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APPROXIMATING THE MODULUS OF AN INNER FUNCTION

GEIR ARNE HJELLE AND ARTUR NICOLAU

We show that the modulus of an inner function can be uniformly approxi-
mated in the unit disk by the modulus of an interpolating Blaschke product.

1. Introduction

Let H∞ be the algebra of bounded analytic functions in the unit disk D. A function
in H∞ is called inner if it has radial limit of modulus one at almost every point of
the unit circle. A Blaschke product is an inner function of the form

B(z) = zm
∞∏

n=1

zn

|zn|

zn − z
1 − znz

,

where m is a nonnegative integer and {zn} is a sequence of points in D \ {0} satis-
fying the Blaschke condition

∑
n(1−|zn|) < ∞. A classical result of O. Frostman

tells that for any inner function f , there exists an exceptional set E = E( f ) ⊂ D

of logarithmic capacity zero such that the Möbius shift

f − α

1 − α f

is a Blaschke product for any α ∈ D \ E . See [Frostman 1935] or [Garnett 1981,
p. 79]. Hence any inner function can be uniformly approximated by a Blaschke
product.

A Blaschke product B is called an interpolating Blaschke product if its zero
set {zn} forms an interpolating sequence, that is, if for any bounded sequence of
complex numbers {wn}, there exists a function f ∈ H∞ such that f (zn) = wn ,
n = 1, 2, . . . . A celebrated result by L. Carleson [1958] (or see [Garnett 1981,
p. 287]) tells us that this holds precisely when two conditions are satisfied:

(1) inf
n 6=m

∣∣∣∣ zn − zm

1 − z̄mzn

∣∣∣∣ > 0,
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and there exists a constant C such that
∑

zn∈Q(1−|zn|) < C`(Q) for any Carleson
square Q of the form

(2) Q =
{
reiθ

: 0 < 1 − r < `(Q), |θ − θ0| < π`(Q)
}

where θ0 ∈ [0, 2π) and 0 < `(Q) < 1. Although interpolating Blaschke products
comprise a small subset of all Blaschke products, they play a central role in the
theory of the algebra H∞. See the last three chapters of [Garnett 1981].

D. Marshall [1976] proved that any function f ∈ H∞ can be uniformly approx-
imated by finite linear combinations of Blaschke products. That is, for any ε > 0
there are constants c1, . . . , cN and Blaschke products B1, . . . , BN such that∥∥∥∥ f −

N∑
i=1

ci Bi

∥∥∥∥
∞

< ε.

Here the ∞-norm is given by ‖g‖∞ = sup{|g(z)| : z ∈ D}. This result was improved
in [Garnett and Nicolau 1996] by showing that one can take each of B1, . . . , BN

to be an interpolating Blaschke product. However the following problem remains
open.

For any inner function B and ε > 0, is there an interpolating Blaschke product I
such that ‖B − I‖∞ < ε?

This question was posed in [Garnett 1981, p. 430; Havin and Nikol’skiı̆ 1994,
pp. 268–269; Jones 1981; Nikol’skiı̆ 1986, p. 202]. Here we provide a positive
answer if one restricts attention to the modulus.

Theorem 1. Let B be an inner function and ε > 0. There exists an interpolating
Blaschke product I such that∣∣|B(z)| − |I (z)|

∣∣ < ε for all z ∈ D.

The proof may be described as follows. The first step consists of constructing a
system 0 =

⋃
i 0i of disjoint closed curves 0i ⊂ D such that arclength of 0 is a

Carleson measure, and verifying that

(a) |B(z)| is uniformly small on hyperbolic disks of fixed radius centered at points
of 0, and

(b) in any hyperbolic disk of fixed radius centered at a point outside the union of
the interiors of 0i ,

⋃
i int 0i , there is a point z where |B(z)| is not small.

Write B = B1 · B2, where B1 is the Blaschke product formed with the zeros of B
which are in

⋃
i int 0i . Statement (b) implies that B2 is a finite product of interpo-

lating Blaschke products. Since D. Marshall and A. Stray [1996] proved that any
finite product of interpolating Blaschke products may be approximated by a single
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interpolating Blaschke product, the relevant zeros of B lie in
⋃

i int 0i : they are
those of B1. The construction of 0 is a variation of the original corona construction
introduced by L. Carleson [1962] (or see [Garnett 1981, pp. 342–347]).

Next, for each i = 1, 2, . . . , let µi be the sum of harmonic measures in int 0i

from the zeros of B1 contained in int 0i . Then the mass µi (0i ) is the total number
of zeros of B1 contained in int 0i . The second step consists of splitting 0i as⋃

k 0i,k , where the pieces 0i,k satisfy µi (0i,k) = 1, k = 1, 2, . . . , and choosing
points ξi,k ∈ 0i,k matching a certain moment of the measure µi on 0i,k . This
choice may be compared with that of [Lyubarskii and Malinnikova 2001], where
a related discretization argument is performed in a different context. Let I1 be the
Blaschke product with zeros ξi,k , i, k = 1, 2, . . . . The last step of the proof is to
use (b) above to show that I1 is an interpolating Blaschke product and to use the
location of {ξi,k}, as well as (a) above, to show that |I1(z) · B2(z)| approximates
|B(z)|.

