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Suppose N is a compressible boundary component of a compact irreducible
orientable 3-manifold M, and ( Q, ∂ Q) ⊂ (M, ∂ M) is an orientable prop-
erly embedded essential surface in M, some essential component of which is
incident to N and no component is a disk. Let V and Q denote respectively
the sets of vertices in the curve complex for N represented by boundaries of
compressing disks and by boundary components of Q. We prove that, if Q
is essential in M, then d(V, Q) ≤ 1 − χ( Q).

Hartshorn showed that an incompressible surface in a closed 3-manifold
puts a limit on the distance of any Heegaard splitting. An augmented ver-
sion of our result leads to a version of Hartshorn’s theorem for merely com-
pact 3-manifolds.

Our main result is: If a properly embedded connected surface Q is in-
cident to N , and Q is separating and compresses on both its sides, but not
by way of disjoint disks, then either d(V, Q) ≤ 1 − χ( Q), or Q is obtained
from two nested connected incompressible boundary-parallel surfaces by a
vertical tubing.

Forthcoming work with M. Tomova will show how an augmented version
of this theorem leads to the same conclusion as Hartshorn’s theorem, not
from an essential surface, but from an alternate Heegaard surface. That
is, if Q is a Heegaard splitting of a compact M then no other Heegaard
splitting has distance greater than twice the genus of Q.

1. Introduction

Suppose N is a compressible boundary component of an orientable irreducible
3-manifold M and (Q, ∂ Q) ⊂ (M, ∂M) is an essential orientable surface in M ,
an essential component of which is incident to N and no component of Q is a
disk. Let V and Q denote sets of vertices in the curve complex for N represented,
respectively, by boundaries of compressing disks and by boundary components of
Q. We will show:
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Theorem. The distance d(V, Q) in the curve complex of N is no greater than
1 − χ(Q). Furthermore, if no component of Q is an annulus ∂-parallel into N ,
then, for each component q of Q ∩ N , we have d(q, V) ≤ 1 − χ(Q).

A direct consequence is this generalization of a theorem of Hartshorn [2002]:

Theorem. If P is a Heegaard-splitting surface for a compact orientable manifold
M , and (Q, ∂ Q) ⊂ (M, ∂M) is a properly embedded incompressible surface, then
d(P) ≤ 2 − χ(Q).

Both results are unsurprising, and perhaps well known (see, for example, [Bachman
and Schleimer 2005] for a discussion of this in the broader setting of knots in bridge
position with respect to a Heegaard surface).

It would be of interest to be able to prove the second result (Hartshorn’s theorem)
when Q is a Heegaard surface, rather than an incompressible surface. Of course
this is hopeless in general: a second copy of P could be used for Q, and that
would in general provide no information at all about the distance of the splitting
P . However, suppose it is stipulated that Q is not isotopic to P . One possibility
is that Q is weakly reducible. In that case (see [Casson and Gordon 1987]), it is
either the stabilization of a lower-genus Heegaard splitting (to which we revert)
or it gives rise to a lower-genus incompressible surface, and this allows the direct
application of Hartshorn’s theorem. So, in trying to extend Hartshorn’s theorem
to when Q is a Heegaard surface, it suffices to consider the case in which Q is
strongly irreducible.

Here we carry out the first step in the extension of Hartshorn’s theorem to the
case in which Q is a Heegaard surface. This first step is much like the first theorem
quoted above. Specifically, we establish that bicompressible but weakly incom-
pressible surfaces typically do not have boundaries that are distant in the curve
complex from curves that compress in M .

Theorem. Suppose a properly embedded surface Q is connected, separating, and
incident to N. If Q compresses on both its sides, but not by way of disjoint disks,
then either:

• d(V, Q) ≤ 1 − χ(Q); or

• Q is obtained from two nested connected boundary-parallel surfaces by a
vertical tubing.

Using this result, forthcoming work will demonstrate, via a two-parameter argu-
ment much as in [Rubinstein and Scharlemann 1996], that the genus of an alternate
Heegaard splitting Q does indeed establish a bound on the distance of P .

Maggy Tomova has provided valuable input to this proof. Beyond sharpening
the foundational proposition (Propositions 2.5 and Theorem 5.4) in a very useful
way, she provided an improved proof of Theorem 3.1.
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2. Preliminaries and first steps

First, we recall some definitions and elementary results, most of which are well
known.

Definition 2.1. A ∂-compressing disk for Q is a disk D ⊂ M so that ∂ D is the
end-point union of two arcs, α = D ∩∂ M and β = D ∩ Q, and β is essential in Q.

Definition 2.2. A surface (Q, ∂ Q) ⊂ (M, ∂M) is essential if it is incompressible
and has a component that is not boundary-parallel. An essential surface is strictly
essential if it has at most one non-annulus component.

Lemma 2.3. Suppose (Q, ∂ Q) ⊂ (M, ∂M) is a properly embedded surface and
Q′ is the result of ∂-compressing Q.

(1) If Q is incompressible, so is Q′.

(2) If Q is essential, so is Q′.

Proof. A description, dual to the boundary-compression from Q to Q′, is this: Q is
obtained from Q′ by tunneling along an arc γ dual to the ∂-compression disk. (The
precise definition of tunneling is given in Section 4.) Certainly, any compressing
disk for Q′ in M is unaffected by this operation near the boundary. Since Q is
incompressible, so is Q′. This proves the first claim.

Suppose now that every component of Q′ is boundary-parallel, and the arc γ that
is dual to the ∂-compression has ends on components Q′

0 and Q′

1 of Q′ (possibly,
Q′

0 = Q′

1). If γ is disjoint from the subsurfaces P0 and P1 of ∂ M to which Q′

0
and Q′

1, respectively, are parallel, then tunneling along γ merely creates a com-
ponent that is again boundary-parallel (to the band-sum of the Pi along γ ), thus
contradicting the assumption that not all components of Q are boundary-parallel.
So suppose γ lies in P0, say. If both ends of γ lie on Q′

0 (so Q′

1 = Q′

0), then the
disk γ × I in the product region between Q′

0 and P0 would be a compressing disk
for Q, which contradicts the incompressibility of Q.

Finally, suppose Q′

1 6= Q′

0, so P0 ⊂ P1 and γ is an arc in P1− P0 connecting ∂ P0

to ∂ P1. However, P0 is not a disk, else the arc β in which the ∂-compressing disk
intersects Q would not have been essential in Q. So there is an essential simple
closed curve γ0 ⊂ P0 based at the point γ ∩ P0. Attach a band to γ0 along γ to get
an arc γ+ ⊂ P1 with both ends on ∂ P1. Then the disk E1 = γ+ × I , lying between
P1 ⊂ ∂ M and Q′

1, intersects Q in a single arc, parallel in M to γ+ and lying in the
union of the top of the tunnel and Q′

0. This arc divides E1 into two disks; let E
be the one not incident to ∂ M . Then E has its boundary entirely in Q and, since
it is essential there, E is a compressing disk for Q — again a contradiction. See
the figure on the next page. From these various contradictions we conclude that
at least one of the components of Q′ to which the ends of γ are attached is not
∂-parallel, so Q′ is essential. �
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Definition 2.4. Suppose S is a closed orientable surface, and α0, . . . , αn is a se-
quence of essential simple closed curves in S, so that for each 1 ≤ i ≤ n, αi−1 and
αi can be isotoped to be disjoint. We say that the sequence is a length-n path in
the curve complex of S (see [Hempel 2001]).

The distance d(α, β) between a pair α, β of essential simple closed curves in S
is the smallest n ∈ N so that there is a path in the curve-complex from α to β of
length n. Curves are isotopic if and only if they have distance 0.

