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We prove various results on contact structures obtained by contact surgery
on a single Legendrian knot in the standard contact three-sphere. Our main
tools are the contact Ozsváth–Szabó invariants.

1. Introduction

According to a result of Ding and Geiges [2004], any closed contact three-manifold
is obtained by contact surgery along a Legendrian link L in the standard contact
three-sphere (S3, ξst), where the surgery coefficients on the individual components
of L can be chosen to be ±1 relative to the contact framing. (For additional dis-
cussion on this theorem, see [Ding et al. 2004].) It is an intriguing question how to
establish interesting properties of a contact structure from one of its surgery presen-
tations. More precisely, we would like to find a way to determine whether the result
of a certain contact surgery is tight or fillable. Recall that contact (−1)-surgery
(also called Legendrian surgery) on a Legendrian link L produces a Stein fillable,
hence tight contact three-manifold.

Given a Legendrian knot K ⊂ (S3, ξst), the result of contact (+1)-surgery along
K is denoted by (YK , ξK ). Here is a first result, which has an elementary proof:

Theorem 1.1. Let K be a Legendrian knot in the standard contact three-sphere.
Assume that, for some orientation of K , a front projection of K contains the con-
figuration of Figure 1, with an odd number of cusps from the strand U to the strand
U ′ as the knot is traversed in the direction of the orientation. Then (YK , ξK ) is
overtwisted.

Corollary 1.2. Let K be a Legendrian knot in the standard contact three-sphere.
If K is smoothly isotopic to a negative torus knot, then (YK , ξK ) is overtwisted.

Notice the contrast: when the Legendrian knot K satisfies tb(K ) = 2gs(K )− 1
(where tb(K ) is the Thurston–Bennequin invariant of K , and gs(K ) denotes its
slice genus) — for example, if K is a positive torus knot — then (YK , ξK ) is tight
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U

U ′

Figure 1. Configuration producing an overtwisted disk.

[Lisca and Stipsicz 2004a]. The tightness question for contact structures can be
fruitfully attacked with the use of the contact Ozsváth–Szabó invariants [Ozsváth
and Szabó 2005]. In fact, the nonvanishing of these invariants implies tightness,
while their computation can sometimes be performed (see, e.g., [Lisca and Stipsicz
2004a; 2004b]) using a contact surgery presentation in conjunction with the surgery
exact triangle established in Heegaard Floer theory by Peter Ozsváth and Zoltán
Szabó [2003a]. Such ideas can be used to prove the next theorem.

Let S3
n(K ) denote the three-manifold obtained by performing Dehn surgery

along the knot K ⊂ S3 with surgery coefficient n.

Theorem 1.3. Let K ⊂ S3 be a smooth knot. Suppose that, for some integer n > 0,
the three-manifold S3

n(K ) is a lens space. Let L ⊂ (S3, ξst) be a Legendrian knot
smoothly isotopic to K . Then L has Thurston–Bennequin invariant at most n.

In the proof of Theorem 1.3 we will assume only that S3
n(K ) is an L-space, a

weaker condition specified in Section 2 and known to be satisfied by lens spaces.
It should be noted that, in view of [Lisca and Stipsicz 2004a, Proposition 4.1], if
S3

n(K ) is an L-space for some n >0, then S3
2gs(K )−1(K ) is an L-space as well, where

gs(K ) is the four-ball genus of K . Therefore, the upper bounds on the Thurston–
Bennequin invariants of Legendrian knots coming from Theorem 1.3 are never
strictly weaker than the ones coming from the slice Bennequin inequality [Rudolph
1993]. On the other hand, the authors do not know of an example for which such
bounds are strictly stronger than the ones coming from the slice Bennequin in-
equality. We also observe that the same bounds easily follow from [Ozsváth and
Szabó 2004a, Theorem 1.4], which requires a more involved machinery.

In our investigations we prove tightness by establishing the nonvanishing of the
appropriate contact Ozsváth–Szabó invariant. Therefore, we are interested in cases
when this invariant vanishes although overtwistedness does not obviously hold.

Proposition 1.4. Let L1, L2 ⊂ (S3, ξst) be two smoothly isotopic Legendrian knots
whose Thurston–Bennequin invariants satisfy

tb(L1) < tb(L2).
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Then the result of contact (+1)-surgery along L1 has a vanishing contact Ozsváth–
Szabó invariant. If tb(L) ≤ −2, the contact Ozsváth–Szabó invariant c+(YL , ξL)

vanishes.

