
Pacific
Journal of
Mathematics

NONDEGENERACY OF COVERINGS OF MINIMAL TORI AND
KLEIN BOTTLES IN RIEMANNIAN MANIFOLDS

JOHN DOUGLAS MOORE

Volume 230 No. 2 April 2007



PACIFIC JOURNAL OF MATHEMATICS
Vol. 230, No. 2, 2007

NONDEGENERACY OF COVERINGS OF MINIMAL TORI AND
KLEIN BOTTLES IN RIEMANNIAN MANIFOLDS

JOHN DOUGLAS MOORE

We say that a parametrized minimal torus or Klein bottle in an ambient
Riemannian manifold is Morse nondegenerate if it lies on a nondegenerate
critical submanifold which is also an orbit for the group of isometries of
the flat metric of total area one. We show that for a generic choice of a
Riemannian metric on a compact manifold of dimension at least four, un-
branched multiple covers of prime minimal tori or Klein bottles are Morse
nondegenerate. A similar result holds for harmonic tori and Klein bottles.
The proofs require a modification of techniques of Bott for studying itera-
tions of smooth closed geodesics.

1. Introduction

Suppose that Map(6,M) is a suitable completion of the space of smooth maps
f : 6 → M from a compact connected surface 6 into a Riemannian manifold M
and that T is the space of marked conformal structures on 6. (We complete with
respect to a Sobolev norm strong enough so that Map(6,M) is a smooth infinite-
dimensional Banach manifold and there is a continuous inclusion Map(6,M) ⊂

C0(6,M) inducing an isomorphism on all homotopy groups.) A parametrized
minimal surface can then be regarded as a critical point for the energy function

(1) E : Map(6,M)× T → R defined by E( f, ω)=
1
2

∫
6

|d f |
2d A,

where |d f | and d A are calculated with respect to some Riemannian metric on 6
which lies within the conformal class ω ∈ T. A nonconstant parametrized minimal
surface f : 6 → M is prime if it is not a nontrivial cover (possibly branched) of
a parametrized minimal surface f0 : 60 → M of lower energy, 60 being allowed
to be nonorientable. In [Moore 2006] we proved a bumpy metric theorem which
states that when a compact manifold M of dimension at least four is given a generic
Riemannian metric, all prime parametrized minimal surfaces f :6→ M are free of
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branch points and are as Morse nondegenerate (as critical points for E) as allowed
by the group of conformal automorphisms of 6.

To be more precise about what we mean by Morse nondegenerate, we first recall
that when6 is the sphere (or the projective plane), E is invariant under an action of
the six-dimensional Lie group G = P SL(2,C) by linear fractional transformations
on the range, while if 6 is the torus (or the Klein bottle), E is invariant under an
action of the two-dimensional group G = S1

× S1. Thus nonconstant minimal
spheres or tori must lie on orbits of critical points of dimension six or two, respec-
tively. If 6 (or its double cover) has genus at least two, we let G denote the trivial
group.

Definition. Let F : M → R be a C2 function on a smooth manifold M which is
modeled on a Hilbert or Banach space. A nondegenerate critical submanifold of
M is a finite-dimensional submanifold N ⊂ M such that every f ∈ N is a critical
point for F , and

(2) f ∈ N ⇒ T f N = {X ∈ T f M : d2 F( f )(X, Y )= 0 for all Y ∈ T f M}.

Here d2 F is the Hessian of F at the critical point, and elements X ∈ T f M which
satisfy the condition on the right-hand side of (2) are called Jacobi fields.

The notion of a nondegenerate critical submanifold is due to Bott [1982] and
plays a large role in the Morse theory of closed geodesics.

Definition. We say that a parametrized minimal surface f : 6 → M is Morse
nondegenerate if either f is a Morse nondegenerate critical point for E in the
usual sense of Morse theory, or f lies on a G-orbit which is a nondegenerate
critical submanifold for E .

With these definitions in place, the bumpy metric theorem of [Moore 2006]
can be restated: if M has dimension at least three, then for generic choice of
Riemannian metric on M , all prime parametrized minimal surfaces are Morse
nondegenerate. This can be regarded as an analog of Abraham’s [1970] bumpy
metric theorem for smooth closed geodesics, which asserts that for generic metrics
on M , all smooth closed geodesics lie on nondegenerate critical submanifolds of
Map(S1,M), each an orbit for the S1 action. However, an important difference
is that Abraham’s bumpy metric theorem applies to all closed geodesics, prime or
not.

In analogy with the theory of smooth closed geodesics, one might hope that
unbranched covers of tori and Klein bottles also lie on nondegenerate critical sub-
manifolds for generic metrics, and this is in fact the case:

Theorem 1. Suppose that M is a compact smooth manifold of dimension at least
four with Riemannian metric g0.
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(1) If f0 :60 → M is a Morse nondegenerate prime minimal torus or Klein bottle
with no branch points, then for a generic choice of Riemannian metric on M
near g0, all minimal tori and Klein bottles which cover f0 are also Morse
nondegenerate.

(2) if f0 : 6 → M is a nonoriented Morse nondegenerate prime minimal surface
of any genus with no branch points, then for a generic choice of Riemannian
metric on M near g0, the oriented double cover of f0 is also Morse nonde-
generate.

We adopt the convention that the genus of a connected nonorientable surface is
the genus of its orientable double cover. From this theorem and the Main Theorem
of [Moore 2006], it follows that for generic choice of Riemannian metric on M ,
all parametrized minimal tori are free of branch points and Morse nondegenerate,
except for branched covers of minimal two-spheres, which are of course forced to
have branch points. Although it can be shown that branched covers of spheres by
tori lie on smooth submanifolds of dimension 2d + 2, where d is the degree, there
is no reason to suspect that these submanifolds should be Morse nondegenerate for
generic choice of Riemannian metric.

