POLYNOMIAL GROWTH SOLUTIONS TO HIGHER-ORDER LINEAR ELLIPTIC EQUATIONS AND SYSTEMS

ROGER CHEN AND JIAPING WANG
POLYNOMIAL GROWTH SOLUTIONS TO HIGHER-ORDER LINEAR ELLIPTIC EQUATIONS AND SYSTEMS

ROGER CHEN AND JIAPING WANG

For an equation or system of equations $Lu = 0$, where L is a uniformly elliptic operator of order $2m$ and u is a map from \mathbb{R}^n to \mathbb{R}^N, we prove that the dimension of the space of polynomial growth solutions of degree at most d is bounded by Cd^{2mnN}, where C is a constant. If the system is in divergence form, we prove that this dimension is in fact bounded by Cd^{mnN}.

Introduction

We consider an equation or a system of equations of the form

$$Lu = 0,$$

where L is a uniformly elliptic operator of order $2m$, with $m > 1$, defined on \mathbb{R}^n. We want to estimate the dimension of the following space of solutions to $Lu = 0$.

Definition 0.1. For each nonnegative number d we denote by

$$\mathcal{H}_d^L(\mathbb{R}^n) = \left\{ u \mid Lu = 0 \text{ and } |u|(x) = O(r_p^d(x)) \right\}$$

the space of polynomial growth solutions of degree at most d, where $r_p(x)$ is the Euclidean distance from a fixed point p to x in \mathbb{R}^n. We denote the dimension of $\mathcal{H}_d^L(\mathbb{R}^n)$ by

$$h_d^L(\mathbb{R}^n) = \dim \mathcal{H}_d^L(\mathbb{R}^n).$$

When $L = \Delta$ is the Laplacian, this subject has been studied extensively for a variety of open manifolds M (meaning noncompact and without boundary). Let n be the dimension of M. Yau conjectured that $h_d^\Delta(M) < \infty$ for all $d \geq 1$. For $M = \mathbb{R}^n$ this is easy to see; in fact $h_d^\Delta(\mathbb{R}^n)$ equals

$$\left(\begin{array}{c} n+d-1 \\ d \end{array} \right) + \left(\begin{array}{c} n+d-2 \\ d-1 \end{array} \right) \sim \frac{2}{(n-1)!} d^{n-1} \quad \text{as } d \to \infty.$$

MSC2000: 35J30, 35J45.

Keywords: polynomial growth solution, linear elliptic equation, linear elliptic system.

Chen was partially supported by an NSC grant, Taiwan. Wang was partially supported by NSF grant #DMS-0404817.
Yau’s conjecture was partially confirmed for the case $d = 1$ by Li and Tam [1989], who proved that under the same conditions, if the volume growth of M satisfies

$$V_p(r) = O(r^k_p)$$

for some $k > 0$, then

$$h_d^A(M) \leq k + 1 = h_d^A(\mathbb{R}^k).$$

The conjecture was then proved in full by Colding and Minicozzi [1997], who showed that for a complete open manifold M of nonnegative Ricci curvature, there exists $C > 0$ depending only on the dimension n and such that

$$h_d^A(M) \leq C d^{n-1}.$$

In view of the formula (0-1) for $h_d^A(\mathbb{R}^n)$, this estimate is sharp in the order of d as $d \to \infty$. The authors also proved that if a complete open manifold M satisfies a Poincaré inequality and a volume doubling property, then $h_d^A(M)$ is finite and can be estimated in terms of a constant depending on the manifold and d. However, in this case, the order in d is not sharp.

Soon thereafter, Li [1997] proved a more general estimate with a substantially simpler proof. Namely, if M (open, complete) satisfies a mean value inequality and a volume comparison condition, then

$$h_d^A(M) \leq C d^{n-1}.$$

Later Li and Wang [1999a] showed that the finiteness of $h_d^A(M)$ is actually valid in a much bigger class of manifolds. In particular, they proved that if M satisfies a weak mean value inequality and has polynomial volume growth, then $h_d^A(M)$ must be finite for all $d \geq 1$. However, in this case, the estimate on $h_d^A(M)$ is exponential in d as $d \to \infty$.

Recently, Li and Wang [1999b] showed that if M is a complete manifold satisfying the Sobolev inequality $\mathcal{F}(B, \nu)$, the space $\mathcal{H}^A_d(M)$ is finite-dimensional, and its dimension h_d^A satisfies

$$h_d^A(M) \leq C(B, \nu) d^{\nu}$$

for all $d \geq 1$. They proved that if M is a complete n-dimensional open manifold with nonnegative sectional curvature, then

$$\liminf_{d \to \infty} d^{-(n-1)} h_d^A(M) \leq \frac{2}{(n-1)!},$$

and the equality

$$\liminf_{d \to \infty} d^{-(n-1)} h_d^A(M) = \frac{2}{(n-1)!}$$

holds if and only if $M = \mathbb{R}^n$.
In this note we extend some of the preceding results to higher-order operators. To simplify the presentation, we restrict ourselves to Euclidean space. So we assume that L is of higher order $2m$ with $m > 1$ and try to estimate $h^L_d(\mathbb{R}^n)$.

