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We generalize the well-known Gauchman theorem for closed minimal sub-
manifolds in a unit sphere, and prove that if M is an n-dimensional closed
submanifold of parallel mean curvature in S”*? and if o (u) < % for any unit
vector u € TM, where o (1) = ||h(u, u)||?, and & is the second fundamental
form of M, then either o (u) = H? and M is a totally umbilical sphere, or
o(u) = % Moreover, we give a geometrical classification of closed submani-
folds with parallel mean curvature satisfying o (1) = %

1. Introduction and statement of results

Let S™(r) be the m-dimensional sphere of radius r, with §"* = §™(1). By M we
will always denote an n-dimensional connected and closed Riemannian manifold
isometrically immersed in some S""7. We will be interested in the case when M
has parallel mean curvature, meaning that the mean curvature vector £ on M forms
a parallel vector field in the normal bundle over M. (When £ vanishes identically,
M is a minimal submanifold; M is a hypersurface of constant mean curvature if
p = 1 and the norm of £ is constant.)

Our investigation contributes to the theory of geometrical invariants and struc-
tures of Riemannian manifolds and submanifolds, an important problem in global
differential geometry. After the pioneering rigidity theorem for closed minimal
submanifolds in a sphere due to Simons [1968], Lawson [1969], and Chern, do
Carmo and Kobayashi [Chern et al. 1970], A. M. Li and J. M. Li [1992] improved
Simons’ pinching constant to max{n/(2 — 1/p), 2n/3}.

Extending this rigidity result to submanifolds of parallel mean curvature in a
sphere, we have the theorem below, first proved by Okumura [1965] and Yau
[1974; 1975], then by Xu [1991], and finally by Alenca and do Carmo [1994]
in codimension 1 and independently by Xu [1993; 1995] in codimension p.
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Theorem 1.1. For given H > 0 and positive integers n > 2 and p, set

a(n, H) ifp=1lorp=2and H # 0,
Cn.p H)=1" 1 .
mln(a(n,H),§(2n+5nH )) ifp>=3orp=2and H =0,
where N
H —2)H
a(n, H) =n + — nn=DH e a1,

2n—1) 2mn—1)
If M" is a closed submanifold in the standard unit sphere S"*P of parallel mean
curvature vector of norm H, and if the squared norm S of the second fundamental
form satisfies

S=C(n,p, H),

then M is congruent to one of the following:

(1) 8% = S(ﬁ)

(2) the isoparametric hypersurface S"‘l( ! ) X S 1(
1422

A .
in S™1(1)
«/1+/\2) ’

where

_nH+n?H2+4(n—1)
N 2(n—1) ’
(3) one of the Clifford minimal hypersurfaces S* <\/§ ) x §n—k (, / nn;k ) in S"+1,
fork=1,...,n—1;

(4) the Clifford torus S'(ry) x S Y(ry) in S3(r) with constant mean curvature Hy,
where 0 < Hy< H,

1 1
2= =
V2(1+ H?) £ 2Hy(1 4+ H?)1/2 V1+H?—H}
(5) the Veronese surface in S;‘J = S4(;).

1+ H?

ry, r

Taking H = 0, we have:

Corollary 1.2 [Chern et al. 1970; An-Min and Jimin 1992]. If M" is a closed
minimal submanifold in the standard unit sphere S"*P, and if

n 2
< - =
S < max(z_l/p, 3n>,
then M is congruent to one of the following:
(1 s

(2) one of the Clifford minimal hypersurfaces S* <\/§ ) X S"*k< nn;k ) in S"t1,
fork=1,...,n—1;

(3) the Veronese surface in s4.
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Since ming>o a(n, H) = 2+/n — 1, we get from Theorem 1.1:

Corollary 1.3. Let M" be a closed submanifold with parallel mean curvature in
S"tP. Suppose that H # 0 and that

< 2vn—1 ifp<2orp=>3andn =S8,

%n ifp=3andn <7.

Then M is either a totally umbilical sphere in S"*P, a Clifford isoparametric hy-
persurface in an (n+1)-dimensional sphere, or the Veronese surface in S}‘{.

