Vol. 230, No. 2, 2007

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Convergence to steady states for a one-dimensional viscous Hamilton–Jacobi equation with Dirichlet boundary conditions

Philippe Laurençot

Vol. 230 (2007), No. 2, 347–364
Abstract

We investigate the convergence to steady states of the solutions to the one-dimensional viscous Hamilton–Jacobi equation tu x2u = |xu|p, where (t,x) (0,) × (1,1) and p (0,1), with homogeneous Dirichlet boundary conditions. For that purpose, a Liapunov functional is constructed by the approach of Zelenyak (1968). Instantaneous extinction of xu on a subinterval of (1,1) is shown for suitable initial data.

Keywords
diffusive Hamilton–Jacobi equation, convergence to steady states, gradient extinction, Liapunov functional
Mathematical Subject Classification 2000
Primary: 35B40
Secondary: 35K55, 37B25
Milestones
Received: 24 October 2005
Accepted: 2 March 2006
Published: 1 April 2007
Authors
Philippe Laurençot
Mathématiques pour l’Industrie et la Physique, CNRS UMR 5640
Université Paul Sabatier – Toulouse 3
118 route de Narbonne
F-31062 Toulouse cedex 9
France
http://www.mip.ups-tlse.fr/~laurenco/