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A submanifold Mn
r of pseudo-Euclidean space E4

s is said to have harmonic
mean curvature vector if 1 EH = E0, where EH denotes the mean curvature
vector field and 1 the Laplacian of the induced pseudo-Riemannian metric.
We prove that every nondegenerate Lorentz hypersurface M3

1 of E4
1 with

harmonic mean curvature vector is minimal.

1. Introduction

A submanifold M of a Riemannian manifold N is called minimal if its mean cur-
vature vector field EH vanishes. Of particular interest are minimal submanifolds
of Euclidean spaces Em . They are special cases of larger classes of submanifolds
such as submanifolds of finite type, or submanifolds with harmonic mean curvature
vector field. The study of such submanifolds was initiated by B.-Y. Chen [1993;
1996] in the context of the theory of submanifolds of finite type.

Let M be an n-dimensional connected submanifold of Euclidean space Em .
Denote by Ex , EH , and 1 the position vector field of M , the mean curvature vector
field of M , and the Laplace operator of M with respect to the induced Riemannian
metric of M . It is well known (see [Chen 1984], for instance) that

(1) 1Ex = −n EH .

This equation shows that M is a minimal submanifold of Em if and only if its co-
ordinate functions are harmonic. We also observe that every minimal submanifold
of Em satisfies

(2) 1 EH = E0.

Submanifolds of Em that satisfy condition (2) are said to have harmonic mean
curvature vector field. These submanifolds are often called biharmonic since, in
view of (1), condition (2) is equivalent to 12

Ex = E0. The question that naturally
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arises is whether the class of biharmonic submanifolds is larger than that of minimal
submanifolds. For a survey of progress on this problem for Em , see [Chen 1991].

Conjecture (B.-Y. Chen). The only biharmonic submanifolds of Euclidean spaces
are the minimal submanifolds.

This conjecture is supported by the work of several researchers. Chen himself
[1984] proved that every biharmonic surface in E3 is minimal. I. Dimitrić [1989;
1992], generalizing Chen’s result, proved that any biharmonic submanifold M of
a Euclidean space Em is minimal if it is a curve, a submanifold with constant
mean curvature, a hypersurface with at most two distinct principal curvatures, a
pseudo-umbilical submanifold of dimension n 6= 4, or a submanifold of finite type.

Th. Hasanis and Th. Vlachos [1995] proved that every biharmonic hypersurface
in E4 is minimal. Their work used coordinates and required lengthy computer
calculations. In [Defever 1998] one of us gave a coordinate-free and more concise
proof of the same theorem, using purely analytical arguments that afford greater
insight into the structure of the hypersurface.

In contrast to the Euclidean case, the conjecture generally fails for submani-
folds in a pseudo-Euclidean space Em

s . This is not unexpected: a problem for-
mulated in Euclidean spaces often appears considerably different when considered
in pseudo-Euclidean spaces. B.-Y. Chen and S. Ishikawa [1991] gave examples
of nonminimal biharmonic space-like surfaces with constant mean curvature in
pseudo-Euclidean spaces E4

s (s =1, 2). The same authors [1998] classified pseudo-
Riemannian biharmonic surfaces of signature (1, 1) with constant nonzero mean
curvature and flat normal connection in E4

s .
However, biharmonicity implies minimality in some special cases. It was shown

in [Chen and Ishikawa 1998] that any biharmonic surface in E3
s (s = 1, 2) is min-

imal, and in [Defever et al. 2006] that every biharmonic hypersurface M3
r of E4

s
(s = 1, 2, 3) whose shape operator is diagonal is minimal.