Besides the individual problem mentioned above, some questions concerning
approximation by arguments of interpolating Blaschke products remain open. Let
B be an inner function.

A. Given ε > 0, is there an interpolating Blaschke product I such that

‖Arg B − Arg I‖BMO(∂D) < ε?

B. Is there an interpolating Blaschke product I such that Arg B − Arg I = ṽ,
where v ∈ L∞(∂D)?

C. Is there an interpolating Blaschke product I such that Arg B −Arg I = u + ṽ,
where u, v ∈ L∞(∂D) and ‖u‖∞ < π/2?

A positive answer to Problem A would imply the main result of this note. Prob-
lem C was posed by in [Havin and Nikol’skiı̆ 1994; Nikol’skiı̆ 1986] in connection
with Toeplitz operators and complete interpolating sequences in model spaces.
Problems B and C are discussed in the nice monograph by K. Seip [2004, p. 92].

2. Construction of the contour

The hyperbolic distance between two points z, w ∈ D is

β(z, w) =
1
2

log
1 + ρ(z, w)

1 − ρ(z, w)
,

where ρ(z, w) is the pseudohyperbolic distance,

ρ(z, w) =

∣∣∣∣ z − w

1 − wz

∣∣∣∣.
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Recall that a positive measure µ in the unit disk is called a Carleson measure if
there exists a constant M = M(µ) > 0 such that µ(Q) ≤ M`(Q) for any Carleson
square of the form (2). The infimum of the constants M satisfying the inequality
above is called the Carleson norm of the measure µ and it is denoted by ‖µ‖C .

The main result of this section is a variant of the classical construction of the
Carleson contour introduced by L. Carleson in his original proof of the corona
theorem [1962] (or see [Garnett 1981, pp. 342–347]).

Lemma 2. Let B ∈ H∞ with ‖B‖∞ = 1. Let 0 < ε < 1 and K > 0 be fixed
constants. Then, there exist a constant δ = δ(ε, K ) > 0 and a system 0 =

⋃
0i of

disjoint closed curves 0i contained in D such that

(a) |B(z)| ≤ ε if infi β(z, int 0i ) ≤ K ;

(b) sup{|B(w)| : β(w, z) ≤ K + 14} > δ if z /∈
⋃

int 0i ; and

(c) arclength ds|0 on 0 is a Carleson measure with ‖ds|0‖C ≤ 68.

Proof. The proof is essentially contained in [Nicolau and Suárez ≥ 2006], but we
sketch it for the convenience of the reader. Given a set E ⊂ D, let �K (E) denote
the set of points that are at most at hyperbolic distance K from the set E , that is,

�K (E) =
{
z : inf

w∈E
β(z, w) ≤ K

}
.

Consider dyadic Carleson squares of the form

Qn, j =
{
reiθ

: 1 − 2−n < r < 1, 2π j2−n < θ < 2π( j + 1)2−n},
for j = 0, 1, . . . , 2n

− 1 and n = 1, 2, . . . , and their top halves

T (Qn, j ) = {reiθ
∈ Qn, j : r < 1 − 2−n−1

}.

Let 0 < δ < ε be a constant to be fixed later. A dyadic Carleson square Q will be
called good if

sup
{
|B(z)| : z ∈ �K

(
T (Q)

)}
> ε.

The collection of good dyadic Carleson squares will be denoted by

{QG
j : j = 1, 2, . . .}.

A dyadic Carleson square Q will be called bad if

sup
{
|B(z)| : z ∈ �K

(
T (Q)

)}
< δ.

We denote the collection of bad dyadic Carleson squares by {Q B
j : j = 1, 2, . . .}.

The construction goes as follows.
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∂D

Q ∈ {QG
j }

QB
k

Q ∈ {QB
j }

QG
k

∂D

Figure 1. Choosing good and bad squares for constructing the contour.

Step 1. For each good dyadic Carleson square Q = QG
j , we choose the maximal

bad dyadic Carleson squares Q B
k contained in Q. The main estimate needed is

(3)
∑

Q B
k ⊂Q

`(Q B
k ) ≤

1
2`(Q).

Since |B(z)| < δ if z ∈ T (Q B
k ), while |B(z)| > ε for some z ∈ �K (T (Q)), taking

δ = δ(ε, K ) sufficiently small, standard arguments lead to (3). See [Nicolau and
Suárez ≥ 2006, Lemma 2.1] for details.

Step 2. For each bad dyadic Carleson square Q = Q B
j , we choose the maximal

good dyadic Carleson squares QG
k contained in Q. This family is denoted by

G(Q) = {QG
k : k = 1, 2, . . .}.

So, from each good dyadic Carleson square we move to bad ones fulfilling the
estimate (3) and from each bad one we again move to good ones. See Figure 1.
Now for each bad square Q = Q B

j , let

R(Q) = Q \

⋃
G(Q)

QG
k and R =

⋃
j

R(Q B
j ).