Thus if M is not simply connected, all parametrized minimal tori in one of
the nontrivial components of Map(T 2,M)× T lie on nondegenerate critical sub-
manifolds of dimension two for generic choice of Riemannian metric on M . The
motivation behind Theorem 1 is that it serves as part of the foundation necessary
for a study of Morse theory for parametrized minimal surfaces via perturbation,
using the α-energy of Sacks and Uhlenbeck [1981; 1982].

Following [McDuff and Salamon 2004], we say that a conformal harmonic map
f : 6 → M from a compact surface 6 is somewhere injective if there exists at
least one point p ∈ 6 such that f −1( f (p)) = {p}. It then follows from unique
continuation theorems that the set of points p for which f −1( f (p))= {p} is open
and dense. Note that if f is an imbedding, it is somewhere injective, and indeed,
f −1( f (p))= {p} for every p ∈6. On the other hand, nontrivial branched covers
are not somewhere injective. It follows from the theory of branched immersions
developed by Gulliver, Osserman and Royden [Gulliver et al. 1973], or directly
from Lemma 4.1 of [Moore 2006], that prime parametrized minimal surfaces are
always somewhere injective, and the proof of the Main Theorem of the latter article
uses this fact.

To prove that multiple covers are nondegenerate for generic choice of metric,
we extend part of Bott’s theory of iterated closed geodesics [Bott 1956]. In the
argument, we use the following fact that can be proven using the implicit function
theorem. If a prime parametrized minimal surface f0 is Morse nondegenerate for
a metric g0 on M , then there is a unique G-orbit of Morse nondegenerate minimal
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surfaces with the same topology near f0 for any metric near g0. (If 6 is the two-
sphere or projective plane, it is convenient to replace the group P SL(2,C) by
its compact subgroup SO(3), by fixing the center of mass.) Thus it suffices to
consider perturbations in the metric g0 which have the same one-jet as g0 along
f0, and therefore preserve minimality of f0. A corresponding fact was used in the
proof given in [Klingenberg and Takens 1972; Klingenberg 1978] for the bumpy
metric theorem for closed geodesics, and indeed our argument can be thought of
as an extension of that proof from one to two dimensions.

A similar bumpy metric theorem (Theorem 2) will be formulated for harmonic
tori and Klein bottles in Section 5 and proved in Section 6. We will see that in the
case of nonconformal harmonic maps, we must deal with a new phenomenon, the
possibility of fold points.

2. Preliminaries

We first recall some basic concepts from the theory of harmonic and minimal
surfaces in Riemannian manifolds, further details being found in [Micallef and
Moore 1988] and [Moore 2006]. If we fix the conformal structure ω ∈ T, the
energy reduces to the ω-energy

Eω : Map(6,M)→ R, defined by Eω( f )= E( f, ω),

the critical points of which are called ω-harmonic maps. To determine the equation
for harmonic maps, we take the first derivative of Eω, obtaining

d Eω( f )(X)=

∫
6

〈Fω( f, g), X〉d A, for X ∈ 0( f ∗T M),

and set Fω( f, g) = 0, where Fω( · , g) is the Euler–Lagrange operator. If one
chooses local conformal coordinates (x1, x2) on 6, and lets λ2 denote the con-
formal factor in the metric, so that the area element is given by d A = λ2 dx1 dx2,
the equation one obtains is

(3)
D
∂x1

(
∂ f
∂x1

)
+

D
∂x2

(
∂ f
∂x2

)
= 0, where

∂ f
∂xa

= f∗

(
∂

∂xa

)
is regarded as a section of the bundle f ∗T M over 6 for a = 1, 2, and D denotes
the pullback of the Levi-Civita connection of M to f ∗T M .

Differentiating Eω once again gives us the Hessian at a critical point,

(4) d2 Eω( f )(X, Y )=

∫
6

〈D1 Fω( f, g)(X), Y 〉d A =

∫
6

〈Lω(X), Y 〉d A,

for X, Y ∈ 0( f ∗T M). Here D1 Fω denotes the derivative with respect to the vari-
able f ∈ Map(6,M) and Lω is the Jacobi operator for Eω, which acts on sections
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of the pullback f ∗T M of the tangent bundle to M , or equivalently, elements of
the tangent space to Map(6,M) at f . The Jacobi equation is Lω(X) = 0 when
X ∈0( f ∗T M), and solutions to this equation are called Jacobi fields for the func-
tion Eω. A well-known calculation shows that

(5) d2 Eω( f )(X, X)=

∫
6

(
‖DX‖

2
− 〈K(X), X〉

)
d A,

where in terms of the complex parameter z = x1 + i x2 on 6,

‖DX‖
2
=

1
λ2

(∥∥∥∥DX
∂x1

∥∥∥∥2

+

∥∥∥∥DX
∂x2

∥∥∥∥2 )
and

〈K(X), X〉 =
1
λ2

(〈
R
(

X,
∂ f
∂x1

)
∂ f
∂x1

, X
〉
+

〈
R
(

X,
∂ f
∂x2

)
∂ f
∂x2

, X
〉)
,

R being the Riemann–Christoffel curvature tensor of M .
A harmonic map f is said to be conformal if it satisfies the conditions

(6)
〈
∂ f
∂x1

,
∂ f
∂x1

〉
=

〈
∂ f
∂x2

,
∂ f
∂x2

〉
and

〈
∂ f
∂x1

,
∂ f
∂x2

〉
= 0.

Parametrized minimal surfaces, the critical points of the two-variable energy E ,
are exactly the conformal harmonic maps.

The only possible singularities of parametrized minimal surfaces are branch
points. These are most easily described in terms of a local complex parameter
z = x1 + i x2 (for the oriented double cover if 6 is nonorientable). If we let

∂ f
∂z

=
1
2

(
∂ f
∂x1

+ i
∂ f
∂x2

)
,

a section of the complexified tangent bundle f ∗T M ⊗C, a point p ∈6 is a branch
point if (∂ f/∂z)(p) = 0. If the coordinate z is centered at p, we can then write
(∂ f/∂z)= zνg, where g(p) is nonzero, and ν is the branching order of f at p.

