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CURVATURE OF SPECIAL ALMOST HERMITIAN MANIFOLDS

FRANCISCO MARTÍN CABRERA AND ANDREW SWANN

We study the curvature of almost Hermitian manifolds and their special
analogues via intrinsic torsion and representation theory. By deriving dif-
ferent formulae for the skew-symmetric part of the ∗-Ricci curvature, we
find that some of these contributions are dependent on the approach used
and, for the almost Hermitian case, we obtain tables that differ from those
of Falcitelli, Farinola, and Salamon. We show how the exterior algebra may
be used to explain some of these variations.

1. Introduction

Tricerri and Vanhecke [1981] gave a complete decomposition of the Riemannian
curvature tensor R of an almost Hermitian manifold(

M, I, 〈 · , · 〉
)

into irreducible U(n)-components. These divide naturally into two groups, one
forming the space K = K(u(n)) of algebraic curvature tensors for a Kähler mani-
fold, and the other being its orthogonal complement K⊥.

Falcitelli et al. [1994] showed that the components of R in K⊥ are linearly
determined by the covariant derivative ∇ξ , where ∇ is the Levi-Civita connection
and ξ is the intrinsic torsion of the U(n)-structure on M . Gray and Hervella [1980]
showed that, in general dimensions, ξ may be split into four components ξ1, . . . , ξ4

under the action of U(n). By using the minimal U(n)-connection ∇̃ = ∇ +ξ of M ,
Falcitelli et al. display some tables showing whether the tensors ∇̃ξi and ξi � ξj

contribute to the components of R in K⊥. This provides a unified approach to many
of the curvature results obtained in [Gray 1976a].

The present paper is motivated by the interest in extending the above-mentioned
results to special almost Hermitian manifolds. These are defined as almost Her-
mitian manifolds

(
M, I, 〈 · , · 〉

)
equipped with a complex volume form

9 = ψ+ + iψ−.
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Equivalently, they are manifolds with structure group SU(n). A detailed study of
the intrinsic torsion η+ξ of such manifolds was made in [Martı́n Cabrera 2005], ex-
tending results of Chiossi and Salamon [2002]; here, ξ is the intrinsic U(n)-torsion,
as above, and η is essentially a 1-form. There is much current interest in SU(n)-
structures, partly as generalisations of Calabi–Yau manifolds [Grantcharov et al.
2003; Banos 2002] and partly because of the role played by torsion connections
with SU(n) holonomy in string theory [Papadopoulos 1999; Gutowski et al. 2003].

For SU(n) structures, the algebraic curvature tensors lie in K(su(n)) and are
automatically Ricci-flat. Therefore, one may compute the Ricci curvature Ric, and
indeed the ∗-Ricci curvature Ric∗, in terms of the intrinsic SU(n)-torsion η+ ξ .
This enables us to find information about those SU(n)-components of the Riemann-
ian curvature R that are determined by the tensors Ric and Ric∗. Some of these
components are contained in K⊥, and others are contained in K. This will allow us,
on the one hand, to get more concrete information about some components of R
contained in K⊥ and, on the other hand, to enlarge the tables of Falcitelli et al. with
columns related to some components contained in K.

In working out these contributions, we arrived at various alternative formulae for
certain curvature components purely in terms of the intrinsic U(n)-torsion ξ . This
leads to some table entries that are different from those obtained by Falcitelli et al.
To try to account for this, we consider the identity d2

= 0 in the exterior algebra.
Applying this to the Kähler 2-form ω and considering a particular component leads
indeed to a nontrivial relation between the tensors contributing to the curvature.
One may view the relation d2ω= 0 as one way of taking into account some of the
information that the Levi-Civita connection connection ∇ = ∇̃ − ξ is torsion-free.

The paper is organized as follows. In Section 2 we present some preliminary
material: definitions, results, notation, etc. Then, in Section 3 we derive some
formulae relating the curvature and the intrinsic torsion. As an immediate appli-
cation, we give an alternative proof of the result of Gray [1976b] that any nearly
Kähler manifold of dimension 6 that is not Kähler is an Einstein manifold. We then
proceed to computing the contributions of different components of the intrinsic tor-
sion and its covariant derivative to the Ricci, ∗-Ricci and Riemannian curvatures.
Because of representation theory, this behaves differently in dimensions 4 and 6
than in higher dimensions: in dimension 6, ξ splits into more SU(3)-components;
in dimension 4, the space of curvature tensors is decomposed more finely under
the action of SU(2). This motivates us to display results and tables in two separate
sections: Section 4 for high dimensions, 2n > 8, and Section 5 for dimensions 6
and 4. Finally, in Section 6 we discuss identities derived from the exterior algebra.

Note. We will often use decompositions of tensor products without providing
details, since such information can be readily obtained from available software.
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2. Preliminaries

An almost Hermitian manifold is a 2n-dimensional manifold M , n > 0, with a
U(n)-structure. This means that M is equipped with a Riemannian metric 〈 · , · 〉

and an orthogonal almost complex structure I . Each fibre Tm M of the tangent
bundle can be considered as a complex vector space by defining i x = I x . We will
write Tm M

C
when we are regarding Tm M as such a space.

We define a Hermitian scalar product 〈 · , · 〉
C

= 〈 · , · 〉 + iω( · , · ), where ω is
the Kähler form given by ω(x, y)= 〈x, I y〉. The real tangent bundle TM is iden-
tified with the cotangent bundle T ∗M by the map x 7→ 〈 · , x〉 = x . Similarly, the
conjugate complex vector space Tm MC is identified with the dual complex space
T ∗

m M
C

by the map x 7→ 〈 · , x〉
C

= x
C

. It follows immediately that x
C

= x + i I x .
If we consider the spaces

∧pT ∗
m M

C
of skew-symmetric complex forms, one can

check that x
C
∧y

C
= (x+i I x)∧(y+i I y). There are natural extensions of the scalar

products 〈 · , · 〉 and 〈 · , · 〉
C

to
∧pT ∗

m M and
∧pT ∗

m M
C

, defined respectively by

〈a, b〉 =
1
p!