In Section 1 we show that if $Lu = 0$ is a uniformly elliptic equation or a uniformly elliptic system of equations of order $2m$ in nondivergence form, then

$$h^L_d(\mathbb{R}^n) \leq C d^{2mnN},$$

where N is the number of equations in the system $Lu = 0$.

In Section 2 we consider the case where $Lu = 0$ is a uniformly elliptic equation or a uniformly elliptic system of equations of order $2m$ in divergence form. Then

$$h^L_d(\mathbb{R}^n) \leq C d^{mnN},$$

where N is the number of equations in the system $Lu = 0$.

1. Equations in nondivergence form

In Euclidean space \mathbb{R}^n with rectangular coordinates x_1, \ldots, x_n, we consider the differential operator

$$Lu \equiv \sum_{|\alpha| = 2m} a_\alpha(x) \, D^\alpha u(x),$$

where $\alpha = (\alpha_1, \ldots, \alpha_n) \in \mathbb{N}^n$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$, and

$$D^\alpha = \frac{\partial^{2m}}{x_1^{\alpha_1} \cdots x_n^{\alpha_n}}.$$

Throughout the section, we impose the following condition on the operator L.

Condition L. The coefficients a_α in the equation $Lu = 0$ are uniformly continuous and satisfy the uniform ellipticity condition; that is, there exists a constant $\Lambda > 0$ such that

$$\Lambda |\Xi|^{2m} \geq \sum_{|\alpha| = 2m} a_\alpha(x) \Xi^\alpha \geq \Lambda^{-1} |\Xi|^{2m}$$

for all $x, \Xi \in \mathbb{R}^n$.

The assumptions imply that there exists a constant $C > 0$ such that, for any function $w \in C^\infty_c(\mathbb{R}^n)$,

$$\int_{\mathbb{R}^n} |\nabla^{2m} w|^2(x) \, dx \leq C \int_{\mathbb{R}^n} |Lw|^2(x) \, dx$$

(see [Agmon et al. 1959; 1964]). We establish some preliminary lemmas before we prove our first main result.
Lemma 1.1 [Li and Wang 1999b]. Let V be a k-dimensional subspace of a vector space W. Assume that W is endowed with an inner product I and a bilinear form Φ. Then for any given linearly independent set of vectors $\{w_1, \ldots, w_{k-1}\} \subset W$, there exists an orthonormal basis $\{v_1, \ldots, v_k\}$ of V with respect to I such that $\Phi(v_i, w_j) = 0$ for all $1 \leq j < i \leq k$.

Let ϕ be a positive function defined on a fixed geodesic ball $B_p(r)$. We introduce two inner products I_r and Φ_r on the space $W = L^2(B_p(r), dx) \cap L^2(B_p(r), \phi \, dx)$:

$$I_r(f, g) = \int_{B_p(r)} f(x) g(x) \, dx, \quad \Phi_r(f, g) = \int_{B_p(r)} f(x) g(x) \phi(x) \, dx.$$

For $i = 1, 2, \ldots$, let $\lambda_i(r)$ be the i-th Dirichlet eigenvalue of $B_p(r)$ arranged in nondecreasing order.

Lemma 1.2. Let V be a k-dimensional subspace of $\mathfrak{h}_r^2(\mathbb{R}^n)$. For any fixed number $\theta > 1$, let $\operatorname{tr}_{I_{\theta r}} I_r(V)$ denote the trace of the bilinear form I_r with respect to the inner product $I_{\theta r}$ on V. Then

$$\operatorname{tr}_{I_{\theta r}} I_r(V) \leq \sum_{i=1}^k \frac{C_8 \theta^{4m-2}}{\lambda_i(\theta r)(\theta - 1)^{4m} r^2},$$

where C_8 is a constant.

Proof. Set $\bar{\theta} = \frac{1}{2} (1 + \theta)$ and let $\phi \in C_0^{2m}(B_p(\bar{\theta}r))$ be a nonnegative function defined on $B_p(\bar{\theta}r)$ satisfying $\phi = 1$ on $B_p(r)$, $0 \leq \phi \leq 1$ on $B_p(\bar{\theta}r)$, $\phi = 0$ on $\partial B_p(\bar{\theta}r)$, and

$$|\nabla^j \phi| \leq \frac{C}{(\theta - 1)^j r^j}$$

for some constant $C = C(n, m)$, and $1 \leq j \leq 2m$. By unique continuation, $V \subset H^{2m}(B_p(\bar{\theta}r), dx) \cap H^{2m}(B_p(r), \phi \, dx)$ is a k-dimensional subspace. Applying Lemma 1.1 with w_1, \ldots, w_k the Dirichlet eigenfunctions of $B_p(\bar{\theta}r)$ corresponding to the eigenvalues $\lambda_1(\bar{\theta}r), \ldots, \lambda_k(\bar{\theta}r)$, we get an orthonormal basis $\{v_1, \ldots, v_k\}$ of V with respect to the inner product $I_{\bar{\theta}r}$ and