If 6 is oriented, the locally defined sections (∂ f/∂z) generate a line bundle L
contained in f ∗T M ⊗ C, which can be extended smoothly to the branch points.
If 6 is not orientable, the line bundle L can be defined over the oriented double
cover. In either case, the real and imaginary parts of sections of L determine a
two-dimensional subbundle ( f ∗T M)> of f ∗T M , which possesses an orthogonal
complement ( f ∗T M)⊥, yielding a direct sum decomposition

f ∗T M = ( f ∗T M)> ⊕ ( f ∗T M)⊥.

Thus if f is a conformal harmonic map, we can speak of tangent and normal
sections of f ∗T M even if f has branch points.



152 JOHN DOUGLAS MOORE

Just as we did for Eω, we can calculate the first and second derivatives of the
two-variable energy function E : Map(6,M) × T → R. These derivatives are
calculated in [Moore 2006, §5], and are essential for studying conformal harmonic
maps with branch points.

However, the Main Theorem of [Moore 2006] says that for generic choice of
metric all parametrized minimal surfaces are free of branch points, and hence im-
mersions. On the space of immersions f : 6 → M , it is simpler to consider the
area function A( f ), defined by

A( f )=

∫ ∣∣∣∣∂ f
∂x

∧
∂ f
∂y

∣∣∣∣ dx dy.

There is a classical formula for second variation of area under normal variations
when f : 6 → M is a minimal immersion, which is presented in [Simons 1968,
Theorem 3.2.2], [Lawson 1980, Theorem 32], and many other places. It states that
if X is a section of the normal bundle 0(( f ∗T M)⊥),

(7) d2 A( f )(X, X)=

∫
6

(
‖(DX)⊥‖

2
− 〈B(X)+ K(X), X〉

)
d A,

where 〈B(X), X〉 = ‖(DX)>‖
2,

and ( · )⊥ and ( · )> denote projections into the tangent and normal spaces respec-
tively. It is this second variation formula that we use in the proof of the Theorem.
Just as in the case of Eω, we obtain a formally self-adjoint Jacobi operator

L⊥
: 0(( f ∗T M)⊥)→ 0(( f ∗T M)⊥),

from the second variation formula, such that

d2 A( f )(X1, X2)=

∫
6

〈L⊥(X1), X2〉d A, for X1, X2 ∈ 0(( f ∗T M)⊥),

which we call the normal Jacobi operator. We call a solution to L⊥(X) = 0 a
normal Jacobi field.

It can be proved that in normal directions (7) gives the same result as second
variation of the two-variable energy E when the conformal structure is constrained
to move in such a way that conformality of f is preserved.

3. Tori covering tori

When the Riemann surface 6 is a torus, the Teichmüller space T is the upper half
plane

H = {ω = u + iv ∈ C : v > 0},

the point ω= u + iv corresponding to the conformal class of the torus C/3, where
3 is the lattice in C generated by 1 and ω. After a change of basis we can arrange
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that a given element ω ∈ T lies in the fundamental domain

D =
{
u + iv ∈ C : −

1
2 ≤ u ≤

1
2 , u2

+ v2
≥ 1

}
for the action of the group SL(2,Z), the action having kernel {±1}. The moduli
space R for the torus is the quotient of the upper half plane by the SL(2,Z)-action,
and is obtained from D by identifying points on the boundary. It is well-known
that R is diffeomorphic to the space C of complex numbers.

The complex torus corresponding to a given ω ∈ T can be regarded as the
quotient of C by the abelian subgroup generated by d and ωd , where d is any
positive real number, or alternatively, this torus is obtained from a fundamental
parallelogram spanned by d and ωd by identifying opposite sides. If ω = u + iv,
we take d = 1/

√
v. Then the fundamental parallelogram has area one, and can be

regarded as the image of the unit square {(t1, t2) ∈ R2
: 0 ≤ ti ≤ 1} under the linear

transformation (
t1
t2

)
7→

(
x
y

)
=

1
√
v

(
1 u
0 v

)(
t1
t2

)
,

where z = x + iy is the usual complex coordinate on C. A straightforward calcu-
lation gives a formula for the energy:

E( f, ω)=
1
2

∫
P

( ∣∣∣∂ f
∂x

∣∣∣2 +

∣∣∣∣∂ f
∂y

∣∣∣∣2) dx dy

=
1
2

∫
P

(
v

∣∣∣∣ ∂ f
∂t1

∣∣∣∣2 +
1
v

∣∣∣∣ ∂ f
∂t2

− u ∂ f
∂t1

∣∣∣∣2) dt1 dt2,

P denoting the unit square in the coordinates (t1, t2). Both coordinate systems
(t1, t2) and (x, y) on C are useful, the first respecting the product structure on the
torus, the second being conformal.

Let Pk,l be the parallelogram described by 0 ≤ t1 ≤ k and 0 ≤ t2 ≤ l, whenever k
and l are positive integers. If f0 : T 2

→ M is a prime minimal torus with conformal
structure ω, f0 lifts to a map f̃0 : C → M which can then be restricted to Pk,l . By
identifying opposite edges of Pk,l we obtain a torus T 2 with the conformal structure
(l/k)ω and f̃0 induces a conformal harmonic mapping f1 from the new torus into
M which covers f0 with multiplicity kl and has fundamental parallelogram Pk,l .