2n∑
i1,...,i p=1

a(ei1, . . . , ei p) b(ei1, . . . , ei p),

〈aC, bC〉C =
1
p!

n∑
i1,...,i p=1

aC(ui1, . . . , ui p) b
C
(ui1, . . . , ui p),

where e1, . . . , e2n is an orthonormal basis for real vectors, and u1, . . . , un is a
unitary basis for complex vectors.

The following conventions will be used in this paper. If b is a (0, s)-tensor, we
write

I(i)b(X1, . . . , X i , . . . , Xs)= −b(X1, . . . , I X i , . . . , Xs),

I b(X1, . . . , Xs)= (−1)sb(I X1, . . . , I Xs).

Tricerri and Vanhecke [1981] gave a complete decomposition of the Riemannian
curvature tensor R of an almost Hermitian manifold

(
M, I, 〈 · , · 〉

)
into irreducible

U(n)-components. As indicated above, some of these components, constituting a
U(n)-space denoted by K = K(u(n)), are the only components that can occur when
M is a Kähler manifold. In this text we will follow the notation used in [Falcitelli
et al. 1994] for such components. Likewise, we will adopt the formalism used in
[Salamon 1989] and [Falcitelli et al. 1994] for irreducible U(n)-modules. Thus,
for n > 2,

K = C3 + K1 + K2,

where C3 ∼= [σ
2,2
0 ], K1 ∼= R, K2 ∼= [λ

1,1
0 ], and + denotes direct sum. We recall

that λp,q
0 is a complex irreducible U(n)-module coming from the (p, q)-part of the

complex exterior algebra, and that its corresponding dominant weight in standard
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coordinates is given by (1, . . . , 1, 0, . . . , 0,−1, . . . ,−1), where 1 and −1 are re-
peated p and q times, respectively. By analogy with the exterior algebra, there
are also irreducible U(n)-modules σ p,q

0 , with dominant weights (p, 0, . . . , 0,−q)
coming from the symmetric algebra. The notation [[V ]] stands for the real vector
space underlying a complex vector space V , and [W ] denotes a real vector space
that admits W as its complexification.

Moreover, let Ric and Ric∗ be the Ricci and ∗-Ricci curvatures, defined by

Ric(X, Y )= 〈RX,ei
Y, ei 〉, Ric∗(X, Y )= 〈RX,ei

I Y, I ei 〉,

where RX,Y = ∇
[X,Y ]

− [∇X ,∇Y ], and the summation convention is used.
The components of the curvature R in K1 and K2 are determined by, respec-

tively, the trace and the trace-free components of RicH +3 Ric∗

H (see [Tricerri and
Vanhecke 1981]), where bH indicates the Hermitian part of a bilinear form b, that
is, the part satisfying bH (I X, I Y )= bH (X, Y ). Note that Ric∗

H coincides with the
symmetric part of Ric∗.

The remaining components of R, not included in K, are contained in a U(n)-
space denoted by K⊥. For n > 4, one has [Falcitelli et al. 1994]:

K⊥
= K−1 + K−2 + C4 + C5 + C6 + C7 + C8,

where K−1 ∼= R, K−2 ∼= [λ
1,1
0 ], C4 ∼= [λ

2,2
0 ], C5 ∼= [[U ]], C6 ∼= [[λ2,0

]], C7 ∼= [[V ]],
and C8 ∼= [[σ 2,0

]]. The irreducible U(n)-modules U and V have dominant weights
(2, 2, 0, . . . , 0) and (2, 1, 0, . . . , 0,−1). For n = 3, the decomposition of K⊥ is
formed by the same summands but omitting C4. Finally, when n = 2 we have to
omit K−2, C4, and C7.

We are dealing with G-structures where G is a subgroup of the linear group
GL(m,R). If M possesses a G-structure, then there always exists a G-connection
defined on M . Moreover, if

(
Mm, 〈 · , · 〉

)
is an orientable m-dimensional Riemann-

ian manifold and G a closed and connected subgroup of SO(m), then there exists
a unique metric G-connection ∇̃ such that ξx = ∇̃x − ∇x takes its values in g⊥,
where g⊥ denotes the orthogonal complement in so(m) of the Lie algebra g of G,
and ∇ is the Levi-Civita connection [Salamon 1989; Cleyton and Swann 2004].
The tensor ξ is the intrinsic torsion of the G-structure, and ∇̃ is called the minimal
G-connection.

For U(n)-structures, the minimal U(n)-connection is given by ∇̃ = ∇ +ξ , with

(2–1) ξX Y = −
1
2 I (∇X I )Y,

see [Falcitelli et al. 1994]. Since U(n) stabilizes the Kähler form ω, it follows that
∇̃ω = 0. Moreover, ξX (I Y )+ I (ξX Y ) = 0 implies ∇ω = −ξω ∈ T ∗M ⊗ u(n)⊥.
Thus, one can identify the U(n)-components of ξ with those of ∇ω:
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(1) if n = 1, ξ ∈ T ∗M ⊗ u(1)⊥ = {0};

(2) if n = 2, ξ ∈ T ∗M ⊗ u(2)⊥ = W2 + W4;

(3) if n > 3, ξ ∈ T ∗M ⊗ u(n)⊥ = W1 + W2 + W3 + W4.

The summands Wi are the irreducible U(n)-modules given by Gray and Hervella
[1980], so W1 ∼= [[λ3,0

]], W2 ∼= [[A]], W3 ∼= [[λ
2,1
0 ]], and W4 ∼= [[λ1,0

]], where A ⊂

λ1,0
⊗ λ2,0 is the irreducible U(n)-module with dominant weight (2, 1, 0, . . . , 0).