Here we address the same question for biharmonic Lorentz hypersurfaces of
pseudo-Euclidean space E4

1 , where no restriction for the shape operator is imposed.
By work of A. Z. Petrov [1969] and M. Magid [1984; 1985], besides the diagonal
form of the shape operator, there are three additional canonical forms. We prove
that for each such canonical form of the shape operator of a biharmonic Lorentz
hypersurface in E4

1 , the mean curvature is zero (see Propositions 1, 2 and 3). This
is done by considering two possibilities, namely whether or not H is a constant.
In the first case, we prove that H must be zero. In the second case, we look at the
vector ∇ H , and show that this can be either space-like or light-like. Hence:

Theorem. Every nondegenerate biharmonic Lorentz hypersurface of four-dimen-
sional pseudo-Euclidean space E4

1 is minimal.
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2. Preliminaries

Biharmonic submanifolds. Let M3
1 be a Lorentz hypersurface of pseudo-Euclid-

ean space E4
1 . Let Eξ denote a unit normal vector field with 〈Eξ, Eξ〉 = 1. Denote by

∇ and ∇̃ the Levi-Civita connections of M3
1 and E4

1 respectively. For any vector
fields X, Y tangent to M3

1 , the Gauss formula is given by

∇̃X Y = ∇X Y + h(X, Y )Eξ,

where h is the scalar-valued second fundamental form. If we denote by S the shape
operator of M3

1 associated to Eξ , the Weingarten formula is given by

∇̃X Eξ = −S(X),

where 〈S(X), Y 〉 = h(X, Y ). If H =
1
3 tr S, the mean curvature vector EH = H Eξ is

a well defined normal vector field to M3
1 in E4

1 . The Codazzi equation is given by

(3) (∇X S)Y = (∇Y S)X,

and the Gauss equation by

(4) R(X, Y )Z = 〈S(Y ), Z〉S(X) − 〈S(X), Z〉S(Y );

see [O’Neill 1983]. A hypersurface M3
1 of E4

1 is said to have harmonic mean
curvature vector field if

1 EH = 0.

This condition is equivalent to

1 EH = 2S(∇ H) + 3H(∇ H) + {1H + H tr S2
}Eξ = E0;

see [Chen and Ishikawa 1991]. Therefore we have the following necessary and
sufficient conditions for a hypersurface M3

1 of E4
1 to be biharmonic:

S(∇ H) = −
3H
2

(∇ H),(5)

1H + H tr S2
= 0,(6)

where the Laplace operator 1 acting on scalar-valued function f is given by

(7) 1 f = −

3∑
i=1

εi (ei ei f − ∇ei ei f );

see [Chen and Ishikawa 1991], for example. Here {e1, e2, e3} is a local orthonormal
frame of Tp M3

1 with 〈ei , ei 〉 = εi = ±1.
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Hypersurfaces in pseudo-Euclidean spaces. Consider the real vector space R4

with the standard basis {e1, e2, e3, e4}. Let 〈 , 〉 denote the indefinite inner product
on R4 whose matrix with respect to the standard basis is diag(−1, 1, 1, 1). This
is called the Lorentz metric on R4. The space R4 with this metric is called 4-
dimensional pseudo-Euclidean space, and is denoted by E4

1 .
A vector X ∈ E4

1 is called time-like, space-like, or light-like according to whether
〈X, X〉 is negative, positive, or zero. A nondegenerate hypersurface M3

r of pseudo-
Euclidean space E4

1 can itself be endowed with a Riemannian or a Lorentzian met-
ric structure, according to whether the metric induced on M3

r from the Lorentzian
metric on E4

1 is (positive) definite or indefinite. In the former case a normal vector
to M3

r is time-like, and in the latter case a normal vector to M3
r is space-like.