We now carry through several constructions motivated by Bott’s treatment of
multiple covers of closed geodesics [1956]. Suppose as above that f0 : T 2

→ M
is a prime minimal torus with lift f̃0 : C → M . Let ( f̃ ∗

0 T M)⊥ denote the normal
bundle to the immersion f̃0 and if z and w are elements of S1

⊂ C, let

V(k,l),(z,w) =
{

smooth sections X of ( f̃ ∗

0 T M)⊥ ⊗ C such that
X (t1+k, t2)= zX (t1, t2), X (t1, t2+l)= wX (t1, t2)

}
.
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Define an Hermitian inner product

〈 · , ·̄ 〉k,l : V(k,l),(z,w) × V(k,l),(z,w) → C

by

〈X, Ȳ 〉k,l =

∫
Pk,l

(〈
DX
∂x

,
DȲ
∂x

〉
+

〈
DX
∂y

,
DȲ
∂y

〉
+ 〈X, Ȳ 〉

)
dx dy,

where D denotes the covariant derivative in the normal bundle defined by the Levi-
Civita connection on M and the bar denotes conjugation. Note that elements of
V(k,l),(1,1) project to sections of ( f ∗

1 T M)⊥ ⊗ C, where f1 is the torus with funda-
mental parallelogram Pk,l .

Lemma 1. The inclusion

(8)
∑
zk=1

∑
wl=1

V(1,1),(z,w) ⊂ V(k,l),(1,1),

the sum being taken over all k-th and l-th roots of unity, is an isomorphism.

Proof. Since the inclusion is clearly injective, it suffices to show that it is surjective.
If X ∈ V(k,l),(1,1) and z and w are k-th and l-th roots of unity, we let

Xz,w(t1, t2)=
1
kl

k−1∑
a=0

l−1∑
b=0

z−aw−b X (t1 + a, t2 + b).

Then

Xz,w(t1 + 1, t2)=
1
kl

k−1∑
a=0

l−1∑
b=0

z−aw−b X (t1 + (a + 1), t2 + b)

=
z
kl

k−1∑
a=0

l−1∑
b=0

z−(a+1)w−b X (t1 + (a + 1), t2 + b)= zXz,w(t1, t2),

and by a similar calculation,

Xz,w(t1, t2 + 1)= wXz,w(t1, t2),

so Xz,w ∈ V(1,1),(z,w). Moreover, an easy calculation shows that

X =

∑
zk=1

∑
wl=1

Xz,w,

so the inclusion (8) is indeed an isomorphism. �

We next define an index form

Ik,l( · , · ) : V(k,l),(z,w) × V(k,l),(z,w) → C

by
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(9) Ik,l(X, Ȳ )=

∫
Pk,l

(
〈DX, DȲ 〉 − 〈B(X)+ K(X), Ȳ 〉

)
d A,

where D is the connection in the normal bundle and B and K are the endomor-
phisms of the normal bundle appearing in the Simons formula (7). Recall that the
operator B depends on the second fundamental form of f̃0, while K is linear in the
components of the curvature tensor. Both B and K are periodic since they are lifts
of operators from f0.

We can integrate by parts in (9), obtaining

(10) Ik,l(X, Ȳ )= −

∫
Pk,l

(
〈1X + B(X)+ K(X), Ȳ 〉

)
d A =

∫
Pk,l

〈L⊥(X)Ȳ 〉 d A,

where 1 is the Laplace operator defined by the normal connection and L⊥ is the
normal Jacobi operator, X being a normal Jacobi field if and only if it satisfies the
equation

(11) L⊥(X)= −1X − B(X)− K(X)= 0.

We divide the parallelogram Pk,l into kl parallelograms {Pa,b
}, where a and b

are integers ranging from 1 to k and 1 to l respectively, the parallelogram Pa,b

being defined by the conditions a − 1 ≤ t1 ≤ a and b − 1 ≤ t2 ≤ b. Note that
if X ∈ V(1,1),(z1,w1) and Y ∈ V(1,1),(z2,w2), where z1 and z2 are k-th roots of unity
and w1 and w2 are l-th roots of unity, and X and Y are extended to elements of
V(k,l),(1,1), the index form on the extensions is given by

Ik,l(X, Ȳ )=

k∑
a=1

l∑
b=1

∫
Pa,b

(
〈DX, DȲ 〉 − 〈B(X)+ K(X), Ȳ 〉

)
d A

=

k∑
a=1

l∑
b=1

(z1 z̄2)
a(w1w̄2)

b
∫

P1,1

(
〈DX, DȲ 〉 − 〈B(X)+ K(X), Ȳ 〉

)
d A.

Thus we see that

Ik,l(X, Ȳ )=

{
kl I1,1(X, Ȳ ) if z1 = z2 and w1 = w2,

0 if z1 6= z2 or w1 6= w2,

and hence the direct sum decomposition∑
zk=1

∑
wl=1

V(1,1),(z,w)

is orthogonal with respect to the index form Ik,l . In particular, whenever z and w
are roots of unity, the normal Jacobi operator L⊥ defined by (10) restricts to an
endomorphism

L⊥
: V(1,1),(z,w) → V(1,1),(z,w).
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Let N (z, w) denote the nullity of the index form Ik,l restricted to V(1,1),(z,w),

N (z, w)= dimC{X ∈ V(1,1),(z,w) : Ik,l(X, Ȳ )= 0 for all Y ∈ V(1,1),(z,w)}

= dimC{X ∈ V(1,1),(z,w) : L⊥(X)= 0}.

The preceding discussion proves the following lemma, analogous to a lemma of
Bott [1956] which plays a key role in his analysis of the relationship between the
index and nullity of a prime smooth closed geodesic and the index and nullity of
its multiple covers:

Lemma 2. If z1 and w1 are primitive k-th and l-th roots of unity,

Nullity of f1 =

k∑
a=1

l∑
b=1

N (za
1, w

b
1).

We now turn to the proof of Theorem 1 in the case of tori covering tori. Our
strategy is to perturb the metric in a neighborhood of the given Morse nondegener-
ate minimal surface f0 : T 2

→ M in such a way that f0 is preserved, but the Jacobi
equations are perturbed.