In the following, ξi will denote the component in Wi of the torsion tensor ξ .
Falcitelli et al. [1994] proved that the components of R in K⊥ are linearly deter-

mined by the covariant derivative ∇ξ with respect to the Levi-Civita connection ∇.
To prove this result, they consider the space R = K + K⊥ of curvature tensors
(we recall that R is the kernel of the mapping �

2
(∧2T ∗

m M
)

→
∧4T ∗

m M defined
by wedging 2-forms together). Then, they deduce that the orthogonal projection
π⊥

= (π2 ◦π1) |R : R → K⊥ can be expressed as the restriction to R of the com-
position map π2 ◦ π1, where π1 :

∧2T ∗
m M ⊗

∧2T ∗
m M →

∧2T ∗
m M ⊗ u(n)⊥ is the

orthogonal projection, and π2 :
∧2T ∗

m M⊗u(n)⊥ →K⊥ is a certain U(n)-equivariant
homomorphism. Since we have the identity [Falcitelli et al. 1994]

π1(R)(X, Y, Z ,W )

= 〈(∇X I ξ)Y I Z , W 〉 − 〈(∇Y I ξ)X I Z , W 〉

= 〈(∇Xξ)Y Z , W 〉 − 〈(∇Y ξ)X Z , W 〉 + 2〈ξXξY Z , W 〉 − 2〈ξY ξX Z , W 〉,

with the third and fourth summands in
∧2T ∗

m M ⊗ u(n), and since π2 is U(n)-
equivariant, it follows that the components of π⊥(R) in K⊥ are linear functions of
the components of ∇ξ . Now, taking the U(n)-connection ∇̃ = ∇ + ξ into account,
one obtains

(2–2) π1(R)(X, Y, Z ,W )

= 〈(∇̃Xξ)Y Z ,W 〉 − 〈(∇̃Y ξ)X Z ,W 〉 + 〈ξξX Y Z ,W 〉 − 〈ξξY X Z ,W 〉.

From this equation and by considering the image π2 ◦ π1(R), Falcitelli et al. give
some tables that show whether the tensors ∇̃ξi and ξi � ξ j contribute to the com-
ponents of R in K⊥.

Here, we also consider manifolds equipped with an SU(n)-structure. Such man-
ifolds are called special almost Hermitian manifolds. These are almost Hermitian
manifolds

(
M, I, 〈 · , · 〉

)
equipped with a complex volume form 9 = ψ+ + iψ−

such that 〈9,9〉
C

= 1. Note that I(i)ψ+ =ψ−. See [Martı́n Cabrera 2005] for de-
tails and more exhaustive information, or [Bryant 1999; Joyce 2000; Hitchin 1997].
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For a special almost Hermitian 2n-manifold M , we have the intrinsic torsion
η + ξ ∈ T ∗M ⊗Rω + T ∗M ⊗ u(n)⊥ = T ∗M ⊗ su(n)⊥ and the minimal SU(n)-
connection ∇ = ∇ + η + ξ . Since ∇ is metric and η ∈ T ∗M ⊗ Rω, we have
〈Y, ηX Z〉 = η̂(X)ω(Y, Z), where η̂ is a 1-form. Hence,

ηX Y = η̂(X)I Y.

In [Martı́n Cabrera 2005] it is shown that the 1-form η̂ is given by

−I η̂ =
1

2n−1n
∗(∗ dψ+ ∧ψ+ + ∗ dψ− ∧ψ−)−

1
2n

I d∗ω,

where ∗ is the Hodge star operator and d∗ the coderivative. This formula simplifies
for n > 3, since then ∗ dψ+ ∧ψ+ = ∗ dψ− ∧ψ−, and one sees that nI η̂−

1
2 I d∗ω

is essentially the coefficient of 9 in the (n, 1)-part of d9. The other part of the
intrinsic torsion ξ ∈ T ∗M ⊗ u(n)⊥ is still given by equation (2–1).

The tensors ω, ψ+, and ψ− are stabilised by the SU(n)-action, and we have
∇ω = 0, ∇ψ+ = 0, and ∇ψ− = 0. Moreover, one can check that ηω = 0 and
obtain ∇ω= −ξω ∈ T ∗M ⊗u(n)⊥. In general, the above-mentioned U(n)-spaces
Wi are also irreducible as SU(n)-spaces. The only exceptions are W1 and W2 when
n = 3. In fact, for that case, we have the following decompositions into irreducible
SU(3)-components:

Wi = W+

i + W−

i , i = 1, 2,

where the spaces W+

i and W−

i consist of those tensors a ∈ Wi ⊆ T ∗M ⊗
∧2T ∗M

such that the bilinear form r(a), defined by 2r(a)(x, y) = 〈xyψ+, yya〉, is, re-
spectively, symmetric or skew-symmetric, see [Martı́n Cabrera 2005; Chiossi and
Salamon 2002]. The components of the tensor ξ in W+

i and W−

i , i = 1, 2, will be
denoted by ξ+

i and ξ−

i . Writing η ∈ W5 ∼= T ∗M , the intrinsic SU(n)-torsion ξ +η

is contained in
(
T ∗M ⊗u(n)⊥

)
+W5. The space W5 is always SU(n)-irreducible.

From the equations ∇ψ+ = 0 and ∇ψ− = 0, we have ∇ψ+ = −ξψ+ −ηψ+ and
∇ψ− = −ξψ− − ηψ−. Moreover, for n > 2, it is shown in [Martı́n Cabrera 2005]
that

(2–3)
ξXψ+, ξXψ− ∈ [[λn−2,0

]] ∧ω,

ηXψ+ = n η̂(X)ψ− and ηXψ− = −n η̂(X)ψ+.

When considering curvature, note that the module C3 = K(su(n)) in K consists
of the algebraic curvature tensors for a metric with holonomy algebra su(n).

3. Some curvature formulae

For special almost Hermitian 2n-manifolds, results and tables given in [Falcitelli
et al. 1994] are still valid with respect to the tensors ∇̃ξi and ξi �ξj . Here, ∇̃ =∇−η

is the minimal U(n)-connection, with ∇ denoting the minimal SU(n)-connection.
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For SU(n)-structures, the additional information coming from η will allow us
to compute the components of R in K1 and K2 in terms of the intrinsic torsion
η + ξ . To achieve this, we compute the difference between the Ricci and the ∗-
Ricci curvatures. In the first instance, we only need the almost Hermitian structure.

Lemma 3.1. If M is an almost Hermitian 2n-manifold, n > 2, with minimal U(n)-
connection ∇̃ = ∇ + ξ , then

Ric∗(X, Y )− Ric(X, Y )

= 2〈(∇ei I ξ)X I Y, ei 〉 − 2〈(∇X I ξ)ei I Y, ei 〉,

= 2〈(∇̃ei ξ)X Y, ei 〉 − 2〈(∇̃Xξ)ei Y, ei 〉 + 2〈ξξei X Y, ei 〉 − 2〈ξξX ei
Y, ei 〉.