Two sets of curves V, W in S have distance d(V, W) = n if n is the smallest
distance from a curve in V to a curve in W.

Proposition 2.5. Suppose M is an irreducible compact orientable 3-manifold,
N is a compressible component of ∂ M , and (Q, ∂ Q) ⊂ (M, ∂M) is a properly
embedded essential surface with χ(Q) ≤ 1 and at least one essential component
incident to N. Let V be the set of essential curves in N that bound disks in M , and
let q be any component of ∂ Q.
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• If Q contains an essential disk incident to N , then d(V, q) ≤ 1.

• If Q does not contain any disk components, then d(V, q) ≤ 1−χ(Q), or Q is
strictly essential and q lies in the boundary of a ∂-parallel annulus component
of Q.

Proof. If Q contains an essential disk D incident to N , then ∂ D ∈ V. The com-
ponent q may be ∂ D, or it may be another component of ∂ Q, but in either case
d(V, q) ≤ 1.

Suppose Q contains no disks at all, and thus χ(Q) ≤ 0. Let E be a compressing
disk for N in M so that |E ∩ Q| is minimal among all such disks. Circles of
intersection between Q and E and arcs of intersection that are inessential in Q
can be removed by isotoping E via standard innermost-disk and outermost-arc
arguments, so this choice of E guarantees that E and Q only intersect along arcs
that are essential in Q. If in fact they don’t intersect at all, then d(∂ E, q) ≤ 1
for every q ∈ ∂ Q, and we are done. Consider, then, an arc β of Q ∩ E that is
outermost in E , cutting off from E a ∂-compressing disk E0 for Q that is incident
to N . Boundary compressing Q along E0 gives (by Lemma 2.3) a new essential
surface Q′

⊂ M that can be isotoped so that each component of ∂ Q′ is disjoint from
each component of ∂ Q. That is, for each component q of ∂ Q and each component
q ′ of ∂ Q′ we have that d(q, q ′) ≤ 1.

The proof now is by induction on 1 − χ(Q). As Q has no disk components,
1−χ(Q)≥ 1. Suppose 1−χ(Q)= 1, that is, all components of Q are annuli, so Q
is strictly essential. As we are not making any claims about the curves in Q coming
from ∂-parallel annuli components, we may assume all annuli in Q are essential.
Then Q′ contains a compressing disk D for N (the result of boundary-reducing an
essential annulus component of Q along E0), and ∂ D is disjoint from all q ∈ ∂ Q.
As ∂ D ∈ V,

d(q, V) ≤ 1 = 1 − χ(Q),

as desired.
Now suppose that 1−χ(Q) > 1. If Q is not strictly essential, then it contains at

least two non-annulus components and, since it is essential, at least one essential
component. Thus, there is a component Q0 of Q that is essential and such that
1 − χ(Q0) < 1 − χ(Q). By the induction hypothesis, for each component q0 of
∂ Q0, we have d(q0, V) ≤ 1−χ(Q0). Of course, d(q, q0) ≤ 1 as well. Combining
these inequalities, we obtain the desired result.

Suppose next that Q is strictly essential, and again all ∂-parallel annuli have
been removed prior to the boundary-compression described above. If the boundary-
compression creates a disk component of Q′, then it must be essential and incident
to N , so ∂ D ∈ V and, for every q ∈ ∂ Q,

d(q, V) ≤ d(q, ∂ D) ≤ 1 ≤ 1 − χ(Q)
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and we are done. Suppose then that no component of Q′ is a disk, and q1 is any
boundary component of an essential component Q1 of Q′. As

1 − χ(Q1) ≤ 1 − χ(Q′) < 1 − χ(Q),

the induction hypothesis applies, and

d(q1, V) ≤ 1 − χ(Q1) < 1 − χ(Q).

Since, for every component q of ∂ Q, we have d(q, q1) ≤ 1, the inequality

d(q, V) ≤ d(q1, V) + d(q, q1) ≤ 1 − χ(Q′) + 1 = 1 − χ(Q)

follows, as desired. �

In order to prove Hartshorn’s theorem on Heegaard splittings, it will be helpful
to understand what it takes to be an essential surface in a compression body. Recall:

Definition 2.6 [Scharlemann 2002]. A compression body H is a connected 3-
manifold obtained from a closed surface ∂−H by attaching 1-handles to ∂−H ×

{1} ⊂ ∂−H × I . (It is conventional to consider a handlebody to be a compression
body in which ∂−H = ∅.) Dually, H is obtained from a connected surface ∂+H by
attaching 2-handles to ∂+H×{1}⊂∂+H×I and 3-handles to any 2-spheres thereby
created. The cores of the 2-handles are called meridian disks, and a collection of
meridian disks is called complete if its complement is ∂−H × I , together perhaps
with some 3-balls.

Suppose two compression bodies H1 and H2 have ∂+H1 ' ∂+H2. Glue H1 and
H2 together along ∂+Hi = S. The resulting compact 3-manifold M can be written
M = H1 ∪S H2, and this structure is called a Heegaard splitting of the 3-manifold
with boundary M (or, more specifically, of the triple (M; ∂−H1, ∂−H2) ). It is easy
to show that every compact 3-manifold has a Heegaard splitting.

The following is probably well-known:

Lemma 2.7. Suppose H is a compression body, and (Q, ∂ Q) ⊂ (H, ∂ H) is in-
compressible. If ∂ Q ∩ ∂+H = ∅, then Q is inessential; that is, each component is
∂-parallel.

Proof. It suffices to consider the case in which Q is connected. To begin with,
consider the degenerate case in which H = ∂−H × I . Suppose there is a coun-
terexample; let Q be a counterexample that maximizes χ(Q).

Case 1: H = ∂−H × I and Q has nonempty boundary. Q cannot be a disk, since
∂−H × I is ∂-irreducible, so χ(Q) ≤ 0. By hypothesis, ∂ Q ⊂ ∂−H ×{0}. Choose
α ⊂ ∂−H ×{0} to be any curve that cannot be isotoped off of ∂ Q, and let A =α× I
be the corresponding annulus in ∂−H × I . Minimize by isotopy of A the number
of components of Q ∩ A. A standard argument shows that there are no inessential
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circles of intersection, and that each arc of intersection is essential in Q. Since ∂ Q
is disjoint from ∂−H × {1}, all arcs of Q ∩ A have both ends in ∂−H × {0}. An
outermost such arc in A defines a ∂-compression of Q. The resulting surface Q′ is
still incompressible (since a compressing disk for Q′ would persist into Q), and has
at most two components, each of higher Euler characteristic; thus, each is ∂-parallel
into ∂−H . If there are two components, neither is a disk, or else the arc along
which ∂-compression was supposedly performed would not have been essential. If
there are two components of Q′ and they are not nested (that is, each is parallel
to the boundary in the complement of the other), it follows that Q was ∂-parallel.
If Q′ had two nested components, it would follow that Q was compressible, a
contradiction. (See the end of the proof of Lemma 2.3, or the figure on page 328.)
Similarly, if Q′ is connected, then — depending on whether the tunneling arc dual
to the ∂-compression lies inside or outside the region of parallelism between Q′

and ∂ M — Q would either be compressible or itself ∂-parallel.

Case 2: H = ∂−H × I and Q is closed. Let

A = α × I ⊂ ∂−H × I

be any incompressible spanning annulus. A simple homology argument shows that
Q intersects A. After the standard move eliminating innermost disks, all intersec-
tion components are essential curves in A. Let λ be the curve that is closest to
∂−H × {0} in A. Let Q′ be the properly embedded surface (now with boundary)
obtained from Q by removing a neighborhood of λ in Q and attaching two copies
of the subannulus of A between α × {0} and λ. It’s easy to see that Q′ is still
incompressible and its boundary is still disjoint from ∂−H ×{1}, and that now Q′

has nonempty boundary, so, by Case 1, Q′ is ∂-parallel. The subsurface of ∂ M
to which Q′ is ∂-parallel can’t contain the neighborhood η of α × {0} in ∂ M , or
else the parallelism would identify a compressing disk for Q. It follows that the
parallelism is outside of η, and so can be extended across η to give a parallelism
between Q and a subsurface (hence a collection of components) of ∂−H × {0}.