We construct a variation of the Riemannian metric on M of a specific form.
We choose a point p ∈ T 2 such that f −1

0 ( f0(p)) = {p}, and a neighborhood U
containing p such that f0 imbeds U into some open set V ⊂ M . Arrange, moreover,
that V is the domain of local coordinates (u1, . . . , un) such that ui ( f0(p))= 0 and

(1) f0(U ) is described by the equations u3 = · · · = un = 0,

(2) ua ◦ f0 = xa on f0(U ), for a = 1, 2, where x1 + i x2 is a conformal parameter
on U , and

(3) the Riemannian metric g on the ambient space takes the form
∑

gi j dui du j ,
such that when restricted to f0(6)∩V , gir = δir , for 1 ≤ i ≤ n and 3 ≤ r ≤ n.

Such coordinates can be constructed using the exponential map restricted to the
normal bundle of the surface f0(6)∩ V in M .

Following [Klingenberg 1978, proof of Proposition 3.3.7], we construct a vari-
ation ġ =

∑
ġi j dui du j of the metric on the ambient manifold M such that

ġ11(u1, . . . un)= ġ22(u1, . . . un)=

n∑
r,s=3

ur usαrs(u1, . . . , un),

ġi j = 0 if (i, j) 6= (1, 1) or (2, 2).

Here the αrs are smooth functions which vanish outside a small tubular neighbor-
hood of f0(60). A straightforward calculation shows that the resulting changes in
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the Christoffel symbols

0̇ki j =
1
2

(
∂ ġik

∂u j
+
∂ ġ jk

∂ui
−
∂ ġi j

∂uk

)
vanish except for

0̇r11 = 0̇r22 = −

n∑
s=3

usαrs,

0̇1r1 = 0̇11r = 0̇2r2 = 0̇22r =

n∑
s=3

usαrs, for 3 ≤ r ≤ n.

We want to consider the effect of such a variation on the operator L⊥. Since
the operator B (which is essentially the second fundamental form of ( f̃ ∗

0 T M)⊥

in f̃ ∗

0 T M) depends only on the Christoffel symbols along f0 (where ur = 0),
the variation of B is zero under the metric deformation. On the other hand, the
variation of the operator K depends on the changes in curvature components, which
are given by the formulae

Ṙli jk =
∂

∂ui
(0̇l jk)−

∂

∂u j
(0̇lik)+

∑
m
0̇lim0

m
jk+

∑
m
0lim0̇

m
jk−

∑
m
0̇l jm0

m
ik−

∑
m
0l jm0̇

m
ik .

Along f0(60) all the 0̇ki j and 0̇k
i j must vanish, so along f0(60),

Ṙ1r1s = Ṙ2r2s =
∂

∂ur

(
0̇11s

)
−

∂

∂u1

(
0̇1rs

)
= αrs .

Thus the normal metric variation will result in the following variation of the endo-
morphism K:

(12) K̇

( n∑
r=3

hr
∂

∂ur

)
=

n∑
r,s=3

αrshs
∂

∂ur
,

where the hr can be arbitrary real-valued functions.
We let Met(M, f0) denote the space of Riemannian metrics g on M such that

the one-jet j1(g) of g agrees with the one-jet j1(g0) of g0 at points of f0(60). This
implies that f0 : T 2

→ M is a minimal torus for any g ∈ Met(M, f0). Given any
metric g ∈ Met(M, f0), we have a corresponding normal Jacobi operator

L⊥

g : 0(( f ∗

0 T M)⊥)→ 0(( f ∗

0 T M)⊥), L⊥

g = −1− B − K(g),

the Laplace operator 1 and the second fundamental form endomorphism B being
independent of the choice of g ∈ Met(M, f0).

We now consider a given cover f1 : T 2
→ M of f0. We suppose, as above,

that f0 has fundamental parallelogram P while f1 has fundamental parallelogram
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Pk,l . By Lemma 2, the contributions to the nullity of f1 come from Jacobi fields
in N (z, w), as z and w range over the k-th and l-th roots of unity. We let

Ek(z, w)= completion of V(1,1),(z,w) with respect to the L2
k-norm,

and define a map

F : Ek(z, w)× Met(M, f0)
2
k → Ek−2(z, w) by F(X, g)= L⊥

g (X).

Note that for each choice of g, X 7→ L⊥
g (X) is a linear Fredholm map of Fredholm

index zero.
We let SEk(z, w)= {X ∈ Ek(z, w) : ‖X‖ = 1}, the fiber of a unit sphere bundle

SEk(z, w)× Met(M, f0)
2
k → Met(M, f0)

2
k .

We claim that the subset

S = {(X, g) ∈ SEk(z, w)× Met(M, f0)
2
k : L⊥

g (X)= 0}

is a smooth submanifold. Note that any X with ‖X‖= 1 such that L⊥
g (X)= 0 must

be nonzero on an open dense set and hence any unit-length element of Ek−2(z, w)
not in the image of L⊥

g must be nonzero on an open dense set. Thus it follows
from (12) that any element of Ek−2(z, w) not in the image of L⊥

g is of the form
D2 F(X, g)(ġ) for some metric variation ġ ∈ Tg(Met(M, f0)

2
k). Thus the restriction

of F to the total space of the sphere bundle is a submersion, and our claim follows
immediately from the implicit function theorem.