Proof. It is straightforward to check that

(3–1) Ric∗(X, Y )− Ric(X, Y )= −(RX,ei
ω)(I Y, ei ).

However, the so-called Ricci formula [Besse 1987, p. 26] implies that

(3–2) −(RX,ei
ω)(I Y, ei )= ã(∇2ω)X,ei (I Y, ei ),

where ã : T ∗M ⊗ T ∗M ⊗
∧2T ∗M →

∧2T ∗M ⊗
∧2T ∗M is the alternation map.

The required identities follow from equations (3–1) and (3–2), by taking into
account that ∇̃ω = 0. �

The components of R in K−1 and K−2 are determined by the trace and trace-
free parts of Ric∗

H − RicH . Similarly, the C6-component of R is determined by
the skew-symmetric (or anti-Hermitian) part Ric∗

AH of Ric∗. Moreover, the anti-
Hermitian part RicAH of the Ricci curvature, which satisfies RicAH (I X, I Y ) =

− RicAH (X, Y ), determines the component of R in C8. These assertions motivate
the expressions contained in the next lemma.

Lemma 3.2. If M is an almost Hermitian 2n-manifold, n > 2, with minimal U(n)-
connection ∇̃ = ∇ + ξ , then

(3–3) (Ric∗

H− RicH )(X, Y )= 〈(∇̃ei ξ)X Y, ei 〉 − 〈(∇̃Xξ)ei Y, ei 〉

+ 〈(∇̃ei ξ)I X I Y, ei 〉 − 〈(∇̃I Xξ)ei I Y, ei 〉 + 〈ξξei X Y, ei 〉

− 〈ξξX ei
Y, ei 〉 + 〈ξξei I X I Y, ei 〉 − 〈ξξI X ei

I Y, ei 〉,

(3–4) 2 Ric∗

AH (X, Y )= 〈(∇̃ei ξ)X Y, ei 〉 − 〈(∇̃ei ξ)Y X, ei 〉 − 〈(∇̃ei ξ)I X I Y, ei 〉

+ 〈(∇̃ei ξ)I Y I X, ei 〉 − 〈(∇̃Xξ)ei Y, ei 〉 + 〈(∇̃Y ξ)ei X, ei 〉

+ 〈(∇̃I Xξ)ei I Y, ei 〉 − 〈(∇̃I Y ξ)ei I X, ei 〉 + 〈ξξX ei
Y, ei 〉

− 〈ξξY ei
X, ei 〉 − 〈ξξI X ei

I Y, ei 〉 + 〈ξξI Y ei
I X, ei 〉,
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(3–5) 2 RicAH (X, Y )= −〈(∇̃ei ξ)X Y, ei 〉 + 〈(∇̃Xξ)ei Y, ei 〉 − 〈(∇̃ei ξ)Y X, ei 〉

+ 〈(∇̃Y ξ)ei X, ei 〉 + 〈(∇̃ei ξ)I X I Y, ei 〉 − 〈(∇̃I Xξ)ei I Y, ei 〉

+ 〈(∇̃ei ξ)I Y I X, ei 〉 − 〈(∇̃I Y ξ)ei I X, ei 〉 − 〈ξξei X Y, ei 〉

+ 〈ξξX ei
Y, ei 〉 − 〈ξξei Y X, ei 〉 + 〈ξξY ei

X, ei 〉 + 〈ξξei I X I Y, ei 〉

− 〈ξξI X ei
I Y, ei 〉 + 〈ξξei I Y I X, ei 〉 − 〈ξξI Y ei

I X, ei 〉.

Proof. This follows from Lemma 3.1 together with 〈ξξei X Y, ei 〉 = 〈ξξei Y X, ei 〉. �

Up to this point, we have not said anything particular to SU(n)-structures. We
now give a first result that uses the complex volume form 9.

Lemma 3.3. If M is a special almost Hermitian 2n-manifold, n > 2, with complex
volume form9=ψ++iψ− and minimal SU(n)-connection ∇ =∇+η+ξ =∇̃+η,
then

Ric∗(X, Y )= −n dη̂(X, I Y )− 〈ξX ei , ξI Y I ei 〉,(3–6)

Ric(X, Y )= −n dη̂(X, I Y )− 〈ξX ei , ξI Y I ei 〉 − 2〈(∇̃ei ξ)X Y, ei 〉(3–7)

+ 2〈(∇̃Xξ)ei Y, ei 〉 − 2〈ξξei X Y, ei 〉 + 2〈ξξX ei
Y, ei 〉.

Proof. Start by noticing that 〈RX,Yψ+, ψ−〉 = −2n−2
〈RX,Y I ei , ei 〉. By the first

Bianchi identity, we have

(3–8) 〈RX,Yψ+, ψ−〉 = −2n−1 Ric∗(X, I Y ).

On the other hand, using the Ricci formula −RX,Yψ+ = ã(∇2ψ+)(X,Y ) and taking
∇ = ∇ + η+ ξ into account, we obtain

− RX,Yψ+ = n dη̂(X, Y )ψ− + n η̂(X)(ξYψ−)− n η̂(Y )(ξXψ−)

+ Yy
(
∇X (ξψ+)

)
− Xy

(
∇Y (ξψ+)

)
.

Using the inclusions of (2–3), we have 〈ξXψ+, ψ−〉 = 0, 〈ξXψ−, ψ−〉 = 0, and
〈Yy

(
∇X (ξψ+)

)
, ψ−〉 = −〈ξX (ξYψ+), ψ−〉. This gives

(3–9) 〈RX,Yψ+, ψ−〉 = −n 2n−1dη̂(X, Y )− 2n−1
〈ξX ei , ξY I ei 〉.