Case 3: General case. Let ∆ be a complete family of meridian disks for H , so
that, when H is compressed along ∆, it becomes a product ∂−H × I . Since Q is
incompressible, a standard innermost-disk argument allows ∆ to be redefined so
that ∆ ∩ Q has no simple closed curves of intersection. Since Q ∩ ∂+H = ∅, it
follows that Q ∩ ∆ = ∅. Then, in fact, Q ⊂ ∂−H × I , and the result is deduced
from Cases 1 or 2. �

3. Hartshorn’s theorem

Using Proposition 2.5, we give a quick proof of Hartshorn’s theorem (actually, of
an extension to the case in which M is not closed). Recall that the distance d(P) of
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a Heegaard splitting [Hempel 2001] is the minimum distance in the curve complex
of P between a vertex representing a meridian curve on one side of P and a vertex
representing a meridian curve on the other side.

Theorem 3.1. If P is a Heegaard splitting surface for a compact orientable man-
ifold M , and (Q, ∂ Q) ⊂ (M, ∂M) is a connected essential surface, then d(P) ≤

2 − χ(Q).

Remark that, as long as Q contains no inessential disks or spheres and at most one
essential disk or sphere, Q need not be connected.

Proof. The next facts about Heegaard splittings are classical (see [Scharlemann
2002]): If Q is a sphere, then P is reducible, and hence d(P) = 0. If Q is a disk,
then P is ∂-reducible, so d(P) ≤ 1. If neither occurs, then M is irreducible and
∂-irreducible, which is what we henceforth assume. Moreover, once Q is neither
a disk nor a sphere, we have 2−χ(Q) ≥ 2, so we might as well assume d(P) ≥ 2,
that is, P is strongly irreducible.

Let A and B be the compression-bodies into which P divides M , and let Σ A, Σ B

be spines of A and B respectively; that is, Σ A is the union of a graph in A with
∂− A, and Σ B is the union of a graph in B with ∂−B, so that M − (Σ A

∪ Σ B) is
homeomorphic to P × (−1, 1). We consider the curves P ∩ Q as P sweeps from
a neighborhood of Σ A (that is, near P × {−1}) to a neighborhood of Σ B (near
P × {1}). Under this parameterization, let Pt denote P × {t}.

If Q ∩ Σ A
= ∅, then Q is an incompressible surface in the compression body

Closure(Q −Σ A) ∼= B. By Lemma 2.7, Q would be inessential, so this case does
not arise. Similarly, we conclude that Q must intersect Σ B . It follows that, when
t is near −1, Pt ∩ Q contains meridian circles for A; when t is near 1, it contains
meridian circles for B. Since P is strongly irreducible, it can never be the case that
both occur, so at some generic level neither will occur (see [Scharlemann 2002]
for details, including why we can take such a level to be generic). Hence, there is
a generic t0 so that Pt0 ∩ Q contains no meridian circles for P .

An innermost inessential circle of intersection in Pt0 must be inessential in Q
since Q is incompressible. So all such circles of intersection can be removed by an
isotopy of Q. After this process, all remaining curves of intersection are essential
in Pt0 . Since Pt0 ∩ Q contains no meridian circles for P , no remaining circle of
intersection can be inessential in Q either. Hence, all components of Pt0 ∩ Q are
essential in both surfaces; in particular, no component of Q − Pt0 is a disk. At this
point, revert to P as notation for Pt0 .

If P ∩ Q = ∅, then we are done, just as in the case in which Q is disjoint from
a spine. Similarly, we are done if the surface Q A = Q ∩ A is inessential (and
hence ∂-parallel) in A, or if Q B = Q ∩ B is inessential in B. We conclude that Q A
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and Q B are both essential in A and B, respectively, and the positioning of P has
guaranteed that no component of either is a disk.

Unless Q A and Q B are both strictly essential, the proof follows easily from
Proposition 2.5: Suppose, for example, that Q A is not strictly essential, and let U

and V be the set of curves in P bounding disks in A and B, respectively. Let q be
a curve in P ∩ Q lying on the boundary of an essential component of Q B . Then
Proposition 2.5 says that d(q, U) ≤ 1 − χ(Q A) and d(q, V) ≤ 1 − χ(Q B), so

d(P) = d(U, V) ≤ d(q, U) + d(q, V) ≤ (1 − χ(Q A)) + (1 − χ(Q B))

= 2 − χ(Q),

as required.
The case in which Q A and Q B are strictly essential is only a bit more difficult:

Imagine coloring in red or blue each component of Q A or Q B , respectively, that
is not a ∂-parallel annulus. Since Q A and Q B are both essential, there are red and
blue regions in Q − P . As Q is connected, there is a path in Q (possibly of length
0) with one end at a red region, one end at a blue region, and no interior point in a
colored region. Since the interior of the entire path lies in a collection of ∂-parallel
annuli, it follows that the curves in P ∩Q to which the ends of the path are incident
are isotopic curves in P . Now, apply the previous argument to a curve q ⊂ P in
that isotopy class of curves in P . �

4. Sobering examples of large distance

It is natural to ask whether Proposition 2.5 can, in any useful way, be extended to
surfaces that are not essential. It appears unlikely. If one allows Q to be ∂-parallel,
obvious counterexamples are easy to find: take a simple closed curve γ in N that
is arbitrarily distant from V, and use for Q a ∂-parallel annulus A constructed
by pushing a regular neighborhood of γ slightly into M . Even if one rules out ∂-
parallel surfaces but does allow Q to be compressible, a counterexample is obtained
by tubing, say, a possibly knotted torus in M to an annulus A as just constructed.

On the other hand, it has been a recent theme in the study of embedded surfaces
in 3-manifolds that, for many purposes, a connected separating surface Q in M
will behave much like an incompressible surface if Q compresses to both sides,
but not via disjoint disks. Would such a condition on Q be sufficient to guarantee
the conclusion of Proposition 2.5? That is:

Question 4.1. Suppose M is an irreducible compact orientable 3-manifold, and N
is a compressible boundary component of M. Let V be the set of essential curves in
N that bound disks in N. Suppose further that (Q, ∂ Q) ⊂ (M, ∂ M) is a connected
separating surface, and q is any boundary component of Q. If Q is compressible
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into both complementary components, but not via disjoint disks, must it be true that
d(q, V) ≤ 1 − χ(Q)?

In this section we show that there is an example for which the answer to Question
4.1 is “no”. More remarkably, the next section will show that it is the only type of
bad example.

A bit of terminology is useful. Regard ∂ D2 as the end-point union of two arcs,
∂+D2 and ∂−D2.

Definition 4.2. Suppose that Q ⊂ M is a properly embedded surface, and γ ⊂

Interior(M) is an embedded arc incident to Q precisely at ∂γ . There is a relative
tubular neighborhood η(γ ) ∼= γ × D2 so that η(γ ) intersects Q exactly in the two
disk-fibers at the ends of γ . The surface obtained from Q by removing these two
disks and attaching the cylinder γ ×∂ D2 is said to be obtained by tubing along γ .