Remark. The hypotheses of Proposition 1.4 do not imply that either L1 or L2 is a
stabilization of other Legendrian knots. In fact, examples of Legendrian knots L1

and L2 satisfying the assumptions of Proposition 1.4 without being stabilizations
were found by Etnyre and Honda [2005].

In many cases the contact invariants can be explicitly computed. We perform
such computations for the Chekanov–Eliashberg knots, a subfamily of Legendrian
knots; see [Epstein et al. 2001]. These knots are of particular interest because they
have equal classical invariants (i.e., knot type, Thurston–Bennequin invariant and
rotation number), but are not Legendrian isotopic. Our computation shows that,
at least when combined with the particular surgery approach we adopt here, the
contact Ozsváth–Szabó invariant is not strong enough to distinguish these knots
up to Legendrian isotopy. For the precise formulation of this fact, see Section 4.

As a further application, we present examples where the contact Ozsváth–Szabó
invariants distinguish contact structures defined on a fixed three-manifold. In par-
ticular, by a simple calculation we recover the main result of [Lisca and Matić
1997]:

Theorem 1.5 [Lisca and Matić 1997]. The Brieskorn integral homology sphere
−6(2, 3, 6n − 1) admits at least (n−1) nonisotopic tight contact structures.

Remark. O. Plamenevskaya [2004] obtained the same result in a more general
form.

Section 2 is devoted to the necessary (and brief) recollection of background
information about contact surgery and Ozsváth–Szabó invariants. Proofs of most
of the statements announced in the Introduction are given in Section 3. Section 4
is devoted to the Legendrian Chekanov–Eliashberg knots. In Section 5 we prove
Theorem 1.5.

2. Preliminaries

For the basics of contact geometry and topology we refer the reader to [Etnyre
2003; Geiges 2006].

Contact surgery. Let (Y, ξ) be a closed, contact three-manifold and L ⊂ (Y, ξ) a
Legendrian knot. The contact structure ξ can be extended from the complement
of a neighborhood of L to the three-manifold obtained by (±1)-surgery along L
(with respect to the contact framing). In fact, by the classification of tight contact
structures on the solid torus S1

× D2 [Honda 2000], such an extension is uniquely
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specified by requiring that its restriction to the surgered solid torus be tight. The
same uniqueness property holds for all surgery coefficients of the form 1/k with
k ∈ Z. For a general nonzero rational surgery coefficient, there is a finite number
of choices for the tight extension. Consequently, a Legendrian knot L ⊂ (S3, ξst)

decorated with +1 or −1 gives rise to a well-defined contact three-manifold, which
we denote by (YL , ξL) and (Y L , ξ L), respectively. For a more extensive discussion
on contact surgery, see [Ding and Geiges 2004].

Heegaard Floer theory. In this subsection we recall the basics of the Ozsváth–
Szabó homology groups. For a more detailed treatment, see [Ozsváth and Szabó
2004b; 2004c; 2006].

According to [Ozsváth and Szabó 2004c], one can associate to a closed, ori-
ented spinc three-manifold (Y, t) a finitely generated abelian group ĤF(Y, t) and
a finitely generated Z[U ]-module HF+(Y, t). A spinc cobordism (W, s) between
(Y1, t1) and (Y2, t2) gives rise to homomorphisms

F̂W,s : ĤF(Y1, t1) → ĤF(Y2, t2) and F+

W,s : HF+(Y1, t1) → HF+(Y2, t2),

with F+

W,s U -equivariant.
Let Y be a closed, oriented three-manifold and K ⊂ Y a framed knot with

framing f . Let Y (K ) denote the three-manifold given by surgery along K ⊂ Y
with respect to this framing. The surgery can be viewed at the four-manifold level
as a two-handle addition. The resulting cobordism X induces a homomorphism

F̂X :=

∑
s∈Spinc(X)

F̂X,s : ĤF(Y ) → ĤF(Y (K )),

where

ĤF(Y ) :=

⊕
t∈Spinc(Y )

ĤF(Y, t).

Similarly, there is a cobordism Z defined by adding a two-handle to Y (K ) along
a normal circle N to K with framing −1 with respect to a normal disk to K . The
boundary components of Z are Y (K ) and the three-manifold Y ′(K ) obtained from
Y by a surgery along K with framing f +1. As before, Z induces a homomorphism

F̂Z : ĤF(Y (K )) → ĤF(Y ′(K )).