$$\Phi_{\bar{\theta}r}(v_i, w_j) = \int_{B_p(\bar{\theta}r)} v_i(x) w_j(x) \phi(x) \, dx = 0$$

for $0 \leq j < i \leq k$. Thus, for any $1 \leq i \leq k$, the variational principle implies that

$$\lambda_i(\bar{\theta}r) \int_{B_p(\bar{\theta}r)} (\phi v_i)^2 \leq \int_{B_p(\bar{\theta}r)} |\nabla (\phi v_i)|^2.$$
Hence,
\begin{equation}
(1-1) \quad \text{tr}_L, I_r (V) = \sum_{i=1}^{k} \int_{B_{p}(r)} v_i^2 \leq \sum_{i=1}^{k} \frac{1}{\lambda_i(\theta r)} \int_{B_{p}(\theta r)} |\nabla (\phi v_i)|^2
\end{equation}
\begin{equation}
\leq C \sum_{i=1}^{k} \frac{1}{\lambda_i(\theta r)} \int_{B_{p}(\theta r)} |\nabla^2 (\phi v_i)|^2 \bar{\theta}^2 r^2
\end{equation}
\begin{equation}
\leq C^{2m-1} \sum_{i=1}^{k} \frac{1}{\lambda_i(\theta r)} \int_{B_{p}(\theta r)} |\nabla^{2m} (\phi v_i)|^2 \bar{\theta}^{4m-2} r^{4m-2}
\end{equation}
\begin{equation}
\leq C_1 \sum_{i=1}^{k} \frac{\bar{\theta}^{4m-2} r^{4m-2}}{\lambda_i(\theta r)} \int_{B_{p}(\theta r)} |L(\phi v_i)|^2
\end{equation}
\begin{equation}
\leq C_2 \sum_{i=1}^{k} \sum_{j=0}^{2m-1} \frac{\bar{\theta}^{4m-2} r^{4m-2}}{\lambda_i(\theta r)} \int_{B_{p}(\theta r)} \frac{|\nabla^j v_i|^2}{(\theta - 1)^{4m-2j} r^{4m-2}},
\end{equation}
where C_1 and C_2 are constants.

Let $\eta \in C_0^{2m}(B_p(\theta r))$ be a nonnegative function defined on $B_p(\theta r)$ satisfying $\eta = 1$ on $B_p(\theta r)$, $0 \leq \eta \leq 1$, $\eta = 0$ on $\partial B_p(\theta r)$, and
\begin{equation}
|\nabla^j \eta| \leq \frac{\tilde{C}}{\theta - 1)^{2m}}, \quad 1 \leq j \leq 2m.
\end{equation}

Note that
\begin{equation}
(1-2) \quad \int_{B_p(\theta r)} |\nabla^{2m} v_i|^2 \leq \int_{B_p(\theta r)} |\nabla^{2m} (\eta v_i)|^2 \leq C_3 \int_{B_p(\theta r)} |L(\eta v_i)|^2
\end{equation}
\begin{equation}
\leq C_4 \int_{B_p(\theta r)} \sum_{j=0}^{2m-1} \frac{|\nabla^j v_i|^2}{(\theta - 1)^{4m-2j} r^{4m-2j}}.
\end{equation}

Introduce the weighted seminorms
\begin{equation}
\Psi_k = \sup_{1 < \sigma < \theta < \theta} (\sigma - 1)^{2k} r^{2k} \int_{B_{p}(\sigma r)} |\nabla^k v_i|^2
\end{equation}
for each $0 \leq k \leq 2m$. In terms of these seminorms, (1-2) implies that
\begin{equation}
(1-3) \quad \Psi_{2m} \leq C_5 \sum_{k=0}^{2m-1} \Psi_k.
\end{equation}

For each $1 \leq k \leq 2m - 1$, we apply an interpolation inequality to get
\begin{equation}
(1-4) \quad \Psi_k \leq \epsilon \Psi_{2m} + C(k) \epsilon^{k/(k-2m)} \Psi_0
\end{equation}
for any \(\epsilon > 0 \), where \(C(k) \) is a constant. Putting (1-4) into (1-3), and arranging \(\epsilon > 0 \) to be small, we conclude that \(\Psi_{2m} \leq C_6 \Psi_0 \). In particular, we have

\[
\int_{B_p(\theta r)} |\nabla^{2m} v| \leq C_6 \frac{\rho}{(\theta - 1)^{4m} r^{4m}} \int_{B_p(\theta r)} v^2.
\]

