Pacific

Journal of

 MathematicsBIHARMONIC LORENTZ HYPERSURFACES IN \boldsymbol{E}_{1}^{4}

Andreas Arvanitoyeorgos, Filip Defever, George Kaimakamis and Vassilis J. Papantoniou

BIHARMONIC LORENTZ HYPERSURFACES IN $\boldsymbol{E}_{1}^{\mathbf{4}}$

Andreas Arvanitoyeorgos, Filip Defever, George Kaimakamis and Vassilis J. Papantoniou

Abstract

A submanifold M_{r}^{n} of pseudo-Euclidean space E_{s}^{4} is said to have harmonic mean curvature vector if $\Delta \overrightarrow{\boldsymbol{H}}=\overrightarrow{\mathbf{0}}$, where $\overrightarrow{\boldsymbol{H}}$ denotes the mean curvature vector field and Δ the Laplacian of the induced pseudo-Riemannian metric. We prove that every nondegenerate Lorentz hypersurface M_{1}^{3} of E_{1}^{4} with harmonic mean curvature vector is minimal.

1. Introduction

A submanifold M of a Riemannian manifold N is called minimal if its mean curvature vector field \vec{H} vanishes. Of particular interest are minimal submanifolds of Euclidean spaces E^{m}. They are special cases of larger classes of submanifolds such as submanifolds of finite type, or submanifolds with harmonic mean curvature vector field. The study of such submanifolds was initiated by B.-Y. Chen [1993; 1996] in the context of the theory of submanifolds of finite type.

Let M be an n-dimensional connected submanifold of Euclidean space E^{m}. Denote by \vec{x}, \vec{H}, and Δ the position vector field of M, the mean curvature vector field of M, and the Laplace operator of M with respect to the induced Riemannian metric of M. It is well known (see [Chen 1984], for instance) that

$$
\begin{equation*}
\Delta \vec{x}=-n \vec{H} . \tag{1}
\end{equation*}
$$

This equation shows that M is a minimal submanifold of E^{m} if and only if its coordinate functions are harmonic. We also observe that every minimal submanifold of E^{m} satisfies

$$
\begin{equation*}
\Delta \vec{H}=\overrightarrow{0} . \tag{2}
\end{equation*}
$$

Submanifolds of E^{m} that satisfy condition (2) are said to have harmonic mean curvature vector field. These submanifolds are often called biharmonic since, in view of (1), condition (2) is equivalent to $\Delta^{2} \vec{x}=\overrightarrow{0}$. The question that naturally

[^0]arises is whether the class of biharmonic submanifolds is larger than that of minimal submanifolds. For a survey of progress on this problem for E^{m}, see [Chen 1991].

Conjecture (B.-Y. Chen). The only biharmonic submanifolds of Euclidean spaces are the minimal submanifolds.

This conjecture is supported by the work of several researchers. Chen himself [1984] proved that every biharmonic surface in E^{3} is minimal. I. Dimitrić [1989; 1992], generalizing Chen's result, proved that any biharmonic submanifold M of a Euclidean space E^{m} is minimal if it is a curve, a submanifold with constant mean curvature, a hypersurface with at most two distinct principal curvatures, a pseudo-umbilical submanifold of dimension $n \neq 4$, or a submanifold of finite type.

Th. Hasanis and Th. Vlachos [1995] proved that every biharmonic hypersurface in E^{4} is minimal. Their work used coordinates and required lengthy computer calculations. In [Defever 1998] one of us gave a coordinate-free and more concise proof of the same theorem, using purely analytical arguments that afford greater insight into the structure of the hypersurface.

In contrast to the Euclidean case, the conjecture generally fails for submanifolds in a pseudo-Euclidean space E_{s}^{m}. This is not unexpected: a problem formulated in Euclidean spaces often appears considerably different when considered in pseudo-Euclidean spaces. B.-Y. Chen and S. Ishikawa [1991] gave examples of nonminimal biharmonic space-like surfaces with constant mean curvature in pseudo-Euclidean spaces $E_{s}^{4}(s=1,2)$. The same authors [1998] classified pseudoRiemannian biharmonic surfaces of signature $(1,1)$ with constant nonzero mean curvature and flat normal connection in E_{s}^{4}.

However, biharmonicity implies minimality in some special cases. It was shown in [Chen and Ishikawa 1998] that any biharmonic surface in $E_{s}^{3}(s=1,2)$ is minimal, and in [Defever et al. 2006] that every biharmonic hypersurface M_{r}^{3} of E_{s}^{4} ($s=1,2,3$) whose shape operator is diagonal is minimal.

Here we address the same question for biharmonic Lorentz hypersurfaces of pseudo-Euclidean space E_{1}^{4}, where no restriction for the shape operator is imposed. By work of A. Z. Petrov [1969] and M. Magid [1984; 1985], besides the diagonal form of the shape operator, there are three additional canonical forms. We prove that for each such canonical form of the shape operator of a biharmonic Lorentz hypersurface in E_{1}^{4}, the mean curvature is zero (see Propositions 1, 2 and 3). This is done by considering two possibilities, namely whether or not H is a constant. In the first case, we prove that H must be zero. In the second case, we look at the vector ∇H, and show that this can be either space-like or light-like. Hence:

Theorem. Every nondegenerate biharmonic Lorentz hypersurface of four-dimensional pseudo-Euclidean space E_{1}^{4} is minimal.

