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Cartan matrices are of fundamental importance in representation theory.
For algebras defined by quivers with monomial relations, the computation
of the entries of the Cartan matrix amounts to counting nonzero paths in the
quivers, leading naturally to a combinatorial setting. For derived module
categories, the invariant factors, and hence the determinant, of the Cartan
matrix are preserved by derived equivalences.

In the generalization called q-Cartan matrices (the classical Cartan ma-
trix corresponding to q = 1), each nonzero path is weighted by a power of
an indeterminate q according to its length. We study q-Cartan matrices
for gentle and skewed-gentle algebras, which occur naturally in represen-
tation theory, especially in the context of derived categories. We determine
normal forms for these matrices in the skewed-gentle case, giving explicit
combinatorial formulae for the invariant factors and the determinant. As
an application, we show how to use our formulae for the difficult problem
of distinguishing derived equivalence classes.

1. Introduction

This paper deals with combinatorial aspects in the representation theory of alge-
bras. For certain classes of algebras, which are defined purely combinatorially
by directed graphs and homogeneous relations, we will characterize important
representation-theoretic invariants in a combinatorial way. This leads to new ex-
plicit invariants for the derived module categories of the algebras involved.

Our starting point is that the unimodular equivalence class of the Cartan matrix
of a finite-dimensional algebra is invariant under derived equivalence. Hence, being
able to determine normal forms of Cartan matrices yields invariants of the derived
category.

The class of algebras we study are the gentle algebras and the related skewed-
gentle algebras. Gentle algebras are defined purely combinatorially in terms of a
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quiver with relations (for details, see Section 2); the more general skewed-gentle
algebras (introduced in [Geiß and de la Peña 1999]) are then defined from gentle
algebras by specifying special vertices which are split for the quiver of the skewed-
gentle algebra (see Section 4). These algebras occur naturally in the representation
theory of finite-dimensional algebras, especially in the context of derived cate-
gories. For instance, the algebras which are derived equivalent to hereditary alge-
bras of type A are precisely the gentle algebras whose underlying undirected graph
is a tree [Assem and Happel 1981]. The algebras which are derived equivalent to
hereditary algebras of type Ã are certain gentle algebras whose underlying graph
has exactly one cycle [Assem and Skowroński 1987]. Remarkably, the class of
gentle algebras is closed under derived equivalence [Schröer and Zimmermann
2003]; however, the class of skewed-gentle algebras is not.

A fundamental distinction in the representation theory of algebras is given by
the representation type, which can be either finite, tame or wild. In the modern
context of derived categories, also derived representation types have been defined.
Again, gentle algebras occur naturally in this context. D. Vossieck [2001] showed
that an algebra A has a discrete derived category if and only if either A is derived
equivalent to a hereditary algebra of type A, D, E or A is gentle with underlying
quiver (Q, I ) having exactly one (undirected) cycle and the number of clockwise
and of counterclockwise paths of length 2 in the cycle that belong to I are different.
Skew-gentle algebras are known to be of derived tame representation type (for a
definition of derived tameness, see [Geiß and Krause 2002]).

It is a long-standing open problem to classify gentle algebras up to derived
equivalence. A complete answer has only been obtained for the derived discrete
case [Bobiński et al. 2004]. The main problem is to find good invariants of the
derived categories.

In this paper we provide easy-to-compute invariants of the derived categories
of skewed-gentle algebras which are of a purely combinatorial nature. Our results
are obtained from a detailed computation of the q-Cartan matrices of gentle and
skewed-gentle algebras.

The following notion will be crucial throughout the paper. Let (Q, I ) be a
(gentle) quiver with relations. An oriented path p = p0 p1 . . . pk−1 with arrows
p0, . . . , pk−1 in Q is called an oriented k-cycle with full zero relations if p has
the same start and end point, and if pi pi+1 ∈ I for all i = 0, . . . , k − 2 and also
pk−1 p0 ∈ I . Such a cycle is called minimal if the arrows p0, p1, . . . , pk−1 on p
are pairwise different.

We call two matrices C, D with entries in a polynomial ring Z[q] unimodularly
equivalent (over Z[q]) if there exist matrices P, Q over Z[q] of determinant 1 such
that D = PC Q.

We can now state our main result on gentle algebras.
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Theorem 3.2. Let (Q, I ) be a gentle quiver and A = KQ/I the corresponding
gentle algebra. Denote by ck the number of minimal oriented k-cycles in Q with
full zero relations. Then the q-Cartan matrix CA(q) is unimodularly equivalent
(over Z[q]) to a diagonal matrix with entries (1 − (−q)k), with multiplicity ck ,
k ≥ 1, and all further diagonal entries equal to 1.

Corollary 3.3. Let (Q, I ) be a gentle quiver and A = KQ/I the corresponding
gentle algebra. Denote by ck the number of minimal oriented k-cycles in Q with
full zero relations. Then the q-Cartan matrix CA(q) has determinant

det CA(q) =

∏
k≥1

(1 − (−q)k)ck .

The following consequence of this corollary was first proved in [Holm 2005].
For a gentle quiver (Q, I ) we denote by oc(Q, I ) the number of minimal oriented
cycles of odd length in Q having full zero relations, and by ec(Q, I ) the number
of analogous cycles of even length.

Corollary 3.5. Let (Q, I ) be a gentle quiver, and A = KQ/I the corresponding
gentle algebra. Then the determinant of the Cartan matrix CA satisfies

det CA =

{
0 if ec(Q, I ) > 0,

2oc(Q,I ) else.

The most important application of Theorem 3.2 is the next corollary, which gives
for gentle algebras easy-to-check combinatorial invariants of the derived category.

Corollary 3.6. Let (Q, I ) and (Q′, I ′) be gentle quivers, and let A = KQ/I
and A′

= KQ′/I ′ be the corresponding gentle algebras. If A and A′ are derived
equivalent, then ec(Q, I ) = ec(Q′, I ′) and oc(Q, I ) = oc(Q′, I ′).

As an illustration we give in Section 3 a complete derived equivalence classi-
fication of gentle algebras with two simple modules and of gentle algebras with
three simple modules and Cartan determinant 0.

Our main result on skewed-gentle algebras determines the normal form of their
q-Cartan matrices.

