Vol. 229, No. 1, 2007

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Coboundary Lie bialgebras and commutative subalgebras of universal enveloping algebras

Benjamin Enriquez and Gilles Halbout

Vol. 229 (2007), No. 1, 161–184
Abstract

We solve a functional version of the problem of twist quantization of a coboundary Lie bialgebra (g,r,Z). We derive from this that the formal Poisson manifolds g and G are isomorphic, and we construct an injective algebra morphism S(g)gU(g). When (g,r,Z) can be quantized, we construct a deformation of this morphism. In the particular case when g is quasitriangular and nondegenerate, we compare our construction with Semenov-Tian-Shansky’s construction of a commutative subalgebra of U(g). We also show that the canonical derivation of the function ring of G is Hamiltonian.

Keywords
coboundary Lie bialgebras, commuting families, linearization, Poisson algebras
Mathematical Subject Classification 2000
Primary: 17B63
Secondary: 17B80, 16W30
Milestones
Received: 4 April 2005
Revised: 23 November 2005
Accepted: 26 January 2006
Published: 1 January 2007
Authors
Benjamin Enriquez
IRMA (CNRS)
Département de Mathématiques
Université Louis Pasteur
7, Rue René Descartes
F-67 084 Strasbourg
France
Gilles Halbout
IRMA (CNRS)
Département de Mathématiques
Université Louis Pasteur
7, Rue René Descartes
F-67 084 Strasbourg
France