Finally, decompose R into its connected components Ri and denote 0i = ∂ Ri ,
i = 1, 2, . . . . Observe that each 0i consists of pieces of boundaries of dyadic
Carleson squares. See Figure 2. By construction if z ∈ R we have

sup
{
|B(w)| : β(w, z) ≤ K

}
≤ ε

and hence part (a) in the statement follows. Similarly, if z /∈ R, the point z is not in
the top part of a bad dyadic Carleson square. As the hyperbolic diameter of a top
part of a Carleson square is uniformly bounded, say by 14, we deduce that there
exists w ∈ D with β(z, w) ≤ K + 14 such that |B(w)| > δ. Hence statement (b)
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Figure 2. The unit disk, some dyadic Carleson contours and an
example of a contour.

follows. Since the length of ∂ R(Q) is bounded by 17`(Q), the scaling (3) shows
that for any bad dyadic square Q, one has∑

Q B
j (Q

|∂ R(Q B
j )| ≤ 17`(Q).

Then easy geometric considerations show that arclength on
⋃

0i is a Carleson
measure and its Carleson norm is smaller than 68. �

3. Construction of the interpolating Blaschke product

We now use Lemma 2 to construct a contour 0. Note that by Frostman’s Theorem
we can assume that B is a Blaschke product. Given ε > 0, let N be a big constant
dependent on ε to be fixed later. Apply Lemma 2 with ε/2 and 2N instead of ε

and K to obtain 0 and δ > 0 such that

(a) |B(z)| < ε/2 if β(z, int 0) ≤ 2N ,

(b) sup{|B(w)| : β(w, z) ≤ 2N + 14} > δ if z 6∈ int 0, and

(c) arclength on 0 is a Carleson measure with Carleson norm ‖ds|0‖C ≤ 68.
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With the contour 0 in place, we want to construct the interpolating Blaschke prod-
uct I . Split B into two Blaschke products B1 and B2. That is B = B1 ·B2, where B1

is formed with the zeros {zn} of B that lie inside int 0 and at hyperbolic distance
more than 1 from the contour 0. For each zero z of B2, part (b) provides a point
w ∈ D, β(w, z) ≤ 2N + 15 such that |B2(w)| ≥ |B(w)| > δ. This implies that B2

is a finite product of interpolating Blaschke products; [Mortini and Nicolau 2004,
Theorem 2.2].

Hence the dangerous part of B will be B1, which has all its zeros contained
deeply inside the contour 0. We want to mimic the behavior of |B1| by constructing
a Blaschke product I1 with zeros on 0. To this end, for each component 0i of the
contour we consider the measure

dµi (ξ) =

∑
zn∈int 0i

β(zn,0i )>1

ω(zn, ξ ; int 0i )

defined for ξ ∈ 0i . Here ω(z, ξ ; �) denotes the harmonic measure from the point
z ∈ � in the domain � ⊆ D. Clearly µi (0i ) will be equal to the number of zeros
zn of B1 inside 0i . Next we split 0i into disjoint arcs 0i,k such that µi (0i,k) = 1
for each k. This is illustrated in Figure 3. On each such arc we locate one zero ξi,k

of I1 such that

(4) 1 − |ξi,k |
2
=

∫
0i,k

(
1 − |ξ |

2) dµi (ξ).

This will in general not determine the points ξi,k uniquely. However, there seems
to be a lot of freedom for placing the zeros of I1 in this construction, and the
condition (4) will be sufficient for our purposes.

Let I1 be the Blaschke product with the zeros ξi,k , and factor I1 = I o
1 · I e

1 where
I o
1 is the Blaschke product with zeros ξi,k with k odd, while I e

1 is the Blaschke
product with zeros ξi,k with k even. In Figure 3, I o

1 has its zeros placed in the
dark arcs, while the zeros of I e

1 are placed in the light arcs. We claim that both
I o
1 and I e

1 are interpolating Blaschke products, and hence I1 can be approximated
by an interpolating Blaschke product [Marshall and Stray 1996]. To show this
claim we will observe that their zero sets satisfy the two conditions of Carleson’s
theorem [1958] stated in the introduction.

In this case, the existence of a constant C as in Carleson’s criterion (see top of
page 104) follows from the fact that arclength is a Carleson measure on 0, while
inequality (1) follows from the following lemma and the geometry of the contour.

Lemma 3. The hyperbolic length, `β(0i,k), of 0i,k is bounded from below:

`β(0i,k) ≥ δ2 exp(2(2N+14)).
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Γi,11

Γi,10

Γi,12

Γi,1 Γi,2

Γi,3

Γi,4

∂D
Γi,5

Γi,9
Γi,6

Γi,7

Γi,8

Figure 3. Each component 0i of the contour is split into arcs 0i,k

such that the µ-measure of each arc is 1.