Theorem 4.1. Let Â = K Q̂/ Î be a skewed-gentle algebra, arising from choosing
a suitable set of special vertices in the gentle quiver (Q, I ). Denote by ck the
number of minimal oriented k-cycles in Q with full zero relations. Then the q-
Cartan matrix C Â(q) is unimodularly equivalent to a diagonal matrix with entries
1 − (−q)k , with multiplicity ck , k ≥ 1, and all further diagonal entries equal to 1.

As an immediate consequence we obtain that the Cartan determinant of any
skewed-gentle algebra is the same as the Cartan determinant for the underlying
gentle algebra.
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Corollary 4.3. Let Â = K Q̂/ Î be a skewed-gentle algebra, arising from choosing
a suitable set of special vertices in the gentle quiver (Q, I ), with corresponding
gentle algebra A = KQ/I . Then det C Â(q) = det CA(q), and thus in particular,
the determinants of the ordinary Cartan matrices coincide: det C Â = det CA.

The paper is organized as follows. Section 2 collects the necessary background
and definitions about quivers with relations and q-Cartan matrices. In Section 3
we prove all the main results about q-Cartan matrices for gentle algebras, and give
some extensive examples to illustrate our results. Section 4 contains the analogous
main results for skewed-gentle algebras.

2. Quivers, q-Cartan matrices and derived invariants

Algebras can be defined naturally from a combinatorial viewpoint by using directed
graphs. A finite directed graph Q is called a quiver. For any arrow α in Q we
denote by s(α) its start vertex and by t (α) its end vertex. An oriented path p in Q
of length r is a sequence p = α1α2 . . . αr of arrows αi such that t (αi ) = s(αi+1)

for all i = 1, . . . , r − 1; its start vertex is s(p) := s(α1) and its end vertex is
t (p) := t (αr ). (For each vertex v in Q we allow a trivial path ev of length 0,
having v as its start and end vertex.)

The path algebra KQ, where K is any field, has as a basis the set of all oriented
paths in Q. Multiplication is defined by concatenation of paths: the product of two
paths p and q is defined to be the concatenated path pq if t (p) = s(q), and zero
otherwise.

More general algebras can be obtained by introducing relations on a path alge-
bra. An ideal I ⊂ KQ is called admissible if I ⊆ J 2, where J is the ideal of KQ
generated by the arrows of Q.

The pair (Q, I ), where Q is a quiver and I ⊂ KQ is an admissible ideal, is
called a quiver with relations.

For any quiver with relations (Q, I ), we can consider the factor algebra A =

KQ/I , where K is a field. We identify paths in the quiver Q with their cosets
in A. Let Q0 denote the set of vertices of Q. For any i ∈ Q0 there is a path ei of
length zero. These are primitive orthogonal idempotents in A; the sum

∑
i∈Q0

ei

is the unit element in A. In particular we get A = 1 · A =
⊕

i∈Q0
ei A, so the (right)

A-modules Pi := ei A are the indecomposable projective A-modules.
The Cartan matrix C = (ci j ) of an algebra A = KQ/I is the |Q0|×|Q0|-matrix

defined by setting ci j := dimK HomA(Pj , Pi ).
Recall that when I is generated by monomials, A = KQ/I is called a monomial

algebra. For monomial algebras, computing entries of the Cartan matrix reduces to
counting paths in the quiver Q which are nonzero in A. In fact, any homomorphism
ϕ : e j A → ei A of right A-modules is uniquely determined by ϕ(e j ) ∈ ei Ae j , the
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K -vector space generated by all paths in Q from vertex i to vertex j , which are
nonzero in A = KQ/I . In particular, ci j = dimK ei Ae j .

This is the key viewpoint in this paper, enabling us to obtain results on the
representation-theoretic Cartan invariants by combinatorial methods. It allows us
to study a refined version of the Cartan matrix, which we call the q-Cartan matrix.
(This also occurs in the literature as the filtered Cartan matrix; see [Fuller 1992],
for instance.)

Let Q be a quiver and assume that the relation ideal I is generated by homo-
geneous relations, i.e., by linear combinations of paths having the same length
(actually, for the algebras considered in this paper, the ideal I will always be gen-
erated by monomials and commutativity (mesh) relations). The path algebra KQ
is a graded algebra, with grading given by path lengths. Since I is homogeneous,
the factor algebra A = KQ/I inherits this grading. So the morphism spaces
HomA(Pj , Pi ) ∼= ei Ae j become graded vector spaces. Recall that the dimensions
of these vector spaces are the entries of the (ordinary) Cartan matrix.

Definition. Let A = KQ/I be a finite-dimensional algebra, and assume that the
ideal I is generated by homogeneous relations. For any vertices i and j in Q let
ei Ae j =

⊕
n(ei Ae j )n be the graded components.

Let q be an indeterminate. The q-Cartan matrix CA(q)= (ci j (q)) of A is defined
as the matrix with entries ci j (q) :=

∑
n dimK (ei Ae j )n qn

∈ Z[q].

In other words, the entries of the q-Cartan matrix are the Poincaré polynomials
of the graded homomorphism spaces between projective modules. Loosely speak-
ing, when counting paths in the quiver of the algebra, each path is weighted by
some power of q according to its length.

Clearly, specializing to q = 1 gives back the usual Cartan matrix CA (that is, we
forget the grading). Even if we are mainly interested in the ordinary Cartan matrix,
the point of view of q-Cartan matrices provides some new insights as we take a
closer look at the invariants of the Cartan matrix.

Example 2.1. We consider the following two quivers:

α β

γδ
1

2
3

α
1 2

α α

3

Q1 Q2

Let A = KQ1/I1, where the ideal I1 is generated by αβ, γ δ and δα − βγ . The
q-Cartan matrix of A has the form

CA(q) =

 1 + q2 q 0
q 1 + q2 q
0 q 1 + q2

.
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The second algebra B = KQ2/I2 is defined by the quiver Q2, subject to the
generating relations α4 (all paths of length four are zero). The q-Cartan matrix
of B has the form

CB(q) =

 1 + q3 q q2

q2 1 + q3 q
q q2 1 + q3

.