Suppose now that

π : SEk(z, w)× Met(M, f0)
2
k → Met(M, f0)

2
k

is the projection on the second factor. We claim that the restriction of π to S,

π : S → Met(M, f0)
2
k,

is a Fredholm map of Fredholm index −1. To see this, we note first that

T(X,g)S =
{
(Y, ġ) ∈ Ek(z, w)× TgMet(M, f0)

2
k

such that L⊥

g (Y )+ D2 F(X, g)(ġ)= 0, 〈X, Y 〉 = 0
}
,

where 〈 · , · 〉 is the L2
k inner product. Thus (Y, ġ) lies in the kernel of dπ(X,g) if

and only if 〈X, Y 〉 = 0 and L⊥
g (Y )= 0. Since X is in the kernel of L⊥

g by definition
of S, the dimension of the kernel of dπ(X,g) is one less than the dimension of the
kernel of the Jacobi operator L⊥

g .
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We next investigate the cokernel, noting first that ġ 7→ D2 F(X, g)(ġ) covers the
cokernel of L⊥

g . For Y ∈ Ek−2(z, w), we define a continuous linear functional

T (Y ) : TgMet(M, f0)
2
k → R by T (Y )(ġ)= 〈(D2 F)(X,g)(ġ), Y 〉k−2,

where 〈 · , · 〉k−2 denotes the L2
k−2 inner product. If ġ is in the range of dπ(X,g),

then T (Y )(ġ) = 0 whenever Y is perpendicular to the range of L⊥
g . This shows

that the codimension of the range of dπ(X,g) is the dimension of the cokernel of
L⊥

g . Thus π is indeed a Fredholm map of index

dim(Kernel of L⊥
g )− 1 − dim(Cokernel of L⊥

g )= −1.

It therefore follows from the Sard–Smale theorem [Smale 1965] that for g be-
longing to a countable intersection of open dense subsets of Met(M, f0)

2
k , there

will be no solutions X to L⊥
g (X) = 0 in Ek(z, w). There are only a countable

number of tori covering a given torus, and for each covering of type (k, l) only
kl choices of roots of unity z and w. Therefore for a countable intersection of
open dense subsets of Met(M, f0)

2
k , there will no nonzero normal Jacobi fields for

any torus covering a given nondegenerate minimal torus. This, together with the
remarks at the end of the Introduction, proves Theorem 1 for tori covering tori.

4. Nonorientable surfaces

We next consider the modifications necessary to treat the case in which the prime
minimal torus is replaced by a prime minimal Klein bottle f0 : K 2

→ M .
A minimal Klein bottle will be double covered by a minimal torus with a flat

metric of area one that is invariant under an orientation-reversing deck transforma-
tion. Such a deck transformation is a map As : T 2

→ T 2 which is expressed in
terms of appropriate standard coordinates (t1, t2) on the torus as

As(t1, t2)=
(
t1 +

1
2 , −t2 − s

)
for s ∈ S1, and consists of a translation composed with a reflection. One easily
checks that this map satisfies the identity A2

s = 1. Recall that the Teichmüller space
T for the torus is the upper half-plane H, the point ω= u+iv ∈ H corresponding to
the torus C/3, where3 is generated by 1 and ω. In the case of a double cover of a
Klein bottle, we arrange that the differential of As fixes the generator corresponding
to 1 in the fundamental parallelogram, and the differential must then take ω to −ω.
Since the differential of As is an isometry for the flat metric, 1 and ω must be
perpendicular, and the Teichmüller space of flat Klein bottles with total area one
consists of the positive imaginary numbers ω = iv with v > 0, the fixed point set
of the involution

A? : H → H, A?(u + iv)= −u + iv.
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(See [Wolf 1967, Proposition 2.5.8] for further discussion.)
As the space of maps of Klein bottles into M , we can take

Map(K 2,M)= { f ∈ Map(T 2,M) : f ◦ As = f for some s ∈ S1
}.

Minimal Klein bottles can then be regarded as critical points for the restricted two-
variable function

(13) E : Map(K 2,M)× {ω ∈ T : A?(ω)= ω} → R.

The energy is invariant under the action of S1
× S1 on Map(K 2,M) defined by

f (t1, t2) 7→ f (t1 + s1, t2 + s2), for (s1, s2) ∈ S1
× S1.

In the subsequent discussion, we let A = As0 for some choice of s0 ∈ S1, thereby
breaking part of the S1

× S1-symmetry.
Suppose now that f : 6 → M is an oriented double cover of a nonorientable

minimal surface f0 :60 → M . The map A induces an involution A? on f ∗T M , as
well as on the space of sections of f ∗T M , and both of these actions extend complex
linearly to the complexifications. Moreover, these involutions preserve both the
metric and the pullback of the Levi-Civita connection. If E = ( f ∗T M))⊥ ⊗C, the
complexified normal bundle, the map A? determines a direct sum decomposition
0(E)= 0+(E)⊕0−(E), where

(14) 0+(E)={X ∈0(E) : A?(X)= X̄}, 0−(E)={X ∈0(E) : A?(X)=−X̄}.

The sections of 0+(E) can be regarded as normal deformations of the nonori-
entable minimal surface f0 :6→ M while the sections of 0−(E) are deformation
of f that do not come from deformations of the underlying Klein bottle. The
second variation formula (7) for area under normal variations applies immediately
to sections of E.

A key point is that the normal Jacobi operator L⊥ must commute with A?, since
A? preserves the normal connection and the operators B and K, and hence induces
maps

L⊥
: 0+(E)→ 0+(E) and L⊥

: 0−(E)→ 0−(E).

Since f0 is nondegenerate, there are no normal Jacobi fields in 0+(E), and the
argument presented in Section 3 shows that for a generic choice of metric in
Met(M, f0)

2
k , there will also be no normal Jacobi fields in 0−(E). The argument

from Section 3 also shows that there are no Jacobi fields in any torus covering f
and hence in any Klein bottle or torus covering f0. This finishes the proof of the
theorem for Klein bottles.