Therefore,

\[
(1-5) \int_{B_p(\theta r)} \sum_{j=0}^{2m-1} \frac{|\nabla^{j} v|^2}{(\theta - 1)^{4m-2j} r^{4m-2j}} \leq \sum_{j=0}^{2m-1} \frac{1}{(\theta - 1)^{4m-2j} r^{4m-2j}} \times \left(\epsilon_j \int_{B_p(\theta r)} |\nabla^{2m} v|^2 + C(j) \epsilon_j^{j/(j-2m)} \int_{B_p(\theta r)} v^2 \right) \leq 2m \int_{B_p(\theta r)} |\nabla^{2m} v|^2 + \frac{C}{(\theta - 1)^{4m} r^{4m}} \int_{B_p(\theta r)} v^2 \leq \frac{C_7}{(\theta - 1)^{4m} r^{4m}} \int_{B_p(\theta r)} v^2,
\]

where we have set \(\epsilon_j = (\theta - 1)^{4m-2j} r^{4m-2j} \). Substituting (1-5) into (1-1), we get

\[
\text{tr}_{\theta r} I_r(V) \leq \sum_{i=1}^{k} \frac{2m-1}{\lambda_i(\theta r)} \frac{|\nabla^{j} v|}{(\theta - 1)^{4m-2j} r^{4m-2j}} \int_{B_p(\theta r)} v^2 \leq \sum_{i=1}^{k} \frac{C_7 \theta^{4m-2} r^{4m-2}}{\lambda_i(\theta r) (\theta - 1)^{4m} r^{4m}} \int_{B_p(\theta r)} v^2 = \sum_{i=1}^{k} \frac{C_8 \theta^{4m-2} r^{4m}}{\lambda_i(\theta r) (\theta - 1)^{4m} r^{4m}}.
\]

\[\square\]

Lemma 1.3 [Li 1997]. Let \(K \) be a \(k \)-dimensional linear space of functions defined on \(\mathbb{R}^n \). Suppose that each function \(u \in K \) is of polynomial growth of at most degree \(d \). Then for any \(\theta > 1, \delta > 0, \) and \(r_0 > 0 \), there exists \(r > r_0 \) such that if \(\{u_i\}_{i=1}^{k} \) is an orthonormal basis of \(K \) with respect to the inner product

\[
I_{\theta r}(u, v) = \int_{B_p(\theta r)} u(x) v(x) \, dx,
\]

then

\[
\text{tr}_{\theta r} I_r = \sum_{i=1}^{k} \int_{B_p(\theta r)} u_i^2(x) \, dx \geq k \theta^{-(2d+n+\delta)}.
\]

Proof. We reproduce Li’s argument. Let \(\text{tr}_{\rho} I_r \) denote the trace of the bilinear form \(I_r \) with respect to \(I_{\rho} \), and let \(\det_{\rho} I_r \) be the determinant of \(I_r \) with respect to \(I_{\rho} \). Assume that the lemma is false. Then, for \(r > r_0 \), we have

\[
\text{tr}_{\theta r} I_r < k \theta^{-(2d+n+\delta)}.
\]
The arithmetic-geometric mean inequality asserts that
\[(\det_{\theta_r} I_r)^{1/k} \leq k^{-1}(\text{tr}_{\theta_r} I_r).\]

This implies that
\[\det_{\theta_r} I_r \leq \theta^{-k(2d+n+\delta)}\]
for all \(r > r_0\). Setting \(r = r_0 + 1\) and iterating the inequality \(j\) times yields
\[(1-6) \det_{\theta_r} I_r \leq \theta^{-jk(2d+n+\delta)}.
\]
However, for a fixed \(I_r\)-orthonormal basis \(\{u_i\}_{i=1}^k\) of \(K\), the assumption on \(K\) implies that there exists a constant \(C > 0\), depending on \(K\), such that
\[\int_{B_p(r)} u_i^2(x) \, dx \leq C(1+r^{2d+n})\]
for all \(1 \leq i \leq k\). In particular, this implies that
\[\det_{\theta_r} I_{\theta/r} \leq kC \theta^{jk(2d+n+\delta)} r^{k(2d+n+\delta)}.
\]
This contradicts (1-6) as \(j \to \infty\).

Theorem 1.4. Assume that Condition L holds. Let \(n > 2\). Then the space \(H^1_d(\mathbb{R}^n)\) is finite-dimensional, and its dimension \(h^1_d(\mathbb{R}^n)\) satisfies the estimate
\[h^1_d(\mathbb{R}^n) \leq C_{10} d^{2mn}\]
for all \(d \geq 1\), where \(C_{10}\) is a constant.