Gauchman [1986] proved that if M is an n-dimensional closed minimal subman-
ifold in $"*7 and if o (u) < % for any unit vector u € TM, where o (u) = ||h(u, u) >
for h the second fundamental form of M, then either o () =0 and M is a totally
geodesic sphere, or o (u) = % Moreover, he gave a geometrical classification of
closed minimal submanifolds satisfying o (1) = %

A natural question is how to generalize this striking rigidity result to the case
where M is an n-dimensional closed submanifold of parallel mean curvature in
§"tP. In this paper we provide such a generalization. To state our main result
precisely, we start with some explicit examples of submanifolds with parallel mean
curvature in a sphere, which extend Gauchman’s examples for the minimal cases
[Gauchman 1986; Sakamoto 1977].

Example 1.4. Let S9(r) be a g-dimensional sphere of radius » in R7*!, and let
1 <k<n—1. Weembed S¥(1/+/2) x S"*(1/4/2) in §"T1(1) as follows. Let
ue S¥(1/+/2) and v € §" ¥ (1/+/2) be vectors of length 1/+/2 in R¥*! and R*~*+1,
respectively. We can consider (u, v) as a unit vector in R"+2 = RF1 x R=%+1 Tt
is easy to see that Sk(l/\/i) X S”‘k(l/ﬁ) is a submanifold in $”*!(1) of parallel
mean curvature

2k —n

n

-|

In particular, M is minimal if n = 2k. The exact same construction yields an
embedding of S¥(1/+/2) x §"7%(1/+/2) in §"2(1).

Example 1.5. Denote by RP2, CP?, QP?, and CayP? the projective plane over the
real numbers, complex numbers, quaternions and octonions, and by ¥ : RP? —
S*(1), ¥ : CP?2 — S7(1), Y3 : QP? — SB3(1) and vy : CayP?> — S%°(1) the
corresponding isometric embeddings. Let v/ : $2(/3) — S$*(1) be the isometric
immersion defined by ¥ = v/; o 7w, where 7 : S>(+/3) — RP? is the canonical
projection.

For n > 2, m >0, let $"(1) be the great sphere in $"7" (1) given by

') = {(xlv e Xnm+1) € Sn+m(1) | Xnt2 =+ = Xpim41 = 0},
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and 7, : S"(1) — S"*"(1) the inclusion. We set

d1p=7T4p o Y : RP> — §*H7P, p=>2,

P P

¢, =17 p_3 0 Yp : CP> — S*7, p >3,
P P

$3.p =T13,p—50Y3: QP? — S¥TP, p =3,

$4.p =T25.p_90 Y4 : CayP* — S'TP  p>9
P P
¢, =Tap2 0¥ 23— P p=2.

Then ¢; , is an isometric minimal embedding and ¢i’ p 1s an isometric minimal
immersion.
Denote by UM the unit tangent bundle of M. Define
1 forp=1orp=2and H #0;
Clp.H) =1,
3 forp>3orp=2and H=0.

Main Theorem 1.6. Let M be an n-dimensional compact submanifold of the unit
sphere S"TP with parallel mean curvature vector field of norm H. If

o(u)<C(p,H) foranyue UM,
we are in one of the following cases:

. e 1
(1) M is the totally umbilical sphere S, = S"(—);
Y g " V1+H?

(2) M is one of the embeddings S*(1/+/2) x S"%(1/3/2), withk =1,2,...,n
and k # %n;

(3) the isometric immersion of M in S"*P is either the totally umbilical sphere
S"(«/§/2) — S"tP_ or one of the embeddings Gip, i =1,2,3,4, or the
immersion ¢ =

The case H = 0 goes back to Gauchman [1986, p. 781].

2. Preliminaries
We make the following conventions on the range of indices:
<A B.C=n+p, l=ijklmsn<apyd<n+p.

Choose a local orthonormal frame field {e4} on $"*7 such that, restricted to M,
the e/s are tangent to M. Let { w, } be the dual frame fields of {e4} and { w4 p } the
connection 1-forms of S"*7 respectively. Restricting these forms to M, we have

1
a)a,-=th;-a)j, hiy =h%;, h= ZAhf;-a)i(X)wj@ea, §=;Zh%€a,
J o,

a,i, j
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N S U apa oo
(1) Rijkl —81k 5]1 81l51k+2( ik i il jk)’
o

Ropri = Z (h?k h?z - ?l hfk)’

i
where h, &, R;ji and Rygy are the second fundamental form, the mean curvature
vector, the curvature tensor and the normal curvature tensor of M. We set

=7, H=IEl, Ha=§)nxn-

Denoting the first and second covariant derivatives of h; by A, and h{, re-
spectively, we have