2. Preliminaries

Biharmonic submanifolds. Let M_{1}^{3} be a Lorentz hypersurface of pseudo-Euclidean space E_{1}^{4}. Let $\vec{\xi}$ denote a unit normal vector field with $\langle\vec{\xi}, \vec{\xi}\rangle=1$. Denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connections of M_{1}^{3} and E_{1}^{4} respectively. For any vector fields X, Y tangent to M_{1}^{3}, the Gauss formula is given by

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \vec{\xi},
$$

where h is the scalar-valued second fundamental form. If we denote by S the shape operator of M_{1}^{3} associated to $\vec{\xi}$, the Weingarten formula is given by

$$
\tilde{\nabla}_{X} \vec{\xi}=-S(X),
$$

where $\langle S(X), Y\rangle=h(X, Y)$. If $H=\frac{1}{3} \operatorname{tr} S$, the mean curvature vector $\vec{H}=H \vec{\xi}$ is a well defined normal vector field to M_{1}^{3} in E_{1}^{4}. The Codazzi equation is given by

$$
\begin{equation*}
\left(\nabla_{X} S\right) Y=\left(\nabla_{Y} S\right) X \tag{3}
\end{equation*}
$$

and the Gauss equation by

$$
\begin{equation*}
R(X, Y) Z=\langle S(Y), Z\rangle S(X)-\langle S(X), Z\rangle S(Y) ; \tag{4}
\end{equation*}
$$

see [O'Neill 1983]. A hypersurface M_{1}^{3} of E_{1}^{4} is said to have harmonic mean curvature vector field if

$$
\Delta \vec{H}=0 .
$$

This condition is equivalent to

$$
\Delta \vec{H}=2 S(\nabla H)+3 H(\nabla H)+\left\{\Delta H+H \operatorname{tr} S^{2}\right\} \vec{\xi}=\overrightarrow{0}
$$

see [Chen and Ishikawa 1991]. Therefore we have the following necessary and sufficient conditions for a hypersurface M_{1}^{3} of E_{1}^{4} to be biharmonic:

$$
\begin{align*}
& S(\nabla H)=-\frac{3 H}{2}(\nabla H), \tag{5}\\
& \Delta H+H \operatorname{tr} S^{2}=0, \tag{6}
\end{align*}
$$

where the Laplace operator Δ acting on scalar-valued function f is given by

$$
\begin{equation*}
\Delta f=-\sum_{i=1}^{3} \varepsilon_{i}\left(e_{i} e_{i} f-\nabla_{e_{i}} e_{i} f\right) \tag{7}
\end{equation*}
$$

see [Chen and Ishikawa 1991], for example. Here $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a local orthonormal frame of $T_{p} M_{1}^{3}$ with $\left\langle e_{i}, e_{i}\right\rangle=\varepsilon_{i}= \pm 1$.

Hypersurfaces in pseudo-Euclidean spaces. Consider the real vector space \mathbb{R}^{4} with the standard basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Let \langle,$\rangle denote the indefinite inner product$ on \mathbb{R}^{4} whose matrix with respect to the standard basis is $\operatorname{diag}(-1,1,1,1)$. This is called the Lorentz metric on \mathbb{R}^{4}. The space \mathbb{R}^{4} with this metric is called 4dimensional pseudo-Euclidean space, and is denoted by E_{1}^{4}.

A vector $X \in E_{1}^{4}$ is called time-like, space-like, or light-like according to whether $\langle X, X\rangle$ is negative, positive, or zero. A nondegenerate hypersurface M_{r}^{3} of pseudoEuclidean space E_{1}^{4} can itself be endowed with a Riemannian or a Lorentzian metric structure, according to whether the metric induced on M_{r}^{3} from the Lorentzian metric on E_{1}^{4} is (positive) definite or indefinite. In the former case a normal vector to M_{r}^{3} is time-like, and in the latter case a normal vector to M_{r}^{3} is space-like.

The shape operator of a Riemannian submanifold is always diagonalizable, but this is not the case for the shape operator of a Lorentzian submanifold. We know from [Petrov 1969, 50-55] that a symmetric endomorphism of a vector space with a Lorentzian inner product can be put into one of four possible canonical forms. In particular, the matrix representation G of the induced metric on M_{1}^{3} is of Lorentz type, so the shape operator S of M_{1}^{3} can be put into one of the following four forms with respect to frames $\left\{e_{1}, e_{2}, e_{3}\right\}$ at $T_{p} M_{1}^{3}$ [Magid 1984; 1985]:

$$
\begin{align*}
& S=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), \quad G=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \tag{I}\\
& S=\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
1 & \lambda & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), \quad G=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \\
& S=\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda & 1 \\
1 & 0 & \lambda
\end{array}\right), \quad G=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), \tag{III}\\
& S=\left(\begin{array}{ccc}
\mu & -v & 0 \\
\nu & \mu & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), \quad G=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \nu \neq 0 . \tag{IV}
\end{align*}
$$

The matrices G for cases (I) and (IV) are with respect to an orthonormal basis of $T_{p} M_{1}^{3}$, whereas for cases (II) and (III) are with respect to a pseudo-orthonormal basis. This is a basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M_{1}^{3}$ satisfying $\left\langle e_{1}, e_{1}\right\rangle=\left\langle e_{2}, e_{2}\right\rangle=\left\langle e_{1}, e_{3}\right\rangle=$ $\left\langle e_{2}, e_{3}\right\rangle=0$, and $\left\langle e_{1}, e_{2}\right\rangle=\left\langle e_{3}, e_{3}\right\rangle=1$. In this work we examine cases (II), (III) and (IV), where the hypersurface M_{1}^{3} of E_{1}^{4} has nondiagonal shape operator. Case (I) has been studied in [Defever et al. 2006].