Cartan matrices provide invariants which are preserved under derived equiva-
lences and thus improve our understanding of derived module categories; this is
our main motivation to study normal forms, invariant factors and determinants of
Cartan matrices in this paper. The following result is contained in the proof of
[Bocian and Skowroński 2005, Proposition 1.5].

Theorem 2.2. Let A be a finite-dimensional algebra. The unimodular equivalence
class of the Cartan matrix CA is invariant under derived equivalence.

In particular, the determinant of the Cartan matrix is invariant under derived
equivalence.

Remark 2.3. This theorem only deals with ordinary Cartan matrices CA = CA(1).
The determinant of the q-Cartan matrix is in general not invariant under derived
equivalence. As an example, consider the algebras A and B from Example 2.1:
we have det CA(q) = 1 + q2

+ q4
+ q6 and det CB(q) = 1 + q3

+ q6
+ q9, but the

algebras A and B are derived equivalent — they are Brauer tree algebras for trees
with the same number of edges and the same exceptional multiplicity [Rickard
1989a]. Note that when specializing to q = 1 we do get the same determinants for
the ordinary Cartan matrices, as predicted by Theorem 2.2.

However, the natural setting when dealing with q-Cartan matrices is that of
graded derived categories. Indeed, the determinant of the q-Cartan matrix (which
is defined so as to take the grading into account) is invariant under graded derived
equivalences. We are very grateful to the referee for pointing this out to us. We do
not discuss this aspect in this paper further, but shall address the topic of graded
derived equivalences for gentle algebras in detail in a subsequent publication.

For instance, the algebra B above is graded derived equivalent to the algebra A,
where the grading on A is chosen so that α and β are of degree 2, and δ and γ

of degree 1. Then Rickard’s derived equivalence [1989a] lifts to a graded derived
equivalence.

3. Gentle algebras

In this section we prove the previously quoted Theorem 3.2 on the unimodular
equivalence class of the q-Cartan matrix of an arbitrary gentle algebra.

We first recall the definition of special biserial algebras and of gentle algebras,
as these details will be crucial for what follows.
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Let Q be a quiver and I an admissible ideal in the path algebra KQ. We call
the pair (Q, I ) a special biserial quiver (with relations) if it satisfies the following
properties.

(i) Each vertex of Q is starting point of at most two arrows, and end point of at
most two arrows.

(ii) For each arrow α in Q there is at most one arrow β such that αβ 6∈ I , and at
most one arrow γ such that γα 6∈ I .

A finite-dimensional algebra A is called special biserial if it has a presentation as
A = KQ/I , where (Q, I ) is a special biserial quiver.

Gentle quivers form a subclass of the class of special biserial quivers. A pair
(Q, I ) as above is called a gentle quiver if it is special biserial and moreover the
following holds.

(iii) The ideal I is generated by paths of length 2.

(iv) For each arrow α in Q there is at most one arrow β ′ with t (α) = s(β ′) such
that αβ ′

∈ I , and there is at most one arrow γ ′ with t (γ ′) = s(α) such that
γ ′α ∈ I .

A finite-dimensional algebra A is called gentle if it has a presentation as A= KQ/I ,
where (Q, I ) is a gentle quiver.

The following lemma will be very useful. It holds not only for gentle algebras
but for those where we have dropped condition (iv) above.

Recall that two matrices C , D with entries in Z[q] are called unimodularly
equivalent (over Z[q]) if there exist matrices P , Q over Z[q] of determinant 1
such that D = PC Q.

Lemma 3.1. Let (Q, I ) be a special biserial quiver, and assume that I is generated
by paths of length 2. Let A = KQ/I be the corresponding special biserial algebra.
Let α be an arrow in Q, not a loop, such that there is no arrow β with s(α) = t (β)

and βα ∈ I , or there is no arrow γ with t (α) = s(γ ) and αγ ∈ I . Let Q′ be
the quiver obtained from Q by removing the arrow α, let I ′ be the corresponding
relation ideal and set A′

= KQ′/I ′. Then the q-Cartan matrices CA(q) and CA′(q)

are unimodularly equivalent (over Z[q]).

Proof. We consider the case where α is an arrow in Q such that there is no arrow β

with s(α) = t (β) and βα ∈ I ; the second case is dual.
Let α = p0 : v0 → v1. Since (Q, I ) is special biserial, there is a unique maximal

nonzero path starting with p0, say p = p0 p1 . . . pt , where pi : vi → vi+1 for
i = 1, . . . , t . Because A is finite-dimensional, the condition on α = p0 guarantees
that vi 6= v0 for all i > 0, but we may have vi = v j for some i > j > 0. Now any



32 CHRISTINE BESSENRODT AND THORSTEN HOLM

nonzero path of length j , say, ending at v0 can uniquely be extended to a nonzero
path of length j + i ending at vi , by concatenation with p0 . . . pi−1. Conversely,
any nonzero path ending at vi and involving p0 arises in this way.

Now denote the column corresponding to a vertex v in the q-Cartan matrix
CA(q) by sv. We perform column transformations on CA(q) by replacing the
columns svi by svi − q i sv0 , for i = 1, . . . , t+1 (if vi = v j for some i > j , the
column svi = sv j will then be replaced by svi − (q i

+q j )sv0). The resulting matrix
C̃(q) is then exactly the Cartan matrix CA′(q) to the algebra A′ corresponding to
the quiver Q′ where α = p0 has been removed. �

For any vertex in a quiver Q, its valency is defined as the number of arrows
attached to it, i.e., the number of incoming arrows plus the number of outgoing
arrows (in particular, any loop contributes twice to the valency).

Theorem 3.2. Let (Q, I ) be a gentle quiver and A = KQ/I the corresponding
gentle algebra. Denote by ck the number of minimal oriented k-cycles in Q with
full zero relations. Then the q-Cartan matrix CA(q) is unimodularly equivalent
(over Z[q]) to a diagonal matrix with entries (1 − (−q)k), with multiplicity ck ,
k ≥ 1, and all further diagonal entries equal to 1.

Proof. We work by double induction on the number of vertices and the number of
arrows. Clearly the result holds if Q has no arrows or if it consists of one vertex
with a loop.