2) Zhuka)k dh“+2h o+ Y b o+ Y b wap.
k B
(B X hfor=dhi + 3 hiy on+ Y hijop+ Y b ou+ 3 hiﬂjk Wap-
I I 1 I B

The Laplacian of # is defined by Ah?‘j =Y h?‘j - Following [Yau 1974; 1975],
we have

hlj = ; hkklj + Z hkm mijk + Z hmt R"’lkjk + Z hkl Raﬂ"]

From now on we assume that M is a submanifold of parallel mean curvature in
§"+P_ Choose e, such that e, is parallel to &, tr H,,1 = nH and tr Hg =0,
where n +2 < 8 <n+ p. Again by the same work of Yau, we have

km

AT = Z R Rk + Z R¥! Rk

Ahﬁ thkRmukJrZhlmRmkijrk #Z lhkl apjk, B Fn+1L
oaFn+

Since the Laplacian formulas for the special orthonormal frame field as above
are not apply to our case, we will give the following Laplacian formula which holds
for any orthonormal frame fields.

Proposition 2.1. Let M be an n-dimensional submanifold of parallel mean curva-
ture in S"*P. Then

@) AR = kz B Rijk + kz h% . Roji + kzﬂ P Rpaji,

(5) Z Raﬁkl (tI' Hoz) =0
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Proof. Putting ¢, = (1/n) tr Hy, we have § = ) ¢y €q. Since & is parallel in the
normal bundle over M, we have

0=Vt =Y X(co)ea+ Y coVyen
=) X(ca)ea+ ¢ <Zwﬁa(x) eﬁ) =) (X(Ca) +> cp waﬂ(X)) €q
a o B o B

for any tangent vector field X on M. It follows that

6) deog +) cpwep =0 forany a.
B

To prove (4), it is sufficient to show that Zk hgkij =0 for any «, i, j. By (2),
we get

S i on =d (G ) +2 3 b o+ X bl oup =n(deq + 3 e oo ) =0.
ik i ik B.i B

Therefore, ), h%, = 0 for all k, «. Together with (3), this implies

12
X i o = d (X h) 25 by o+ S B o+ §hﬁk up = 0.
i, 1 L, i, L,

Hence ) ; h{,, =0forall k, [, c.
Taking the exterior derivative of (6) we get

0=d%c,+ d(Z cp a)alg>
B

=2 deg Awap+ 3 cp (—Zway Awyﬁ+%ZRaﬁklkawl>
B B 4 k.l

=2 (dcﬁ +2. ¢y wﬂy) Nwap+73 Y cpRapia 0k Ay
B Y B.k,l

=% Z C,BRaﬂkl Wi N\ j.

Bk,
Thus Zﬁ Ropii (tr Hg) = 0 for all «, k, [, as desired. ]

3. Maximal directions

Let x € M. A vector u € UM, is called a maximal direction at x if o(u) =
maxyeym, o (V).

Choose an orthonormal frame {ey, ..., ¢,4,} at x such that restricted to M, the
vectors ey, ..., e, are tangent to M. Assume that ¢; is a maximal direction at x,
o(e1) #0, and e, 1 = h(ey, e1)/||h(er, e1)||. Choose e, 4> such that

§— (&, enr1)entt
1€ — (&, ent1)entall

€n42 =
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if £ is not parallel to e,4 . By our choices of ¢, and e,1,, we have
@) 11=0 ifa#n+1 and ce=0 ifaxn+1,n+2.
Since e; is a maximal direction, we have at the point x for any t € R
®) lh(er +tei, er +1e)|* < (1415 (WiTH?.
Expanding in terms of ¢, we obtain
4rniH it + 0@ <o.
It follows that
9) il =0, i=2,...,n.

It is easy to see that e is also an eigenvector of the Weingarten transformation
A"*1, Therefore, we can choose an adapted frame at x € M such that in addition
to (7) and (9),

(10) Wi =0, i
Once more expanding (8) in terms of 7, we obtain
22 (P =Y =2 X (9)%) + o) <0,
a#n+1

It follows that

(11) 2 Y ) <kt —ntthy fori=2,...,n.
a#n+1

Define a tensor field T = (T;ji;) on M by
Tiju = Z hi; hy.-
o

It is obvious that o (1) = T (u, u, u, u).