Proof. We first show that for any point w ∈ 0, |B1(w)| is bounded from below by
some constant depending only on δ and N . To see this, recall that there is a point
ζ such that β(ζ, w) ≤ 2N + 14 and |B1(ζ )| ≥ |B(ζ )| > δ. Consider

log
∣∣B1(w)

∣∣−1
=

∑
log ρ(w, zn)

−1,

where the sum is taken over all zeros zn of B1. As w is separated from the zeros
of B1,

log ρ(w, zn)
−1

≤ 1 − ρ(w, zn)
2.

Furthermore,

ρ(w, zn) ≥
ρ(zn, ζ )− ρ(ζ, w)

1 − ρ(zn, ζ )ρ(ζ,w)
≥

ρ(zn, ζ )− C
1 − Cρ(zn, ζ )

,

where C =
e2(2N+14)−1
e2(2N+14)+1

< 1. Hence

log ρ(w, zn)
−1

≤

(
1 − ρ(zn, ζ )2

)(
1 − C2

)(
1 − Cρ(zn, ζ )

)2 ≤
1 + C
1 − C

(
1 − ρ(zn, ζ )2)

≤ 2
1 + C
1 − C

log ρ(zn, ζ )−1
= 2e2(2N+14) log ρ(zn, ζ )−1,

and we see that |B1(w)| ≥ δ2 exp(2(2N+14)).
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Intuitively, this lower bound for the values of |B1| should imply that the arcs 0i,k

cannot be too short hyperbolically. To make this observation rigorous we argue as
follows. Using that the harmonic measure ω is positive and harmonic, we have
that for any z ∈ int 0i ,

ω(z, 0i,k; int 0i ) ≤ ω(z, 0i,k; D \ 0i,k) ≤

∫
0i,k

log
∣∣∣ z−w

1−wz

∣∣∣−1 |dw|

1−|w|2

minz∈0i,k

∫
0i,k

log
∣∣∣ z−w

1−wz

∣∣∣−1 |dw|

1−|w|2

and
1 = µi (0i,k) =

∑
zn∈int 0i

ω(zn, 0i,k; int 0i )

≤
1

Ci,k

∫
0i,k

log
( ∏

zn∈int 0i

∣∣ zn − w

1 − wzn

∣∣−1
)

|dw|

1 − |w|2
,

where
Ci,k = min

z∈0i,k

∫
0i,k

log
∣∣ z − w

1 − wz

∣∣−1 |dw|

1 − |w|2

is a constant dependent on 0i,k . Let B1,i denote the Blaschke product with the
zeros of B1 that fall inside the component 0i . Then, for w ∈ 0i ,

log
( ∏

zn∈int 0i

∣∣ zn − w

1 − wzn

∣∣−1
)

= log |B1,i (w)|−1
≤ log |B1(w)|−1

≤2e2(2N+14) log δ−1.

Thus

1 ≤
1

Ci,k
2e2(2N+14) log δ−1

∫
0i,k

|dw|

1 − |w|2
=

1
Ci,k

2e2(2N+14) log δ−1`β(0i,k)

such that
`β(0i,k) ≥

Ci,k

2e2(2N+14) log δ−1 .

To estimate Ci,k we use the substitution ξ = ϕz(w) = (z −w)/(1 −wz) and the
conformal invariance of the hyperbolic metric. A calculation then gives that

Ci,k ≥ log
(
tanh `β(0i,k)

)
`β(0i,k),

which implies the desired bound, `β(0i,k) ≥ δ2 exp(2(2N+14)). �

4. Proof of the approximation

In this section we will show that the constructed function, I = I1 ·B2, approximates
the given Blaschke product uniformly in modulus. We first claim that it suffices to
prove Theorem 1 for points z ∈ D far away from the contour. Indeed, assume that
we can prove that

(5)
∣∣|B1(z)| − |I1(z)|

∣∣ < ε/2
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for all z such that β(z, int 0)≥2N , where N is as in the construction of the contour.
Then, for points z with β(z, int 0) = 2N ,

|I (z)| =
(
|I1(z)| − |B1(z)| + |B1(z)|

)
|B2(z)|

≤
∣∣|B1(z)| − |I1(z)|

∣∣ + |B(z)| < ε/2 + ε/2 = ε.

By the maximum principle |I (z)| < ε for all z ∈ �2N (int 0) as well. Hence

∣∣|B(z)| − |I (z)|
∣∣ =

∣∣|B1(z)| − |I1(z)|
∣∣|B2(z)| <

{
ε/2 if β(z, int 0) ≥ 2N ,

ε if β(z, int 0) < 2N .

So Theorem 1 follows from (5).