If Q has a vertex v of valency 1 or 3, or of valency 2 but with no zero relation at v,
we can use Lemma 3.1 to remove an arrow from Q; by the conditions in Lemma
3.1, the removed arrow is not involved in any oriented cycle with full zero relations.
Hence CA(q) is unimodularly equivalent to CA′(q), where the corresponding quiver
has one arrow less but the same number of oriented cycles with full zero relations,
and hence the result holds by induction.

Hence we may now assume that all vertices are of valency 0, 2 or 4, and if
a vertex is of valency 2, there is a zero relation at the vertex. Also, if Q is not
connected, we may use induction on the number of vertices to obtain the result for
the components and thus for the whole quiver; hence we may assume that Q is
connected. We now only have vertices v of valency 2 with a nonloop zero relation
at v, and vertices of valency 4. As we do not have paths of arbitrary lengths, not
all vertices can be of valency 4 (see also [Holm 2005, Lemma 3]).

Take a vertex v = v1 of valency 2, with incoming arrow p0 : v0 → v1 and
outgoing arrow p1 : v1 → v2 with p0 p1 = 0 (here, v0 6= v 6= v2).

Since (Q, I ) is gentle, there is a unique maximal path p in Q with nonrepeating
arrows starting in v0 with p0, such that the product of any two consecutive arrows
is zero in A; in our present situation this path is an oriented cycle C with full zero
relations returning to v0. We denote the vertices on this path by v0, v1 = v, v2, . . . ,
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vs , vs+1 = v0, and the arrows by pi : vi → vi+1, for i = 0, . . . , s (also ps p0 = 0);
note that the arrows on p are distinct, but the vertices are not necessarily distinct
(but we do have vi 6= v1 for all i 6= 1).

Denote by zw the row of the q-Cartan matrix CA(q) corresponding to vertex w.
In CA(q), we now replace the row zv by the linear combination

Z =

s+1∑
i=1

(−q)i−1zvi

to obtain a new matrix C̃(q) (this is a unimodular transformation over Z[q]).
The careful choice of the coefficients is just made so that we can refine the

argument in [Holm 2005]. We recall some of the notation there. For any arrow
α in Q let P(α) be the set of paths starting at α which are nonzero in A. At
each vertex vi there is at most one outgoing arrow ri 6= pi ; for this arrow we have
pi−1ri 6= 0, since (Q, I ) is gentle.

Hence, canceling pi induces a natural bijection φ : P(pi ) → {evi+1} ∪ P(ri+1),
for i = 1, . . . , s − 1, such that a path of q-weight q j is mapped to a path of q-
weight q j−1 (if there is no arrow ri , we set P(ri ) = ∅).

As v is of valency 2, with a zero-relation at v, we also have the trivial bijection
P(p0)={p0}→{ev1}, again with a weight reduction by q . Now almost everything
cancels in Z , apart from the one term 1 − (−q)s+1 that we obtain as the entry in
the column corresponding to v.

In the next step, we use the dual (counterclockwise) operation on the columns
labeled by the vertices on the cycle C, i.e., we set vs+2 = v = v1 and replace the
column sv by the linear combination

S =

s+1∑
i=1

(−q)s+1−i svi+1 .

Ordering vertices so that v corresponds to the first row and column of the Cartan
matrix, we have thus unimodularly transformed CA(q) to a matrix of the form

1 − (−q)s+1 0 · · · 0
0
... C ′(q)

0


where C ′(q) is the q-Cartan matrix of the gentle algebra A′ for the quiver Q′

obtained from Q by removing v and the arrows incident with v. Note that in
comparison with Q, the quiver Q′ has one vertex less and one cycle with full zero
relations of length s+1 less; now by induction, the result holds for C ′(q)=CA′(q),
and hence the result for CA(q) follows immediately. �



34 CHRISTINE BESSENRODT AND THORSTEN HOLM

This result has several immediate nice consequences.

Corollary 3.3. Let (Q, I ) be a gentle quiver, and let A = KQ/I be the corre-
sponding gentle algebra. Denote by ck the number of minimal oriented k-cycles
in Q with full zero relations. Then the q-Cartan matrix CA(q) has determinant

det CA(q) =

∏
k≥1

(1 − (−q)k)ck .

Remark 3.4. Let (Q, I ) be a gentle quiver, with set of vertices Q0. Then, as
a direct consequence of Theorem 3.2, there are at most |Q0| minimal oriented
cycles with full zero relations in the quiver (this could also be proved directly by
induction).

Note that the property of being gentle is invariant under derived equivalence
[Schröer and Zimmermann 2003], and we now have some invariants to distinguish
the derived equivalence classes. For a gentle quiver (Q, I ), recall that ec(Q, I )
and oc(Q, I ) denote the number of minimal oriented cycles in Q with full zero
relations of even and odd length, respectively. As an immediate consequence of
Corollary 3.3 we obtain the following formula for the Cartan determinant which
was the main result in [Holm 2005]:

Corollary 3.5. Let (Q, I ) be a gentle quiver, and let A = KQ/I be the corre-
sponding gentle algebra. Then the determinant of the Cartan matrix CA satisfies

det CA =

{
0 if ec(Q, I ) > 0,

2oc(Q,I ) else.

In combination with Remark 3.4, this implies that the Cartan determinant of a
gentle algebra A = KQ/I is at most 2l(A), where l(A) = |Q0| is the number of
simple modules of A.

The most important application of Theorem 3.2 is the following corollary, which
gives for gentle algebras new, combinatorial and easy-to-check invariants of the
derived category.

Corollary 3.6. Let (Q, I ) and (Q′, I ′) be gentle quivers, and let A = KQ/I
and A′

= KQ′/I ′ be the corresponding gentle algebras. If A and A′ are derived
equivalent, then ec(Q, I ) = ec(Q′, I ′) and oc(Q, I ) = oc(Q′, I ′).

Proof. Since A and A′ are derived equivalent, their (ordinary) Cartan matrices CA

and CA′ are unimodularly equivalent over Z. By specializing to q = 1 in Theorem
3.2, representatives for the equivalence classes are given by diagonal matrices with
entries equal to 2 for each minimal oriented cycle with full zero relations of odd
length, an entry 0 for each such cycle of even length, and remaining entries 1.
These are precisely the elementary divisors over Z. The elementary divisors of an
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integer matrix are uniquely determined, and the diagonal matrices in Theorem 3.2
are actually the Smith normal forms of CA and CA′ over Z. But by Theorem 2.2
the unimodular equivalence class, and hence the Smith normal form, is invariant
under derived equivalence.