The construction above can be repeated starting with Y (K ) and N ⊂Y (K ) equipped
with the framing specified above: we get Z (playing the role of X ) and a new
cobordism W starting from Y ′(K ), given by attaching a four-dimensional two-
handle along a normal circle C to N with framing −1 with respect to a normal
disk. It is easy to check that this last operation yields Y at the three-manifold level.
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Theorem 2.1 [Ozsváth and Szabó 2004b, Theorem 9.16]. The homomorphisms
F̂X , F̂Z and F̂W fit into an exact triangle

ĤF(Y )
F̂X - ĤF(Y (K ))

ĤF(Y ′(K ))
�

F̂ Z

�

F̂
W

�

For a torsion spinc structure (i.e., a spinc structure whose first Chern class is
torsion), the homology theories ĤF and HF+ come with a relative Z-grading that
admits a lift to an absolute Q-grading [Ozsváth and Szabó 2003a]. The action of
U shifts this degree by −2.

For a ∈ Q, define T+
a :=

⊕
b(T

+
a )b as the graded Z[U ]-module such that, for

every b ∈ Q,

(T+

a )b =

{
Z for b ≥ a and b − a ∈ 2Z,

0 otherwise,

and the U -action (T+
a )b → (T+

a )b−2 is an isomorphism for every b 6=a. The follow-
ing proposition can be extracted from [Ozsváth and Szabó 2003a, Propositions 4.2
and 4.10; 2004b, Theorem 10.1].

Proposition 2.2. Let Y be a rational homology sphere. Then, for each t∈Spinc(Y ),

HF+(Y, t) = T+

a ⊕ A(Y ),

where a ∈ Q, and A(Y )=
⊕

d Ad(Y ) is a graded, finitely generated abelian group.
Moreover,

HF+(−Y, t) = T+

−a ⊕ A(−Y ),

with Ad(−Y ) ∼= A−d−1(Y ). If b1(Y ) = 1 and t ∈ Spinc(Y ) is torsion then

HF+(Y, t) = T+

a ⊕ T+

a′ ⊕ A′(Y ),

where a −a′ is an odd integer, and A′(Y ) =
⊕

d A′

d(Y ) is a graded, finitely gener-
ated abelian group. Moreover,

HF+(−Y, t) = T+

−a ⊕ T+

−a′ ⊕ A′(Y ),

with A′

d(−Y ) ∼= A′

−d−1(Y ). �

The two theories ĤF and HF+ are related by a long exact sequence, which
takes the form

(2–1) · · · → ĤFa(Y, t)
f

−→ HF+

a (Y, t) U
−→ HF+

a−2(Y, t) → ĤFa−1(Y, t) → · · ·
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for a torsion spinc structure t, where the map U denotes multiplication by U . All
the gradings appearing in the sequence can be worked out from the definitions and
the construction of the exact sequence [Ozsváth and Szabó 2003a, Section 2].

Corollary 2.3. Let Y be a rational homology three-sphere. Then HF+(Y, t) ∼= T+
a

if and only if ĤF(Y, t) ∼= Z. If b1(Y ) = 1 and t is a torsion spinc structure, then
HF+(Y, t) ∼= T+

a1
⊕ T+

a2
if and only if ĤF(Y, t) ∼= Z2.

Proof. We sketch the proof of the statement for b1(Y ) = 0; the other case can
be proved by similar arguments. Clearly, if HF+(Y, t) ∼= T+

a then it follows
immediately from Exact Sequence (2–1) that ĤF(Y, t) = ĤFa(Y, t) ∼= Z. Con-
versely, if ĤF(Y, t) ∼= Z, then Exact Sequence (2–1) and Proposition 2.2 imply
HF+(Y, t) ∼= T+

a . �

Observe that, in view of Corollary 2.3, if Y is a rational homology three-sphere,
the two conditions are equivalent:

(i) For each spinc structure t ∈ Spinc(Y ), we have HF+(Y, t) ∼= T+
a for some a.

(ii) For each spinc structure t ∈ Spinc(Y ), we have ĤF(Y, t) ∼= Z.

Definition. A rational homology three-sphere satisfying these two equivalent con-
ditions is called an L-space.

It follows from Proposition 2.2 that an oriented rational homology three-sphere
Y is an L-space if and only if −Y is an L-space. Moreover, lens spaces are L-
spaces [Ozsváth and Szabó 2004b, Section 3].