Using equations (3–8), (3–9), and Lemma 3.1, we obtain the required identities for
Ric∗ and Ric. �

Theorem 3.4. If M is a special almost Hermitian 2n-manifold, n > 2, that is
Kähler, then Ric∗

= Ric, and

(1) if dη̂ = λω, for some λ ∈ R \ {0}, then the manifold is Einstein; or

(2) if the 1-form η̂ is closed, then the manifold is Ricci-flat.
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Proof. This is an immediate consequence of the previous lemma. �

Gray proved that any nearly Kähler (type W1) connected 6-manifold that is not
Kähler is Einstein. Here we give an alternative proof.

Theorem 3.5 [Gray 1976b]. If M is a special almost Hermitian connected 6-
manifold of type W+

1 + W−

1 + W5 that is not of type W5, then M is an Einstein
manifold such that Ric = 5 Ric∗

= 5α 〈 · , · 〉, where α = (w+

1 )
2

+ (w−

1 )
2 with

∇ω = w+

1 ψ+ +w−

1 ψ−.

Proof. We already know that α = (w+

1 )
2
+ (w−

1 )
2 is a positive constant and the

1-form η̂ is closed (see [Martı́n Cabrera 2005, Theorem 3.7]). Since ∇ω = −ξω

and ∇ω = w+

1 ψ+ +w−

1 ψ−, we have

2〈Y, ξX Z〉 = w−

1 ψ+(X, Y, Z)−w+

1 ψ−(X, Y, Z).

Therefore, using

〈Xyψ+, Yyψ+〉 = 〈Xyψ−, Yyψ−〉 = 2〈X, Y 〉,

〈Xyψ+, Yyψ−〉 = −2ω(X, Y ),
we get

(3–10) 〈ξX ei , ξY ei 〉 = 〈e j , ξX ei 〉〈e j , ξY ei 〉 = α 〈X, Y 〉.

Moreover, since ξ ∈ W+

1 + W−

1 and ∇̃ is a U(3)-connection, the (0, 3)-tensors
〈 · , ξ· · 〉 and 〈 · , (∇̃Xξ)· · 〉 are skew symmetric [Gray and Hervella 1980]. Thus,
from (3–7), we get

Ric(X, Y )= 5〈ξX ei , ξY ei 〉 = 5α 〈X, Y 〉.

We recall that 〈Y, ξI X I Z〉 = −〈Y, ξX Z〉 for ξ ∈ W1, and note that the contractions
〈(∇̃Xξ)ei Y, ei 〉 and 〈(∇̃ei ξ)X Y, ei 〉 both vanish. In fact, the last term is a skew-
symmetric 2-form, and the remaining summands in the expression for Ric are
symmetric. �

Remark 3.6. Theorem 3.5 can be extended to connected almost Hermitian 6-mani-
folds which are nearly Kähler but not Kähler. In fact, one can define a complex
volume form on an open neighbourhood U of a point where ∇ω 6= 0, by using the
(3, 0)-component of this tensor. Then, U is a special almost Hermitian 6-manifold
of type W+

1 + W−

1 + W5. Therefore, Ric = 5 Ric∗
= 5α 〈 · , · 〉 on U . Since the

manifold is connected, it follows that Ric = 5α 〈 · , · 〉 everywhere.

The expressions (3–6) and (3–7) for Ric∗ and Ric allow us to compute 3 Ric∗

H +

RicH and study the contributions of the intrinsic torsion of the SU(n)-structure to
the components of R in K1 and K2.
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Lemma 3.7. If M is a special almost Hermitian 2n-manifold, n > 2, with minimal
SU(n)-connection ∇ = ∇ + η+ ξ = ∇̃ + η, then

(3–11) (3 Ric∗

H + RicH )(X, Y )

= −2n dη̂(X, I Y )+ 2n dη̂(I X, Y )− 〈(∇̃ei ξ)X Y, ei 〉

+ 〈(∇̃Xξ)ei Y, ei 〉 − 〈(∇̃ei ξ)I X I Y, ei 〉 + 〈(∇̃I Xξ)ei I Y, ei 〉

− 〈ξξei X Y, ei 〉 + 〈ξξX ei Y, ei 〉 − 〈ξξei I X I Y, ei 〉

+ 〈ξξI X ei I Y, ei 〉 − 2〈ξX ei , ξI Y I ei 〉 − 2〈ξY ei , ξI X I ei 〉.

Finally, we record an alternative to equation (3–4):

Lemma 3.8. If M is an almost Hermitian 2n-manifold, n > 2, with minimal U(n)-
connection ∇̃ = ∇ + ξ , then

Ric∗

AH (X, Y )= 〈(∇̃ei ξ)I ei
I X, Y 〉 − 〈ξI ξei ei

I X, Y 〉(3–12)

= −〈(∇ei I ξ)I ei
X, Y 〉.

Proof. We have

−2 Ric∗(X, I Y )− 2 Ric∗(I X, Y )
= 〈Rei ,I ei

X, Y 〉 − 〈Rei ,I ei
I X, I Y 〉

= 4〈∇̃ei ξI ei
X, Y 〉 − 4〈ξI ei

∇̃ei X, Y 〉 − 4〈ξ
∇̃ei I ei

X, Y 〉 + 4〈ξξei I ei
X, Y 〉,

from which the lemma follows. �

4. High dimensions

In this section, we consider special almost Hermitian manifolds of dimension
higher than or equal to 8. For such manifolds, the decomposition into SU(n)-
irreducible modules of the space of curvature tensors R is the same as that coming
from the action of U(n). Thus,

R = K + K⊥
= C3 + K1 + K2 + K−1 + K−2 + C4 + C5 + C6 + C7 + C8,

where all Ki and Cj are also SU(n)-irreducible spaces. Our aim here is to see
whether different components of the intrinsic torsion of the SU(n)-structure con-
tribute to the components of the curvature.