The shape operator of a Riemannian submanifold is always diagonalizable, but
this is not the case for the shape operator of a Lorentzian submanifold. We know
from [Petrov 1969, 50–55] that a symmetric endomorphism of a vector space with
a Lorentzian inner product can be put into one of four possible canonical forms. In
particular, the matrix representation G of the induced metric on M3

1 is of Lorentz
type, so the shape operator S of M3

1 can be put into one of the following four forms
with respect to frames {e1, e2, e3} at Tp M3

1 [Magid 1984; 1985]:

S =

 λ1 0 0
0 λ2 0
0 0 λ3

 , G =

−1 0 0
0 1 0
0 0 1

 ,(I)

S =

 λ 0 0
1 λ 0
0 0 λ3

 , G =

 0 1 0
1 0 0
0 0 1

 ,(II)

S =

 λ 0 0
0 λ 1
1 0 λ

 , G =

 0 1 0
1 0 0
0 0 1

 ,(III)

S =

 µ −ν 0
ν µ 0
0 0 λ3

 , G =

−1 0 0
0 1 0
0 0 1

 , ν 6= 0.(IV)

The matrices G for cases (I) and (IV) are with respect to an orthonormal basis
of Tp M3

1 , whereas for cases (II) and (III) are with respect to a pseudo-orthonormal
basis. This is a basis {e1, e2, e3} of Tp M3

1 satisfying 〈e1, e1〉 = 〈e2, e2〉 = 〈e1, e3〉 =

〈e2, e3〉 = 0, and 〈e1, e2〉 = 〈e3, e3〉 = 1. In this work we examine cases (II), (III)
and (IV), where the hypersurface M3

1 of E4
1 has nondiagonal shape operator. Case

(I) has been studied in [Defever et al. 2006].
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3. Biharmonic hypersurfaces

Let M3
1 be a biharmonic hypersurface in E4

1 . Then conditions (5) and (6) are
satisfied. In order to prove the Theorem we need to show that the mean curvature
H vanishes. We will consider each case for the shape operator S separately.

Assume the shape operator S has the canonical form (II).

Case 1. H is constant. Then equation (6) implies that

H tr S2
= 0.

If H is zero the result follows. Otherwise, tr S2
= 0 implies that 2λ2

+ λ2
3 = 0, so

λ = λ3 = 0, and since 2λ + λ3 = 3H , we also obtain that H = 0.

Case 2. H is not constant. Hence ∇ H 6= E0. As the shape operator has the canonical
form (II) (with respect to a pseudo-orthonormal basis {e1, e2, e3} of Tp M3

1 ), then
S(e1) = λe1 + e2, S(e2) = λe2, and S(e3) = λ3e3. Therefore, by using (5) we
conclude that ∇ H can be considered either in the direction of e3, or in the direction
of e2. In the first case, ∇ H is space-like (it cannot be time-like since 〈e3, e3〉 = 1),
and λ3 = −

3
2 H . In the second case ∇ H is light-like, and λ = −

3
2 H . These two

cases need to be examined separately.

Proposition 1. Let M3
1 be a Lorentz biharmonic hypersurface of pseudo-Euclidean

space E4
1 with shape operator of type (II), and suppose ∇ H is space-like. Then M3

1
is minimal.

Proof. We assume that H 6= 0 and we will end up with a contradiction. Since
∇ H is nonzero, the vector equation (5) shows that ∇ H is an eigenvector of S with
eigenvalue −

3
2 H . We write

∇ei e j =

3∑
k=1

ωk
i j ek .

We take into account the action of S on the basis {e1, e2, e3}, and use the Codazzi
equations (3). The relations

〈(∇e1 S)e2, e1〉 = 〈(∇e2 S)e1, e1〉, 〈(∇e2 S)e3, e3〉 = 〈(∇e3 S)e2, e3〉,

〈(∇e1 S)e3, e3〉 = 〈(∇e3 S)e1, e3〉, 〈(∇e2 S)e3, e2〉 = 〈(∇e3 S)e2, e2〉,

〈(∇e1 S)e2, e3〉 = 〈(∇e2 S)e1, e3〉, 〈(∇e1 S)e3, e2〉 = 〈(∇e3 S)e1, e2〉,

〈(∇e2 S)e3, e1〉 = 〈(∇e3 S)e2, e1〉

imply that ω1
21 = ω2

22, ω3
32 = ω3

31 = ω1
23 = 0, ω3

12 = ω3
21, e3(λ) = (λ3 − λ)ω1

13,
e3(λ) = (λ3 − λ)ω2

23. From the last two equations we obtain that ω1
13 = ω2

23, and
from tr S = 3H = 2λ + λ3, it follows that λ =

9
4 H 6= λ3.
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Further, the conditions