We use the following fact regarding the maps connecting the Ozsváth–Szabó
homology groups. Suppose that W is a cobordism defined by a single two-handle
attachment.

Proposition 2.4 [Lisca and Stipsicz 2004a]. Let W be a cobordism containing a
smooth, closed, oriented surface 6 of genus g, with 6 · 6 > 2g − 2. Then the
induced maps F̂W,s and F+

W,s vanish for all spinc structures s on W . �

Contact Ozsváth–Szabó invariants. Let (Y, ξ) be a closed, contact three-manifold.
Then the contact Ozsváth–Szabó invariants

ĉ(Y, ξ) ∈ ĤF(−Y, tξ )/〈±1〉 and c+(Y, ξ) ∈ HF+(−Y, tξ )/〈±1〉

are defined [Ozsváth and Szabó 2005], with f (ĉ(Y, ξ)) = c+(Y, ξ), where f is the
homomorphism appearing in Exact Sequence (2–1) and tξ is the spinc structure
induced by the contact structure ξ .

To simplify notation, we will ignore the sign ambiguity in the definition of the
contact invariants, and treat them as honest elements of the appropriate homology
groups rather than equivalence classes. The reader should have no problem check-
ing that there is no loss in making this abuse of notation. Alternatively, one could
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work with Z/2Z coefficients to make the sign ambiguity disappear altogether. The
relevant properties of ĉ and c+ can be summarized as follows.

Theorem 2.5 [Ozsváth and Szabó 2005]. Let (Y, ξ) be a closed, contact three-
manifold, and denote by c(Y, ξ) either one of the contact invariants ĉ(Y, ξ) and
c+(Y, ξ).

(i) The class c(Y, ξ) is an invariant of the isotopy class of the contact structure ξ

on Y .

(ii) If (Y, ξ) is overtwisted then c(Y, ξ) = 0, while if (Y, ξ) is Stein fillable then
c(Y, ξ) 6= 0.

(iii) Suppose that (Y2, ξ2) is obtained from (Y1, ξ1) by a contact (+1)-surgery.
Then we have

F−X (c(Y1, ξ1)) = c(Y2, ξ2),

where −X is the cobordism induced by the surgery with orientation reversed,
and F−X is the sum of F−X,s over all spinc structures s extending the spinc

structures induced on −Yi by ξi for i = 1, 2. In particular, if c(Y2, ξ2) 6= 0
then (Y1, ξ1) is tight.

(iv) Suppose that tξ is torsion. Then c(Y, ξ) is a homogeneous element of degree
−h(ξ) ∈ Q, where h(ξ) is the Hopf-invariant of the two-plane field defined by
the contact structure ξ . �

Remark. The Hopf-invariant can be easily determined for a contact structure de-
fined by a contact (±1)-surgery diagram along the Legendrian link L ⊂ (S3, ξst)

[Ding et al. 2004]. In fact, fix an orientation of L and consider the four-manifold X
defined by the Kirby diagram specified by the surgery [Gompf and Stipsicz 1999].
Let c ∈ H 2(X; Z) denote the cohomology class that evaluates as rot(L) on the
homology class determined by a component L of the link L. If tξ is torsion, then
c2

∈ Q is defined, and h(ξ) is equal to (1/4)(c2
−3σ(X)−2χ(X)+2)+q , where

q is the number of (+1)-surgeries made along L to get (Y, ξ).

3. Proofs

Now we can turn to the proofs of the statements announced in Section 1.

Proof of Theorem 1.1. Consider the Legendrian push-off K ′ of K drawn as a
dotted line in Figure 2, left. The obvious annulus between K and K ′ induces
framing tb(K ) on both K and K ′. Consider the modification K ′′ of K ′ illustrated
in Figure 2, right. Since the total number of cusps of any front projection is even,
it is easy to check that the parity assumption on the number of cusps between
the strands U and U ′ ensures that the obvious surface S between K ′′ and K is
oriented. Moreover, S has genus 1 and it induces framing tb(K ) + 1 on K and



284 PAOLO LISCA AND ANDRÁS I. STIPSICZ

K

K ′

K

K ′′

S

Figure 2. Modification of the Legendrian push-off.

K ′′. In particular, S extends to a meridian disk D inside the surgered solid torus.
Since S induces framing tb(K )+1 on K ′′, while tb(K ′′) = tb(K ′)+3 = tb(K )+3,
we have tbS∪D(K ′′) = 2, that is, the Legendrian knot K ′′

= ∂(S ∪ D) violates the
Bennequin–Eliashberg inequality with respect to the punctured torus S ∪ D. We
conclude that (YK , ξK ) is overtwisted. �

To prove Theorem 1.3, Corollary 1.2 and Proposition 1.4, we shall need the fol-
lowing lemma (for a different proof of a more general result, see [Ozbagci 2005]).