The rest of the paper will be dedicated to prove that (5) holds. Fix a point z such
that β(z, int 0) ≥ 2N . We will consider the logarithm of |B1|. Since all the zeros
of B1 lie inside the contour 0, log

∣∣(z − zn)/(1 − znz)
∣∣ is harmonic inside 0 as a

function of zn . Hence

log |B1(z)| =

∑
j

log
∣∣∣ z − zn

1 − znz

∣∣∣ =

∫
0

log
∣∣∣ z − ξ

1 − ξ̄ z

∣∣∣ dµ(ξ),

where dµ =
∑

i dµi . As the µ-measure of each arc 0i,k is 1, we have

(6) log |B1(z)| − log |I1(z)| =

∫
0

log
∣∣∣ z−ξ

1−ξ̄ z

∣∣∣ dµ(ξ) −

∑
i,k

log
∣∣∣ z−ξi,k

1−ξ̄i,kz

∣∣∣
=

∑
i,k

∫
0i,k

(
log

∣∣∣ z−ξ

1−ξ̄ z

∣∣∣ − log
∣∣∣ z − ξi,k

1 − ξ̄i,kz

∣∣∣) dµ(ξ)

=

∑
i,k

∫
0i,k

log ρ(z, ξ)

ρ(z, ξi,k)
dµ(ξ)

def
=

∑
i,k

Hi,k(z).

To estimate this sum we consider different types of arcs. By Qz we denote the
Carleson square with z as the midpoint on the top-side. We say that an arc 0i,k is
in the class B if 0i,k ⊂ 2N Qz . Note that since β(z, int 0) ≥ 2N , this implies that
such an arc lies very close to the boundary. The rest of the arcs we split into short
and long arcs. For n ≥ N + 1 define

Sn =
{
0i,k : `β(0i,k) < 1, 0i,k ⊂ 2n Qz

}
\
(
B ∪

⋃
i<n

Si
)
,

Ln =
{
0i,k : `β(0i,k) ≥ 1, 0i,k ⊂ 2n Qz

}
\
(
B ∪

⋃
i<n

Li
)
.

Consult Figure 4 for some examples of this classification. This partition is such
that each arc 0i,k belongs to one and only one of the classes B, Sn and Ln , with
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∂D

2NQz

2N+1Qz

QzΓi,k ∈ SN+1

Γi,k ∈ LN+2

Γi,k ∈ LN+1
Γi,k ∈ B

Γi,k ∈ SN+2

2N+2Qz

z

Figure 4. We divide the arcs 0i,k into classes denoted B, Sn and Ln .

n ≥ N + 1. Hence we may decompose the sum (6) as∑
i,k

Hi,k(z) =

∑
0i,k∈B

Hi,k(z) +

∞∑
n=N+1

( ∑
0i,k∈Sn

Hi,k(z) +

∑
0i,k∈Ln

Hi,k(z)
)

.

Our goal is to show that the absolute value of the left hand side is small. To
accomplish this we will show that each of the terms∣∣∣∣ ∑

0i,k∈B

Hi,k(z)
∣∣∣∣, ∣∣∣∣ ∞∑

n=N+1

∑
0i,k∈Sn

Hi,k(z)
∣∣∣∣ and

∣∣∣∣ ∞∑
n=N+1

∑
0i,k∈Ln

Hi,k(z)
∣∣∣∣

are small.
We begin with the boundary arcs 0i,k ∈ B. Using that log(1 − t) = −t + O(t2)

we get∑
0i,k∈B

∫
0i,k

log
ρ(z, ξ)

ρ(z, ξi,k)
dµ(ξ)

= −
1
2

∑
0i,k∈B

∫
0i,k

(
1 −

ρ(z, ξ)2

ρ(z, ξi,k)2 + O

((
1 −

ρ(z, ξ)2

ρ(z, ξi,k)2

)2
))

dµ(ξ).

Taking absolute values,

(7)

∣∣∣∣∣ ∑
0i,k∈B

∫
0i,k

log
ρ(z, ξ)

ρ(z, ξi,k)
dµ(ξ)

∣∣∣∣∣ ≤
1
2

∣∣∣∣∣ ∑
0i,k∈B

∫
0i,k

1 −
ρ(z, ξ)2

ρ(z, ξi,k)2 dµ(ξ)

∣∣∣∣∣
+

1
2

∣∣∣∣∣ ∑
0i,k∈B

∫
0i,k

O

((
1 −

ρ(z, ξ)2

ρ(z, ξi,k)2

)2
)

dµ(ξ)

∣∣∣∣∣ def
= EB,1 + EB,2,
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where we define EB,1 and EB,2 for convenience. At first we focus on the term
EB,1. Note that since z is far away from ξi,k ∈ 0i , the expression ρ(z, ξi,k)

−2 is
bounded above, say by 2. By expanding 1 − ρ(z, ξ)2 and 1 − ρ(z, ξi,k)

2, we can
write

(8) EB,1 ≤

∑
0i,k∈B

∣∣∣∣∫
0i,k

(
1 − |z|2

)( 1 − |ξ |
2

|1 − ξ̄ z|2
−

1 − |ξi,k |
2

|1 − ξ̄i,kz|2

)
dµ(ξ)

∣∣∣∣
=

∑
0i,k∈B

∣∣∣∣∫
0i,k

(
1 − |z|2

)( 1 − |ξ |
2

|1−ξ̄ z|2
−

1 − |ξ |
2

|1−ξ̄i,kz|2
+

|ξi,k |
2
−|ξ |

2

|1 − ξ̄i,kz|2

)
dµ(ξ)

∣∣∣∣.
By the placement, (4), of the zeros ξi,k , the integral of the last term is zero. We
now move the modulus under the integral to get

(9) EB,1 ≤
(
1 − |z|2

) ∑
0i,k∈B

∫
0i,k

(
1 − |ξ |

2)∣∣∣∣ 1
|1 − ξ̄ z|2

−
1

|1 − ξ̄i,kz|2

∣∣∣∣ dµ(ξ).