∇ep〈e1, e1〉 = ∇ep〈e2, e2〉 = ∇ep〈e3, e3〉 = ∇ep〈e1, e3〉 = ∇ep〈e2, e3〉 = 0

for p = 1, 2, 3 imply that ω2
p1 =ω1

p2 =ω3
p3 = 0, and ω3

p1 =−ω2
p3, ω3

p2 =−ω1
p3. As

a consequence, we also obtain that ω1
33 = ω2

33 = ω3
22 = 0. Therefore, the covariant

derivatives ∇ei e j simplify to

∇e1e1 = ω1
11e1, ∇e1e2 = ω2

12e2 + ω3
12e3, ∇e1e3 = ω1

13e1 + ω2
13e2

∇e2e1 = ω3
21e3, ∇e2e2 = 0, ∇e2e3 = ω2

23e2

∇e3e1 = 0, ∇e3e2 = ω2
32e2, ∇e3e3 = 0.

Next, we construct an orthonormal basis {X1, X2, X3} from the pseudo-orthonor-
mal basis {e1, e2, e3} such that

X1 =
e1 + e2

√
2

, X2 =
e1 − e2

√
2

, X3 = e3.

The shape operator S with respect to this new basis takes the form

S =

λ +
1
2

1
2 0

−
1
2 λ −

1
2 0

0 0 λ3

 .

Note that X3 is still in the direction of ∇ H , and that λ3 = −
3
2 H . Therefore, since

∇(H) = X1(H)X1 + X2(H)X2 + X3(H)X3, we have

(8) X1(H) = X2(H) = 0, X3(H) 6= 0.

Since M3
1 is a Lorentz hypersurface, tr S = 3H , λ =

9
4 H , and tr S2

=
99
8 H 2. By

expressing the Laplace operator (7) in terms of the basis {X1, X2, X3}, we reduce
Equation (6) to

−
(
X1 X1(H) − ∇X1 X1(H)

)
+

(
X2 X2(H) − ∇X2 X2(H)

)
−

(
X3 X3(H) − ∇X3 X3(H)

)
+ H

(99H 2

8

)
= 0,

which by the use of (8) becomes

(9) ∇X1 X1(H) − ∇X2 X2(H) − e3e3(H) +
99H 3

8
= 0.

On the other hand, an easy computation shows that

∇X1 X1 =
1
2

(
ω1

11e1 + ω3
11e3 + ω2

12e2 + ω3
12e3 + ω3

21e3
)
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and similarly for ∇X2 X2, so we obtain

∇X1 X1(H) =
1
2

(
ω3

11 + ω3
12 + ω3

21
)
e3(H),

∇X2 X2(H) =
1
2

(
ω3

11 − ω3
12 − ω3

21
)
e3(H).

Hence equation (9) simplifies to

(10) e3e3(H) − 2ω3
12e3(H) −

99H 3

8
= 0.

Substituting λ =
9
4 H into e3(λ) = (λ3 − λ)ω1

13 we obtain

(11) e3(H) = −
5H
3

ω1
13 =

5H
3

ω3
12.

We evaluate the Gauss equation (4) for 〈R(e3, e1)e2, e3〉 and equate the left-hand
side by using the definition of the curvature tensor to obtain

(12) e3(ω
3
12) = (ω3

12)
2
−

27H 2

8
.

Applying e3 to both sides of (11) and using (12) we get

e3e3(H) =
40H

9
(ω3

12)
2
−

45H 3

8
.