Lemma 3.1. Let K be a Legendrian knot in the standard contact three-sphere. If
K is the stabilization of another Legendrian knot, then (YK , ξK ) is overtwisted.

Proof. By assumption, K admits a front projection containing one of the config-
urations of Figure 3. Without loss we may assume that we are in the situation of
the left-hand side of the figure. Consider the Legendrian push-off K ′ of K drawn

Figure 3. The two possible “zig-zags”.

as a dotted line in Figure 4, left. The obvious annulus between K and K ′ induces
framing tb(K ) on both K and K ′. Consider the modification K ′′ of K ′ illustrated
in Figure 4, right. There still is an obvious annulus A between K ′′ and K , except
that now it induces framing tb(K ′′) = tb(K ) + 1 on K and K ′′. Since we perform
contact (+1)-surgery on K , the annulus A extends to a meridian disk D inside the
surgered solid torus. Therefore, D ∪ A is an overtwisted disk in (YK , ξK ). �
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K

K ′

K

K ′′

Figure 4. Modification of the Legendrian push-off.

The proof of Lemma 3.1 clearly applies to establish the following proposition,
which shows that Lemma 3.1 holds if K is a Legendrian knot in a general contact
three-manifold:

Proposition 3.2. Suppose that the Legendrian link L ⊂ (S3, ξst) is obtained by
stabilizing some components of another Legendrian link. Let (YL, ξL) be the result
of contact (±1)-surgeries along the components of L. If the surgery coefficient on
one of the stabilized components is (+1), then (YL, ξL) is overtwisted. �

Proof of Corollary 1.2. Examining [Etnyre and Honda 2001, Figure 8], we eas-
ily check that any Legendrian negative torus knot K with maximal Thurston–
Bennequin invariant contains the configuration of Figure 1, with an odd num-
ber of cusps between the two strands U and U ′. Therefore, by Theorem 1.1,
(YK , ξK ) is overtwisted. On the other hand, according to the results of [Etnyre and
Honda 2001], any Legendrian negative torus knot K ′ with nonmaximal Thurston–
Bennequin invariant is isotopic to the stabilization of one with maximal Thurston–
Bennequin invariant. Thus, by Lemma 3.1, (YK ′, ξK ′) is overtwisted. �

Proof of Theorem 1.3. By contradiction, suppose that S3
n(K ) is an L-space (recall

that lens spaces are L-spaces), and L1 ⊂ (S3, ξst) is a Legendrian knot smoothly
isotopic to K with tb(L1)>n. Let L be obtained by stabilizing L1 tb(L1)−n times,
so that tb(L) = n. Denote by (YL , ξL) the result of contact (+1)-surgery along L .
By Lemma 3.1 (YL , ξL) is overtwisted, hence ĉ(YL , ξL)= 0. On the other hand, we
can compute ĉ(YL , ξL) using Theorem 2.5, getting ĉ(YL , ξL) = F̂−X (c(S3, ξst)),
where X is the appropriate cobordism. The map F̂−X fits into the exact triangle

ĤF(S3)
F̂−X - ĤF(S3

−n−1(K ))

ĤF(S3
−n(K ))

�

�

F̂
W
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where K is the mirror image of K , and S3
r (K ) denotes the result of r -surgery along

K . Since S3
−n(K ) = −S3

n(K ) is an L-space, we have

rk ĤF(S3
−n(K )) =

∣∣H1(S3
−n(K ))

∣∣ = n,

while by Proposition 2.2

rk ĤF(S3
−n−1(K )) ≥

∣∣H1(S3
−n−1(K ))

∣∣ = n + 1.

Exactness of the triangle immediately implies F̂W = 0, therefore F̂−X must be
injective. Since ĉ(S3, ξst) 6= 0, this shows ĉ(YL , ξL) 6= 0, which contradicts the fact
that (YL , ξL) is overtwisted. �

Proof of Proposition 1.4. Consider a Legendrian knot L ′ obtained by stabilizing
L2 until tb(L1) = tb(L ′). Since L ′ and L1 are smoothly isotopic and have the
same contact framing, the cobordisms associated with the contact (+1)-surgeries
along L1 and L ′ can be identified. Since c(YL1, ξL1) and c(YL ′, ξL ′) are images
of c(S3, ξst) under the same map, c(YL1, ξL1) = 0 if and only if c(YL ′, ξL ′) = 0.
Lemma 3.1 gives c(YL ′, ξL ′) = 0, and the first statement follows.

