Vol. 229, No. 2, 2007

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Cohomologie de Chevalley des graphes vectoriels

Walid Aloulou, Didier Arnal and Ridha Chatbouri

Vol. 229 (2007), No. 2, 257–292
Abstract

The space of smooth functions and vector fields on d is a Lie subalgebra of the (graded) Lie algebra Tpoly(d), equipped with the Scouten bracket. Here we compute the cohomology of this subalgebra for the adjoint representation in Tpoly(d), restricting ourselves to the case of cochains defined with purely aerial Kontsevich graphs, as in Arnal, Gammella and Masmoudi, Pacific Journal of Mathematics 218 (2005), 201–239.

We find results very similar to the classical result of Gelfand–Fuks and those of De Wilde–Lecomte.

Keywords
formality, vector graph, Chevalley cohomology
Mathematical Subject Classification 2000
Primary: 17B56
Secondary: 53D55, 05C99
Milestones
Received: 4 July 2005
Accepted: 4 May 2006
Published: 1 February 2007
Authors
Walid Aloulou
Département de Mathématiques
Unité de Recherche Physique Mathématique
Faculté des Sciences de Monastir
Avenue de l’environnement
5019 Monastir
Tunisie
Didier Arnal
Institut de Mathématiques de Bourgogne
UMR CNRS 5584
Université de Bourgogne
U.F.R. Sciences et Techniques B.P. 47870
F-21078 Dijon Cedex
France
Ridha Chatbouri
Département de Mathématiques
Unité de Recherche Physique Mathématique
Faculté des Sciences de Monastir
Avenue de l’environnement
5019 Monastir
Tunisie