Hence, the diagonal entries in the above normal forms for CA and CA′ must occur
with exactly the same multiplicities. Thus we get the same number of minimal
oriented cycles with full zero relations of even length and of odd length; that is,
ec(Q, I ) = ec(Q′, I ′) and oc(Q, I ) = oc(Q′, I ′). �

We now illustrate our results and apply them to derived equivalence classifica-
tions of gentle algebras.

Example 3.7 (Gentle algebras with two simple modules). There are nine connected
gentle quivers (Q, I ) with two vertices, as given in the following list. The dotted
lines indicate the zero relations generating the admissible ideal I .

A1

A3

A5

A7

A9

A2

A4

A6

A8

Bekkert and Drozd [2003] showed that these are precisely the basic connected
algebras with two simple modules that are derived tame. As a direct illustration of
our results we show how to classify these algebras up to derived equivalence.

Recall that the property of being gentle is invariant under derived equivalence
[Schröer and Zimmermann 2003]. Moreover, the number of simple modules of an
algebra is a derived invariant [Rickard 1989b]. Thus we will be able to describe
the complete derived equivalence classes.

We have shown above that the numbers oc(Q, I ) and ec(Q, I ) are derived in-
variants. In addition we look at two classical invariants, the center and the first
Hochschild cohomology group HH1. Recall that the center of an algebra (and more
generally the Hochschild cohomology ring) is invariant under derived equivalence
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[Rickard 1991]. If the quiver contains a loop, then the dimension of HH1 depends
on the characteristic being 2 or not. We indicate the dimension in characteristic 2
in parentheses in the table below. These values can be computed using a method
based on work of M. Bardzell [1997] on minimal projective bimodule resolutions
for monomial algebras; a very nice explicit combinatorial description is given by
C. Strametz [2001, Proposition 2.6].

Algebra A1 A2 A3 A4 A5 A6 A7 A8 A9

oc(Q, I ) 0 0 0 0 1 1 0 1 2
ec(Q, I ) 0 0 0 0 0 0 1 1 0

dim Z(A) 1 1 1 2 1 1 1 2 1
dim HH1(A) 0 3 2 1 1(2) 1(2) 1 2(3) 3(5)

The algebras A1, A2, A3, A4 are pairwise not derived equivalent. This can be
deduced directly from the above table, since the dimensions of the first Hochschild
cohomology groups are different.

The algebras A5 and A6 are derived equivalent. (This can be shown by explicitly
constructing a suitable tilting complex, similar to the detailed example given in the
Appendix.)

The algebras A7 and A8 with Cartan determinant 0 are not derived equivalent,
since their centers have different dimensions.

In summary, there are exactly eight derived equivalence classes of connected
gentle algebras with two simple modules. They are separated by the vertical lines
in the above table.

Example 3.8 (Gentle algebras with three simple modules). Let (Q, I ) be a con-
nected gentle quiver with three vertices, with corresponding gentle algebra A =

KQ/I . By Remark 3.4 and Corollary 3.5 we deduce that det CA ∈ {0, 1, 2, 4, 8}.
By Theorem 2.2, algebras with different Cartan determinant cannot be derived
equivalent.

As an illustration, we shall give a complete derived equivalence classification
of those algebras with Cartan determinant 0. By Corollary 3.5, a gentle algebra
has Cartan determinant 0 if and only if the quiver contains an even oriented cycle
with full zero relations. There are 18 connected gentle quivers with three vertices
having Cartan determinant 0, as listed on the next page.

The main tool will be Corollary 3.6, which states that the numbers ec(Q, I ) and
oc(Q, I ) of minimal oriented cycles with full zero relations of even and odd length,
respectively, are invariants of the derived category. This will already settle large
parts of the classification. In addition we will need to look at the centers and at
the first Hochschild cohomology group. The table on the next page collects all the
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Λ

Λ

Λ

Λ

Λ

Λ

Λ1

3

7

9

11

13

5

Λ15

Λ17

Λ

Λ

Λ

Λ

Λ

Λ 2

4

6

8

10

12

Λ

Λ

14

16

Λ 18

Algebra 31 32 33 34 35 36 37 38

oc(Q, I ) 0 0 0 0 0 0 0 0
ec(Q, I ) 1 1 1 1 1 1 2 1

dim Z(3) 1 1 1 1 2 2 1 3
dim HH1(3) 1 1 4 4 2 2 2 2

39 310 311 312 313 314 315 316 317 318 Algebra

1 1 1 1 1 2 2 0 0 0 oc(Q, I )
1 1 1 1 2 1 1 1 1 1 ec(Q, I )
1 1 1 1 2 1 1 1 1 1 dim Z(3)

2(3) 2(3) 2(3) 2(3) 3(4) 4(6) 4(6) 4 3 3 dim HH1(3)
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necessary invariants. Again, in the cases where the quiver has loops, the dimension
of HH1 depends on the characteristic being 2 or not, and in these cases the dimen-
sion in characteristic 2 is given in parentheses. For the derived equivalence classifi-
cation, it only remains to consider those algebras having the same invariants. In the
cases where the algebras are in fact derived equivalent, we leave out the details of
the construction of a suitable tilting complex; in the appendix a detailed example is
provided which serves to indicate the strategy which also works in all other cases.

The algebras 31 and 32 are derived equivalent; so are 33 and 34. But 31

and 33 represent different derived equivalence classes since their first Hochschild
cohomology groups have different dimensions.

The algebras 35 and 36 are derived equivalent. (The details for this case are
provided in the appendix.)