For the second statement consider the exact triangle in the HF+-theory provided
by the surgery along L . (The Thurston–Bennequin invariant tb(L) is denoted by
t .) After reversing orientation the triangle takes the shape

HF+(S3)
F+

−X - HF+(S3
−t−1(L))

HF+(S3
−t(L))

�
F
+

V

�

F +
−W

Now the assumption t < −1, or −t −1 > 0, implies the cobordism −X inducing
the first map is positive definite. It is known that the map F∞

−X on the HF∞-theory
vanishes if b+

2 (−X) > 0 [Ozsváth and Szabó 2004b]. Since for S3 the natural map
HF∞(S3) → HF+(S3) is onto, this implies that F+

−X = 0. Since

c+(YL , ξL) = F+

−X (c+(S3, ξst)),

the vanishing of the contact invariant c+(YL , ξL) follows. �

4. Examples

Given a Legendrian knot L ⊂ (S3, ξst), denote by (YL , ξL), respectively (Y L , ξ L),
the contact three-manifold obtained by contact (+1)-, respectively (−1)-surgery.

Let L i = L i (n), where i = 1, . . . , n −1, be the Legendrian knot given by Figure
5, right. The knots L i (n) (n fixed and ≥2) were considered in [Epstein et al. 2001].
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.

.

.
.
.
.

L(n)
L i (n)

n negative
half-twists i

crossings
n − i

crossings

Figure 5. The n-twist knot and its Legendrian realizations.

They are all smoothly isotopic to the n-twist knot of Figure 5, left (having n nega-
tive half-twists). The knots L i were the first examples of smoothly isotopic Legen-
drian knots having equal classical invariants (i.e., Thurston–Bennequin invariants
and rotation numbers), but are not Legendrian isotopic [Chekanov 2002; Epstein
et al. 2001]. The reader should be aware that our convention for representing a
Legendrian knot via its front projection differs from the one used in [Epstein et al.
2001]: we use the contact structure given by the one-form dz+x dy rather than the
one-form −dz+ y dx used in that paper. However, the contactomorphism between
the two contact structures given by sending (x, y, z) to (y, −x, z) induces a one-
to-one correspondence between the corresponding front projections, and under this
correspondence Figure 1 from [Epstein et al. 2001] is sent to our Figure 5, right.

Proposition 4.1. For every 1 ≤ i, j ≤ n − 1 we have

ĉ(YL i , ξL i ) = ĉ(YL j , ξL j ).

Proof. The statement follows easily from basic properties of the contact invari-
ant: by the surgery formula for contact (+1)-surgeries, we have ĉ(YL i , ξL i ) =

F−X (ĉ(S3, ξst)), where X is the cobordism induced by the four-dimensional handle
attachment dictated by the surgery. Since X depends only on the smooth isotopy
class of the Legendrian knot and its Thurston–Bennequin invariant, and is therefore
independent of i , the claim trivially follows. �

According to the main result of this section, Theorem 4.2, the same equality
holds if we perform Legendrian surgeries along L i (n); that is, the contact Ozsváth–
Szabó invariants of the results of contact (±1)-surgeries do not distinguish the
Chekanov–Eliashberg knots.
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Theorem 4.2. Let n ≥ 2 be an even integer, and let 1 ≤ i, j ≤ n − 1 be both odd.
Then

ĉ(Y L i , ξ L i ) = ĉ(Y L j , ξ L j ).

The proof of Theorem 4.2 rests on the following two lemmas.

Lemma 4.3 [Ozsváth and Szabó 2003b]. Let n ≥ 2 be an even integer, and denote
by L(n) the mirror image of L(n). Then

HF+
(
S3

0
(
L(n)

))
∼= T+

1/2 ⊕ T+

3/2 ⊕ Z
(n/2)−1
(1/2) .

Proof. Let k = n/2. Choosing a suitable oriented basis for an obvious Seifert
surface for L(n), one can easily compute the Seifert matrix(

−k k−1
k −k

)
,

with eigenvalues −k ±
√

k2 − k < 0. This immediately gives signature σ(L(n)) =

−2 and Alexander polynomial

1L(n)(t) = kt−1
− (2k − 1) + kt.