Proof. It is well known that the \(k\)-th Dirichlet eigenvalue of \(B_p(r) \subset \mathbb{R}^n\) satisfies
\[\lambda_k(r) \geq Cr^{-2/k^{2/n}}\]
for all \(k\) and \(r > 0\), where \(C\) is a constant depending only on \(n\). In particular,
\[\sum_{i=1}^k \lambda_i^{-1}(\theta r) \leq C \theta^2 r^2 k^{1-(2/n)}.
\]
Lemma 1.3 yields that for any \(k\)-dimensional subspace \(V\) of \(H^1_d(\mathbb{R})\) and any \(\theta > 1\), there exists \(R > 0\) such that
\[\text{tr}_{I_{\theta r}} I_R(V) \geq k \theta^{-(2d+n+1)}.
\]
Applying Lemma 1.2, we conclude that
\[k \theta^{-(2d+n+1)} \leq \text{tr}_{I_{\theta r}} I_R(V) \leq \frac{C_8 \theta^{4m-2}}{(\theta-1)^{4m} R^2} \sum_{i=1}^k \lambda_i^{-1}(\theta R) \leq C_9 \theta^{4m} (\theta - 1)^{-4m} k^{1-(2/n)}.
\]
Choosing $\theta = 1 + d^{-1}$, we obtain $k \leq C_{10} d^{2mn}$. This shows that $h^L_d(\mathbb{R}^n) \leq C_{10} d^{2mn}$ for all $d \geq 1$.

Consider the system of partial differential equations

$$(Lu)_i \equiv \sum_{j=1}^{N} \sum_{|\alpha|=2m} a_{ij}^\alpha(x) D^\alpha u_j(x),$$

where $i = 1, \ldots, N$, and $u = (u_1, \ldots, u_N): \mathbb{R}^n \to \mathbb{R}^N$.

Condition L. The coefficient matrix $a_{ij}^\alpha(x)$ is uniformly continuous and satisfies the ellipticity condition that there exists a constant $\Lambda > 0$ such that

$$\Lambda |\Xi|^{2mn} |\eta|^2 \geq \sum_{|\alpha|=2m} \sum_{i,j=1}^{N} a_{ij}^\alpha(x) \Xi^\alpha \eta_i \eta_j \geq \Lambda^{-1} |\Xi|^{2mn} |\eta|^2$$

for all $x, \Xi \in \mathbb{R}^n$, and $\eta \in \mathbb{R}^N$.

Definition 1.5. For each nonnegative number d we denote by

$$\mathcal{H}^L_d(\mathbb{R}^n) = \{ u \mid Lu = 0 \text{ and } |u(x)| = O(r^d_u(x)) \}$$

the space of polynomial growth L-harmonic functions of degree at most d.

By modifying our previous argument, we have the following theorem.

Theorem 1.6. Assume that **Condition L** holds. Then the space $\mathcal{H}^L_d(\mathbb{R}^n)$ is finite-dimensional, and its dimension $h^L_d(\mathbb{R}^n)$ satisfies

$$h^L_d(\mathbb{R}^n) \leq C_{11} d^{2mn}$$

for all $d \geq 1$, where C_{11} is a constant.

2. Equations in divergence form

In this section, we consider the differential equation

$$Lu \equiv \sum_{|\alpha|=|\beta|=m} (-1)^{|\alpha|} D^\alpha (a_{\alpha\beta}(x) D^\beta u(x))$$

on \mathbb{R}^n. We assume that the coefficients of L satisfy the following condition.

Condition L_d. The coefficients $a_{\alpha\beta}$ are measurable, bounded, and there exists a constant $\delta_0 > 0$ such that for all $u \in \mathcal{H}^m_d(\mathbb{R}^n)$,

$$\mathcal{D}(u, u) = \int_{\mathbb{R}^n} \sum_{|\alpha|=|\beta|=m} a_{\alpha\beta}(x) D^\beta u(x) D^\alpha u(x) \, dx \geq \delta_0 \| \nabla^m u \|_2^2.$$
It is easy to see that if \(L \) satisfies the uniform ellipticity condition (meaning that \(\Lambda |\Xi|^{2m} \geq \sum_{|\alpha|=|\beta|=m} a_{\alpha\beta}(x) \Xi^\alpha \Xi^\beta \geq \Lambda^{-1} |\Xi|^{2m} \) for some \(\Lambda > 0 \) and all \(x, \Xi \in \mathbb{R}^n \)), then Condition \(L_d \) holds.

Lemma 2.1. Let \(V \) be a \(k \)-dimensional subspace of \(\mathcal{H}_d^1(\mathbb{R}^n) \). For any fixed number \(\theta > 1 \), let \(\text{tr}_{I_\theta} I_r(V) \) denote the trace of the bilinear form \(I_r \) with respect to the inner product \(I_{\theta r} \) on \(V \). Then for any fixed integer \(m \), we have

\[
\text{tr}_{I_\theta} I_r(V) \leq C_{20} \sum_{i=1}^{k} \frac{\tilde{\theta}^{2m-2}}{\lambda_i(\tilde{\theta} r)(\theta - 1)^{2m-2}},
\]

where \(C_{20} \) is a constant.

