Vol. 230, No. 2, 2007

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
Projectability and uniqueness of F-stable immersions with partially free boundaries

Frank Müller and Sven Winklmann

Vol. 230 (2007), No. 2, 409–426
Abstract

We study immersed critical points X of an elliptic parametric functional (X) = BF(Xu Xv)dudv that are spanned into a partially free boundary configuration {Γ,𝒮} in 3. We suppose that 𝒮 is a cylindrical support surface and that Γ is a closed Jordan arc with a simple convex projection. Under geometrically reasonable assumptions on {Γ,𝒮}, F, and X we prove the projectability and uniqueness of stable immersions. This generalizes a result for minimal surfaces obtained by Hildebrandt and Sauvigny.

Keywords
F-minimal immersions, partially free boundaries, uniqueness, projectability, Wulff shape
Mathematical Subject Classification 2000
Primary: 53C42, 35J65, 49Q10
Milestones
Received: 25 August 2005
Accepted: 15 May 2006
Published: 1 April 2007
Authors
Frank Müller
Brandenburgische Technische Universität Cottbus
Institut für Mathematik
Konrad-Zuse-Straße 1
03044 Cottbus
Germany
Sven Winklmann
Universität Duisburg-Essen
Campus Duisburg
Fachbereich Mathematik
47048 Duisburg
Germany
http://www.uni-duisburg.de/FB11/DGL/Winklmann/wink