Definition 4.3. Similarly, suppose that γ ⊂ ∂ M is an embedded arc incident to
∂ Q precisely in ∂γ . There is a relative tubular neighborhood η(γ ) ∼= γ × D2 so
that η(γ ) intersects Q precisely in the two D2 fibers at the ends of γ and η(γ )

intersects ∂ M exactly in the rectangle γ × ∂−D2. The properly embedded surface
obtained from Q by removing the two D2-fibers at the ends of γ and attaching the
rectangle γ × ∂+D2 is said to be obtained by tunneling along γ .

Let P0 and P1 be two connected compact subsurfaces in the same component N
of ∂ M , with each component of ∂ P0 and ∂ P1 essential in ∂ M and P0 ⊂ Interior(P1).
Let Q1 be the properly embedded surface in M obtained by pushing P1 rel ∂ into the
interior of M . Let Q0 denote the properly embedded surface obtained by pushing
P0 rel ∂ into the collar between P1 and Q1. The region R lying between Q0 and
Q1 is naturally homeomorphic to Q1 × I . (Here, ∂ Q1 × I can be thought of either
as vertically crushed to ∂ Q1 ⊂ ∂ M , or as constituting a small collar of ∂ Q1 in
P1 ⊂ ∂ M .) Under the homeomorphism R ∼= Q1 × I , the top of R (corresponding
to Q1×{1}) is Q1, and the bottom of R (corresponding to Q1×{0}) is the boundary-
union of Q0 and P1 − P0. The properly embedded surface Q0 ∪ Q1 ⊂ M is called
the recessed collar determined by P0 ⊂ P1 bounding R.

Recessed collars behave predictably under tunnelings:

Lemma 4.4. Suppose Q0 ∪ Q1 ⊂ M is the recessed collar determined by P0 ⊂

Interior(P1), and R ∼= Q1×I is the component of M−(Q0∪Q1) on whose boundary
both Q0 and Q1 lie. Let γ ⊂ ∂ M be a properly embedded arc in ∂ M − (Q0 ∪ Q1),
and Q+ the surface obtained from Q0 ∪ Q1 by tunneling along γ .

(1) If γ ⊂ P1 − P0 and γ has both ends on ∂ P0, or if γ ⊂ (∂ M − P1), then Q+ is
a recessed collar.

(2) If γ ⊂ P0, then there is a compressing disk for Q+ in M − R.
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(3) If γ ⊂ P1− P0 and γ has one or both ends on ∂ P1, then there is a compressing
disk for Q+ in R.

Proof. In the first case, tunneling is equivalent to just adding a band to either P1 or
P0, and then constructing the recessed collar. In the second case, the disk γ × I in
the collar between P0 and Q0 determines a compressing disk for Q+ (that is, for
the component of Q+ coming from Q0) that lies outside R.

Similarly, in one of the third cases, when γ ⊂ P1 − P0 has both ends on ∂ P1,
γ × I in the collar between P1 and Q1 determines a compressing disk for Q+ (this
time, for the component of Q+ coming from Q1) that now lies inside R.

In the last case, when one end of γ ⊂ P1 − P0 lies on each of ∂ P0 and ∂ P1, a
slightly more sophisticated construction is needed. After the tunneling construc-
tion, ∂ Q+ ∩ Interior(P1) has one arc-component γ ′, consisting of two parallel
copies of the spanning arc γ and a subarc of the component of ∂ P0 that is incident
to γ . This arc, γ ′

⊂ ∂ Q+, can be pushed slightly into Q+. Then the disk γ ′
× I

(using the product structure on R) determines a compressing disk for Q+ that lies
in R. (The disk γ ′

× I looks much like the disk E in the figure from page 328.) �

One of the constructions of Lemma 4.4 will be needed in a different context:

Lemma 4.5. Suppose Q0 ∪ Q1 ⊂ M and Q1 ∪ Q2 ⊂ M are the recessed collars
determined by connected surfaces P0 ⊂ Interior(P1) and P1 ⊂ Interior(P2). Let
R1 and R2 be the regions bounded by these recessed collars. Furthermore, let
γ1, γ2 ⊂∂ M be properly embedded arcs spanning P1−P0 and P2−P1, respectively;
that is, γi has one end-point on each of ∂ Pi and ∂ Pi−1. If Q+ is the connected
surface obtained from Q0 ∪ Q1 ∪ Q2 by tunneling along both γ1 and γ2, then either

(1) there are disjoint compressing disks for Q+ in R1 and R2; or

(2) P0 is an annulus parallel in P1 to a component c of ∂ P1, and c is incident to
both tunnels.

In the latter case, Q+ is properly isotopic to the surface obtained from the recessed
collar Q1 ∪ Q2 by tubing along an arc in Interior(M) that is parallel to γ2 ⊂ ∂ M.

Proof. For P any surface with boundary, define an eyeglass graph in P to be the
union of an essential simple closed curve in the interior of P and an embedded arc
in the curve’s complement, connecting the curve to ∂ P .

Let c1 ⊂ ∂ P1 and c0 ⊂ ∂ P0 be the components to which the ends of γ1 are
incident. Let c2 be the component of ∂ P1 (note: not of ∂ P2) to which the end of
γ2 is incident. (It is possible that c1 = c2.) Let α be any essential simple closed
curve in P0, and choose an embedded arc in P0 −α connecting α to the end of γ1

in c0; the union of that arc, the closed curve α, and the arc γ1 is an eyeglass curve
e1 in P1 which intersects P1 − P0 in the arc γ1. Then the construction of Lemma
4.4 (applied there to the eyeglass γ1 ∪ c0) shows here that a neighborhood of the
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product e1 × I ⊂ R1 ∼= P1 × I contains a compressing disk for Q+ that lies in R1

and which intersects Q1 in a neighborhood of e1 × {1}.
Similarly, for β any essential simple closed curve in P1, and an embedded arc in

P1 −β connecting β to the end of γ2 in c2, we get an eyeglass e2 ⊂ P2 and a com-
pressing disk for Q+ that lies in R2 and whose boundary intersects Q1 only within
a neighborhood of e2 × {1}. So, if we can find such eyeglasses in P1 and P2 that
are disjoint, then we will have constructed the required disjoint compressing disks.

Suppose first that P0 is not an annulus parallel to c1. Then P0 contains an
essential simple closed curve α that is not parallel to c1. Since α is not parallel
to c1, no component of the complement P1 − e1 is a disk, so there is an essential
simple closed curve β in the component of P1 −e1 that is incident to c2. The same
is true even if P0 is an annulus parallel to c1, as long as c1 6= c2. This proves the
enumerated conclusions. See figure.
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P 1

P
2

γ
1

γ
2

0
c

2
c

1
c

α

=

β

The proof that in case (2), Q+ can be described by tubing Q1 to Q2 along an
arc parallel to γ2 is a pleasant exercise left to the reader. �

Consider now a particular type of tubing of a recessed collar. Suppose Q0∪Q1 ⊂

M is the recessed collar bounding R determined by P0 ⊂ P1 ⊂ ∂ M . Let ρ denote
a vertical spanning arc in R, that is, the image in R ∼= P1 × I of point × I , where
point ∈ P0. Let Q be the surface obtained from Q0 ∪ Q1 by tubing along ρ. Then
Q is called a tube-spanned recessed collar.

A tube-spanned recessed collar has nice properties:

Lemma 4.6. If Q is a tube-spanned recessed collar constructed as above, then:

(1) Q is connected and separating, and Q compresses in both complementary
components in M.

(2) If Q compresses in both complementary components via disjoint disks, then
P1 ⊂ ∂ M is compressible in M.

(3) If Q+ is obtained from Q by tunneling, then either Q+ is also a tube-spanned
recessed collar, or Q+ compresses in both complementary components via
disjoint disks. (Possibly both are true.)
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(4) If Q+ is obtained from Q by tunneling together Q and a ∂-parallel connected
incompressible surface Q′, then either Q+ is also a tube-spanned recessed
collar, or Q+ compresses in both complementary components via disjoint
disks. (Possibly both are true.)