We start by studying such contributions to the SU(n)-components of the Ricci
and ∗-Ricci curvatures. For n > 3, the spaces Ric and Ric∗ of such tensors admit
the following decompositions into SU(n)-irreducible modules

Ric = R〈 · , · 〉 + [λ
1,1
0 ] + [[σ 2,0

]], Ric∗
= R〈 · , · 〉 + [λ

1,1
0 ] + [[λ2,0

]].
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Ric∗ (3–6) Ric (3–7)

2n > 8 R [λ
1,1
0 ] [[λ2,0

]] R [λ
1,1
0 ] [[σ 2,0

]]

dη̂ X X X X X

∇ξ1, ηξ1

∇ξ2, ηξ2 X

∇ξ3, ηξ3 X

∇ξ4, ηξ4 X X X

ξ1 ⊗ ξ1 X X X X

ξ2 ⊗ ξ2 X X X X

ξ3 ⊗ ξ3 X X X X X

ξ4 ⊗ ξ4 X X X X X

ξ1 � ξ2 X X

ξ1 � ξ3 X X

ξ1 � ξ4 X

ξ2 � ξ3 X X

ξ2 � ξ4 X X

ξ3 � ξ4 X X

Table 1. Ricci curvatures, 2n > 8.

Taking into account the symmetry properties and types of the Gray–Hervella
components ξi of ξ , we obtain:

Theorem 4.1. Let M be a special almost Hermitian 2n-manifold, 2n > 8, with
minimal SU(n)-connection ∇ =∇+η+ξ =∇̃+η. The tensors dη̂, ∇ξ , and ξi �ξ j

contribute to the components of the ∗-Ricci curvature Ric∗ via equation (3–6) and
to the Ricci curvature Ric via equation (3–7) if and only if there is a tick in the
corresponding place in Table 1.

Using in addition that 〈ξξX ei
Y, ei 〉 = −〈ξX ei , ξei Y 〉, we get part (1) of the next

theorem. Part (2) is proved in [Falcitelli et al. 1994].

Theorem 4.2. If M is a special almost Hermitian 2n-manifold, 2n > 8, with mini-
mal SU(n)-connection ∇ = ∇ + η+ ξ = ∇̃ + η, then

(1) Using equations (3–3), (3–4), (3–5), and (3–11), each of the tensors ∇ξi , ηξi ,
and ξi �ξj contributes to the components of R in K1, K2, K−1, K−2, C6, and
C8 if and only if there is a tick in the corresponding place in Table 2.
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(3–11) (3–3) (3–4) (3–12) (3–5) [Falcitelli et al.]

2n > 8 K1 K2 K−1 K−2 C6 C6 C8 C4 C5 C7

dη̂ X X

∇ξ1, ηξ1 X X

∇ξ2, ηξ2 X X X X X

∇ξ3, ηξ3 X X X X X

∇ξ4, ηξ4 X X X X X X X

ξ1 ⊗ ξ1 X X X X X∗

ξ2 ⊗ ξ2 X X X X X

ξ3 ⊗ ξ3 X X X X

ξ4 ⊗ ξ4 X X X

ξ1 � ξ2 X X X

ξ1 � ξ3 X X X X

ξ1 � ξ4 X X

ξ2 � ξ3 X X X X

ξ2 � ξ4 X X X X X

ξ3 � ξ4 X X X

∗absent when 2n = 8

Table 2. Curvature complementary to C3 = K(su(n)), 2n > 8.

(2) Taking the image π2◦π1(R) into account, where π1(R) is given by (2–2), each
of the tensors ∇ξi , ηξi , and ξi � ξj contributes to the components of R in C4,
C5, and C7 if and only if there is a tick in the corresponding place in Table 2.

For part (1), we emphasize that the columns for K−1, K−2, C6, and C8 are
obtained by a different method than that in [Falcitelli et al. 1994], and that for C6

this even leads to a different result. In particular, we claim that the tensors ∇̃ξ3 and
ξ3�ξ4 do not contribute to the C6-component of R, but that ∇̃ξ1 and ηξ1 do. Thus,
the contributions of the different tensors to the distinct components of R depend on
the choice of the current expression that we use; different expressions may lead to
different behaviour in the contributions. For the C6-component of R, we get a third
formula from equation (3–12), which we also list in Table 2. A partial explanation
for these different results will be given in Section 6. Note that the entries for C6

in Table 2 only involve the intrinsic U(n)-torsion. The [[λ2,0
]]-column of Table 1

provides yet another description of the C6-component using the SU(n)-structure.
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5. Low dimensions

We consider in turn special almost Hermitian manifolds of dimension 6 and 4.

Six dimensions. The decomposition of the space of curvature tensors R into irre-
ducible SU(3)-modules has the same subspaces as for U(3). Thus,

R = K + K⊥
= C3 + K1 + K2 + K−1 + K−2 + C5 + C6 + C7 + C8,

with Ki and Cj all SU(3)-irreducible. As we noted above, the summand C4 is
absent in this dimension. On the other hand, the U(3)-intrinsic torsion splits under
SU(3) as ξ = ξ+

1 + ξ−

1 + ξ+

2 + ξ−

2 + ξ3 + ξ4, where ξi = ξ+

i + ξ−

i , i = 1, 2. This
was briefly described in Section 2, and more detailed information is contained in
[Chiossi and Salamon 2002] and [Martı́n Cabrera 2005].

The next result concerns the contributions of the components of ξ to the compo-
nents of the Ricci and the ∗-Ricci curvatures, and then to the curvature components
complementary to C3.

Theorem 5.1. Let M be a special almost Hermitian 6-manifold with SU(3)-
connection ∇ = ∇ + η + ξ = ∇̃ + η. The tensors dη̂, ∇ζ , ηζ , and ζ � ϑ , for
ζ, ϑ = ξ+

1 , ξ
−

1 , ξ
+

2 , ξ
−

2 , ξ3, ξ4, contribute to the components of Ric∗ and Ric if
and only if there is a tick in the corresponding place in Table 3.

The corresponding contributions to the curvature components K1, K2, K−1,
K−2, C6, and C8, via equations (3–3), (3–4), (3–5), and (3–11), and to the com-
ponents C5 and C7 via π2 ◦π1(R) are given in Table 4 (cf. [Falcitelli et al. 1994]).

Four dimensions. The U(2)-decomposition of the space of curvature tensors R is
given by

R = K + K⊥
= C3 + K1 + K2 + K−1 + C5 + C6 + C8.