3. Biharmonic hypersurfaces

Let M_{1}^{3} be a biharmonic hypersurface in E_{1}^{4}. Then conditions (5) and (6) are satisfied. In order to prove the Theorem we need to show that the mean curvature H vanishes. We will consider each case for the shape operator S separately.

Assume the shape operator S has the canonical form (II).

Case 1. H is constant. Then equation (6) implies that

$$
H \operatorname{tr} S^{2}=0 .
$$

If H is zero the result follows. Otherwise, $\operatorname{tr} S^{2}=0$ implies that $2 \lambda^{2}+\lambda_{3}^{2}=0$, so $\lambda=\lambda_{3}=0$, and since $2 \lambda+\lambda_{3}=3 H$, we also obtain that $H=0$.
Case 2. H is not constant. Hence $\nabla H \neq \overrightarrow{0}$. As the shape operator has the canonical form (II) (with respect to a pseudo-orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M_{1}^{3}$), then $S\left(e_{1}\right)=\lambda e_{1}+e_{2}, S\left(e_{2}\right)=\lambda e_{2}$, and $S\left(e_{3}\right)=\lambda_{3} e_{3}$. Therefore, by using (5) we conclude that ∇H can be considered either in the direction of e_{3}, or in the direction of e_{2}. In the first case, ∇H is space-like (it cannot be time-like since $\left\langle e_{3}, e_{3}\right\rangle=1$), and $\lambda_{3}=-\frac{3}{2} H$. In the second case ∇H is light-like, and $\lambda=-\frac{3}{2} H$. These two cases need to be examined separately.
Proposition 1. Let M_{1}^{3} be a Lorentz biharmonic hypersurface of pseudo-Euclidean space E_{1}^{4} with shape operator of type (II), and suppose ∇H is space-like. Then M_{1}^{3} is minimal.

Proof. We assume that $H \neq 0$ and we will end up with a contradiction. Since ∇H is nonzero, the vector equation (5) shows that ∇H is an eigenvector of S with eigenvalue $-\frac{3}{2} H$. We write

$$
\nabla_{e_{i}} e_{j}=\sum_{k=1}^{3} \omega_{i j}^{k} e_{k} .
$$

We take into account the action of S on the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$, and use the Codazzi equations (3). The relations

$$
\begin{aligned}
& \left\langle\left(\nabla_{e_{1}} S\right) e_{2}, e_{1}\right\rangle=\left\langle\left(\nabla_{e_{2}} S\right) e_{1}, e_{1}\right\rangle, \quad\left\langle\left(\nabla_{e_{2}} S\right) e_{3}, e_{3}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{2}, e_{3}\right\rangle \text {, } \\
& \left\langle\left(\nabla_{e_{1}} S\right) e_{3}, e_{3}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{1}, e_{3}\right\rangle, \quad\left\langle\left(\nabla_{e_{2}} S\right) e_{3}, e_{2}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{2}, e_{2}\right\rangle, \\
& \left\langle\left(\nabla_{e_{1}} S\right) e_{2}, e_{3}\right\rangle=\left\langle\left(\nabla_{e_{2}} S\right) e_{1}, e_{3}\right\rangle, \quad\left\langle\left(\nabla_{e_{1}} S\right) e_{3}, e_{2}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{1}, e_{2}\right\rangle, \\
& \left\langle\left(\nabla_{e_{2}} S\right) e_{3}, e_{1}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{2}, e_{1}\right\rangle
\end{aligned}
$$

imply that $\omega_{21}^{1}=\omega_{22}^{2}, \omega_{32}^{3}=\omega_{31}^{3}=\omega_{23}^{1}=0, \omega_{12}^{3}=\omega_{21}^{3}, e_{3}(\lambda)=\left(\lambda_{3}-\lambda\right) \omega_{13}^{1}$, $e_{3}(\lambda)=\left(\lambda_{3}-\lambda\right) \omega_{23}^{2}$. From the last two equations we obtain that $\omega_{13}^{1}=\omega_{23}^{2}$, and from $\operatorname{tr} S=3 H=2 \lambda+\lambda_{3}$, it follows that $\lambda=\frac{9}{4} H \neq \lambda_{3}$.

Further, the conditions

$$
\nabla_{e_{p}}\left\langle e_{1}, e_{1}\right\rangle=\nabla_{e_{p}}\left\langle e_{2}, e_{2}\right\rangle=\nabla_{e_{p}}\left\langle e_{3}, e_{3}\right\rangle=\nabla_{e_{p}}\left\langle e_{1}, e_{3}\right\rangle=\nabla_{e_{p}}\left\langle e_{2}, e_{3}\right\rangle=0
$$

for $p=1,2,3$ imply that $\omega_{p 1}^{2}=\omega_{p 2}^{1}=\omega_{p 3}^{3}=0$, and $\omega_{p 1}^{3}=-\omega_{p 3}^{2}, \omega_{p 2}^{3}=-\omega_{p 3}^{1}$. As a consequence, we also obtain that $\omega_{33}^{1}=\omega_{33}^{2}=\omega_{22}^{3}=0$. Therefore, the covariant derivatives $\nabla_{e_{i}} e_{j}$ simplify to

$$
\begin{array}{lll}
\nabla_{e_{1}} e_{1}=\omega_{11}^{1} e_{1}, & \nabla_{e_{1}} e_{2}=\omega_{12}^{2} e_{2}+\omega_{12}^{3} e_{3}, & \nabla_{e_{1}} e_{3}=\omega_{13}^{1} e_{1}+\omega_{13}^{2} e_{2} \\
\nabla_{e_{2}} e_{1}=\omega_{21}^{3} e_{3}, & \nabla_{e_{2}} e_{2}=0, & \nabla_{e_{2}} e_{3}=\omega_{23}^{2} e_{2} \\
\nabla_{e_{3}} e_{1}=0, & \nabla_{e_{3}} e_{2}=\omega_{32}^{2} e_{2}, & \nabla_{e_{3}} e_{3}=0 .
\end{array}
$$