Proof. Set \(\tilde{\theta} = \frac{1}{2}(1+\theta) \) and let \(\phi \in C^m_0(B_p(\tilde{\theta} r)) \) be a nonnegative function defined on \(B_p(\tilde{\theta} r) \) satisfying \(\phi = 1 \) on \(B_p(r) \), \(0 \leq \phi \leq 1 \) on \(B_p(\tilde{\theta} r) \), \(\phi = 0 \) on \(\partial B_p(\tilde{\theta} r) \), and

\[
|\nabla^j \phi| \leq \frac{C}{(\theta - 1) j r^j}
\]

for some constant \(C = C(n, m) \), and \(1 \leq j \leq m \). Observe that by unique continuation, \(V \subset H^m(B_p(\tilde{\theta} r), dx) \cap H^m(B_p(r), \phi \, dx) \) is a \(k \)-dimensional subspace. Applying Lemma 1.1, with \(w_1, \ldots, w_k \) the Dirichlet eigenfunctions of \(B_p(\tilde{\theta} r) \) corresponding to the eigenvalues \(\lambda_1(\tilde{\theta} r), \ldots, \lambda_k(\tilde{\theta} r) \), we get an orthonormal basis \(\{v_1, \ldots, v_k\} \) of \(V \) with respect to the inner product \(I_{\tilde{\theta} r} \), and

\[
\Phi_{\tilde{\theta} r}(v_i, w_j) = \int_{B_p(\tilde{\theta} r)} v_i(x) w_j(x) \phi(x) \, dx = 0
\]

for \(0 \leq j < i \leq k \). Thus, for any \(1 \leq i \leq k \), the variational principle implies that

\[
\lambda_i(\tilde{\theta} r) \int_{B_p(\tilde{\theta} r)} (\phi v_i)^2 \leq \int_{B_p(\tilde{\theta} r)} |\nabla(\phi v_i)|^2.
\]

Hence,

\[
(2-1) \quad \text{tr}_{I_\theta} I_r(V) = \sum_{i=1}^{k} \int_{B_p(r)} v_i^2 \leq \sum_{i=1}^{k} \frac{1}{\lambda_i(\tilde{\theta} r)} \int_{B_p(\tilde{\theta} r)} |\nabla(\phi v_i)|^2
\]

\[
\leq C \sum_{i=1}^{k} \frac{1}{\lambda_i(\tilde{\theta} r)} \int_{B_p(\tilde{\theta} r)} |\nabla^2(\phi v_i)|^2 \tilde{\theta}^2 r^2
\]

\[
\leq C^{m-1} \sum_{i=1}^{k} \frac{\tilde{\theta}^{2m-2} r^{2m-2}}{\lambda_i(\tilde{\theta} r)} \int_{B_p(\tilde{\theta} r)} |\nabla^m(\phi v_i)|^2
\]

\[
\leq C^{m-1} 2^m \sum_{i=1}^{k} \sum_{j=0}^{m} \frac{\tilde{\theta}^{2m-2} r^{2m-2}}{\lambda_i(\tilde{\theta} r)} \int_{B_p(\tilde{\theta} r)} |\nabla^j v_i|^2 \bar{\theta}^{2m-2} r^{2m-2j}.
\]
Let $\eta \in C^n_0(B_p(\theta r))$ be a nonnegative function defined on $B_p(\theta r)$ satisfying $\eta = 1$ on $B_p(\theta r)$, $0 \leq \eta \leq 1$, $\eta = 0$ on $\partial B_p(\theta r)$, and

$$|\nabla^j \eta| \leq \frac{\tilde{C}}{(\theta - 1)^{jr}}$$

for some constant $\tilde{C} = \tilde{C}(n, m)$, and $1 \leq j \leq 2m$. Note that

$$(2-2) \quad \int_{B_p(\theta r)} |\nabla^m(\eta v_1)|^2 \leq \frac{1}{\delta_0} \int_{B_p(\theta r)} a_{\alpha\beta} D^\alpha(\eta v_1) D^\beta(\eta v_1)$$

$$= \frac{1}{\delta_0} \int_{B_p(\theta r)} \sum_{|\alpha|=|\beta|=m} a_{\alpha\beta} \left((D^\alpha(\eta v_1) - \eta D^\alpha v_1, D^\beta(\eta v_1)) + (\eta D^\alpha v_1, D^\beta(\eta v_1)) \right)$$

$$= \frac{1}{\delta_0} \int_{B_p(\theta r)} \sum_{|\alpha|=|\beta|=m} a_{\alpha\beta} \left(D^\alpha(\eta v_1) - \eta D^\alpha v_1, D^\beta(\eta v_1) \right)$$

$$+ \frac{1}{\delta_0} \int_{B_p(\theta r)} \sum_{|\alpha|=|\beta|=m} a_{\alpha\beta} \left(D^\alpha v_1, \eta D^\beta(\eta v_1) - D^\beta(\eta^2 v_1) \right),$$

where we have used the Gårding inequality from the first to the second line, and inserted the term $\mathcal{E}(v_1, \eta v_1) = 0$ into the last equality. For any $\epsilon_1 > 0$, we have