When we consider the SU(2)-action, only the modules C3, K1, K2, and K−1

remain irreducible. To describe the decompositions of C5 and C6 into SU(2)-
irreducible modules, we will make use of tensors defined by

χ(a, b)= 6 a � b − a ∧ b,

for all a, b ∈
∧2T ∗M , where � denotes the symmetric product given by 2 a �b =

a ⊗ b + b ⊗ a. The relevant decompositions are now given by

(1) C5 = C++

5 + C−−

5 + C+−

5 , where C++

5 = Rχ(ψ+, ψ+), C−−

5 = Rχ(ψ−, ψ−),
and C+−

5 = Rχ(ψ+, ψ−),

(2) C6 = C+

6 + C−

6 , where C+

6 = Rχ(ψ+, ω) and C−

6 = Rχ(ψ−, ω).

For the intrinsic torsion, the U(2)-decomposition of ξ is given by

ξ = ξ2 + ξ4 ∈ W = W2 + W4.



178 FRANCISCO MARTÍN CABRERA AND ANDREW SWANN

Ric∗ (3–6) Ric (3–7)

2n = 6 R [λ
1,1
0 ] [[λ2,0

]] R [λ
1,1
0 ] [[σ 2,0

]]

dη̂ X X X X X

∇ξ±

1 , ηξ±

1

∇ξ±

2 , ηξ±

2 X

∇ξ3, ηξ3 X

∇ξ4, ηξ4 X X X

ξ±

1 ⊗ ξ±

1 X X

ξ±

2 ⊗ ξ±

2 X X X X

ξ3 ⊗ ξ3 X X X X X

ξ4 ⊗ ξ4 X X X X X

ξ+

1 � ξ−

1

ξ±

1 � ξ±

2 X X

ξ±

1 � ξ∓

2

ξ±

1 � ξ3 X

ξ±

1 � ξ4 X

ξ+

2 � ξ−

2 X X

ξ±

2 � ξ3 X X

ξ±

2 � ξ4 X X

ξ3 � ξ4 X X

Table 3. Ricci curvatures, 2n = 6.

Under SU(2), we have W2 ∼= W4 ∼= T ∗M , which, as we will see, gives rise to
different choices of decompositions of ξ .

For an SU(2)-structure, we have ∇ω ∈ W = T ∗M ⊗ψ+ + T ∗M ⊗ψ−. Conse-
quently, ∇ω = ξ+ ⊗ψ+ + ξ− ⊗ψ−, where ξ+ and ξ− are 1-forms. Moreover,

2〈Y, ξX Z〉 = −ξ+(X)ψ−(Y, Z)+ ξ−(X)ψ+(Y, Z),

so ξ = ξ+ + ξ−, where

2〈Y, (ξ+)X Z〉 = −ξ+(X)ψ−(Y, Z), 2〈Y, (ξ−)X Z〉 = ξ−(X)ψ+(Y, Z).

The two decompositions of ξ are related as follows:

ξ ∈ W2 if and only if ξ+ = I ξ−; ξ ∈ W4 if and only if ξ+ = −I ξ−.
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(3–11) (3–3) (3–4) (3–5) [Falcitelli et al.]

2n = 6 K1 K2 K−1 K−2 C6 C8 C5 C7

dη̂ X X

∇ξ±

1 , ηξ±

1 X

∇ξ±

2 , ηξ±

2 X X X X

∇ξ3, ηξ3 X X X

∇ξ4, ηξ4 X X X X X X

ξ±

1 ⊗ ξ±

1 X X

ξ±

2 ⊗ ξ±

2 X X X X

ξ3 ⊗ ξ3 X X X X

ξ4 ⊗ ξ4 X X X

ξ+

1 � ξ−

1

ξ±

1 � ξ±

2 X X

ξ±

1 � ξ∓

2

ξ±

1 � ξ3 X X

ξ±

1 � ξ4 X

ξ+

2 � ξ−

2 X X

ξ±

2 � ξ3 X X X X

ξ±

2 � ξ4 X X X X

ξ3 � ξ4 X X

Table 4. Curvature complementary to C3 = K(su(n)), 2n = 6.

The next theorem deals with the contributions of the components of the intrinsic
torsion to the tensors Ric∗ and Ric. First, in dimension four, Ric∗ decomposes
under SU(2) as

Ric∗
= R〈 · , · 〉 + [λ

1,1
0 ] + Rψ+ + Rψ−.

Theorem 5.2. Let M be a special almost Hermitian 4-manifold with minimal
SU(2)-connection ∇ =∇+η+ξ =∇̃+η. The curvature contributions correspond-
ing to Theorems 4.1 and 4.2 via the decompositions ξ = ξ2 + ξ4 and ξ = ξ+ + ξ−

are given in Tables 5 and 6.

Proof. The absence of K−2 in the decomposition of R comes from the fact that

(5–1)
(
Ric∗

H − RicH
)
(X, Y )= β 〈X, Y 〉,
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Ric∗ (3–6) Ric (3–7)

2n = 4 R [λ
1,1
0 ] Rψ+ Rψ− R [λ

1,1
0 ] [[σ 2,0

]]

dη̂ X X X X X X

∇ξ2, ηξ2 X

∇ξ4, ηξ4 X X

ξ2 ⊗ ξ2 X X X X

ξ4 ⊗ ξ4 X X X X X

ξ2 � ξ4 X X

∇ξ+, ηξ+ X X

∇ξ−, ηξ− X X

ξ+ ⊗ ξ+ X X

ξ− ⊗ ξ− X X

ξ+ � ξ− X X X X X

Table 5. Ricci curvatures, 2n = 4.

where β = 〈(∇̃ei ξ)e j e j , ei 〉 + 〈ξξei e j
e j , ei 〉. Therefore, by (3–4), we have

(5–2)
(
3 Ric∗

H + Ric H
)
(X, Y )= −β〈X, Y 〉 − 4dη̂(X, I Y )+ 4dη̂(I X, Y )

−2〈ξX ei , ξI Y I ei 〉 − 2〈ξY ei , ξI X I ei 〉.

Using equations (5–1) and (5–2), the tables follow. �

Remark 5.3. We list some direct consequences of the results and tables presented
here and in Section 4:

(1) if ξ ∈ W3, the components of R in K−1, C5, and C6 vanish;

(2) if ξ∈W3+W4 and dη̂ is Hermitian, the components of R in C5 and C6 vanish;

(3) if ξ ∈ W1 + W2 and dη̂ is Hermitian, the component of R in C6 vanishes;

(4) if n = 2 and dη̂ is Hermitian, then the component of R in C6 vanishes.