Proof. The construction guarantees that Q is connected and separating. It com-
presses on both sides: Let Y denote the component R −η(ρ) of M − Q, and let X
be the other component. A disk-fiber µ of η(ρ) is a compressing disk for Q in X .
To see a compressing disk for Q in Y , start with an essential simple closed curve
in Q0 containing the end of ρ in Q0. The corresponding vertical annulus A ⊂ R
includes the vertical arc ρ ⊂ R. Then A − η(ρ) is a disk in Y whose boundary is
essential in Q.

To prove the second property, suppose that there are disjoint compressing disks,
DX ⊂ X and DY ⊂ Y . The boundary ∂ DY cannot be disjoint from the meridian
µ of η(ρ), since if it were, ∂ DY would lie either in the top or the bottom of Y ∼=

(P1 − point)× I , either of which is clearly incompressible in Y . So DX cannot be
parallel to µ. A standard innermost-disk argument allows us to choose DX so that
DX ∩ µ contains no circles of intersection, and an isotopy of ∂ DX on Q ensures
that any arc component of ∂ DX − µ is essential in one of the punctured surfaces
Q1 ∩ Q or Q0 ∩ Q. If DX is disjoint from µ, it lies on Q1, say, but in any case
it determines a compressing disk for P1 in M , as required. If DX is not disjoint
from µ, then an outermost disk in DX cut off by µ would similarly determine a
compression of P1 in M .

The third property follows from Lemma 4.4. When the tunneling there leaves
Q+ as a recessed collar (option 1), the operation here leaves Q+ a tube-spanned
recessed collar. If the tunneling arc γ lies in P1 − P0 and thereby gives rise to
a compressing disk in R (option 3), the compressing disk DY constructed there
lies in Y , and so can clearly be kept disjoint from the vertical arc ρ. Then DY is
disjoint from the compressing disk µ for X , as required. Finally, if γ lies in P0

(option 2), the compressing disk DX in M − R constructed there lies in X and
intersects Q0 in a single essential arc. The simple closed curve in Q0 from which
A is constructed can be taken to intersect DX in at most one point, so in the end
the disk DY ⊂ Y intersects DX in at most one point. Therefore, the boundary of a
regular neighborhood of ∂ X ∪∂Y in Q is a simple closed curve that bounds a disk
in both X and Y , as required.

The fourth property is proved in a similar way. Suppose first that ∂ Q′ is disjoint
from P1. If the region P ′

⊂ ∂ M to which Q′ is parallel is disjoint from P1, then
tunneling Q′ to Q1 just creates a larger ∂-parallel surface, and Q+ is a tube-spanned
recessed collar. If P1 ⊂ P ′, the region R′ between Q′ and Q1 is a recessed collar
and, according to option 3 of Lemma 4.4, there is a compressing disk for Q+ in
R′

∩ X that is incident to Q1 only in a collar of ∂ Q1. In particular, it is disjoint
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from a compressing disk for Q in R∩Y , constructed above from an annulus A that
is incident to Q1 away from this collar.

Next, assume that ∂ Q′ lies in P1 − P0, so that P ′
⊂ P1 − P0. If the tunnel

connects Q′ to Q0, then tunneling Q0 to Q′ just creates a larger ∂-parallel surface,
and Q+ is a tube-spanned recessed collar. If the tunneling connects Q′ to Q1, the
argument is the same as when Q+ is obtained from Q by tunneling into P1 − P0

with both ends of the tunnel on ∂ P1.
Finally, suppose that ∂ Q′ lies in P0, so that P ′

⊂ P0. Then the tunneling connects
Q′ to Q0. The region R′ between Q′ and Q0 is a recessed collar and, according to
option 3 of Lemma 4.4, there is a compressing disk for Q+ in R′

∩X that is incident
to Q′ only in a collar of ∂ Q′. In particular, it is disjoint from the compressing disk
for Q in R ∩ Y , constructed above from an annulus A incident to Q0 in the image
of P ′

⊂ P1 away from that collar. �

Corollary 4.7. Suppose M is an irreducible compact orientable 3-manifold, and N
is a compressible boundary component of M. Let V be the set of curves in N that
arise as boundaries of compressing disks of N . For any n ∈ N, there is a connected
properly imbedded separating surface (Q, ∂ Q) ⊂ (M, N ) so that Q compresses
in both complementary components, but not via disjoint disks, and so that, for any
component q of ∂ Q, d(q, V) ≥ n.

Proof. Let A1 be an annulus in ∂ M whose core has distance at least n from V. Let
A0 ⊂ A1 be a thinner subannulus, and let Q be the tube-spanned recessed product
in M that they determine. The result follows from the first two conclusions of
Lemma 4.6. �

5. Any example is a tube-spanned recessed collar

It will be useful to expand the context beyond connected separating surfaces.

Definition 5.1. Let (Q, ∂ Q)⊂ (M, ∂M) be a properly embedded orientable surface
in the orientable irreducible 3-manifold M . Q will be called a splitting surface if
no component is closed, no component is a disk, and M is the union of two 3-
manifolds X and Y along Q.

We abbreviate by saying that Q splits M into the submanifolds X and Y .

The definition differs slightly from [Jones and Scharlemann 2001, Definition
1.1], which allowed Q to have closed components and disk components. Note also
that the condition that M be the union of two 3-manifolds X and Y along Q is
equivalent to saying that Q can be normally oriented so that any oriented arc in M
transverse to Q alternately crosses Q in the direction consistent with the normal
orientation and then against the normal orientation.
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Definition 5.2. Suppose, as above, that (Q, ∂ Q) ⊂ (M, ∂M) is a splitting surface
that splits M into submanifolds X and Y . Q is bicompressible if both X and Y
contain compressing disks for Q in M , and it is strongly compressible if there are
such disks whose boundaries are disjoint in Q. If Q is not strongly compressible
then it is weakly incompressible.

Note that, if Q is bicompressible but weakly incompressible, ∂ Q is necessarily
essential in ∂ M , for otherwise an innermost inessential component would bound a
compressing disk for Q in Y ∩∂ M , say. Such a disk, lying in ∂ M , would necessarily
be disjoint from any compressing disk for Q in X .

There are natural extensions of these ideas. One that will eventually prove useful
is the extension to ∂-compressions of splitting surfaces:

Definition 5.3. A splitting surface (Q, ∂ Q) ⊂ (M, ∂M) is strongly ∂-compressible
if there are ∂-compressing disks DX ⊂ X and DY ⊂ Y with ∂ DX ∩ ∂ DY = ∅.

Here is our main result:

Theorem 5.4. Suppose M is an irreducible compact orientable 3-manifold, N is
a compressible boundary component of M , and (Q, ∂ Q) ⊂ (M, ∂M) is a bicom-
pressible, weakly incompressible splitting surface, with a bicompressible compo-
nent incident to N.

Let V be the set of essential curves in N that bound disks in M. If q is any
component of ∂ Q ∩ N , then either

• d(q, V) ≤ 1 − χ(Q) in the curve complex on N ; or

• q lies in the boundary of a ∂-parallel annulus component of Q; or

• the component of Q containing q is a tube-spanned recessed collar, and all
other components incident to N are incompressible and ∂-parallel.

Note that, in the last case, Q lies entirely in a collar of N .

Lemma 5.5. Let (Q, ∂ Q)⊂ (M, ∂M) and N ⊂∂ M be as in Theorem 5.4, so that Q
splits M into X and Y . If Q X is the result of maximally compressing Q into X , then

(1) Q X is incompressible in M , and

(2) there is a compressing disk D for N in M so that some complete set of com-
pressing disks for Q in X is disjoint from D and, moreover, Q ∩ D consists
entirely of arcs that are essential in Q X .

