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We study the curvature and isometries of the quasihyperbolic metric on
plane domains. We prove that, except for the trivial case of a half-plane, the
isometries are exactly the similarity mappings. We need to assume that the
boundary of the domain is C3 smooth.

1. Introduction

Let D ⊂ R2 be an open set and let δ(x)= d(x, ∂ D) be the distance to the boundary.
The quasihyperbolic metric in D is the conformal metric with density δ(x)−1; it is
given by

kD(x, y) = inf
γ

∫
γ

ds(z)
δ(z)

,

where the infimum is taken over paths γ connecting x and y in D and ds represents
integration with respect to arc-length.

The quasihyperbolic metric was first introduced in the 1970s, and since then
it has found innumerable applications, especially in the theory of quasiconformal
mappings: see [Gehring and Osgood 1979; Gehring and Palka 1976; Herron and
Koskela 1996; Martin 1985; Martin and Osgood 1986]. New connections are still
being made; for instance P. Jones and S. Smirnov [2000] gave a criterion for re-
movability of a set in the domain of definition of a Sobolev space in terms of
the integrability of the quasihyperbolic metric (see also [Koskela and Nieminen
2005]), while Z. Balogh and S. Buckley [2003] used the metric in a geometric
characterization of Gromov-hyperbolic spaces.

Despite the prominence of the quasihyperbolic metric, there have been almost
no investigations of its geometry. Exceptions are [Martin 1985; Martin and Osgood
1986], the second of which was the main motivation for the approach presented
in this paper, and H. Lindén’s [2005] and R. Klén’s [2007] theses. Part of the
reason for this lack of geometrical investigations is probably that the density of the
quasihyperbolic metric is not differentiable in the entire domain, which places the
metric outside the standard framework of Riemannian metrics.
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At least two modifications of the quasihyperbolic metric have been proposed
which do not suffer from this problem. J. Ferrand [1988] suggested replacing the
density δ−1 by

σD(x) = sup
a,b∈∂ D

|a − b|

|a − x | |b − x |
.

Note that δ(x)−1
≤ σD(x) ≤ 2δ(x)−1, so the Ferrand metric and the quasihyper-

bolic metric are bilipschitz equivalent. Moreover, the Ferrand metric is Möbius
invariant, whereas the quasihyperbolic metric is only Möbius quasi-invariant. A
second variant was proposed more recently by R. Kulkarni and U. Pinkall [1994]
(see also [Herron et al. 2003]). The K–P metric is defined by the density

µD(x) = inf
{ 2r
(r − |x − z|)2 : x ∈ B(z, r) ⊂ D

}
.

Equivalently, the infimum is taken over the hyperbolic densities of x in balls con-
tained in D. This density satisfies the same estimate as Ferrand’s density, namely
δ(x)−1

≤µD(x)≤2δ(x)−1, and the K–P metric is also Möbius invariant. Although
the Ferrand and K–P metrics are in some sense better behaved than the quasihyper-
bolic metric, they suffer from the shortcoming that it is very difficult to get a grip
even of the density, even in simple domains.

Despite this, D. Herron, Z. Ibragimov and D. Minda [Herron et al. 2006] recently
managed to solve the isometry problem for the K–P metric in most cases. By
the isometry problem for a metric d we mean the characterization of mappings
f : D → R2 with

dD(x, y) = d f (D)( f (x), f (y))

for all x, y ∈ D. Notice that in some sense we are dealing here with two different
metrics, due to the dependence on the domain. Hence the usual way of approaching
the isometry problem is by looking at some intrinsic features of the metric which
are then preserved under the isometry. Since irregularities of the domain, such as
cusps, often lead to more distinctive features, this implies that the problem is often
easier for more complicated domains.

The work just cited bears out this heuristic — the authors were able to show
that all isometries of the K–P metric are Möbius mappings except in simply and
doubly connected domains. Their proof is based on studying the curvature of the
metric. For the quasihyperbolic metric, formulae for the curvature were worked
out already in [Martin and Osgood 1986] (see our Section 3), and were used in that
paper to prove that all the isometries of the disc are similarity mappings. These
will be our main tools in this paper. The other source of the ideas used below are
the papers [Hästö and Ibragimov 2005; 2007; Hästö et al. 2006; Hästö and Lindén
2004] on isometries of some other similarity- and Möbius-invariant metrics.
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There are three steps in characterizing quasihyperbolic isometries: showing they
are conformal, that they are Möbius, and that they are similarities. The first step was
carried out by Martin and Osgood [1986, Theorem 2.6] for completely arbitrary
domains, so there is no more work to do there. In Section 4 we will use their results
on the curvature of the quasihyperbolic metric and some new ideas in order to prove
that the conformal isometries are Möbius (second step). For this we need to assume
that the boundary of the domain is at least C3-smooth. In Section 2 we work on the
third step, showing that Möbius isometries are similarities provided the boundary
is C1. In Section 3 we study the Gaussian curvature of the quasihyperbolic metric,
and the gradient of the curvature.