$$(2-3) \quad \frac{1}{\delta_0} \int_{B_p(\theta r)} \sum_{|\alpha|=|\beta|=m} a_{\alpha\beta} \left(D^\alpha(\eta v_1) - \eta D^\alpha v_1, D^\beta(\eta v_1) \right)$$

$$\leq \frac{C_{12}}{\delta_0} \left(\frac{1}{2\epsilon_1} \int_{B_p(\theta r)} |\nabla^m(\eta v_1) - \eta \nabla^m v_1|^2 + \frac{\epsilon_1}{2} \int_{B_p(\theta r)} |\nabla^m(\eta v_1)|^2 \right)$$

$$\leq C_{13} \left(\frac{\epsilon_1}{2} \int_{B_p(\theta r)} |\nabla^m(\eta v_1)|^2 + \frac{1}{2\epsilon_1} \int_{B_p(\theta r)} \sum_{j=0}^{m-1} \frac{|\nabla^j v_1|^2}{(\theta - 1)^{2m-2j} r^{2m-2j}} \right).$$

Also,

$$\frac{1}{\delta_0} \int_{B_p(\theta r)} \sum_{|\alpha|=|\beta|=m} a_{\alpha\beta} \left(D^\alpha v_1, \eta D^\beta(\eta v_1) - D^\beta(\eta^2 v_1) \right)$$

$$\leq C_{14} \int_{B_p(\theta r)} \sum_{j=0}^{m-1} |\nabla^m v_1| |\nabla^{m-j} \eta^2| |\nabla^j v_1|$$

$$\leq C_{15} \int_{B_p(\theta r)} \sum_{j=0}^{m-1} \frac{|\nabla^m v_1| \eta |\nabla^j v_1|}{(\theta - 1)^{m-j} r^{m-j}} = C_{15} \int_{B_p(\theta r)} \sum_{j=0}^{m-1} \frac{|\nabla^m v_1| |\nabla^j v_1|}{(\theta - 1)^{m-j} r^{m-j}} \frac{1}{\delta_0} \int_{B_p(\theta r)} \sum_{|\alpha|=|\beta|=m} a_{\alpha\beta} \left(D^\alpha v_1, \eta D^\beta(\eta v_1) - D^\beta(\eta^2 v_1) \right).$$
\[
\begin{align*}
&\leq \frac{\epsilon_1}{2} \int_{B_p(\delta r)} |\eta \nabla^m v_i|^2 + \frac{C_{15}^2}{2\epsilon_1} \int_{B_p(\delta r)} \sum_{j=0}^{m-1} \frac{|\nabla^j v_i|^2}{(\theta - 1)^{2m-2j} r^{2m-2j}} \\
&\leq \frac{\epsilon_1}{2} \int_{B_p(\delta r)} |\nabla^m (\eta v_i)|^2 + \frac{C_{16}}{2\epsilon_1} \int_{B_p(\delta r)} \sum_{j=0}^{m-1} \frac{|\nabla^j v_i|^2}{(\theta - 1)^{2m-2j} r^{2m-2j}}.
\end{align*}
\]

Choosing \(\epsilon_1 \) to be sufficiently small and substituting this estimate and (2-3) into (2-2), we get

\[
(2-4) \int_{B_p(\delta r)} |\nabla^m v_i|^2 \leq \int_{B_p(\delta r)} |\nabla^m (\eta v_i)|^2 \leq C_{17} \int_{B_p(\delta r)} \sum_{j=0}^{m-1} \frac{|\nabla^j v_i|^2}{(\theta - 1)^{2m-2j} r^{2m-2j}}.
\]

In terms of the weighted seminorms

\[
\Psi_k = \sup_{1 < \theta < \sigma < \theta} (\sigma - 1)^{2k} \eta^{2k} \int_{B_p(\sigma r)} |\nabla^k v_i|^2,
\]

Equation (2-4) can be written into

\[
(2-5) \quad \Psi_m \leq C_{17} \sum_{k=0}^{m-1} \Psi_k.
\]

For each \(1 \leq k \leq 2m - 1 \), we have the interpolation inequality

\[
(2-6) \quad \Psi_k \leq \epsilon \Psi_{2m} + C(k) \epsilon^{k/(k-2m)} \Psi_0
\]

for any \(\epsilon > 0 \). Thus, by substituting (2-6) into (2-5), with a properly chosen \(\epsilon \), we get \(\Psi_m \leq C_{18} \Psi_0 \). In particular, we conclude that

\[
\int_{B_p(\delta r)} |\nabla^m v_i|^2 \leq \frac{C_{18}}{(\theta - 1)^{2m-2m} r^{2m}} \int_{B_p(\delta r)} v_i^2.
\]