Next, we construct an orthonormal basis $\left\{X_{1}, X_{2}, X_{3}\right\}$ from the pseudo-orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ such that

$$
X_{1}=\frac{e_{1}+e_{2}}{\sqrt{2}}, \quad X_{2}=\frac{e_{1}-e_{2}}{\sqrt{2}}, \quad X_{3}=e_{3} .
$$

The shape operator S with respect to this new basis takes the form

$$
S=\left(\begin{array}{ccc}
\lambda+\frac{1}{2} & \frac{1}{2} & 0 \\
-\frac{1}{2} & \lambda-\frac{1}{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)
$$

Note that X_{3} is still in the direction of ∇H, and that $\lambda_{3}=-\frac{3}{2} H$. Therefore, since $\nabla(H)=X_{1}(H) X_{1}+X_{2}(H) X_{2}+X_{3}(H) X_{3}$, we have

$$
\begin{equation*}
X_{1}(H)=X_{2}(H)=0, \quad X_{3}(H) \neq 0 \tag{8}
\end{equation*}
$$

Since M_{1}^{3} is a Lorentz hypersurface, $\operatorname{tr} S=3 H, \lambda=\frac{9}{4} H$, and $\operatorname{tr} S^{2}=\frac{99}{8} H^{2}$. By expressing the Laplace operator (7) in terms of the basis $\left\{X_{1}, X_{2}, X_{3}\right\}$, we reduce Equation (6) to

$$
\begin{aligned}
-\left(X_{1} X_{1}(H)-\nabla_{X_{1}} X_{1}(H)\right)+(& \left.X_{2} X_{2}(H)-\nabla_{X_{2}} X_{2}(H)\right) \\
& -\left(X_{3} X_{3}(H)-\nabla_{X_{3}} X_{3}(H)\right)+H\left(\frac{99 H^{2}}{8}\right)=0,
\end{aligned}
$$

which by the use of (8) becomes

$$
\begin{equation*}
\nabla_{X_{1}} X_{1}(H)-\nabla_{X_{2}} X_{2}(H)-e_{3} e_{3}(H)+\frac{99 H^{3}}{8}=0 \tag{9}
\end{equation*}
$$

On the other hand, an easy computation shows that

$$
\nabla_{X_{1}} X_{1}=\frac{1}{2}\left(\omega_{11}^{1} e_{1}+\omega_{11}^{3} e_{3}+\omega_{12}^{2} e_{2}+\omega_{12}^{3} e_{3}+\omega_{21}^{3} e_{3}\right)
$$

and similarly for $\nabla_{X_{2}} X_{2}$, so we obtain

$$
\begin{aligned}
& \nabla_{X_{1}} X_{1}(H)=\frac{1}{2}\left(\omega_{11}^{3}+\omega_{12}^{3}+\omega_{21}^{3}\right) e_{3}(H), \\
& \nabla_{X_{2}} X_{2}(H)=\frac{1}{2}\left(\omega_{11}^{3}-\omega_{12}^{3}-\omega_{21}^{3}\right) e_{3}(H) .
\end{aligned}
$$

Hence equation (9) simplifies to

$$
\begin{equation*}
e_{3} e_{3}(H)-2 \omega_{12}^{3} e_{3}(H)-\frac{99 H^{3}}{8}=0 \tag{10}
\end{equation*}
$$

Substituting $\lambda=\frac{9}{4} H$ into $e_{3}(\lambda)=\left(\lambda_{3}-\lambda\right) \omega_{13}^{1}$ we obtain

$$
\begin{equation*}
e_{3}(H)=-\frac{5 H}{3} \omega_{13}^{1}=\frac{5 H}{3} \omega_{12}^{3} . \tag{11}
\end{equation*}
$$

We evaluate the Gauss equation (4) for $\left\langle R\left(e_{3}, e_{1}\right) e_{2}, e_{3}\right\rangle$ and equate the left-hand side by using the definition of the curvature tensor to obtain

$$
\begin{equation*}
e_{3}\left(\omega_{12}^{3}\right)=\left(\omega_{12}^{3}\right)^{2}-\frac{27 H^{2}}{8} \tag{12}
\end{equation*}
$$

Applying e_{3} to both sides of (11) and using (12) we get

$$
e_{3} e_{3}(H)=\frac{40 H}{9}\left(\omega_{12}^{3}\right)^{2}-\frac{45 H^{3}}{8} .
$$

Substituting this into (10) and using (11) we obtain

$$
\begin{equation*}
\frac{5}{9}\left(\omega_{12}^{3}\right)^{2}-9 H^{2}=0, \tag{13}
\end{equation*}
$$

since we have assumed that $H \neq 0$. Acting with e_{3} on (13) and using expressions (11) and (12), we simultaneously obtain that

$$
\frac{5}{9}\left(\omega_{12}^{3}\right)^{2}-\frac{255 H^{2}}{8}=0
$$

Therefore, H must be zero.
Proposition 2. Let M_{1}^{3} be a Lorentz biharmonic hypersurface of pseudo-Euclidean space E_{1}^{4} with shape operator of type (II), and suppose ∇H is light-like. Then M_{1}^{3} is minimal.