Since L(n) is an alternating knot with genus g(L(n)) = 1, applying [Ozsváth and
Szabó 2003b, Theorem 1.4] we get{

HF+
(
S3

0

(
L(n)

)
, s

)
∼= T+

−1/2 ⊕ T+

−3/2 ⊕ Z
(n/2)−1
(−3/2) if c1(s) = 0,

HF+
(
S3

0

(
L(n)

)
, s

)
= 0 if c1(s) 6= 0.

By Proposition 2.2 this implies the result. �

Lemma 4.4. Let k ≥ 0 be an integer, and let V (k) be the oriented three-manifold
defined by the surgery diagram of Figure 6. Then

ĤF(V (k)) ∼= Z2k+2 and HF+(V (k)) =

2k+2⊕
i=1

T+

ai
for some ai ∈ Q.

Proof. In order to compute ĤF(V (k)) we will use the exact triangle defined by
the (k+1)-framed unknot of Figure 6. It is easy to see that this unknot bounds
a punctured torus smoothly embedded in the complement of the knot K . Thus,
the cobordism we get by attaching this last two-handle contains a torus with self-
intersection (k+1), and the induced map in the surgery triangle vanishes by Propo-
sition 2.4. Consequently, the surgery triangle is actually a short exact sequence.
Notice that K is the (left-handed) trefoil knot, hence ĤF(S3

0(K )) = Z2 [Ozsváth
and Szabó 2003b, Theorem 1.4]. Arguing by induction we get

ĤF(V (k + 1)) ∼= ĤF(V (k)) ⊕ Z2
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0

k+1

K

Figure 6. Surgery diagram for V (k).

for every k ≥ 0. On the other hand, for k = 0 the unknot can be blown down,
showing that V (0) ∼= S1

× S2. This fact immediately implies

(4–1) ĤF(V (k)) ∼= Z2k+2

for every k ≥ 0. Using the surgery presentation of Figure 6 it is easy to check that

H1(V (k); Z) ∼= Z ⊕ Z/(k + 1)Z,

therefore V (k) admits (k+1) different torsion spinc structures. By Proposition 2.2
and Exact Sequence (2–1) we have

rk ĤF(V (k), t) ≥ 2

if t is a torsion spinc structure. Therefore, using (4–1), we see that ĤF(V (k), t) ∼=

Z2 for each torsion spinc structure t and

ĤF(V (k), t) = 0

if t is not torsion. The statement now follows from Proposition 2.2 and Corollary
2.3. �

Proof of Theorem 4.2. The idea of the proof is this: First we find a contact
three-manifold (Y, ξ) such that contact (+1)-surgery along some Legendrian knot
K ⊂ (Y, ξ) gives (Y L i , ξ L i ) and A(Y )⊂ HF+(Y, tξ ) (as it is defined in Proposition
2.2) vanishes. Therefore c+(Y, ξ) is an element of some T+

a . The U -equivariance
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of the map induced by the surgery will then show that c+(Y L i , ξ L i ) ∈ T+
a ⊂

HF+(Y L i , tξ Li ), from which the conclusion easily follows.
To this end, consider the contact structure ηi (n) defined by Legendrian surgery

along the two-component link of Figure 7. One of the knots in the link is topolog-
ically the unknot, while the other one is L i (n). According to the Kirby moves
indicated in Figure 8, it follows that this contact structure lives on the three-
manifold Y (n) := −V (n/2), where V (k) is defined by Figure 6. According to
[Ding and Geiges 2001], the effect of a contact (±1)-surgery along a Legendrian
knot can be canceled by contact (∓1)-surgery along a Legendrian push-off of the
knot. Therefore, doing contact (+1)-surgery along the push-off of the unknot in
Figure 7, we get (Y L i , ξ L i ). On the other hand, denoting by Xn the cobordism
induced by the contact (+1)-surgery, we have

F̂−Xn

(
ĉ
(
Y (n), ηi (n)

))
= ĉ(Y L i , ξ L i ).

A simple computation shows that h(ξ L i ) = −1/2, therefore by Theorem 2.5(iv)
we have

ĉ(Y L i , ξ L i ) ∈ ĤF1/2(−Y L i ).