Similarly, the algebras 39, 310, 311 and 312 are derived equivalent, as are 314

and 315 and also 317 and 318.
The case of 316 is more subtle. This algebra has exactly the same invariants

as 33 and 34. However, we claim that 316 is not derived equivalent to 34. In
fact, the Lie algebra structures on HH1 are not isomorphic. Note that with the
Gerstenhaber bracket, the first Hochschild cohomology becomes a Lie algebra. By
a result of B. Keller [2003], this Lie algebra structure on HH1 is invariant under
derived equivalence. As mentioned before, by work of M. Bardzell [1997] there is
an explicit way of computing HH1 for a gentle algebra, and a nice combinatorial
version due to C. Strametz ([2001, Proposition 2.6] for the additive structure and
[2001, Theorem 2.7] for the Lie algebra structure). With this method one can
compute that the four-dimensional Lie algebras on HH1(316) and on HH1(34) are
not isomorphic. In fact, the Lie algebra center of HH1(316) is two-dimensional,
whereas the Lie algebra center of HH1(34) has dimension 1.

This completes the derived equivalence classification of connected gentle alge-
bras with three simple modules and Cartan determinant 0. The ten classes are
separated in the table of the previous page by vertical lines.

4. Skew-gentle algebras

Skew-gentle algebras were introduced in [Geiß and de la Peña 1999]; for the no-
tation and definition we follow here mostly [Bekkert et al. 2003], but we try to
explain how the construction works rather than repeating the technical definition
from the latter reference.

We start with a gentle pair (Q, I ). A set Sp of vertices of the quiver Q is an
admissible set of special vertices if the quiver with relations obtained from Q by
adding loops with square zero at these vertices is again gentle; we denote this
gentle pair by (Qsp, I sp). The triple (Q, Sp, I ) is then called skewed-gentle.
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The admissibility of the set Sp of special vertices is both a local as well as a
global condition. Let v be a vertex in the gentle quiver (Q, I ); then we can only
add a loop at v if v is of valency 1 or 0 or if it is of valency 2 with a zero relation, but
not one coming from a loop. Hence only vertices of this type are potential special
vertices. But for the choice of an admissible set of special vertices we also have
to take care of the global condition that after adding all loops, the pair (Qsp, I sp)

still does not have paths of arbitrary lengths.

Given a skewed-gentle triple (Q, Sp, I ), we now construct a new quiver with
relations (Q̂, Î ) by doubling the special vertices, introducing arrows to and from
these vertices corresponding to the previous such arrows and replacing a previous
zero relation at the vertices by a mesh relation.

More precisely, we proceed as follows. The nonspecial (or ordinary) vertices
in Q are also vertices in the new quiver; any arrow between nonspecial vertices
as well as corresponding relations are also kept. Any special vertex v ∈ Sp is
replaced by two vertices v+ and v− in the new quiver. An arrow a in Q from a
nonspecial vertex w to v (or from v to w) will be doubled to arrows a±

: w → v±

(or a±
: v±

→ w, respectively) in the new quiver; an arrow between two special
vertices v, w will correspondingly give four arrows between the pairs v± and w±.
We say that these new arrows lie over the arrow a. Any relation ab = 0 where
t (a) = s(b) is nonspecial gives a corresponding zero relation for paths of length 2
with the same start and end points lying over ab. If v is a special vertex of valency 2
in Q, then the corresponding zero relation at v, say ab = 0 with t (a) = v = s(b),
is replaced by mesh commutation relations saying that any two paths of length 2
lying over ab, having the same start and end points but running over v+ and v−,
respectively, coincide in the factor algebra to the new quiver with relations (Q̂, Î ).

We will speak of (Q̂, Î ) as a skewed-gentle quiver covering the gentle pair (Q,I ).
A K -algebra is then called skewed-gentle if it is Morita equivalent to a factor

algebra K Q̂/ Î , where (Q̂, Î ) comes from a skewed-gentle triple (Q, Sp, I ) as
above.

Remark 4.1. Let A = KQ/I be gentle. In a gentle quiver, there is at most one
nonzero cyclic path starting and ending at a given vertex; hence the diagonal entries
in the q-Cartan matrix CA(q) are 1 or of the form 1 + q j , for some j ∈ N.

If a vertex v in Q can be chosen as a special vertex for a covering skewed-gentle
quiver Q̂, then the corresponding diagonal entry in CA(q) is 1, as otherwise we
have paths of arbitrary lengths in Qsp; hence in the corresponding q-Cartan matrix
for the skewed-gentle algebra Â we have

( 1
0

0
1

)
on the diagonal for the two split

vertices v± in Q̂.

Theorem 4.2. Let (Q, I ) be a gentle quiver and (Q̂, Î ) a covering skewed-gentle
quiver. Let Â = K Q̂/ Î be the corresponding skewed-gentle algebra. Denote by
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ck the number of oriented k-cycles in (Q, I ) with full zero relations. Then the q-
Cartan matrix C Â(q) is unimodularly equivalent (over Z[q]) to a diagonal matrix
with entries 1 − (−q)k , with multiplicity ck , k ≥ 1, and all further diagonal entries
equal to 1.

Proof. Again, we argue by induction on the number of vertices and arrows. We let
A = KQ/I be the gentle algebra and CA(q) the q-Cartan matrix as before.

If Q has no arrows, then Q̂ is just obtained by doubling the special vertices, and
this still has no arrows, so the result clearly holds.

If Q has an arrow α as in Lemma 3.1, with a nonspecial s(α) in the first case,
and a nonspecial t (α) in the second case, respectively, then we can argue as in the
proof of Lemma 3.1 to remove α. Let us consider again the situation of the first
case, so here s(α) = v0 is nonspecial.

Note that a maximal nonzero path p starting from v0 with α or α± (if v1 is
special) will end on a nonspecial vertex (and hence this maximal path is unique
in Â); in general, this path will be longer than the one taken in A.

In the column transformations, we only have to be careful at doubled vertices
on the path p; here we replace both corresponding columns ŝv±

i
of C Â(q) by

ŝv±

i
− q i ŝv0 .

This leads to the Cartan matrix for the skewed-gentle algebra where α or α±,
respectively, has been removed from Q̂, which is a skewed-gentle cover for the
quiver obtained from Q by deleting α. The claim follows by induction.

Now assume Q has a source v — say the first vertex — which is special. (The
case of a sink is dual.) Then the q-Cartan matrix for Â has the form

C Â(q) =


1 0 ∗ · · · ∗

0 1 ∗ · · · ∗

0 0
...

