Vol. 228, No. 2, 2006

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
The convolution sum m<n∕8σ(m)σ(n8m)

Kenneth S. Williams

Vol. 228 (2006), No. 2, 387–396
Abstract

The convolution sum m<n∕8σ(m)σ(n8m) is evaluated for all n . This evaluation is used to determine the number of representations of n by the quadratic form x12 + x22 + x32 + x42 + 2x52 + 2x62 + 2x72 + 2x82.

Keywords
divisor functions, convolution sums, Eisenstein series
Mathematical Subject Classification 2000
Primary: 11A25, 11E20, 11E25
Milestones
Received: 5 2005
Revised: 13 July 2005
Accepted: 28 July 2005
Published: 1 December 2006
Authors
Kenneth S. Williams
Centre for Research in Algebra and Number Theory
School of Mathematics and Statistics
Carleton University
Ottawa, Ontario K1S 5B6
Canada
http://www.mathstat.carleton.ca/~williams