Proof. By hypothesis ∇H is along the vector e_{2}, and $\lambda=-\frac{3}{2} H$. Since tr $S=3 H$, we have $\lambda_{3}=6 \mathrm{H}$. Because the basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ is pseudo-orthonormal, it follows that $\nabla(H)=e_{2}(H) e_{1}+e_{1}(H) e_{2}+e_{3}(H) e_{3}$. Therefore,

$$
\begin{equation*}
e_{2}(H)=e_{3}(H)=0, \quad e_{1}(H) \neq 0 . \tag{14}
\end{equation*}
$$

By writing $\nabla_{e_{i}} e_{j}=\sum_{k=1}^{3} \omega_{i j}^{k} e_{k}$, we obtain

$$
\begin{aligned}
0 & =\nabla_{e_{i}}\left\langle e_{j}, e_{k}\right\rangle=\left\langle\nabla_{e_{i}} e_{j}, e_{k}\right\rangle+\left\langle e_{j}, \nabla_{e_{i}} e_{k}\right\rangle \\
& =\omega_{i j}^{1}\left\langle e_{1}, e_{k}\right\rangle+\omega_{i j}^{2}\left\langle e_{2}, e_{k}\right\rangle+\omega_{i j}^{3}\left\langle e_{3}, e_{k}\right\rangle+\omega_{i k}^{1}\left\langle e_{j}, e_{1}\right\rangle+\omega_{i k}^{2}\left\langle e_{j}, e_{2}\right\rangle+\omega_{i k}^{3}\left\langle e_{j}, e_{3}\right\rangle .
\end{aligned}
$$

By assigning i, j, k any values from $\{1,2,3\}$, certain of the $\omega_{i j}^{k}$ vanish, and others satisfy simple relations. In particular, we obtain

$$
\begin{array}{ll}
\nabla_{e_{1}} e_{3}=-\omega_{12}^{3} e_{1}+\omega_{13}^{2} e_{2}, & \nabla_{e_{3}} e_{1}=\omega_{31}^{1} e_{1}+\omega_{31}^{3} e_{3}, \\
\nabla_{e_{2}} e_{3}=-\omega_{22}^{3} e_{1}-\omega_{21}^{3} e_{2}, & \nabla_{e_{3}} e_{2}=-\omega_{31}^{1} e_{2}+\omega_{32}^{3} e_{3} .
\end{array}
$$

Using relations (14) we get $\left[e_{2}, e_{3}\right](H)=e_{2} e_{3}(H)-e_{3} e_{2}(H)=0$. Also, since $\left[e_{2}, e_{3}\right](H)=\nabla_{e_{2}} e_{3}(H)-\nabla_{e_{3}} e_{2}(H)$, it follows that $\omega_{22}^{3}=0$, so relations (16) simplify to

$$
\begin{equation*}
\nabla_{e_{2}} e_{3}=-\omega_{21}^{3} e_{2}, \quad \nabla_{e_{3}} e_{2}=-\omega_{31}^{1} e_{2}+\omega_{32}^{3} e_{3} . \tag{17}
\end{equation*}
$$

We use the Codazzi equations to obtain

$$
\left\langle\left(\nabla_{e_{1}} S\right) e_{3}, e_{3}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{1}, e_{3}\right\rangle, \quad\left\langle\left(\nabla_{e_{2}} S\right) e_{3}, e_{3}\right\rangle=\left\langle\left(\nabla_{e_{3}} S\right) e_{2}, e_{3}\right\rangle,
$$

which, combined with (15) and (17), imply respectively that

$$
\begin{align*}
& e_{1}\left(\lambda_{3}\right)=\omega_{32}^{3}, \tag{18}\\
& e_{2}\left(\lambda_{3}\right)=\left(\lambda-\lambda_{3}\right) \omega_{32}^{3} . \tag{19}
\end{align*}
$$

Using (14) and that $\lambda_{3}=6 H$, relation (19) implies that $\left(\lambda-\lambda_{3}\right) \omega_{32}^{3}=0$. If $\omega_{32}^{3}=0$, then from (18) it follows that $e_{1}\left(\lambda_{3}\right)=0$, which contradicts (14). If $\lambda=\lambda_{3}$, then $-\frac{3}{2} H=6 H$, i.e. $H=0$.

Assume the shape operator S has the canonical form (III).
Case 1. H is constant. Then Equation (6) implies that

$$
H \operatorname{tr} S^{2}=0
$$

If H is zero the result follows. Otherwise, $\operatorname{tr} S^{2}=0$ implies that $\lambda=0$. But since $\operatorname{tr} S=3 \lambda=3 H$, it also follows that $H=0$.
Case 2. H is not constant. Then $\nabla H \neq \overrightarrow{0}$, and the vector equation (5) shows that ∇H is an eigenvector of S with eigenvalue $-\frac{3}{2} H$. Since the shape operator has the canonical form (III) (with respect to a pseudo-orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$), then $S\left(e_{1}\right)=\lambda e_{1}+e_{3}, S\left(e_{2}\right)=\lambda e_{2}$, and $S\left(e_{3}\right)=e_{2}+\lambda e_{3}$ (with respect to a pseudoorthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $\left.T_{p} M_{1}^{3}\right)$. Hence, ∇H is in the direction of e_{2}, i.e., it is light-like, and $\lambda=-\frac{3}{2} H$. We will prove the following:

Proposition 3. Let M_{1}^{3} be a Lorentz biharmonic hypersurface of pseudo-Euclidean space E_{1}^{4} with shape operator of type (III), and suppose ∇H is light-like. Then M_{1}^{3} is minimal.