Because ξ and ξi,k should be close to each other in some sense, compared to z, we
suspect some cancellation. Therefore we use the estimate

(10)
∣∣∣∣ 1
|1 − ξ̄ z|2

−
1

|1 − ξ̄i,kz|2

∣∣∣∣ ≤
2|ξ − ξi,k |

(1 − |z|)3

and the more trivial inequalities |ξ − ξi,k | ≤ `(0i,k) and 1 − |z|2 ≤ 2(1 − |z|) to
obtain

EB,1 ≤ 23 (
1 − |z|

)−2 ∑
0i,k∈B

`(0i,k)

∫
0i,k

(
1 − |ξ |

)
dµ(ξ).

All the arcs 0i,k ∈ B are contained in a rectangle at the boundary with height
2−2N (1 − |z|) and width 2N (1 − |z|). Using that 1 − |ξ | ≤ 2−2N (1 − |z|) and that
the arclength ds|0 is a Carleson measure, we then get

EB,1 ≤ 23
‖ds|0‖C · 2−N

where ‖ds|0‖C is the Carleson norm of arclength on 0.
Next we focus our attention on the higher-order terms, and give the estimate for

EB,2. From (7) and (8) and the inequality (a + b)2
≤ 2(a2

+ b2) we see that EB,2

is bounded by a fixed multiple of

(
1 − |z|2

)2 ∑
0i,k∈B

∫
0i,k

(
1 − |ξ |

2)2
∣∣∣∣ 1
|1 − ξ̄ z|2

−
1

|1 − ξ̄i,kz|2

∣∣∣∣2

dµ(ξ)

+
(
1 − |z|2

)2 ∑
0i,k∈B

∫
0i,k

(|ξi,k |
2
− |ξ |

2)2

|1 − ξ̄i,kz|4
dµ(ξ).
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For the first term, we use as above the estimate (10) as well as 1−|ξ |≤2−2N (1−|z|)
and |ξ − ξi,k | ≤ 2 · 2N (1 − |z|). Then we find

(
1−|z|2

)2 ∑
0i,k∈B

∫
0i,k

(
1 − |ξ |

2)2
∣∣∣∣ 1
|1 − ξ̄ z|2

−
1

|1 − ξ̄i,kz|2

∣∣∣∣2

dµ(ξ)

≤ 24
· 2−N

·
(
1 − |z|2

) ∑
0i,k∈B

∫
0i,k

(
1 − |ξ |

2)∣∣∣∣ 1
|1 − ξ̄ z|2

−
1

|1 − ξ̄i,kz|2

∣∣∣∣ dµ(ξ).

The last sum is just (9), and by the earlier argument the last expression is bounded
by 27

‖ds|0‖C · 2−2N .
For the second term we use that |1− ξ̄i,kz| ≥ 1−|z|,

∣∣|ξi,k |−|ξ |
∣∣≤ 2−2N (1−|z|)

and
∣∣|ξi,k | − |ξ |

∣∣ ≤ `(0i,k) to arrive at

(
1 − |z|2

)2 ∑
0i,k∈B

∫
0i,k

(|ξi,k |
2
− |ξ |

2)2

|1 − ξ̄i,kz|4
dµ(ξ)

≤ 24 (
1 − |z|

)−2 ∑
0i,k∈B

∫
0i,k

∣∣|ξi,k | − |ξ |
∣∣2 dµ(ξ)

≤ 24
· 2−2N (

1 − |z|
)−1 ∑

0i,k∈B

`(0i,k) ≤ 24
‖ds|0‖C · 2−N .

Thus we get EB,2 ≤ C (24
+ 1) ‖ds|0‖C · 2−N for big N .

For the short arcs 0i,k ∈ Sn , n ≥ N + 1, we will use similar estimates as above,
but we do not need to be as delicate. For these arcs we can use the inequality
|log x | ≤ |1 − x2

|, which holds for x far away from zero, to obtain

ES
def
=

∣∣∣∣ ∞∑
n=N+1

∑
0i,k∈Sn

∫
0i,k

log
ρ(z, ξ)

ρ(z, ξi,k)
dµ(ξ)

∣∣∣∣
≤

∞∑
n=N+1

∑
0i,k∈Sn

∫
0i,k

∣∣1 −
ρ(z, ξ)2

ρ(z, ξi,k)2

∣∣ dµ(ξ).