Proof. First we show that Q X is incompressible. This is, in a sense, a classical
result, going back to Haken. A more modern view is in [Casson and Gordon
1987]. Here we take the viewpoint first used in [Scharlemann and Thompson 1994,
Proposition 2.2], which adapts well to other contexts that we will need as well, and
is a good source for details missing here.
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Q X is obtained from Q by compressing into X . Dually, we can think of Q X

as a surface splitting M into X ′ and Y ′ (except that possibly Q X has some closed
components) and Q is constructed from Q X by tubing along a collection of arcs
in Y ′. Sliding one of these arcs over another or along Q X merely moves Q by an
isotopy, so an alternate view of the construction is this: There is a graph Γ ⊂ Y ′,
with all of its valence-one vertices on Q X . A regular neighborhood of Q X ∪ Γ

has boundary consisting of a copy of Q X and a copy of Q. (This construction of
Q from Q X could be called 1-surgery along the graph Γ .) The graph Γ may be
varied by slides of edges along other edges or along Q X ; the effect on Q is merely
to isotope it in the complement of Q X .

Suppose that F is a compressing disk for Q X in M . Then F must lie in Y ′, or
else Q could be further compressed into X . Choose a representation of Γ which
minimizes |F ∩ Γ |, and then choose a compressing disk E for Q in Y which
minimizes |F ∩ E |. If there are any closed components of F ∩ E , an innermost
one in E bounds a subdisk of E disjoint from F , Γ and Q; an isotopy of F will
remove the intersection curve without raising |F ∩ Γ |. So, in fact, there are no
closed curves in F ∩ E .

The disk F must intersect the graph Γ , or else F would lie entirely in Y and
so be a compressing disk for Q in Y that is disjoint from compressing disks of Q
in X . This would contradict the weak incompressibility of Q. One can view the
intersection of Γ ∪ E with F as a graph Λ ⊂ F whose vertices are the points Γ ∩ F
and whose edges are the arcs F ∩ E .

If there is an isolated vertex of the graph Λ ⊂ F (that is, a point in Γ ∩ F that
is disjoint from E), then the vertex would correspond to a compressing disk for Q
in X that is disjoint from E , contradicting weak irreducibility. If there is a loop in
Λ ⊂ F whose interior contains no vertex, an innermost such loop would bound a
subdisk of F that could be used to simplify E ; that means finding a compressing
disk E0 for Q in Y so that

|F ∩ E0| < |F ∩ E |,

again a contradiction. We conclude that Λ has a vertex w that is incident to edges
but to no loops of Λ. Choose an arc β which is outermost in E among all arcs of
F∩E which are incident to w. Then β cuts off from E a disk E ′ with E ′

−β disjoint
from w. Let e be the edge of Γ that contains w. The disk E ′ gives instructions
about how to isotope and slide the edge e until w, and possibly other points of
Γ ∩ F , is removed, lowering |Γ ∩ F |, a contradiction that establishes the first
claim.

To establish the second claim, first note that by shrinking very small a complete
set of compressing disks for Q in X , we can of course make them disjoint from
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any D; the difficulty is ensuring that Q X ∩ D has no simple closed curves of
intersection.

Choose D and isotope Q X to minimize the number of components |D ∩ Q X |,
then choose a representation of Γ that minimizes |D ∩ Γ |, and, finally, choose a
compressing disk E for Q in Y that minimizes |D ∩ E |. If there are any closed
components of D ∩ E , an innermost one in E bounds a subdisk of E disjoint from
D, Γ and Q; an isotopy of D will remove the intersection curve without raising
either |D ∩ Q X | or |D ∩ Γ |. So, in fact, there are no closed curves in D ∩ E .

Suppose there are closed curves in D∩Q X . An innermost one in D will bound a
subdisk D0. Since Q X is incompressible, ∂ D0 also bounds a disk in Q X ; the curve
of intersection could then be removed by an isotopy of Q X — a contradiction.

From this contradiction we deduce that all components of D ∩ Q X are arcs. All
arcs are essential in Q X , or else |D ∩ Q X | could be lowered by rechoosing D. The
only other components of D ∩ Q are closed curves, compressible in X and each
corresponding to a point in D ∩ Γ . So it suffices to show that D ∩ Γ = ∅. The
proof is analogous to the proof of the first claim, where it was shown that Γ must
be disjoint from any compressing disk F for Q X in Y ′, but now, for F , we take a
(disk) component of D − Q X .

If no component of D − Q X intersects Γ , there is nothing to prove; so let F be
a component intersecting Γ , and regard

Λ = (Γ ∪ E) ∩ F

as a graph in F , with possibly some edges incident to the arcs Q X ∩ D lying in ∂ F .
As above, no vertex of Λ (that is, no point of Γ ∩ F) can be isolated in Λ, and an
innermost inessential loop in Λ would allow an improvement in E so as to reduce
D ∩ E . Hence, there is a vertex w of Λ that is incident to edges but not to loops in
Λ. An edge in Λ that, in E , is outermost among all edges incident to w will cut off
a disk from E that provides instructions on how to slide the edge e of Γ containing
w so as to remove the intersection point w and possibly other intersection points.
As in the first case, some sliding of the end of e may necessarily be along arcs in
Q X , as well as over other edges in Γ . �

Proof of Theorem 5.4. Just as in the proof of Proposition 2.5, the argument is by
induction on 1 − χ(Q). Since Q contains no disk components, 1 − χ(Q) ≥ 1.

If compressing disks for Q were incident to two different components of Q,
then there would be compressing disks on opposite sides incident to two different
components of Q, violating weak incompressibility. We deduce that all compress-
ing disks for Q are incident to at most one component Q0 of Q. The component
Q0 cannot be an annulus, or else the boundaries of compressing disks in X and
Y would be parallel in Q0, and so could be made disjoint. If Q also contains an
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essential component Q′ incident to N , then

1 − χ(Q′) ≤ 1 − χ(Q− Q0) < 1 − χ(Q),

and so, by Proposition 2.5, for any component q ′ of ∂ Q′
∩ N ,

d(q ′, V) ≤ 1 − χ(Q′) < 1 − χ(Q).

This implies that

d(q, V) ≤ d(q ′, V) + d(q, q ′) ≤ 1 − χ(Q),

as required. Thus, we will also henceforth assume that no component of Q incident
to N is essential.

We can also assume that each component of Q − Q0 is itself an incompressible
surface. For assume D is a compressing disk for a component Q1 6= Q0 of Q,
chosen among all such disks to have a minimal number of intersection components
with Q. If the interior of D were disjoint from Q, then D would be a compressing
disk for Q itself, violating weak incompressibility as described above. Similarly,
an innermost circle of Q ∩ D in D must lie in Q0. Consider a subdisk D′ of D
(possibly all of D) with the property that its boundary is second-innermost among
components of D ∩ Q. That is, the interior of D′ intersects Q exactly in innermost
circles of intersection, each bounding disks in X , say. If ∂ D′ is not in Q0, then it
is also a compressing disk for Q X , contradicting the first statement in Lemma 5.5.
The argument is only a bit more subtle when ∂ D′ is in Q0, see the No Nesting
Lemma [Scharlemann 1998, Lemma 2.2].

Let Q− be the union of components of Q that are not incident to N . Since Q−

is incompressible, each compressing disk for N is disjoint from Q−. In particular,
it suffices to work inside the 3-manifold M −η(Q−) instead of M . So, with no loss
of generality, we can assume that Q− = ∅, in other words, that each component
of Q is incident to N .