Lemma 3.1. Let u be a maximal direction at x € M. Assume that o (u) # 0. Let
el, ..., enyp be an adapted frame at x such that

_ h(ey,er)
Iher, e’

W =0 fori # j.and enia = (& — (&, eny)ens)/IE — (& ensi)ensll i is
not parallel to e, 1. At the point x,

1) ifp=1,0or p=2and H # 0, then

(12)  SAT iz B (a0 + et (B = cair) = BT G )
k

€r=1u, €n+l



192 HONG-WEI XU, WANG FANG AND FEI XIANG
(i) if p>=3,0or p=2and H =0, then
(13) 3(AD)un
2 i (n 5 3 B et = DD - 28 S ).
and equality holds if and only if

ad (0 -k =2 T %) =0
aFEn+

and h{,, =0, for all k and a.
Proof. We have

(15) AT =hiT AR 4+ 3 ()%
1,0

From Proposition 2.1 and equations (7) and (10), we have

+1 +1
Yo Rtk + D0 W0 Rk + Y- hy Ranv11k
k,m k,a

k,m

= ; R = WY Ry + kz hy (le (he R — h;*kh;llﬂ))

+1
AR

= S0t = (1= 6w + T i — 05"
o
A UNEUARSNY
o
= SR+ D ORI R =2 5 g
N
=1+ B = enr) i DY

-2 Y BEPE —hgth.
k,a#n+1

If p =1, the last term above vanishes. If p=2and H #0, we have R, 1)(n+2)x =0
for any k, [, by (5) and (7); hence the last term above vanishes again. If p > 3, or
if or p =2 and H =0, we obtain by (11)

AR 2 (B e G e ) A SR g
= (I 3 O e = YY) =20 S
Substituting this into (15), we obtain

YA 2 W (G + e (D = i) h'{fl;(hgljlf)
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if p=1orp=2and H #0, and

YA = 1 (n 43 B = e — () —2h'1’1“%:(hzlj1)2)

if p>3orp=2and H=0. t
Lemma 3.2. Let {ey, ..., e,1,} be an adapted frame at x € M as in Lemma 3.1.
Suppose that

1 ifp=1lorp=2and H #0,
I ifp=3orp=2and H=0,
forallu e UM. Then (AT)1111 = 0. If equality holds, i.e., if (AT)1111 =0, then

o(u)f{

n+1 __ |gn+1| _ _ +1
(16) Wi =10 == .
Proof. Since e; is a maximal direction at x € M,

(17) —nit<ni <t k=2,... 0.

It is clear that the convex function f (k55 LA ey =30, (hz,jl)z subject to
the constraint (17) attains its maximal value when

|h§;‘1 - .= \hﬁﬂ :h'ﬁrl,
Therefore, by inequalities (12) and (13),
nh P —cpp)(1—0o(e)))  if p=1lorp=2and H#0,

1
5 (AT > — =
2( )i = nh’ﬁrl(h’ﬁrl cni1)(1—=30(ey)) if p>3orp=2and H=0,

where ¢, 11 = (1/n) 30 k5T < nif. O

Let L(x) be a function on M defined by L(x) = max,cyym, o (u). By a similar
argument as in [Gauchman 1986], we get:

Lemma 3.3. Let M be an n-dimensional compact submanifold with parallel mean
curvature in a unit sphere S"*P(1). If

1, forp=1, orp=2and H#0

o <1,
3, Jfor p>3, or p=2and H=0,

forallu e UM, then L(x) is a constant function on M.

4. Rigidity of submanifolds of parallel mean curvature

This section is devoted to the proof of the Main Theorem 1.6, through a series of
intermediate results.



194 HONG-WEI XU, WANG FANG AND FEI XIANG

Lemma 4.1. Let M be an n-dimensional compact submanifold with parallel mean
curvature in a unit sphere S"P(1). Suppose that

1 ifp=lorp=2and H#0,

o(u) < :
3 fp=3orp=2and H=0,
forallu € UM. Then M is the totally umbilical sphere Sy;.

Proof. Let e| be a maximal direction at x € M. Assume o (e1) #0. By Lemmas 3.2
and 3.3, we have (AT)1111 =0 on M. From the proof of Lemma 3.2, we see that
hlﬁrl =Cn+l-

Thus the average value of the {h;""}"

occurs if and only if

| €quals their maximum. This possibility

1
W ==
This and (11) yield h{; =0, fora #n+ 1 and i = 2,...,n. Since each of the
vectors ¢;, fori =1, ..., n, is a maximal direction, we have

hi; =0 fori,j=1,2,...,nandi # j.
From [|A(e;, ¢;)||* < (h"1)?, we obtain
hiy=0 fora #n+1landi=1,2,...,n.