The same calculations that gave (8) show that

∣∣1 −
ρ(z, ξ)2

ρ(z, ξi,k)2

∣∣ ≤ 2
(
1 − |z|2

)(∣∣∣∣ 1 − |ξ |
2

|1 − ξ̄ z|2
−

1 − |ξ |
2

|1 − ξ̄i,kz|2

∣∣∣∣ +
∣∣|ξi,k |

2
− |ξ |

2
∣∣

|1 − ξ̄i,kz|2

)
.

For ξ ∈ 0i,k ∈ Sn , using |1 − ξ̄ z| ≥ 2n−3(1 − |z|) we get

(
1 − |ξ |

2)∣∣∣∣ 1
|1 − ξ̄ z|2

−
1

|1 − ξ̄i,kz|2

∣∣∣∣ ≤ 211

(
1 − |ξ |

)∣∣ξ − ξi,k
∣∣

23n
(
1 − |z|

)3 ≤ 211 |ξ − ξi,k |

22n
(
1 − |z|

)2 .
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Similarly, ∣∣|ξi,k |
2
− |ξ |

2
∣∣

|1 − ξ̄i,kz|2
≤ 27 |ξ − ξi,k |

22n
(
1 − |z|

)2 .

Adding up, we obtain ∣∣∣∣1 −
ρ(z, ξ)2

ρ(z, ξi,k)2

∣∣∣∣ ≤ 214 |ξ − ξi,k |

22n
(
1 − |z|

) .

Hence

ES ≤ 214
∞∑

n=N+1

1
22n

(
1 − |z|

) ∑
0i,k∈Sn

`(0i,k) ≤ 214
‖ds|0‖C · 2−N .

Finally, we estimate the long arcs 0i,k ∈ Ln , for n ≥ N +1. As the zeros on these
arcs are well separated, one can expect only a small contribution from these arcs.
We will use an auxiliary interpolating Blaschke product to find a bound for the
Ln-terms of (6). By the same reasoning that led to (8) and the triangle inequality,

EL
def
=

∣∣∣∣ ∞∑
n=N+1

∑
0i,k∈Ln

∫
0i,k

log
ρ(z, ξ)

ρ(z, ξi,k)
dµ(ξ)

∣∣∣∣
≤ 2

∞∑
n=N+1

∑
0i,k∈Ln

∫
0i,k

(
1 − |z|2

)( 1 − |ξ |
2

|1 − ξ̄ z|2
+

1 − |ξi,k |
2

|1 − ξ̄i,kz|2

)
dµ(ξ)

≤ 22
∞∑

n=N+1

∑
0i,k∈Ln

max
ξ∈0i,k

(
1 − |z|2

)(
1 − |ξ |

2
)

|1 − ξ̄ z|2
.

For each 0i,k ∈ Ln , let ζi,k ∈ 0i,k be such that

1 − |ζi,k |
2

|1 − ζ̄i,kz|2
= max

ξ∈0i,k

1 − |ξ |
2

|1 − ξ̄ z|2
,

and define Bζ to be the Blaschke product with {ζi,k} as zeros. Now we reorder the
summation, and sum with respect to the placement of the ζi,k instead. Then

EL ≤ 23 (
1 − |z|

) ∞∑
n=0

∑
ζi,k∈Un

1 − |ζi,k |
2

|1 − ζ̄i,kz|2

where U0 = Qz and Un = 2n Qz \ 2n−1 Qz for n ≥ 1. The scaling property (3)
implies that at most four of the points ζi,k are contained in 2N−1 Qz . These must
be close to the boundary, so

23 (
1 − |z|

) N−1∑
n=0

∑
ζi,k∈Un

1 − |ζi,k |
2

|1 − ζ̄i,kz|2
≤ 4 · 24

· 2−2N .
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For the rest of the terms, we then get

23 (
1 − |z|

) ∞∑
n=N

∑
ζi,k∈Un

1 − |ζi,k |
2

|1 − ζ̄i,kz|2
≤ 28

∞∑
n=N

1
2n

∑
ζi,k∈Un

1 − |ζi,k |

2n
(
1 − |z|

) ≤ 29 Cζ · 2−N ,

where Cζ is the Carleson norm of the measure
∑

(1−|ζi,k |)δζi,k , which is bounded
by a fixed multiple of ‖ds|0‖C . Thus EL ≤ 29 (Cζ + 1) · 2−N .

We have now estimated the contribution from all the arcs 0i,k , and we have
found that for some constant C ,∣∣log |B1(z)| − log |I1(z)|

∣∣ ≤ C · 2−N .

This means that given ε > 0, taking N so that C · 2−N < ε/2, we obtain∣∣|B1(z)| − |I1(z)|
∣∣ < ε/2,

which is what we needed.
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Autònoma de Barcelona and while Nicolau was visiting IMUB at the Universitat
de Barcelona. It is a pleasure to thank both institutions for their support.