Substituting this into (10) and using (11) we obtain

(13) 5
9(ω3

12)
2
− 9H 2

= 0,

since we have assumed that H 6= 0. Acting with e3 on (13) and using expressions
(11) and (12), we simultaneously obtain that

5
9
(ω3

12)
2
−

255H 2

8
= 0.

Therefore, H must be zero. �

Proposition 2. Let M3
1 be a Lorentz biharmonic hypersurface of pseudo-Euclidean

space E4
1 with shape operator of type (II), and suppose ∇ H is light-like. Then M3

1
is minimal.

Proof. By hypothesis ∇ H is along the vector e2, and λ = −
3
2 H . Since tr S = 3H ,

we have λ3 = 6H . Because the basis {e1, e2, e3} is pseudo-orthonormal, it follows
that ∇(H) = e2(H)e1 + e1(H)e2 + e3(H)e3. Therefore,

(14) e2(H) = e3(H) = 0, e1(H) 6= 0.
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By writing ∇ei e j =
∑3

k=1 ωk
i j ek , we obtain

0 = ∇ei 〈e j , ek〉 = 〈∇ei e j , ek〉+〈e j , ∇ei ek〉

= ω1
i j 〈e1, ek〉+ω2

i j 〈e2, ek〉+ω3
i j 〈e3, ek〉+ω1

ik〈e j , e1〉+ω2
ik〈e j , e2〉+ω3

ik〈e j , e3〉.

By assigning i, j, k any values from {1, 2, 3}, certain of the ωk
i j vanish, and others

satisfy simple relations. In particular, we obtain

∇e1e3 = −ω3
12e1 + ω2

13e2, ∇e3e1 = ω1
31e1 + ω3

31e3,(15)

∇e2e3 = −ω3
22e1 − ω3

21e2, ∇e3e2 = −ω1
31e2 + ω3

32e3.(16)

Using relations (14) we get [e2, e3](H) = e2e3(H) − e3e2(H) = 0. Also, since
[e2, e3](H) = ∇e2e3(H) − ∇e3e2(H), it follows that ω3

22 = 0, so relations (16)
simplify to

(17) ∇e2e3 = −ω3
21e2, ∇e3e2 = −ω1

31e2 + ω3
32e3.

We use the Codazzi equations to obtain

〈(∇e1 S)e3, e3〉 = 〈(∇e3 S)e1, e3〉, 〈(∇e2 S)e3, e3〉 = 〈(∇e3 S)e2, e3〉,

which, combined with (15) and (17), imply respectively that

e1(λ3) = ω3
32,(18)

e2(λ3) = (λ − λ3)ω
3
32.(19)

Using (14) and that λ3 = 6H , relation (19) implies that (λ−λ3)ω
3
32 = 0. If ω3

32 = 0,
then from (18) it follows that e1(λ3) = 0, which contradicts (14). If λ = λ3, then
−

3
2 H = 6H , i.e. H = 0. �

Assume the shape operator S has the canonical form (III).

Case 1. H is constant. Then Equation (6) implies that

H tr S2
= 0.

If H is zero the result follows. Otherwise, tr S2
= 0 implies that λ = 0. But since

tr S = 3λ = 3H , it also follows that H = 0.

Case 2. H is not constant. Then ∇ H 6= E0, and the vector equation (5) shows that
∇ H is an eigenvector of S with eigenvalue −

3
2 H . Since the shape operator has the

canonical form (III) (with respect to a pseudo-orthonormal basis {e1, e2, e3}), then
S(e1) = λe1 + e3, S(e2) = λe2, and S(e3) = e2 + λe3 (with respect to a pseudo-
orthonormal basis {e1, e2, e3} of Tp M3

1 ). Hence, ∇ H is in the direction of e2, i.e.,
it is light-like, and λ = −

3
2 H . We will prove the following:
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Proposition 3. Let M3
1 be a Lorentz biharmonic hypersurface of pseudo-Euclidean

space E4
1 with shape operator of type (III), and suppose ∇ H is light-like. Then M3

1
is minimal.