Proof. The shape operator S, with respect to the orthonormal basis $\left\{X_{1}, X_{2}, X_{3}\right\}$ of $T_{p} M_{1}^{3}$ considered in Proposition 1, takes the form

$$
S=\left(\begin{array}{ccc}
\lambda & 0 & \frac{1}{\sqrt{2}} \\
0 & \lambda-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \lambda
\end{array}\right) .
$$

Since $\operatorname{tr} S=3 H$, it follows that $3 \lambda=-\frac{9}{2} H=3 H$, so $H=0$.
Assume the shape operator S has the canonical form (IV).
Case 1. H is constant. Then the scalar equation (6) becomes

$$
H \operatorname{tr} S^{2}=0
$$

If H is zero, the result follows. Otherwise, $\operatorname{tr} S^{2}=2 \mu^{2}-2 v^{2}+\lambda_{3}^{2}=0$, and from the form of the shape operator, we also have $2 \mu+\lambda_{3}=3 H \neq 0$. We apply the Codazzi equations (3) to the relations

$$
\left\langle\left(\nabla_{e_{i}} S\right) e_{j}, e_{k}\right\rangle=\left\langle\left(\nabla_{e_{j}} S\right) e_{i}, e_{k}\right\rangle
$$

for each triplet (i, j, k) in the set $\{(1,2,1),(1,2,2),(1,3,1),(2,3,2),(1,3,3),(2,3,3),(1,2,3),(1,3,3),(2,3,1)\}$, and obtain the following linear system of nine equations (we denote λ_{3} by λ from now on):

$$
\begin{aligned}
-e_{1}(v) & =e_{2}(\mu)+v\left(1-\varepsilon_{1} \varepsilon_{2}\right) \omega_{21}^{2} \\
e_{2}(v) & =e_{1}(\mu)+v\left(\varepsilon_{1} \varepsilon_{2}-1\right) \omega_{12}^{1} \\
(\lambda-\mu) \omega_{13}^{1}+v \omega_{13}^{2} & =e_{3}(\mu)+v\left(1-\varepsilon_{1} \varepsilon_{2}\right) \omega_{32}^{1} \\
(\lambda-\mu) \omega_{23}^{2}-v \omega_{23}^{1} & =e_{3}(\mu)-v\left(1-\varepsilon_{1} \varepsilon_{2}\right) \omega_{31}^{2} \\
e_{1}(\lambda) & =(\mu-\lambda) \omega_{31}^{3}+v \omega_{32}^{3} \\
e_{2}(\lambda) & =-v \omega_{31}^{3}+(\mu-\lambda) \omega_{32}^{3} \\
-v \omega_{11}^{3}+(\mu-\lambda) \omega_{12}^{3} & =v \omega_{22}^{3}+(\mu-\lambda) \omega_{21}^{3} \\
e_{3}(v) & =(\lambda-\mu) \omega_{13}^{2}-v \omega_{13}^{1} \\
-e_{3}(v) & =(\lambda-\mu) \omega_{23}^{1}+v \omega_{23}^{2}
\end{aligned}
$$

We assume that $\varepsilon_{1} \varepsilon_{2}=1$ (the case $\varepsilon_{1} \varepsilon_{2}=-1$ can be treated accordingly) so $\varepsilon_{1}=\varepsilon_{2}=1$ and $\varepsilon_{3}=-1$. Applying $e_{i}(i=1,2,3)$ to the equation $2 \mu^{2}-2 \nu^{2}+\lambda^{2}=0$ we conclude that

$$
e_{i}(\nu)=\frac{\mu-\lambda}{v} e_{i}(\mu),
$$

and taking into account the relation $\omega_{i j}^{k}=-\varepsilon_{j} \varepsilon_{k} \omega_{i k}^{j}$, the system above simplifies to the following linear system of seven equations in six unknowns $\omega_{13}^{1}, \omega_{13}^{2}, \omega_{23}^{2}$, $\omega_{23}^{1}, \omega_{31}^{3}, \omega_{32}^{3}$:

$$
\begin{align*}
&(\lambda-\mu) \omega_{13}^{1}+v \omega_{13}^{2} \\
&=e_{3}(\mu), \\
&(\lambda-\mu) \omega_{23}^{2}-v \omega_{23}^{1}=e_{3}(\mu), \\
&(\mu-\lambda) \omega_{31}^{3}+v \omega_{32}^{3}=e_{1}(\lambda), \tag{20}\\
&-v \omega_{31}^{3}+(\mu-\lambda) \omega_{32}^{3}=e_{2}(\lambda), \\
&-v \omega_{13}^{1}+(\mu-\lambda) \omega_{13}^{2}-v \omega_{23}^{2}+(\lambda-\mu) \omega_{23}^{1}=0, \\
&-v \omega_{13}^{1}+(\lambda-\mu) \omega_{13}^{2}=e_{3}(\nu), \\
&(\lambda-\mu) \omega_{23}^{1}+v \omega_{23}^{2}=-e_{3}(v) .
\end{align*}
$$

We wish to show that this system has no (nonzero) solution. If $\mu=\lambda$, the conditions $\operatorname{tr} S^{2}=0$ and $\operatorname{tr} S=3 H$ imply that μ, λ, ν are constants, so the system simplifies to a homogeneous system with only the trivial solution. If $\mu \neq \lambda$, it follows that the ranks of the coefficient matrix and the augmented matrix of system (20) are always different, with only one possible exception, namely

$$
\begin{equation*}
(\lambda-\mu)^{2} e_{3}(\nu)-v^{2} e_{3}(\nu)+2(\lambda-\mu) v e_{3}(\mu)=0, \tag{21}
\end{equation*}
$$

which we wish to exclude. Taking into account the relations $2 \mu^{2}-2 v^{2}+\lambda^{2}=0$ and $2 \mu+\lambda=3 H$, equation (21) is equivalent to the possibilities, either $9 H^{2} e_{3}(\nu)=0$, or $\left(8 v^{2}-9 H^{2}\right) e_{3}(\nu)=0$.

