian subgroups
of infinite rank. This group in fact contains Z o Z: all relators of the form [at i

, at j
]

are consequences of these three, so the subgroup H generated by a and t is iso-
morphic to Z o Z.

Here we examine the distortion of this subgroup in G.

Theorem 4.1. The subgroup H has at least exponential distortion in G.

Proof. First, s conjugates elements in H to other elements in H in a manner
illustrated here:

a(s2)
= (as)s

= (aat)s
= as(as)t

= aat(aat)t
= aat at at2

= a0a2
1a2.

In terms of the notation described above, we have as
n = anan+1. Further conju-

gation by s leads to increasingly long words, such as

a(s3)
= (a0a2

1a2)
s
= a0a1a2

1a2
2a2a3 = a0a3

1a3
2a3,

and we notice the occurrence of the binomial coefficients with repeated iteration,
formalized below:

Lemma 4.2. Higher conjugates of a by s in G give elements of the following form:

asn
= a(n

0)
0 a(n

1)
1 . . . a(n

n)
n .

Proof. We work by induction. The cases with n = 1, 2 and 3 are described above,
and by assuming it is true for n we derive

asn+1
= (a(n

0)
0 a(n

1)
1 . . . a(n

n)
n )s

= a(n
0)

0 a(n
0)

1 a(n
1)

1 a(n
1)

2 . . . a(n
n)

n a(n
n)

n+1 = a(n+1
0 )

0 . . . a
(n+1

n+1)
n+1 ,

using the commutativity of the ai and the fact that as
i = ai ai+1. �

Returning to the proof of the theorem, we see that asn
has length 2n + 1 as an

element of G, and that it lies in the subgroup H , as there is a representative with
no occurrences of s.

To compute the length of this element in the subgroup H with respect to its
generators a and t , we use the method described in Section 2 on the expression
with the binomial coefficients and find that

|asn
|H = 2n +

n∑
i=0

(
n
i

)
= 2n + 2n.

Thus we have |asn
|H = 2n + 2n while |asn

|G = 2n + 1, so the wreath product
Z o Z is at least exponentially distorted in G. �
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