Proof. The shape operator S, with respect to the orthonormal basis {X1, X2, X3}

of Tp M3
1 considered in Proposition 1, takes the form

S =


λ 0 1

√
2

0 λ −
1

√
2

1
√

2
1

√
2

λ

 .

Since tr S = 3H , it follows that 3λ = −
9
2 H = 3H , so H = 0. �

Assume the shape operator S has the canonical form (IV).

Case 1. H is constant. Then the scalar equation (6) becomes

H tr S2
= 0.

If H is zero, the result follows. Otherwise, tr S2
= 2µ2

− 2ν2
+ λ2

3 = 0, and from
the form of the shape operator, we also have 2µ + λ3 = 3H 6= 0. We apply the
Codazzi equations (3) to the relations

〈(∇ei S)e j , ek〉 = 〈(∇e j S)ei , ek〉

for each triplet (i, j, k) in the set

{(1,2,1), (1,2,2), (1,3,1), (2,3,2), (1,3,3), (2,3,3), (1,2,3), (1,3,3), (2,3,1)},

and obtain the following linear system of nine equations (we denote λ3 by λ from
now on):

−e1(ν) = e2(µ) + ν(1 − ε1ε2)ω
2
21,

e2(ν) = e1(µ) + ν(ε1ε2 − 1)ω1
12,

(λ − µ)ω1
13 + νω2

13 = e3(µ) + ν(1 − ε1ε2)ω
1
32,

(λ − µ)ω2
23 − νω1

23 = e3(µ) − ν(1 − ε1ε2)ω
2
31,

e1(λ) = (µ − λ)ω3
31 + νω3

32,

e2(λ) = −νω3
31 + (µ − λ)ω3

32,

−νω3
11 + (µ − λ)ω3

12 = νω3
22 + (µ − λ)ω3

21,

e3(ν) = (λ − µ)ω2
13 − νω1

13,

−e3(ν) = (λ − µ)ω1
23 + νω2

23.
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We assume that ε1ε2 = 1 (the case ε1ε2 = −1 can be treated accordingly) so
ε1 =ε2 =1 and ε3 =−1. Applying ei (i =1, 2, 3) to the equation 2µ2

−2ν2
+λ2

=0
we conclude that

ei (ν) =
µ − λ

ν
ei (µ),

and taking into account the relation ωk
i j = −ε jεkω

j
ik , the system above simplifies

to the following linear system of seven equations in six unknowns ω1
13, ω2

13, ω2
23,

ω1
23, ω3

31, ω3
32:

(20)

(λ − µ)ω1
13 + νω2

13 = e3(µ),

(λ − µ)ω2
23 − νω1

23 = e3(µ),

(µ − λ)ω3
31 + νω3

32 = e1(λ),

−νω3
31 + (µ − λ)ω3

32 = e2(λ),

−νω1
13 + (µ − λ)ω2

13 − νω2
23 + (λ − µ)ω1

23 = 0,

−νω1
13 + (λ − µ)ω2

13 = e3(ν),

(λ − µ)ω1
23 + νω2

23 = −e3(ν).

We wish to show that this system has no (nonzero) solution. If µ=λ, the conditions
tr S2

= 0 and tr S = 3H imply that µ, λ, ν are constants, so the system simplifies
to a homogeneous system with only the trivial solution. If µ 6= λ, it follows that
the ranks of the coefficient matrix and the augmented matrix of system (20) are
always different, with only one possible exception, namely

(21) (λ − µ)2e3(ν) − ν2e3(ν) + 2(λ − µ)νe3(µ) = 0,

which we wish to exclude. Taking into account the relations 2µ2
−2ν2

+λ2
=0 and

2µ+λ = 3H , equation (21) is equivalent to the possibilities, either 9H 2e3(ν) = 0,
or (8ν2

− 9H 2)e3(ν) = 0.
If e3(ν) = 0, then ν is constant (recall that H 6= 0). Therefore e3(µ) = 0, so µ

is constant as well, which implies that λ is constant, so e1(λ) = e2(λ) = 0. Hence
the linear system (20) becomes a homogeneous system with the trivial solution
only. If 8ν2

− 9H 2
= 0, then ν is constant, so argue similarly. To summarize, the

possibility that H is a nonzero constant and tr S2
= 0, is excluded.