Finally, it remains only to establish the second statement in the Theorem, and
this is a relatively straightforward modification of the previous argument.
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Suppose that f :6→ M is an oriented double cover of a nonorientable minimal
surface f0 : 60 → M of arbitrary genus, with A being the sheet interchange map,
so f ◦ A = f . As in the special case of the Klein bottle, the map A induces an
involution A? on the complexified normal bundle E = ( f ∗T M))⊥ ⊗ C of f , as
well as on the space of sections of E, and we have a direct sum decomposition
(14). Just as before, there are no Jacobi fields in 0(E+) since f0 is assumed to
be Morse nondegenerate, and the argument presented in Section 3 shows that for
generic choice of metric in Met(M, f0)

2
k , there will also be no Jacobi fields in

0(E−). This finishes the proof of Theorem 1.

5. Bumpy metrics for harmonic maps

If f is an ω-harmonic map, the Hopf differential is the holomorphic quadratic
differential

� f =

〈
∂ f
∂z
,
∂ f
∂z

〉
dz2,

and it vanishes precisely when f is conformal (that is, it satisfies (6)). Note that
� f automatically vanishes at branch points.

In the case where 6 is the torus T 2, � f = adz2, where a is a complex con-
stant. If f is not conformal, a 6= 0, and f cannot have any branch points. On the
other hand, if a = 0, it follows from the Main Theorem of [Moore 2006] that f ,
now a parametrized minimal surface, has no branch points for generic choice of
Riemannian metric on M , when M has dimension at least four.

However, in contrast with minimal tori, nonconformal ω-harmonic tori f : T 2
→

M can have points at which the rank of d f is one. This can happen in one of two
ways: f can be a torus parametrization of a smooth closed geodesic, or f can have
fold points.

Example. To see how the second case arises, we consider a degree zero harmonic
map f : T 2

→ S2, where S2 is given the standard Riemannian metric of constant
curvature one, which has “fold points” along two circles parallel to the equator. To
construct f , we first note that the metric on S2

⊂ R3 with equation x2
+ y2

+z2
= 1

is expressed in spherical coordinates (φ, θ), where z = cosφ and θ is the standard
angular coordinate in the (x, y)-plane, as

ds2
= (cos2 φ) dθ2

+ dφ2
= sech2u (dθ2

+ du2),

where u and φ are related by the equation tanh(u/2) = tan(φ/2). In terms of the
standard coordinates (t1, t2) on T 2, we can define a mapping f : T 2

→ S2 by

θ(t1, t2)= t2, φ(t1, t2)= φ(t1),

where φ is a (nonconstant speed) parametrization of the geodesic θ = (constant).
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The circle φ= constant has curvature κ = 1/ cosφ and normal curvature κn = 1.
The equation κ2

g + κ2
n = κ2, where κg is the geodesic curvature, implies that κg =

± tanφ. Moreover, the curve is traversed with constant speed cosφ. Hence

0 =
D
∂t1

(
∂ f
∂t1

)
+

D
∂t2

(
∂ f
∂t2

)
=

d2φ

dt2 + (tanφ)(cos2 φ)=
d2φ

dt2 +
1
2

sin 2φ.

Thus the differential equation we must solve to obtain a harmonic map (the pen-
dulum equation except for constant factors) is equivalent to the first order system

dφ/dt = ψ, dψ/dt =
1
2 sin 2φ.

Eliminating dt yields

dψ
dφ

=

1
2 sin 2φ
ψ

, which integrates to 1
2ψ

2
+

1
2 cos 2φ = (constant).

For any constant strictly less than one-half we get solutions to the differential equa-
tions which yield harmonic maps for appropriate conformal structures on T 2. As
the constant approaches one-half, the conformal structure approaches the boundary
of Teichmüller space for the torus.

The antipodal map A : S2
→ S2 induces an orientation reversing map A :T 2

→T 2

such that f ◦ A = A ◦ f . We can take the quotient in both domain and range,
obtaining thereby a harmonic map from a Klein bottle into the real projective plane
RP2, which has as its image a Möbius band.

Thus it is possible to construct four types of nonconstant harmonic tori without
branch points which are not branched covers of minimal spheres, do not degener-
ate to geodesics, and do not cover harmonic tori of lower energy: immersed tori,
double covers of immersed Klein bottles, harmonic cylindrical bands and double
covers of harmonic Möbius bands.

The isotropy group 0 of the O(2)× O(2)-action on Map(T 2,M) is trivial for
immersed tori and Z2 for harmonic cylindrical bands, the generator being a reflec-
tion in one of the two O(2)-factors. The isotropy group is Z2 for Klein bottles and
Z2 ⊕ Z2 for harmonic Möbius bands.

We say that a harmonic surface f :6→ M covers a harmonic surface f0 :60 →

M if there is a conformal map g :6 →60 such that f = f0 ◦ g.

Definition. An ω-harmonic map f :6→ M is prime if it is nonconstant and is not
a cover (with possible branch and fold points) of an ω′-harmonic map f0 :60 → M
of lower energy, the surfaces 6 and 60 being allowed to be nonorientable.

Theorem 2. Suppose M is a compact connected smooth manifold of dimension at
least four with a generic choice of Riemannian metric. Then the nonconstant prime
ω-harmonic tori and Klein bottles are free of branch points. Moreover, either
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(1) they are parametrizations of smooth closed geodesics and lie on one-dimen-
sional nondegenerate critical submanifolds, or

(2) they lie on two dimensional critical submanifolds, each an orbit for the action
of O(2)× O(2) on Map(T 2,M).

The same holds for all ω-harmonic tori and Klein bottles which are unbranched
covers of ω′-harmonic tori and Klein bottles.

When the dimension of M is three, a version of Theorem 2 holds for noncon-
formal harmonic maps.

In Theorem 2, we allow the possibility that the minimal surfaces may have fold
points, points at which the fiber of the line bundle L coincides with its conju-
gate. It would be interesting to determine whether fold points exist in manifolds
of dimension at least four with generic metrics.

In analogy with Theorem 1, the motivation behind Theorem 2 is that it is needed
to provide part of the foundation for a partial parametrized Morse theory for ω-
harmonic maps, the conformal structure ω being the parameter.

6. Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1, except that we use second
variation of Eω instead of second variation of A. Once one proves Theorem 2 for
prime harmonic maps, the extension to unbranched covers is proven in exactly the
same way as in Sections 3 and 4.

If f is conformal, it follows from the Main Theorem of [Moore 2006] that f is
free of branch points. If M is nonconformal, it cannot have branch points, as we
already mentioned. Proposition 3.1 of the same paper shows that the theorem holds
for those prime harmonic maps f which are free of branch points and somewhere
injective, that is satisfy the condition that f −1( f (p))= p for some p ∈ T 2. Thus
in the prime orientable case, we need only analyze the prime ω-harmonic maps
f : T 2

→ M which fail to be somewhere injective.
Following the proof of Theorem 3 in [Sampson 1978], we note that it follows

from Aronsjazn’s unique continuation theorem for harmonic maps that if d f has
rank zero on a nonempty open set, the harmonic map f must be constant. If
d f has rank one on a nonempty open set U ⊂ 6, every point of U has an open
neighborhood which is mapped by f onto a smooth arc C in M . We can suppose
that coordinates (u, θ) have been constructed on U so that ∂ f/∂θ = 0, and thus
f : U → M reduces to a function of one variable, f (u, θ)= f0(u), parametrizing
a curve C . In this case the harmonic map must be a parametrization of a geodesic.

Finally, we need to analyze the case in which d f has rank two on an open set.
This includes harmonic maps with fold points at which the rank drops to one.
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To analyze such maps, we let

F =
{

p ∈6 : L(p)= L(p)
}
,

points at which the rank of d f is one, and carry through the theory of branched
immersions described in [Gulliver et al. 1973], allowing now, however, for the
possibility of folding of f along F .

We can carry out the analysis for an arbitrary Riemann surface, not just a torus
or Klein bottle. We begin by defining an equivalence relation ∼ on points of 6−

F by setting p ∼ q if there is are open neighborhoods Up and Uq of p and q
respectively, and a conformal or anticonformal diffeomorphism ψ : Up → Uq such
that f ◦ ψ = f . Using the argument in [Gulliver et al. 1973], which is based
upon Aronsjazn’s unique continuation theorem, one shows that ∼ is indeed an
equivalence relation and that the quotient space 60 = 6 − F/ ∼ is a smooth
manifold except at branch points if they exist. Moreover, the conformal structure
ω on 6 projects to a conformal structure ω0 on 60. (In the case where 6 is a
torus and f is not conformal, f has no branch points, of course.) We can define
f0 : 60 → M by f0([p]) = f (p), where [p] denotes the equivalence class of p,
so that if π : 6 → 60 is the quotient map, f0 ◦ π = f . We note that any point
equivalent to a branch point is itself a branch point. The restriction of f0 to 60

minus the equivalence classes of the branch points is a harmonic map of finite
energy. It therefore follows from the removable singularity theorem of Sacks and
Uhlenbeck [1981, Theorem 3.6] that the restriction of f0 can be extended to the
equivalence classes of the branch points so as to be a harmonic map.

If f has fold points, 60 will consist of several connected components (at least
two). Each such component will be diffeomorphic to a component of 6 − F .
Moreover, two components of 6 − F which have the same components of F in
their closure must be diffeomorphic. In the case of the torus this implies that no
component of the set F of fold points can be a null homotopic circle, because this
would imply that a disk is diffeomorphic to something which is not a disk. In the
case where 6 is a torus, all of the components of F must be smooth closed circles
and must all lie in the same homology class.

Note that the complex dilatation K f (p) as described in [Bers 1960] or [Imayoshi
and Taniguchi 1992] must go to infinity at points of F . Moreover, K f0([p]) =

K f (p). It follows that all components of 6− F are diffeomorphic to each other.
Moreover, if there were more than two components, then f would not be prime,
and hence there are exactly two sheets to the covering π :6− F →60.

We can define a map B :6→6 which fixes F and interchanges the two sheets
of the cover; thus f ◦ B = f . The map B is an orientation-reversing isometry of
T 2 with its flat metric, and it induces a map (also denoted by B from L to L̄ such
that B ◦π = π ◦ B, where π : L →6 is the projection.
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The isometry B : T 2
→ T 2 induces a conjugate linear involution

B∗ : E → E, where E = f ∗T M ⊗ C,

and we divide the space 0(E) of sections of E into a direct sum 0(E)=0+(E)+
0−(E), where

0+(E)= {X ∈ 0(E) : B?(X)= X̄}, 0−(E)= {X ∈ 0(E) : B?(X)= −X̄}.

The sections of 0+(E) can be seen as deformations of the harmonic cylindrical
band, while the sections of 0−(E) are deformations of f that separate the two
sheets of 60.

We can now apply the argument of Section 4 to f . Once again, we see that
variations in the metric on M eliminate all of the potential Jacobi fields for the
function Eω. Thus an application of the Sard–Smale theorem [Smale 1965] shows
that for generic choice of metric there are no Jacobi fields tangent to the surface
except for the those generated by the action of the symmetry group S1

× S1.
The argument for the case of a prime harmonic Klein bottle f : K 2

→ M is
similar. in this case, f is double covered by a harmonic torus f̃ : T 2

→ M with
covering transformation A. If f is not somewhere injective, we construct 60 as
above, but now 60 has only one component and the isometry B : K 2

→ K 2 fixing
F lifts to an isometry B : T 2

→ T 2 on the double cover which commutes with A.
We can now divide the space 0(E) into a direct sum

0(E)= 0++(E)+0+−(E)⊕0−+(E)+0−−(E),

where, for example,

0+−(E)= {X ∈ 0(E) : A?(X)= X̄ , B?(X)= −X̄}.

the other summands being defined similarly. Once again, we apply the previous
argument and the Sard–Smale theorem to finish the proof of Theorem 2.
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