If $e_{3}(v)=0$, then v is constant (recall that $H \neq 0$). Therefore $e_{3}(\mu)=0$, so μ is constant as well, which implies that λ is constant, so $e_{1}(\lambda)=e_{2}(\lambda)=0$. Hence the linear system (20) becomes a homogeneous system with the trivial solution only. If $8 v^{2}-9 H^{2}=0$, then v is constant, so argue similarly. To summarize, the possibility that H is a nonzero constant and $\operatorname{tr} S^{2}=0$, is excluded.

Case 2. H is not constant. Since the shape operator, with respect to an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M_{1}^{3}$, has the canonical form (IV), we have $S\left(e_{1}\right)=\mu e_{1}+v e_{2}$, $S\left(e_{2}\right)=-v e_{1}+\mu e_{2}$, and $S\left(e_{3}\right)=\lambda_{3} e_{3}$. This means that ∇H is in the direction of e_{3}, i.e., space-like.

The following proposition is proved along the same lines as Proposition 1.

Proposition 4. Let M_{1}^{3} be a Lorentz biharmonic hypersurface of pseudo-Euclidean space E_{1}^{4} with shape operator of type (IV), and suppose ∇H is space-like. Then M_{1}^{3} is minimal.
Proof. We assume that $H \neq 0$ and we will end up to a contradiction. Then $\nabla H \neq \overrightarrow{0}$ and the vector equation (5) shows that ∇H is an eigenvector of S with eigenvalue $-\frac{3}{2} H$. Then $\lambda_{3}=-\frac{3}{2} H$, and

$$
e_{1}(H)=e_{2}(H)=0, \quad e_{3}(H) \neq 0 .
$$

From the equation $\operatorname{tr} S=3 H$, it follows that $\mu=\frac{9}{4} \mathrm{H}$. Next, we try to obtain simplified expressions for $\nabla_{e_{i}} e_{j}=\sum_{k=1}^{3} \omega_{i j}^{k} e_{k}$. We apply the Codazzi equations (3) for
$\left\langle\left(\nabla_{e_{1}} S\right) e_{3}, e_{1}\right\rangle, \quad\left\langle\left(\nabla_{e_{2}} S\right) e_{3}, e_{2}\right\rangle, \quad\left\langle\left(\nabla_{e_{1}} S\right) e_{3}, e_{2}\right\rangle, \quad\left\langle\left(\nabla_{e_{1}} S\right) e_{3}, e_{3}\right\rangle, \quad\left\langle\left(\nabla_{e_{2}} S\right) e_{3}, e_{3}\right\rangle$ and obtain

$$
\begin{gathered}
e_{3}(H)=-\frac{5 H}{3} \omega_{13}^{1}, \quad e_{3}(H)=-\frac{5 H}{3} \omega_{23}^{2}, \quad e_{3}(\nu)=-v \omega_{13}^{1} \\
\frac{15 H}{4} \omega_{31}^{3}+v \omega_{32}^{3}=0, \quad \frac{15 H}{4} \omega_{32}^{3}-v \omega_{31}^{3}=0 .
\end{gathered}
$$

Therefore $\omega_{13}^{1}=\omega_{23}^{2}$, and since H and v are not zero, $\omega_{31}^{3}=\omega_{32}^{3}=0$. Taking into account the condition $\omega_{i j}^{k}=-\varepsilon_{j} \varepsilon_{k} \omega_{i k}^{j}$, the previous relations give $\omega_{33}^{1}=\omega_{33}^{2}=0$. Finally, since $\left[e_{1}, e_{2}\right](H)=0$, it follows that $\nabla_{e_{1}} e_{2}(H)-\nabla_{e_{2}} e_{1}(H)=0$; thus $\omega_{12}^{3}=\omega_{21}^{3}=0$.

Next, we use the Gauss equation (4) and the definition of the curvature tensor for $\left\langle R\left(e_{1}, e_{3}\right) e_{1}, e_{3}\right\rangle$ and $\left\langle R\left(e_{3}, e_{2}\right) e_{3}, e_{2}\right\rangle$ to obtain

$$
\begin{equation*}
e_{3}\left(\omega_{11}^{3}\right)=-\left(\omega_{13}^{1}\right)^{2}+\frac{27 H^{2}}{8}, \quad e_{3}\left(\omega_{23}^{2}\right)=-\left(\omega_{23}^{2}\right)^{2}+\frac{27 H^{2}}{8} \tag{22}
\end{equation*}
$$

Hence, in view of (7), and taking into account the relations $\omega_{11}^{3}=-\varepsilon_{1} \varepsilon_{3} \omega_{13}^{3}=\omega_{13}^{3}$, $\omega_{22}^{3}=-\varepsilon_{2} \varepsilon_{3} \omega_{23}^{2}=-\omega_{23}^{2}$, and $\omega_{13}^{1}=\omega_{23}^{2}$, equation (6) reduces to

$$
\begin{equation*}
e_{3} e_{3}(H)+2 \omega_{13}^{1} e_{3}(H)-H\left(\frac{99 H^{2}}{8}-2 v^{2}\right)=0 . \tag{23}
\end{equation*}
$$

