Vol. 229, No. 2, 2007

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Anisotropic real curves and bordered line arrangements

Johannes Huisman and Michele Lattarulo

Vol. 229 (2007), No. 2, 365–379
Abstract

A real curve X of genus g 2 is anisotropic if the image of the canonical morphism k : X g1 is a rational real curve having no real points. We describe the moduli space of anisotropic curves, proving that it is isomorphic to the moduli space of double coverings of 2 ramified along real line arrangements.

Keywords
anisotropic real curve, bordered line arrangement, moduli space
Mathematical Subject Classification 2000
Primary: 14H15, 30F50, 52C30
Milestones
Received: 27 May 2005
Revised: 21 January 2006
Published: 1 February 2007
Authors
Johannes Huisman
Département de Mathématiques
Laboratoire CNRS UMR 6205
UFR Sciences et Techniques
Université de Bretagne Occidentale
6, avenue Victor Le Gorgeu
CS 93837
29238 Brest cedex 3
France
http://stockage.univ-brest.fr/~huisman/
Michele Lattarulo
Dipartimento di Matematica
Università di Genova
Via Dodecaneso 35
16146 Genova
Italia
http://www.dima.unige.it/~lattarul/