Since each component of Q other than Q0 is incompressible and not essential,
each is boundary-parallel. In particular, removing one of these components Q1

from Q still leaves a bicompressible, weakly incompressible splitting surface, even
though each component of M−Q1 in the region of parallelism between Q1 and ∂ M
would need to be switched from X to Y or vice versa. Since we don’t care about
the boundaries of ∂-parallel annuli, all such components can be removed from
Q without affecting the hypotheses or conclusion. If there remains a ∂-parallel
component Q1 that is not an annulus, then consider Q′

= Q − Q1. We have

1 − χ(Q′) < 1 − χ(Q),

so the inductive hypothesis applies. Then either Q0 is a tube-spanned recessed
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collar (and we are done) or, for any component q ′ of ∂ Q′,

d(q ′, V) ≤ 1 − χ(Q′) < 1 − χ(Q).

This implies that

d(q, V) ≤ d(q ′, V) + d(q, q ′) ≤ 1 − χ(Q),

and again we are done. So we may as well assume that Q = Q0 is connected and,
as we have seen, not an annulus.

Claim. The theorem holds if Q is strongly ∂-compressible.

Proof of the Claim. Suppose there are disjoint ∂-compressing disks FX ⊂ X and
FY ⊂ Y for Q in M . Let Qx and Q y denote the surfaces obtained from Q by
∂-compressing Q along FX and FY , respectively, and let Q− denote the surface
obtained by ∂-compressing along both disks simultaneously. (We use lowercase
x and y, to distinguish these from the surfaces Q X , QY obtained by maximally
compressing Q into X or Y , respectively.) A standard innermost disk, outermost
arc argument between FX and a compressing disk for Q in X shows that Qx is
compressible in X . Similarly, Q y is compressible in Y .

Each of Qx and Q y has at most two components, since Q is connected. Suppose
that Qx (say) is itself bicompressible. If it were strongly compressible, the same
strong compression pair of disks would strongly compress Q, so we conclude that
the inductive hypothesis applies to Qx , and hence we apply the theorem to Qx . One
possibility is that one component of Qx is a tube-spanned recessed collar and the
other (if there are two components) is ∂-parallel. But, by Lemma 4.6, this case im-
plies that Q is also a tube-spanned recessed collar, and we are done. The other pos-
sibility is that, for qx a component of the boundary of an essential component of Qx ,

d(qx , V) ≤ 1 − χ(Qx) < 1 − χ(Q).

This implies that

d(q, V) ≤ d(qx , V) + d(q, qx) ≤ 1 − χ(Q),

and again we are done. So we henceforth assume that Qx (respectively, Q y) is
compressible into X (respectively, Y ) but not into Y (respectively, X ).

It follows that Q− is incompressible, for, if Q− is compressible into Y , say, then
such a compressing disk would be unaffected by the tunneling that recovers Qx

from Q−, and Qx would also compress into Y .
On the other hand, if Q− is essential in M , then the claim follows from Proposi-

tion 2.5. In the proof of the claim, the only remaining case to consider is when Q−

is incompressible and not essential, so all its components are ∂-parallel. Since Q
is connected, Q− has at most three components. Suppose there are exactly three:
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Q0, Q1, Q2. If the three are nested (that is, they can be arranged as Q0, Q1, Q2

were in Lemma 4.5), then that lemma shows that the weakly incompressible Q
must be a tube-spanned recessed collar, as required. If no pairs of the three com-
ponents of Q− are nested, then Q itself would be boundary-parallel, and so could
not be compressible on the side towards N . Finally, suppose that two components
(Q0 and Q1, say) are nested, that Q2 is ∂-parallel in their complement, and that Qx ,
say, is obtained from Q1 and Q2 by tunneling between Q1 and Q2, so that Qx is ∂-
parallel. Qx is also compressible; the compressing disk either also lies in a collar
of N , or, via the parallelism to the boundary, the disk represents a compressing
disk D for N in M whose boundary is disjoint from ∂ Qx . In the latter case, for qx

any component of ∂ Qx , we have d(qx , ∂ D) ≤ 1. Then, for q any component of Q,

d(q, ∂ D) ≤ d(qx , ∂ D) + d(q, qx) ≤ 2 ≤ 1 − χ(Q),

and we are done. The former case can only arise if there are boundary components
of Q1 and Q2 that cobound an annulus and that annulus is spanned by the tunnel.
Moreover, since a resulting compressing disk for Qx lies in N and so cannot persist
into Q, the tunnel attaching Q0 must be incident to that same boundary component
of Q1. It is easy then to see that Q is a tube-spanned recessed product, where the
two recessed surfaces are Q0 and the union of Q1 and Q2 along their parallel
boundary components.

Similar arguments apply if Q− has one or two components. This completes the
proof of the Claim. �

Compressing a surface does not affect its boundary, so the theorem follows im-
mediately from Lemma 5.5 and Proposition 2.5, unless the surface Q X — obtained
by maximally compressing Q into X — has the property that each of its non-closed
components is boundary-parallel in M . Of course, the symmetric statement holds
also for the surface QY obtained by maximally compressing Q into Y ; indeed, all
the ensuing arguments would apply symmetrically to QY simply by switching the
labels X and Y throughout. So we henceforth assume that all components of Q X

are either closed or ∂-parallel. There are some of the latter, since Q has boundary.
Let Q0 be an outermost ∂-parallel component of Q X that is not closed. That is,

Q0 is a component parallel to a subsurface of ∂ M , and no component of Q X lies
in the region of parallelism R ∼= Q0 × I . As in the proof of Lemma 5.5, we use
the notation X ′

⊂ X and Y ′
⊃ Y for the two 3-manifolds into which Q X splits M ,

noting that, unlike for Q, some components of Q X may be closed. Note also the
graph Γ ⊂ Y ′.

Case 1: Some such outermost region R lies in Y ′. The other side of Q0 lies in X ′,
and so its interior is disjoint from Γ . Since Q is connected, this implies that all of
Q lies in R. In particular, Γ ⊂ R, all compressing disks for Q in Y also lie in R,
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and Q0 = Q X . Let (D, ∂ D) ⊂ (M, N ) be a ∂-reducing disk for M , as in Lemma
5.5, so that Γ is disjoint from D, and D∩Q0 consists only of arcs that are essential
in Q0.

Any outermost such arc in D cuts off a ∂-reducing disk D0 ⊂ D. Suppose first
that D0 lies in M − R, and let Q′

0 be the surface created from Q0 by ∂-compressing
along D0. By Lemma 2.3, Q′

0 is incompressible, so all boundary components of
Q′

0 are essential in ∂ M , unless Q0 is an annulus that is parallel to ∂ M via M − R
as well. The latter would imply that Q0 is a longitudinal annulus of a solid torus,
and that D is a meridian of that solid torus and we could have taken for D0 the
half of D that does lie in R. In the general case, the union of D0 with a disk of
parallelism in R gives a ∂-reducing disk for M that is disjoint from ∂ Q′

0, so for
any boundary component q ′ of Q′

0, d(q ′, V) ≤ 1. Then, for q any component of
∂ Q = ∂ Q X = ∂ Q0,

d(q, V) ≤ d(q ′, V) + d(q, q ′) ≤ 2 ≤ 1 − χ(Q),

and we are done. In any case, we may as well then assume that D0 lies in R ⊂ Y ′.
Since Γ is disjoint from D0, D0 is a ∂-reducing disk for Q as well, and lies

in Y . A standard outermost-arc argument in D0 shows that there is a compressing
disk for Q in Y that is disjoint from D0. Thus, ∂-reducing Q along D0 leaves a
surface that is still bicompressible (since meridians of Γ constitute compressing
disks in X ), but with 1 − χ(Q) reduced. The proof then follows by induction. (In
fact, this argument can be enhanced to show directly that Case 1 simply cannot
arise.)