... Ĉ ′(q)

0 0

 ∼
˜̂C(q) =


1 0 0 · · · 0
0 1 0 · · · 0
0 0
...

... Ĉ ′(q)

0 0

 ,

where Ĉ ′(q) is the q-Cartan matrix of the skewed-gentle algebra Â′ for the quiver Q̂′

obtained from Q̂ by removing v+, v− and the arrows incident with v±. Note
that Q̂′ is the skewed-gentle cover for the quiver Q′ which is obtained from Q
by removing v and the arrow incident with v, and the choice Sp′

= Sp \{v} as the
set of special vertices; in short, we write this as Q̂′

= Q̂′. Again, using induction
the claim follows immediately.

Thus again, we may now assume that Q has only vertices of valency 2 with a
(nonloop) zero relation or vertices of valency 4; note that any special vertex in Q



q -CARTAN MATRICES AND COMBINATORIAL INVARIANTS 41

has to be of valency 2. As before, we may also assume that Q (and hence also Q̂)
is connected.

If there are no nonspecial vertices, or if all nonspecial vertices are of valency 4,
then Qsp is not gentle. Hence Q has a nonspecial vertex v of valency 2 with a zero
relation at v. Let p0 : v0 → v be the (unique) incoming arrow.

Again we consider the unique maximal path p in Q with nonrepeating arrows
starting in v0 with p0, such that the product of any two consecutive arrows is zero
in A; as before, in our current situation p has to be a cycle C = p0 p1 . . . ps , where
pi : vi → vi+1, i = 0, . . . , s, and vs+1 = v0. As in the previous situation, the arrows
are distinct, but vertices vi 6= v0 may be repeated.

For a vertex w in Q we denote by zw the row of the q-Cartan matrix CA(q)

corresponding to w.
If w is nonspecial, we denote by ẑw the corresponding row in the q-Cartan

matrix Ĉ(q) = C Â(q). If w is special, then for the two vertices w± we have two
corresponding rows ẑw± in the Cartan matrix Ĉ(q), and we then set ẑw = ẑw++ẑw− .

Before, we transformed C by replacing zv with

Z =

s+1∑
i=1

(−q)i−1zvi

and obtained a matrix C̃(q). We now do a parallel transformation on Ĉ(q), that is,
we replace ẑv by

Ẑ =

s+1∑
i=1

(−q)i−1 ẑvi ,

and we obtain a matrix ˜̂C(q). We have to compare the differences and check that
everything stays under control for the induction argument.

If a vertex vi , 1 ≤ i ≤ s, is special, note that the doubled contribution in ẑvi =

ẑv+

i
+ ẑv−

i
is needed on the one hand for the cancellation with the previous row,

and on the other hand to continue around the cycle C. As v is nonspecial and
of valency 2 with a zero-relation, we note that as before, in Ẑ we only have the
contribution 1 − (−q)s+1 at v.

Following this with the parallel operation to the previous column operation we
then replace the column ŝv by the linear combination

Ŝ =

s+1∑
i=1

(−q)s+1−i ŝvi+1,

where we use analogous conventions as before.
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With v corresponding to the first row and column of the Cartan matrix, we have
thus unimodularly transformed Ĉ(q) to a matrix of the form

1 − (−q)s+1 0 · · · 0
0
... Ĉ ′(q)

0


where Ĉ ′(q) is the Cartan matrix of the skewed-gentle algebra Â′ for the quiver Q̂′

obtained from Q̂ by removing v and the arrows incident with v. Note that in fact,
Q̂′

= Q̂′ in the notation of our previous proof; that is, as explained earlier, Q̂′ is
the skewed-gentle cover for the quiver Q′ and the choice Sp′

= Sp \{v} as the set
of special vertices.

Thus the result follows by induction. �

Remark 4.3. By comparing Theorems 3.2 and 4.2 we observe that the q-Cartan
matrix CA(q) for the gentle algebra A to (Q, I ), and the q-Cartan matrix C Â(q) for
a skewed-gentle cover Â are unimodularly equivalent to diagonal matrices which
only differ by adding as many further 1’s on the diagonal as there are special
vertices chosen in Q. In particular, with notation as above,

det C Â(q) = det CA(q) =

∏
k≥1

(1 − (−q)k)ck .

This observation has an immediate consequence upon specializing to q = 1:

Corollary 4.4. Let (Q, I ) be a gentle quiver, and (Q̂, Î ) a covering skewed-gentle
quiver. Then the determinant of the ordinary Cartan matrix of the skewed-gentle
algebra Â = K Q̂/ Î is the same as the one for the gentle algebra A = KQ/I , i.e.,
det C Â = det CA.

Remark 4.5. A gentle algebra and a (proper) skewed-gentle algebra may have the
same q-invariants but they cannot be derived equivalent by [Schröer and Zimmer-
mann 2003, Corollary 1.2].

Appendix. Tilting complexes and derived equivalences:
a detailed example

This appendix is aimed at providing enough background on tilting complexes and
explicit computations of their endomorphism rings so that the interested reader can
fill in the details in the derived equivalence classifications of Examples 3.7 and 3.8.
We explained there in detail how to distinguish derived equivalence classes (since
this is the main topic of this paper), but have been fairly short on indicating why
certain algebras in the lists are actually derived equivalent. In this section we will
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go through one example in detail; this will indicate the main strategy which also
works in all other cases.

For an algebra A denote by Db(A) the bounded derived category and by K b(PA)

the homotopy category of bounded complexes of finitely generated projective A-
modules.

Two algebras A and B are called derived equivalent if Db(A) and Db(B) are
equivalent as triangulated categories. By J. Rickard’s theorem [1989b], this hap-
pens if and only there exists a tilting complex T for A such that the endomorphism
ring EndK b(PA)(T ) in the homotopy category is isomorphic to B. A bounded
complex T of projective A-modules is called a tilting complex if the following
conditions are satisfied.

(i) HomK b(A)(T, T [i]) = 0 for i 6= 0 (where [.] denotes the shift operator)
(ii) add(T ), the full subcategory of K b(PA) consisting of direct summands of

direct sums of copies of T , generates K b(PA) as a triangulated category.