Notation. If D is a subset of R2, we denote by ∂ D and D its boundary and closure.
For x ∈ D  R2 we set δ(x) = d(x, ∂ D) = min{|x − z| : z ∈ ∂ D}. We identify R2

with C, and speak about the real and imaginary axes, etc. We will often work with
a mapping f : D → R2. In such cases we will use a prime to denote quantities
on the image side, e.g. x ′

= f (x), D′
= f (D) and δ′(x) = d(x, ∂ D′). By B(x, r)

we denote a disc with center x and radius r , and by [x, y], (x, y] the closed and
half-open segments between x and y.

We denote by R2
∪ {∞} the one-point compactification of R2. The cross-ratio

|a, b, c, d| for distinct points a, b, c, d ∈ R2
∪ {∞} is defined by

|a, b, c, d| =
|a − c||b − d|

|a − b||c − d|
,

with the understanding that |∞−x |/|∞−y| = 1 for all x, y ∈ R2. A homeomor-
phism f : R2

∪ {∞} → R2
∪ {∞} is a Möbius mapping if∣∣ f (a), f (b), f (c), f (d)

∣∣ = |a, b, c, d|

for every quadruple of distinct points a, b, c, d in the domain. A mapping of a
subdomain of R2

∪{∞} is Möbius if it is a restriction of a Möbius mapping defined
on R2

∪ {∞}. A Möbius mapping can always be decomposed as i ◦ s, where i is
an inversion or the identity and s is a similarity. For more information on Möbius
mappings see [Beardon 1995, Section 3], for instance.

2. Isometries which are Möbius

Let D be a domain and ζ ∈ ∂ D. We say that ζ is circularly accessible if there
exists a disc B ⊂ D such that ζ ∈ ∂ B.

Lemma 2.1. Let D (R2 be a Jordan domain with circularly accessible boundary,
and let f : D → R2 by a quasihyperbolic isometry which is also Möbius. Then, up
to composition by similarity mappings, f is the identity or the inversion in a circle
centered at a boundary point.
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Proof. Assume that f is not a similarity. Since f is a Möbius map, it is, up to
similarities, an inversion. Similarities are always isometries of the quasihyperbolic
metric, so it suffices to consider the case when f is an inversion in a unit sphere.
Denote the center of this sphere by w.

Suppose first that w 6∈ D and let ζ ∈ ∂ D be the closest boundary point to w. We
normalize so that ζ lies on the positive real axis and w = 0. Since ζ is circularly
accessible, we find a disc B(z, r) ⊂ D containing ζ in its closure. Since ζ is the
closest boundary point to w, we see that z has to lie on the positive real axis, as
well. Let x and y satisfy ζ < x < y ≤ ζ(ζ+2r)/(ζ+r). The right-hand inequality
ensures that ζ is the closest boundary point to [x, y], and that ζ ′ is the closest
boundary point to [x ′, y′

]. Thus we find that

kD(x, y) = log
|x − ζ |

|y − ζ |
and kD′(x ′, y′) = log

|x ′
− ζ ′

|

|y′ − ζ ′|
.

Since f is the inversion in the unit sphere, we have

|x ′
− ζ ′

| =
|x − ζ |

|x | |ζ |
,

and similarly for y. Then the equation exp kD(x, y) = exp kD′(x ′, y′) gives us

|x − ζ |

|y − ζ |
=

|x − ζ |

|x ||ζ |

|y||ζ |

|y − ζ |
,

i.e., |x | = |y|. This contradiction shows that w ∈ D. Since f maps D into R2, it is
clear that w 6∈ D, so w is a boundary point. �

We call D a Ck domain if ∂ D is locally the graph of a Ck function. Note that if
D is a C1 domain, then certainly every boundary point is circularly accessible.

Proposition 2.2. Let D ( R2 be a C1 domain, and let f : D → R2 by a quasi-
hyperbolic isometry which is also Möbius. If D is not a half-plane, then f is a
similarity.

Proof. Assume that f is not a similarity map. By Lemma 2.1, there is no loss of
generality in considering only the case when f is the inversion in a circle centered
at a boundary point; moreover, we normalize so that the origin is this center.

Let ζ be a boundary point of D distinct from 0 and let u be the inward pointing
unit normal at ζ . For all sufficiently small t > 0, the point xt = ζ + tu lies in D
and its closest boundary point is ζ . For such s < t , we have

kD(xt , xs) = log
t
s
.