Moreover, ĉ(Y L i , ξ L i ) is primitive [Plamenevskaya 2004]. Thus, to prove the state-
ment it will be enough to verify that there is a rank-1 subgroup of ĤF1/2(−Y L i )

. .....

i−1
2

n−1−i
2

−1
−1

where

stands for

Figure 7. Contact surgery diagram defining (Y (n), ηi (n)).
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...

k full
twists

−1 − k

0 0

k

−1
1
1

1

00

−k

1

−k−1

−V (k)

Figure 8. Kirby moves for Y (n).

containing

F̂−Xn

(
ĉ
(
Y (n), ηi (n)

))
for every i . An easy computation shows that (since we assumed n to be even)
the Thurston–Bennequin numbers of the knots L i (n) are all equal to 1, thanks to
[Epstein et al. 2001]. Hence each of the three-manifolds Y L i is diffeomorphic to
S3

0(L(n)). By Lemma 4.3,

HF+
(
−S3

0(L(n))
)
∼= T+

1/2 ⊕ T+

3/2 ⊕ A,

where A is a finitely generated abelian group, while by Lemma 4.4 we have

HF+(−Y (n)) =

n+2⊕
i=1

T+

ai
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for some ai ∈ Q. Since F+

−Xn
is U -equivariant and for sufficiently large h the action

of U h vanishes on A, we have

Im(F+

−Xn
) ⊆ T+

1/2 ⊕ T+

3/2 ⊆ HF+
(
−S3

0
(
L(n)

))
.

Therefore, up to sign, there is a unique primitive element in Im(F+

−Xn
) of degree

1/2, implying that c+(Y L i , ξ L i ) = c+(Y L j , ξ L j ) for i, j as in the statement of
Theorem 4.2. Since

HF+

−1/2

(
−S3

0
(
L(n)

))
= 0,

it follows that the homomorphism

f : ĤF1/2
(
−S3

0
(
L(n)

))
→ HF+

1/2

(
−S3

0
(
L(n)

))
from Exact Sequence (2–1) is injective. Since

f (ĉ(Y L i , ξ L i )) = c+(Y L i , ξ L i ) ∈ Im(F+

−Xn
)

for every i , this concludes the proof. �

5. Distinguishing tight contact structures

Definition. Let ξi , for i =1, . . . , n−1, denote the contact structure on the Brieskorn
sphere −6(2, 3, 6n − 1) defined by the contact surgery specified by Figure 9.

Theorem 5.1. The contact invariants c+(ξ1), . . . , c+(ξn−1) are linearly indepen-
dent over Z.

.

.

.
.
.
.i

left cusps
n−i−1

left cusps

−1

K1 −1

Figure 9. Contact structures on the three-manifold −6(2, 3, 6n−1).
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.

.

.
.
.
.i

left cusps
n−i−1

left cusps

−1

Figure 10. The contact structure ηi on L(n, 1).

Proof. Consider the Legendrian push-off K̃1 of the Legendrian trefoil K1 of the
figure. Attach a four-dimensional two-handle along K̃1 to −6(2, 3, 6n − 1) with
framing equal to the contact framing +1. Since contact (+1)-surgery along a
Legendrian push-off cancels contact (−1)-surgery, we get a cobordism W such
that F−W (c+(ξi )) = c+(ηi ), where ηi is the contact structure on L(n, 1) defined
by Figure 10. The contact invariants c+(ηi ) are linearly independent because they
belong to groups corresponding to different spinc structures on the same lens space
L(n, 1). Therefore, the invariants c+(ξi ) are also linearly independent, concluding
the proof. �

Corollary 5.2. The contact structures ξ1, . . . , ξn−1 are pairwise nonisotopic. �

This was first proved by Lisca and Matić [1997] using Seiberg–Witten theory.
For a different Heegaard Floer theoretic proof (of a more general statement), see
[Plamenevskaya 2004].

Remark. It is known [Ozsváth and Szabó 2003a] that HF+(−6(2, 3, 6n − 1)) =

T+

−2 ⊕ Zn−1
(−2), therefore by Proposition 2.2, HF+(6(2, 3, 6n − 1)) = T+

2 ⊕ Zn−1
(1) .

It follows from Theorem 5.1 that the elements c+(ξi ) (i = 1, . . . , n − 1) span
HF+

1 (6(2, 3, 6n − 1)).

If the trefoil knot of Figure 9 is replaced by any Legendrian knot L , the statement
of Theorem 5.1 holds with the same proof. If tb(L) = 1 and rot(L) = 0, then the
contact resulting structures ξ1, . . . , ξn−1 are all homotopic as two-plane fields.
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ANDRÁS I. STIPSICZ
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