In Example 3.8 we stated that the algebras 35 and 36 are derived equivalent.
For the convenience of the reader we recall the definition of these algebras.

Λ5

α β

γδ
1

2
3 Λ 6

1 2

3

γ β

δ

α

Recall from Section 2 our conventions to deal with right modules and to read
paths from left to right. In particular, left multiplication by a nonzero path from
vertex j to vertex i gives a homomorphism Pi → Pj .

We define a bounded complex T := T1 ⊕ T2 ⊕ T3 of projective 35-modules.
Let T1 : 0 → P3 → 0 and T3 : 0 → P1 → 0 be stalk complexes concentrated in
degree 0. Moreover, let

T2 : 0 → P1 ⊕ P3
(δ, β)- P2 → 0

(in degrees 0 and −1). We claim that T is a tilting complex. Property (i) above is
obvious for all |i | ≥ 2 since we are dealing with two-term complexes.

Let i = −1 and consider possible maps T2 → T j [−1], where j ∈ {1, 2, 3}. This
is given by a map of complexes of the form

0 - P1 ⊕ P3
(δ, β)- P2 - 0

0 - Q
?

- · · ·
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where Q could be either of P1, P3, or P1⊕ P3. But since we are dealing with gentle
algebras, no nonzero map can be zero when composed with both δ and β. So the
only homomorphism of complexes T2 → T j [−1] is the zero map, as desired. Di-
rectly from the definition we see that Hom(T1, T j [−1])=0 and Hom(T3, T j [−1])=

0 (since they are stalk complexes).
Thus we have shown that Hom(T, T [−1]) = 0.

Now let i = 1. We have to consider maps T j → T2[1]; these are given by

0 - Q - · · ·

0 - P1 ⊕ P3
(δ, β)- P2

?
- 0

where Q again can be either of P1, P3, or P1 ⊕ P3. Now there certainly exist
nonzero homomorphisms of complexes. But they are all homotopic to zero. In
fact, every path in the quiver of 35 from vertex 2 to vertex 1 or 3 either starts
with δ or with β. Accordingly, every homomorphism Q → P2 can be factored
through the map (δ, β) : P1 ⊕ P3 → P2.

It follows that HomK b(PA)(T, T [1]) = 0 (in the homotopy category).

It remains to show that the complex T also satisfies property (ii) of the definition
of a tilting complex. It suffices to show that the projective indecomposable modules
P1, P2 and P3, viewed as stalk complexes, can be generated by add(T ). This is
clear for P1 and P3 since they occur as summands of T . For P2, consider the map
of complexes 9 : T2 → T3 ⊕ T1 given by the identity map on P1 ⊕ P3 in degree 0.
Then the stalk complex P2[0] with P2 in degree 0 can be shown to be homotopy
equivalent (i.e. isomorphic in K b(PA)) to the mapping cone of 9. Thus we have
a distinguished triangle

T2︸︷︷︸
∈ add(T )

→ T3 ⊕ T1︸ ︷︷ ︸
∈ add(T )

→ P2[0] → T2[1]︸ ︷︷ ︸
∈ add(T )

.

By definition, add(T ) is triangulated, so it follows that also the stalk complex P2[0]

lies in add(T ), which proves (ii).
Hence, T is indeed a tilting complex for 35.

By Rickard’s theorem, the endomorphism ring of T in the homotopy category is
derived equivalent to 35. We need to show that E := EndK b(PA)(T ) is isomorphic
to 36. Note that the vertices of the quiver of E correspond to the summands of T .

For explicit calculations, the following formula is useful, which gives a general
method for computing the Cartan matrix of an endomorphism ring of a tilting
complex from the Cartan matrix of A.
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Alternating sum formula. For a finite-dimensional algebra A, let Q = (Qr )r∈Z

and R = (Rs)s∈Z be bounded complexes of projective A-modules. Then∑
i

(−1)i dim HomK b(PA)(Q, R[i]) =

∑
r,s

(−1)r−s dim HomA(Qr , Rs).

In particular, if Q and R are direct summands of a tilting complex then

dim HomK b(PA)(Q, R) =

∑
r,s

(−1)r−s dim HomA(Qr , Rs).

The Cartan matrix of 35 has the form

 2 2 1
2 2 1
1 1 1

. From that, using the alternat-

ing sum formula, we can compute the Cartan matrix of E to be

 1 1 1
1 1 1
1 1 2

. Note
that this is actually the Cartan matrix of 36.

Now we have to define maps of complexes between the summands of T , cor-
responding to the arrows of the quiver of 36. The final step then is to show that
these maps satisfy the defining relations of 36, up to homotopy.

We define α̃ : T1 → T2 by the map (αβ, 0) : P3 → P1 ⊕ P3 in degree 0. This is
indeed a homomorphism of complexes, since δα = 0 in 35. Moreover, we define
β̃ : T2 → T3 and δ̃ : T2 → T1 by the projection onto the first and second summand
in degree 0, respectively. Finally, we define γ̃ : T3 → T1 by γ δ : P1 → P3.

We now have to check the relations, up to homotopy. We write compositions
from left to right (as in the relations of the quiver of E). Clearly, α̃δ̃ = 0. The
composition β̃γ̃ : T2 → T1 is given in degree 0 by

(γ δ, 0) : P1 ⊕ P3 → P3.

So it is not the zero map, but is homotopic to it via the homotopy map γ : P2 → P3

(use that γβ = 0 in 35). Finally, consider δ̃α̃ on T2. It is given by(
0 αβ

0 0

)
in degree 0 and the zero map in degree −1. It is indeed homotopic to zero via the
homotopy map (α, 0) : P2 → P1 ⊕ P3. (Note that here we use that αδ = 0 and
δα = 0 in 35.)

Thus, we have defined maps between the summands of T , corresponding to the
arrows of the quiver of 36. We have shown that they satisfy the defining relations
of 36, and that the Cartan matrices of E and 36 coincide. From this we can
conclude that E ∼= 36. Hence, 35 and 36 are derived equivalent, as desired.

All the other derived equivalences stated in Examples 3.7 and 3.8 can be ver-
ified exactly along these lines. In particular, they can also be realized by tilting
complexes with nonzero entries in only two degrees.
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