Applying e_{3} to both sides of the equality $e_{3}(H)=-\frac{5}{3} H \omega_{13}^{1}$ and using (22), we get

$$
e_{3} e_{3}(H)=\frac{40 H}{9}\left(\omega_{13}^{1}\right)^{2}-\frac{45 H^{3}}{8},
$$

so (23) becomes

$$
\begin{equation*}
\frac{10}{9}\left(\omega_{13}^{1}\right)^{2}+2 v^{2}-18 H^{2}=0 . \tag{24}
\end{equation*}
$$

Acting with e_{3} on (24) we obtain

$$
\frac{10}{9}\left(\omega_{13}^{1}\right)^{2}+2 v^{2}-\frac{135 H^{2}}{4}=0
$$

The two last equations imply that $H=0$, which is a contradiction.
The Theorem stated in the introduction now follows from Propositions 1-4.

Acknowledgement

Part of this work was carried out while Defever visited the University of Patras, and during Kaimakakis' stay at the Katholieke Universiteit Leuven. Both authors thank the respective institutions for their hospitality.

References

[Chen 1984] B.-Y. Chen, Total mean curvature and submanifolds of finite type, Series in Pure Mathematics 1, World Scientific, Singapore, 1984. MR 86b:53053 Zbl 0537.53049
[Chen 1991] B.-Y. Chen, "Some open problems and conjectures on submanifolds of finite type", Soochow J. Math. 17:2 (1991), 169-188. MR 92m:53091 Zbl 0749.53037
[Chen 1993] B.-Y. Chen, "Submanifolds of finite type and applications", Proc. Geometry and Topology Research Center, Taegu 3 (1993), 1-48.
[Chen 1996] B.-Y. Chen, "A report on submanifolds of finite type", Soochow J. Math. 22:2 (1996), 117-337. MR 98b:53043 Zbl 0867.53001
[Chen and Ishikawa 1991] B.-Y. Chen and S. Ishikawa, "Biharmonic surfaces in pseudo-Euclidean spaces", Mem. Fac. Sci. Kyushu Univ. Ser. A 45:2 (1991), 323-347. MR 92k:53113 Zbl 0757.53009
[Chen and Ishikawa 1998] B.-Y. Chen and S. Ishikawa, "Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces", Kyushu J. Math. 52:1 (1998), 167-185. MR 99b:53078 Zbl 0892.53012
[Defever 1998] F. Defever, "Hypersurfaces of \mathbf{E}^{4} with harmonic mean curvature vector", Math. Nachr. 196 (1998), 61-69. MR 99j:53004 Zbl 0944.53005
[Defever et al. 2006] F. Defever, G. Kaimakamis, and V. Papantoniou, "Biharmonic hypersurfaces of the 4-dimensional semi-Euclidean space $E_{s}^{4 "}$, J. Math. Anal. Appl. 315:1 (2006), 276-286. Zbl 1091.53038
[Dimitrić 1989] I. Dimitrić, Quadratic representation and submanifolds of finite type, Ph.D. thesis, Michigan State Univ., Lansing, MI, 1989.
[Dimitrić 1992] I. Dimitrić, "Submanifolds of E^{m} with harmonic mean curvature vector", Bull. Inst. Math. Acad. Sinica 20:1 (1992), 53-65. MR 93g:53087 Zbl 0778.53046
[Hasanis and Vlachos 1995] T. Hasanis and T. Vlachos, "Hypersurfaces in E^{4} with harmonic mean curvature vector field", Math. Nachr. 172 (1995), 145-169. MR 96c:53085 Zbl 0839.53007
[Magid 1984] M. A. Magid, "Isometric immersions of Lorentz space with parallel second fundamental forms", Tsukuba J. Math. 8:1 (1984), 31-54. MR 85j:53066 Zbl 0549.53052
[Magid 1985] M. A. Magid, "Lorentzian isoparametric hypersurfaces", Pacific J. Math. 118 (1985), 165-197. MR 87b:53097 Zbl 0561.53057
[O’Neill 1983] B. O'Neill, Semi-Riemannian geometry: with applications to relativity, Pure and Applied Mathematics 103, Academic Press, New York, 1983. MR 85f:53002 Zbl 0531.53051
[Petrov 1969] A. Z. Petrov, Einstein spaces, Pergamon Press, Oxford, 1969. MR 39 \#6225 Zbl 0174.28305

Received July 18, 2005. Revised October 3, 2005.
Andreas Arvanitoyeorgos
Department of Mathematics
University of Patras
GR-26500 Patras
Greece
arvanito@math.upatras.gr

Filip Defever
Departement IW\&T
Katholieke Hogeschool Brugge-Oostende
Zeedijk 101
8400 Oostende
Belgium
filip.defever@kh.khbo.be

George Kaimakamis
Hellenic Army Academy
GR-16673 VARI
Attica
Greece
miamis@math.upatras.gr
Vassilis J. Papantoniou
Department of Mathematics
University of Patras
GR-26500 Patras
Greece
bipapant@math.upatras.gr

[^0]: MSC2000: primary 53A07, 53C40; secondary 53C50.
 Keywords: pseudo-Euclidean space, biharmonic hypersurface, minimal hypersurface.
 Kaimakamis was partially supported by the Greek State Scholarship Foundation (I.K.Y.) and the C. Carathéodory Grant \#2461/2000, University of Patras.