There are more consequences of this sort, but they have already been pointed out
in [Falcitelli et al. 1994].

Remark 5.4. For special almost Hermitian 2-manifolds, we have the following
identity, obtained in [Martı́n Cabrera 2005]:

K (ψ+, ψ−)= dη̂(ψ+, ψ−)= dη+(ψ+)+ dη−(ψ−)− η
2
+

− η2
−
,

where K denotes the sectional curvature and η̂ = η+ψ− − η−ψ+.
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2n = 4 K1 K2 K−1 C+

6 C−

6 C8 C++

5 C−−

5 C+−

5

dη̂ X X

∇ξ2, ηξ2 X X X X X X

∇ξ4, ηξ4 X X X X X

ξ2 ⊗ ξ2 X X X

ξ4 ⊗ ξ4 X X X

ξ2 � ξ4 X X X X X X

∇ξ+, ηξ+ X X X X X X X

∇ξ−, ηξ− X X X X X X X

ξ+ ⊗ ξ+ X X X X X

ξ− ⊗ ξ− X X X X X

ξ+ � ξ− X X X X X X X X X

Table 6. Curvature complementary to C3 = K(su(n)), 2n = 4.

6. Identities from exterior algebra

As remarked in Section 4, one may see different contributions to the module
C6 ∼= [[λ2,0

]] by using different computations of the curvature. This is because
of nontrivial identities that relate the components of ∇̃ξi and ξj � ξk . Such an
identity for the [[λ2,0

]]-components may be obtained by comparing equations (3–4)
and (3–12). However, we claim that this information may also be obtained from
the exterior algebra of a U(n)-manifold.

Consider the Kähler 2-form ω. Being a differential form, it satisfies d2ω = 0.
However, since the Levi-Civita connection ∇ is torsion-free, we may compute d2ω

using ∇. Writing ∇ = ∇̃ − ξ and using that ∇̃ω = 0, we first have

1
2 dω(Y, Z ,W )= 〈ξY Z , I W 〉 + 〈ξW Y, I Z〉 + 〈ξZ W, I Y 〉.

Now, d2ω = a(∇̃dω) − a(ξ dω), where a : T ∗M ⊗
∧3T ∗M →

∧4T ∗M is the
alternation map. One computes that these two terms are the expressions obtained by
summing, respectively, ε〈(∇̃Xξ)Y Z , I W 〉 and ε〈ξξX Y Z , I W 〉 over all permutations
of (X, Y, Z ,W ), where ε is the sign of the permutation.

We have∧4T ∗M = [[λ4,0
]] + [[λ3,1

]] + [[λ2,0
]]ω+ [λ

2,2
0 ] + [λ

1,1
0 ]ω+ Rω2,
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so, in order to compute the [[λ2,0
]]-component of d2ω, we contract with ω on the

first two arguments and then take the projection to [[λ2,0
]], which is the (−1)-

eigenspace of I acting on 2-forms. Using the symmetries of the components of ξ ,
one obtains that the [[λ2,0

]]-component of d2ω is

(6–1) 0 = 3〈(∇̃ei ξ1)ei X, Y 〉 − 〈(∇̃ei ξ3)ei X, Y 〉 + (n − 2)〈(∇̃ei ξ4)ei X, Y 〉

+ 〈(ξ3)X ei , (ξ1)ei Y 〉 − 〈(ξ3)Y ei , (ξ1)ei X〉

+ 〈(ξ3)X ei , (ξ2)ei Y 〉 − 〈(ξ3)Y ei , (ξ2)ei X〉

−
n−5
n−1〈(ξ1)ξ4ei

ei
X, Y 〉 −

n−2
n−1〈(ξ2)ξ4ei

ei
X, Y 〉 + 〈(ξ3)ξ4ei

ei
X, Y 〉.

We conclude that, in general dimensions, there is a nontrivial linear relation be-
tween the [[λ2,0

]]-components of ∇̃ξ1, ∇̃ξ3, ∇̃ξ4, ξ1 �ξ3, ξ1 �ξ4, ξ2 �ξ3, ξ2 �ξ4,
and ξ3�ξ4. By ‘nontrivial’ we mean that no coefficient is zero, so this relation may
be used to write any of the terms as a linear combination of the others. Interestingly,
when 2n = 10 this relation does not involve ξ1 � ξ4.

This is sufficient to explain the difference between the ticks in the C6 column in
[Falcitelli et al. 1994] and those we obtained from equation (3–4). An extra coin-
cidence in the coefficients explains the differences between our results from (3–4)
and (3–12).

One may try to apply the above approach to the other modules that
∧4T ∗M has

in common with the space of curvature tensors, namely [λ
2,2
0 ], [λ

1,1
0 ]ω, and Rω2.

However, this is not so rewarding, because of the higher multiplicities that these
modules have in the relevant decompositions. Indeed, C6 ∼= [[λ2,0

]] is distinguished
by occurring only with multiplicity one or zero in the modules for ∇̃ξi and ξi ⊗ξj .

In [Falcitelli et al. 1994] it is pointed out that, if ξ ∈ W4, the components of R
in C4, C5, C6, and C7 vanish. We indicate how equation (6–1) gives an alternative
proof of this result, for n > 2. By using Tables 2 and 4, the vanishing of the
components in C4, C5, and C7 is in fact immediate. On the other hand, equations
(3–4) and (6–1) give the vanishing of the component in C6.

Finally, a comparison of Tables 1 and 2 reveals another relation on special almost
Hermitian manifolds: the [[λ2,0

]]-part of dη̂ carries all the information from the
corresponding components of ∇̃ξi modulo the [[λ2,0

]]-parts of ξ1 � ξ3, ξ1 � ξ4,
ξ2 � ξ3, and ξ2 � ξ4. This relation is obtainable by considering the (n, 2)-part of
the equation d29= 0, where9 is the complex volume, see [Martı́n Cabrera 2005].
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