The last three displayed equations say that M is a totally umbilical sphere. U

For convenience, we establish a convention on indices a, b, ..., r, s, ...:
1<a,b,c,d<k<rs, t,w<n,

where k is a fixed integer in the range 1, ..., n.
Here is the rigidity theorem for hypersurfaces with constant mean curvature in
a sphere:

Theorem 4.2. Let M be an n-dimensional compact hypersurface with constant
mean curvature in a unit sphere S"T1(1).

(i) Ifo(u) < 1 for any u € UM, then M is the totally umbilical sphere SY,.

(1) Ifmax,cyy o(u) =1, M is one of the embeddings S"(l/\/i) X S"*k(l/ﬁ),
withk=1,2,...,n.

Proof. Assertion (i) follows from Lemma 4.1. We prove (ii). As in the proof of
Lemma 4.1, (AT)111 = 0. By (16), we may assume after a suitable renumbering
of ef, ..., e, that

Rl = _pitl =1 fora=1,....kandr=k+1,...,n.
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By Lemma 3.1, h’fﬁl vanishes for k = 1, ..., n. It follows that hl'.’l.J,:] = 0. By
polarization, hf;,:l vanishes for all 7, j, k. By (2) and (10), we have

0= Z h?l+1a)l] + Z hn+1 hn+1 h?}Ll)w,‘j.
I
Hence, w,, = 0. It follows that the two distributions defined by w; =--- =w; =0
and wg41 = - - = w, = 0 are integrable and give a local decomposition of M. Then

every point of M has a neighborhood U which is a Riemannian product V| x V,
with dim V] = k and dim V, = n — k. The curvatures of V; and V, are

Rabea = 2(8acOpd — 8aadpc) forl <a,b,c,d <k,
Rystw = 2(8r185w — 8pwdse)  fork+1=<r,s,t,w<n.

Thus V| and V; are spaces of constant curvature 2. The compactness of M allows
us to complete the proof. O

For the case of codimension two:

Theorem 4.3. Let M be an n-dimensional compact submanifold with parallel
mean curvature in a unit sphere S"t2(1), H # 0.

(i) Ifo(u) < 1 for any u € UM, then M is the totally umbilical sphere S%,.

(i) If max,epy o () = 1, M is one of the embeddings S*(1/+/2) x S"*(1/3/2),
withk=1,...,n, k # 3n.

Proof. Assertion (i) follows from Lemma 4.1. We prove (ii). As in the proof of
Lemma 4.1, (AT)111 = 0. By (16), we have

Bl =t =1 fora=1,....kandr=k+1,...,n

From (7) and (11) we obtain h'{:z =0fora=1,...,k. Since each of vectors ¢;,
fori =1,...,n,is a maximal direction, we get

WA*=0 fora,b=1,... k.
Similarly,
hfj2=0 forr,s=k+1,...,n

As in the proof of Lemma 3.1, we have R, +1)n+2)ki = 0. Hence
hy gt — hyh =0
which implies h’”’2 Ofora=1,...,kandr=k+1,...,n. Thus

(18) h;’j“:o fori,j=1,...,n
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By a similar argument as in the proof of Theorem 4.2, we have hl’.‘;]:l =0 for all
i, j, k. By (2), (10) and (18), we have

+1 +1 +1 +1
0=> h " wy+ > Wi lwn =05 =1y
l l

Therefore, w, =0. Then M is a locally Riemannian product V| x V,, with dim V| =
k and dim V, = n — k. The curvature of V; is

n—+2
Rabed = 8acdba — 8aadoc + Y (h&.hfy — hSyhs,)
a=n+1
= 8acObd — SaaSpe + i Tt — R R = 2846850 — 8aaBbe)

(see (1)), where the second equality follows from (18). A similar argument applies
to V,. In conclusion, V| and V, are spaces of constant curvature 2. The compact-
ness of M allows us to complete the proof. U

Remark 4.4. In assertion (ii) of Theorem 4.3, we exclude the case of n = 2m even
and k = m, in that it results in H = 0, contradicting the theorem’s assumption.