Hence,

\[
\begin{align*}
&\int_{B_p(\delta r)} \sum_{j=0}^{m-1} \frac{|\nabla^j v_i|^2}{(\theta - 1)^{2m-2j} r^{2m-2j}} \\
&\leq \sum_{j=0}^{m-1} \frac{1}{(\theta - 1)^{2m-2j} r^{2m-2j}} \left(\epsilon_j \int_{B_p(\delta r)} |\nabla^m v_i|^2 + C(j) \epsilon_j^{j/(j-m)} \int_{B_p(\delta r)} v_i^2 \right) \\
&\leq m \delta^2 \int_{B_p(\delta r)} |\nabla^m v_i|^2 + \frac{C(m)}{(\theta - 1)^{2m} r^{2m}} \int_{B_p(\delta r)} v_i^2 \\
&\leq \frac{C_{19}}{(\theta - 1)^{2m} r^{2m}} \int_{B_p(\delta r)} v_i^2,
\end{align*}
\]

POLYNOMIAL GROWTH SOLUTIONS TO HIGHER-ORDER ELLIPTIC SYSTEMS 59
where $\epsilon_j = (\theta - 1)^{2m-2j}r^{2m-2j}$. Substituting this inequality into (2-1), we get

$$\text{tr}_{I_{\theta r}} I_{\theta r} (V) \leq C_{p}^{m-1} 2^{m} \sum_{i=1}^{k} \sum_{j=0}^{m} \frac{\theta^{2m-2j}r^{2m-2j}}{\lambda_j(\theta r)} \int_{B_{p}(\theta r)} \frac{|\nabla j v_i|^2}{(\theta - 1)^{2m-2j}r^{2m-2j}} \leq C_{20} \sum_{i=1}^{k} \frac{\theta^{2m-2j}}{\lambda_i(\theta r)(\theta - 1)^{2m}r^{2m}}.$$

Now the next theorem may be proved in a similar fashion to Theorem 1.4 by using Lemmas 1.3 and 2.1.

Theorem 2.2. Assume that Condition L_d holds. Then the space $\mathcal{H}^{L_d}(\mathbb{R}^n)$ is finite-dimensional, and its dimension $h^{L_d}(\mathbb{R}^n)$ satisfies the estimate

$$h^{L_d}(\mathbb{R}^n) \leq C d^{mn}$$

for all $d \geq 1$.

Theorem 2.2 can be generalized to the case of systems of partial differential equations. More specifically, for the system

$$(\mathcal{L}u)_i \equiv \sum_{|\alpha|=m} (-1)^m D^\alpha \left(\sum_{|\beta|=m} a_{ij}^{\alpha \beta}(x) D^\beta u_j(x) \right),$$

where $1 \leq i, j \leq N$ and $u = (u_1, \ldots, u_N) : \mathbb{R}^n \to \mathbb{R}^N$, assume that the coefficients of \mathcal{L} satisfy the following condition.

Condition \mathcal{L}_d. The coefficient matrix $(a_{ij}^{\alpha \beta}(x))$ is measurable, bounded, and there exists a constant $\delta_0 > 0$ such that for all $u \in \mathcal{H}^{m}_0(\mathbb{R}^n, \mathbb{R}^N)$,

$$\int_{\mathbb{R}^n} \sum_{|\alpha|=|\beta|=m} \sum_{i, j=1}^{N} a_{ij}^{\alpha \beta}(x) D^\beta u_i(x) D^\alpha u_j(x) \, dx \geq \delta_0 \sum_{j=1}^{N} \|\nabla^m u_j\|^2_2.$$

It is easy to see that if L satisfies the uniform ellipticity condition, that is, there exists a constant $\Lambda > 0$ such that

$$\Lambda |\mathbb{E}|^{2mN} |\eta|^2 \geq \sum_{|\alpha|=|\beta|=m} \sum_{i, j=1}^{N} a_{ij}^{\alpha \beta}(x) \mathbb{E}^\alpha \mathbb{E}^\beta \eta_i \eta_j \geq \Lambda^{-1} |\mathbb{E}|^{2mN} |\eta|^2$$

for all $x, \mathbb{E} \in \mathbb{R}^n$, and $\eta \in \mathbb{R}^N$, then Condition \mathcal{L}_d holds.
Theorem 2.3. Assume that Condition \mathcal{L}_f holds. Then the space $\mathcal{H}^f_\vartheta(\mathbb{R}^n)$ is finite dimensional, and its dimension $h^f_\vartheta(\mathbb{R}^n)$ satisfies the estimate
$$h^f_\vartheta(\mathbb{R}^n) \leq C d^{mnN}$$
for all $d \geq 1$.

Acknowledgment

Part of this work was done when the first author was visiting the Department of Mathematics at the University of Minnesota. He thanks the members of the Department of Mathematics for their hospitality during his visit.

References

Received April 19, 2005. Revised August 31, 2006.

ROGER CHEN
DEPARTMENT OF MATHEMATICS
NATIONAL CHENG KUNG UNIVERSITY
TAINAN 701
TAIWAN
rchen@mail.ncku.edu.tw

JIAPING WANG
SCHOOL OF MATHEMATICS
UNIVERSITY OF MINNESOTA
MINNEAPOLIS, MN 55455
UNITED STATES
jiaping@math.umn.edu
http://www.math.umn.edu/~jiaping