It remains to consider the case in which all outermost components of Q X are
∂-parallel via a region that lies in X ′. We distinguish two further cases:

Case 2: There is nesting among the non-closed components of Q X . We prove that
Q must be a tube-spanned recessed collar.

In this case, let Q1 be a component that is not closed (so it is ∂-parallel), and is
second-outermost; that is, the region of parallelism between Q1 and ∂ M contains
in its interior only outermost components of Q X . Denote the union of the latter
components by Q0. The region between Q0 and Q1 is itself a product R ∼= Q1 × I ,
but one end contains Q0 as a possibly disconnected subsurface. Since outermost
components cut off regions lying in X ′, R ⊂ Y ′. We now argue much as in Case
1: Since Γ ⊂ Y ′ and Q is connected, all of Γ must lie in R, so Q X = Q1 ∪ Q0.
Let (D, ∂ D) ⊂ (M, N ) be a ∂-reducing disk for M as in Lemma 5.5, so that D
is disjoint from Γ and intersects Q X only in arcs that are essential in Q X . As in
Case 1, each outermost arc of D ∩ Q X in D lies in Q0.

Choose a complete collection of ∂-compressing disks F in the region of par-
allelism between Q1 and ∂ M , so that the complement Q1 − F is a single disk
DQ . Each disk in F is incident to Q1 in a single arc. Now import the argument
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of Lemma 5.5 into this context: Let E be a compressing disk for Y , here chosen
so that E ∩ F is minimized. This means, first of all, that E ∩ F is a collection of
arcs. As in the proof of Lemma 5.5, Γ may be slid and isotoped so it is disjoint
from F. Γ is incident to Q1, since Q is connected. Since DQ is connected, the
ends of Γ on DQ may be slid within DQ so that ultimately Γ is incident to DQ

in a single point. The boundary ∂ E is necessarily incident to that end, since Q is
weakly incompressible. It follows that ∂ E cannot be incident to Q only in DQ (or
else ∂ E could be pushed off the end of Γ in DQ), so ∂ E must intersect the arcs
∂F∩ Q1. Let β ⊂ F∩ E be outermost in E among all arcs incident to components
of ∂F ∩ Q1. Let E0 be the disk that β cuts off from E .

If both ends of β were in F∩ Q1, then, since each disk of F is incident to Q1 in
a single arc, β would cut off a subdisk of F that could be used to alter E , creating
a compressing disk for Y that intersects F in fewer points. We conclude that the
other end of β is on Q0. Since β is outermost among those arcs of E ∩ F incident
to DQ , ∂ E0 traverses the end of Γ on DQ exactly once. So, as in the proof of
Lemma 5.5, it can be used to slide and isotope an edge ρ of Γ until it coincides
with β. Hence, the edge ρ ⊂ Γ can be made into a vertical arc (that is, an I -fiber)
in the product structure R = Q1 × I .

Using that product structure and an essential circle in the component of Q0 that
is incident to ρ, the arc ρ can be viewed as part of a vertical incompressible annulus
A with ends on Q1 and Q0. Now apply the argument of Lemma 5.5 again: A −ρ

is a disk E ′. Since E ′ is a disk, we use the argument of Lemma 5.5 to slide and
isotope the edges of Γ −ρ until they are disjoint from E ′. After these slides, E ′ is
revealed as a compressing disk for Q in Y . On the other hand, if there is in fact any
edge γ in Γ − ρ, the compressing disk for Q in X given by the meridian of η(γ )

would be disjoint from E ′, contradicting the weak incompressibility of Q. So we
conclude that in fact Γ = ρ, and so, other than the components of Q X incident to
the ends of ρ, each component of Q X is a component of Q; since Q is connected,
there are no such other components. That is, Q is obtained by tubing Q1 to the
connected Q0 along ρ, and so is a tube-spanned recessed collar. This completes
the argument in this case.

Case 3: All non-closed components of Q X are outermost among the components
of Q X . We show that Q is strongly ∂-compressible; the proof then follows from
the previous Claim.

We have already seen that all non-closed components of Q X are ∂-parallel
through X ′. Choose a ∂-reducing disk (D, ∂ D) ⊂ (M, N ) for M as in Lemma 5.5,
so that D is disjoint from the graph Γ , intersects Q X minimally, and intersects
Q only in arcs that are essential in Q X . Although there is no nesting among the
components of Q X , it is not immediately clear that the arcs D ∩ Q X are not nested
in D. However, it is true that each outermost arc cuts off a subdisk of D that lies in
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X ′, as shown above in the proof of Case 1. In what follows, D′ will represent either
D, if no arcs of D ∩ Q X are nested in D, or a disk cut off by a second-outermost
arc of intersection λ0, if there is nesting. Let Λ ⊂ D′ denote the collection of arcs
D′

∩ Q; one of these arcs (namely, λ0) may be on ∂ D′.
Consider how a compressing disk E for Q in Y intersects D′. All closed curves

in D′
∩ E can be removed by a standard innermost-disk argument redefining E .

Any arc in D′
∩ E must have its ends on Λ; a standard outermost-arc argument

can be used to remove any that has both ends on the same component of Λ. If
any component of Λ − λ0 is disjoint from all the arcs D′

∩ E , then Q could
be ∂-compressed without affecting E . This reduces 1 − χ(Q) without affecting
bicompressibility, so we would be done, by induction. Hence, we restrict to the
case in which each arc-component of Λ − λ0 is incident to some arc-components
of D′

∩ E . See figure.

D

D’

λ

λ
0

λ
1

λ+ D0

β

α

It follows that there is at least one component λ1 6= λ0 of Λ with this property:
any arc of D′

∩ E that has one end incident to λ1 has its other end incident to one
of the (at most two) neighboring components λ± of Λ along ∂ D′. (Possibly, one or
both of λ± are λ0.) Let β be the arc in E outermost among all arcs of D′

∩ E that
are incident to the special arc λ1. We then know that the other end of β is incident
to (say) ≪+, and that the disk E0 ⊂ E cut off by β from E , although possibly
incident to D in its interior, contains no arc of intersection with D that is incident
to ≪1.

Let D0 be the rectangle in D whose sides consist of subarcs of λ1, λ+, ∂ D, and
all of β. Although E may intersect this rectangle, our choice of β as outermost
among arcs of D ∩ E incident to λ1 guarantees that E0 is disjoint from the interior
of D0, and so is incident to it only in the arc β. The union of E0 and D0 along β

is a disk D1 ⊂ Y whose boundary consists of the arc α = ∂ M ∩ ∂ D0 and an arc
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β ′
⊂ Q. The latter arc is the union of the two arcs D0 ∩ Q and the arc E0 ∩ Q.

If β ′ is essential in Q, then D1 is a ∂-compressing disk for Q in Y that is disjoint
from the boundary-compressing disk in X cut off by λ1. So, if β ′ is essential, then
Q is strongly ∂-compressible, and we are done by the Claim.

Suppose finally that β ′ is inessential in Q. Then β ′ is parallel to an arc on ∂ Q
and so, via this parallelism, the disk D1 is itself parallel to a disk D2 that is disjoint
from Q and either is ∂-parallel in M or is itself a ∂-reducing disk for M . If D2 is
a ∂-reducing disk for M , then ∂ D2 ∈ V, d(Q, V) ≤ 1, and we are done. On the
other hand, if D2 is parallel to a subdisk of ∂ M , then an outermost arc of ∂ D in
that disk (possibly the arc α itself) can be removed by an isotopy of ∂ D, lowering
|D ∩ Q| = |D ∩ Q X |. This contradicts our original choice of D. �
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