We investigate the
convergence to steady states of the solutions to the one-dimensional viscous
Hamilton–Jacobi equation ∂tu − ∂x2u = |∂xu|p, where (t,x) ∈ (0,∞) × (−1,1) and
p ∈ (0,1), with homogeneous Dirichlet boundary conditions. For that purpose,
a Liapunov functional is constructed by the approach of Zelenyak (1968).
Instantaneous extinction of ∂xu on a subinterval of (−1,1) is shown for suitable
initial data.
Mathématiques pour l’Industrie et la
Physique, CNRS UMR 5640
Université Paul Sabatier – Toulouse 3
118 route de Narbonne
F-31062 Toulouse cedex 9
France