References

[Carleson 1958] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J.
Math. 80 (1958), 921–930. MR 22 #8129 Zbl 0085.06504

[Carleson 1962] L. Carleson, “Interpolations by bounded analytic functions and the corona prob-
lem”, Ann. of Math. (2) 76 (1962), 547–559. MR 25 #5186 Zbl 0112.29702

[Frostman 1935] O. Frostman, “Potentiel d’équilibre et capacité des ensembles avec quelques appli-
cations á la théorie des fonctions”, Medd. Lund. Univ. Math. Sem. 3 (1935). JFM 61.1262.02

[Garnett 1981] J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics 96, Aca-
demic Press, New York, 1981. MR 83g:30037 Zbl 0469.30024

[Garnett and Nicolau 1996] J. Garnett and A. Nicolau, “Interpolating Blaschke products generate
H∞”, Pacific J. Math. 173:2 (1996), 501–510. MR 97f:30050 Zbl 0871.30031

[Havin and Nikol’skiı̆ 1994] V. P. Havin and N. K. Nikol’skiı̆ (editors), Linear and complex analysis,
problem book 3, part I, edited by V. P. Havin and N. K. Nikol’skiı̆, Lecture Notes in Mathematics
1573, Springer, Berlin, 1994. MR 96c:00001a Zbl 0893.30037

[Jones 1981] P. W. Jones, “Ratios of interpolating Blaschke products”, Pacific J. Math. 95:2 (1981),
311–321. MR 82m:30032 Zbl 0479.30021

[Lyubarskii and Malinnikova 2001] Y. Lyubarskii and E. Malinnikova, “On approximation of sub-
harmonic functions”, J. Anal. Math. 83 (2001), 121–149. MR 2002b:30043 Zbl 0981.31002

[Marshall 1976] D. E. Marshall, “Blaschke products generate H∞”, Bull. Amer. Math. Soc. 82:3
(1976), 494–496. MR 53 #5877 Zbl 0327.30029

http://links.jstor.org/sici?sici=0002-9327(195810)80:4%3C921:AIPFBA%3E2.0.CO%3B2-%23
http://www.ams.org/mathscinet-getitem?mr=22:8129
http://www.emis.de/cgi-bin/MATH-item?0085.06504
http://links.jstor.org/sici?sici=0003-486X(196211)2:76:3%3C547:IBBAFA%3E2.0.CO%3B2-5
http://links.jstor.org/sici?sici=0003-486X(196211)2:76:3%3C547:IBBAFA%3E2.0.CO%3B2-5
http://www.ams.org/mathscinet-getitem?mr=25:5186
http://www.emis.de/cgi-bin/MATH-item?0112.29702
http://www.emis.de/cgi-bin/JFM-item?61.1262.02
http://www.ams.org/mathscinet-getitem?mr=83g:30037
http://www.emis.de/cgi-bin/MATH-item?0469.30024
http://projecteuclid.org/getRecord?id=euclid.pjm/1102365635
http://projecteuclid.org/getRecord?id=euclid.pjm/1102365635
http://www.ams.org/mathscinet-getitem?mr=97f:30050
http://www.emis.de/cgi-bin/MATH-item?0871.30031
http://www.ams.org/mathscinet-getitem?mr=96c:00001a
http://www.emis.de/cgi-bin/MATH-item?0893.30037
http://projecteuclid.org/getRecord?id=euclid.pjm/1102735072
http://www.ams.org/mathscinet-getitem?mr=82m:30032
http://www.emis.de/cgi-bin/MATH-item?0479.30021
http://www.ams.org/mathscinet-getitem?mr=2002b:30043
http://www.emis.de/cgi-bin/MATH-item?0981.31002
http://www.ams.org/mathscinet-getitem?mr=53:5877
http://www.emis.de/cgi-bin/MATH-item?0327.30029


118 GEIR ARNE HJELLE AND ARTUR NICOLAU

[Marshall and Stray 1996] D. E. Marshall and A. Stray, “Interpolating Blaschke products”, Pacific
J. Math. 173:2 (1996), 491–499. MR 97c:30042 Zbl 0855.30028

[Mortini and Nicolau 2004] R. Mortini and A. Nicolau, “Frostman shifts of inner functions”, J. Anal.
Math. 92 (2004), 285–326. MR 2005e:30088 Zbl 1064.30029

[Nicolau and Suárez ≥ 2006] A. Nicolau and D. Suárez, “Approximation by invertible functions of
H∞”, Math. Scandinavica. To appear.

[Nikol’skiı̆ 1986] N. K. Nikol’skiı̆, Treatise on the shift operator, Grundlehren der Mathematischen
Wissenschaften 273, Springer, Berlin, 1986. MR 87i:47042 Zbl 0587.47036

[Seip 2004] K. Seip, Interpolation and sampling in spaces of analytic functions, University Lecture
Series 33, American Math. Society, Providence, RI, 2004. MR 2005c:30038 Zbl 1057.30036

Received October 4, 2005.

GEIR ARNE HJELLE

DEPARTMENT OF MATHEMATICAL SCIENCES

NORWEGIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

7491 TRONDHEIM

NORWAY

Current address:
Department of Mathematics
Washington University
St. Louis, MO 63130
United States
http://www.math.wustl.edu/~hjelle/

hjelle@math.wustl.edu

ARTUR NICOLAU

DEPARTAMENT DE MATEMÀTIQUES
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