Let F be the real numbers, the complex numbers, or the quaternions, and let
d be the dimension of F as a real vector space (1, 2, or 4). Let FP™ denote
the projective space over F', M"(c) the n-dimensional Riemannian manifold with
constant curvature c.

Lemma 4.5 [Sakamoto 1977]. Let f : M" — S"tP(¢) be an isotropic immersion
of parallel second fundamental tensor. Except for the totally umbilical case, f
is a composition of a minimal isotropic immersion n : M" — S"t9(¢) (g < p)
of parallel second fundamental tensor, and a totally umbilical T : S§"19(¢) —
S"tP (&), where n = md and M must be one of S"(c), FP™ and CayP?. Assume
that the isotropic constants of  and n are A and  respectively. Then

m _ (m—1)(md +2) , m—1_

“To2mrn 1 2 T
where m =n if M = S"(c) and m =2 if M = CayP>.

Lemma 4.6. Let f : M" — S"tP(1) be a A-isotropic immersion of parallel second
fundamental tensor. If \> < (m—1)/(m+1), then f is totally umbilical, or minimal
with A2 = (m —1)/(m +1).

Proof. Assume that f is not totally umbilical. Following Lemma 4.5, f can be
considered as composition of a minimal j-isotropic immersion n: M" — §"14(¢)
and a totally umbilical sphere t : $"T9(¢) — S"*7(1), where u and ¢ satisfy

, m—1_

I
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On the other hand, if H is the mean curvature of immersion f, it is easy to see
W+ H>=2% ¢&¢=>c+H.
Substituting into the preceding equation, we get

(19) )Lz_m_—1:2_mH2>0.
m+1 m+1 -

The assumption A> < (m — 1)/(m + 1) and (19) together give
—1
2=""" and H=0. 0
m+1
Theorem 4.7. Let M be an n-dimensional compact submanifold with parallel
mean curvature in a unit sphere S"*P(1). Assume that p >3, or p=2 and H =0.
) Ifo(u) < %for any u € UM, then M is the totally umbilical sphere S%,.

(1) If max,cyy o (u) = % then o (u) = % on UM, and the isometric immersion of
M into S"*P is either the totally umbilical sphere S"(v/3/2) — S"tP(1), one
of the embeddings ¢; ,,i =1, 2, 3, 4, or one of the immersions ¢i’p described
above.

Proof. We need only consider the case max,eyy, 0 (v) =0 (u). As in the proof of
Lemma 4.1, we obtain (AT);111 = 0. By (16), we have, after a suitable renumber-
ingofey,...,ep,,

V3

(20) thlz—h’};“zT fora=1,....,kandr =k+1,...,n.

Since ||h(eq, €4)|I”> < % and || (e,, €,)]|* < 3. we obtain
2D he,=hy;, =0 fora#n+1, a=1,...,kandr=k+1,...,n.
Still from (11),

(22) hi,=hY,=0 fora#n+1, a,b=1,...,kandr,s=k+1,...,n.

By (14), ZOG&H] (h‘i‘r)2 = % Since each vector ¢;, fori =1, ..., n, is a maximal
direction,
(23) > (hg)P=4 fora=1,... kandr=k+1,....n.

a#n+1

For x2,...,x" and 7 € R, using (20)—(23) and (7)—(10), expanding the inequality

n n 2 n 2
(24) Hh(el —HZx’é,-, e —HZx’é,-)H < <1+t22(xi)2> nih?
i=2 i=2 i=2
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in terms of 7, we obtain
473 R R x4+ 0@) <0.
o r,s

It follows that ), i, h$, =0if r #s. Since each vector ¢; is a maximal direction,
we have

D hGhe =0 ifr#s, Y k& =0 ifa#b.
o o
Once more expand (24) to obtain
263> " (W b, + S hg)xx"x* + 0(t%) <0.
It follows that

(25) Z(hg‘, b+ hehy)=0 ifa#borr#s.
o

Using (10) and (20)—(25), we obtain by direct computation that o (1) = % for any
u e UM. Itis easy to see that h;?‘j =0forall a, i, j, k. Therefore, M is a (+v/3/3) -
isotropic submanifold in a unit sphere of parallel second fundamental tensor. By
Lemmas 4.5 and 4.6 we know that M is either totally umbilical or minimal. This,

together with a [Gauchman 1986, Theorem 3], completes the proof. O
Theorems 4.2, 4.3 and 4.7 together imply the Main Theorem 1.6.
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