Case 2. H is not constant. Since the shape operator, with respect to an orthonormal
basis {e1, e2, e3} of Tp M3

1 , has the canonical form (IV), we have S(e1)=µe1+νe2,
S(e2) = −νe1 +µe2, and S(e3) = λ3e3. This means that ∇ H is in the direction of
e3, i.e., space-like.

The following proposition is proved along the same lines as Proposition 1.
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Proposition 4. Let M3
1 be a Lorentz biharmonic hypersurface of pseudo-Euclidean

space E4
1 with shape operator of type (IV), and suppose ∇ H is space-like. Then

M3
1 is minimal.

Proof. We assume that H 6= 0 and we will end up to a contradiction. Then ∇ H 6= E0
and the vector equation (5) shows that ∇ H is an eigenvector of S with eigenvalue
−

3
2 H . Then λ3 = −

3
2 H , and

e1(H) = e2(H) = 0, e3(H) 6= 0.

From the equation tr S = 3H , it follows that µ =
9
4 H . Next, we try to obtain

simplified expressions for ∇ei e j =
∑3

k=1 ωk
i j ek . We apply the Codazzi equations

(3) for

〈(∇e1 S)e3, e1〉, 〈(∇e2 S)e3, e2〉, 〈(∇e1 S)e3, e2〉, 〈(∇e1 S)e3, e3〉, 〈(∇e2 S)e3, e3〉

and obtain

e3(H) = −
5H
3

ω1
13, e3(H) = −

5H
3

ω2
23, e3(ν) = −νω1

13

15H
4

ω3
31 + νω3

32 = 0,
15H

4
ω3

32 − νω3
31 = 0.

Therefore ω1
13 = ω2

23, and since H and ν are not zero, ω3
31 = ω3

32 = 0. Taking into
account the condition ωk

i j = −ε jεkω
j
ik , the previous relations give ω1

33 = ω2
33 = 0.

Finally, since [e1, e2](H) = 0, it follows that ∇e1e2(H) − ∇e2e1(H) = 0; thus
ω3

12 = ω3
21 = 0.

Next, we use the Gauss equation (4) and the definition of the curvature tensor
for 〈R(e1, e3)e1, e3〉 and 〈R(e3, e2)e3, e2〉 to obtain

(22) e3(ω
3
11) = −(ω1

13)
2
+

27H 2

8
, e3(ω

2
23) = −(ω2

23)
2
+

27H 2

8
.

Hence, in view of (7), and taking into account the relations ω3
11 = −ε1ε3ω

3
13 = ω3

13,
ω3

22 = −ε2ε3ω
2
23 = −ω2

23, and ω1
13 = ω2

23, equation (6) reduces to

(23) e3e3(H) + 2ω1
13e3(H) − H

(99H 2

8
− 2ν2

)
= 0.

Applying e3 to both sides of the equality e3(H) = −
5
3 Hω1

13 and using (22), we get

e3e3(H) =
40H

9
(ω1

13)
2
−

45H 3

8
,

so (23) becomes

(24) 10
9 (ω1

13)
2
+ 2ν2

− 18H 2
= 0.
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Acting with e3 on (24) we obtain

10
9 (ω1

13)
2
+ 2ν2

−
135H 2

4
= 0.

The two last equations imply that H = 0, which is a contradiction. �

The Theorem stated in the introduction now follows from Propositions 1–4.
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