To estimate the distance of the image points, we use the inequality
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jD′(x ′, y′) = log
(

1 +
|x ′

− y′
|

min{δ′(x ′), δ′(y′)}

)
≤ kD′(x ′, y′),

which is always valid (since kD′ is the inner metric of jD′ , e.g. [Gehring and Palka
1976, Lemma 2.1]). We also need the formula

|x ′
− y′

| =
|x − y|

|x | |y|

for the length distortion of an inversion. Using these facts and the estimate δ′(x ′)≤

|x ′
− ζ ′

|, we derive the inequality

kD′(x ′, y′) ≥ log
(

1 +
|x ′

− y′
|

min{δ′(x ′), δ′(y′)}

)
≥ log

(
1 +

|x − y|/(|x | |y|)

min{|x ′ − ζ ′|, |y′ − ζ ′|}

)
= log

(
1 +

|x − y| |ζ |

|x | |y| min{|x − ζ |/|x |, |y − ζ |/|y|}

)
= log

(
1 +

|x − y| |ζ |

min{|y| |x − ζ |, |x | |y − ζ |}

)
.

Applying this inequality to the points xt and xs as defined before, we have

kD′(x ′

t , x ′

s) ≥ log
(

1 +
(t − s) |ζ |

min{t |xt |, s |xs |}

)
.

Let us choose t = 2s. Since |x2s | and |xs | both tend to |ζ | as s → 0, we see that
the second term in the minimum is smaller. Since the inversion is supposed to be
an isometry, we can use the formula for kD(xt , xs) from before with the previous
inequality to conclude that

log
2s
s

≥ log
(

1 +
(2s − s) |ζ |

s |xs |

)
.

Taking the exponential function gives |xs | ≥ |ζ |. Since xs = ζ + su, this implies
that 〈ζ − 0, u〉 ≤ 0 as s → 0, where 〈 , 〉 denotes the scalar product.

Applying the same argument, but starting with points on the image side, we
conclude that the opposite inequality is also valid. (There is actually a slight
asymmetry here: the domain D′ need not have circularly accessible boundary at
the origin. However, it is clear that this does not affect the argument so far.) Thus
it follows that 〈ζ − 0, u〉 = 0 for all boundary points. But since the boundary is
assumed to be C1, this implies that the domain is a half-plane. �

From [Martin and Osgood 1986, Theorem 2.8] we know that if f : D → R2

is a quasihyperbolic isometry, then f is conformal in D. In dimensions three and



320 PETER HÄSTÖ

higher every conformal mapping is Möbius. It is easy to see that the proofs in this
section work also in the higher dimensional case. Therefore, we have proved:

Corollary 2.3. Let D be a C1 domains in Rn , n ≥ 3, which is not a half-space.
Then every quasihyperbolic isometry is a similarity mapping.

Example 2.4. If we do not assume the boundary is C1, there are some other
domains with nontrivial isometries, namely the punctured plane and sector domains
(those whose boundary consists of two rays). In these cases, inversions centered
at the puncture or the vertex of the sector are isometries. The previous proposition
strongly suggests that there are no further examples.

3. Curvature of the quasihyperbolic metric

Let D be a domain in R2. We call a disc B ⊂ D maximal, if it is not contained
in any other disc contained in D. The set consisting of the centers of all maximal
discs in D is called the medial axis of D and denoted by MA(D). The medial axis
and differentiability properties of the distance-to-the-boundary function have been
studied in [Caffarelli and Friedman 1979; Choi et al. 1997; Damon 2003].

In a general domain the Gaussian curvature of the quasihyperbolic metric is not
defined, since the distance-to-the-boundary function is not C2. M. Heins [1962]
considered this situation for a quite general class of metric, and defined the notions
of upper and lower curvature. Martin and Osgood [1986, Section 3] worked with
these curvatures in the context of the quasihyperbolic metric. However, if our
domain is sufficiently regular (say C2), and we are considering points not on the
medial axis, then the upper and lower curvature agree, and define the curvature. In
this case the curvature of kD is given by

KD(z) = −δ(z)2
4 log δ(z);

see [Heins 1962, (1.3)] or [Martin and Osgood 1986, (3.1)]. On the medial axis
this formula does not make sense, but the upper and lower curvatures still agree,
and both equal −∞, by [Martin and Osgood 1986, Corollary 3.12].

The next lemma is a specialization of [Martin and Osgood 1986, Lemma 3.5]
to the case there the upper and lower curvatures agree.

Lemma 3.1. Let G and G̃ be C2 domains such that B(z, r) ⊂ G ∩ G̃ and ζ ∈

(∂G)∩(∂G̃)∩∂ B(z, r). If there is a neighborhood U of ζ such that G∩U ⊂ G̃∩U
and d(z, ∂G̃ \ U ) > d(z, ∂G̃), then KG(z) ≤ KG̃(z).

Using this lemma we can derive the following very plausible statement, which
says that the Gaussian curvature of the quasihyperbolic metric depends only on the
curvature of the boundary at the closest boundary point. We sill need some more
notation.
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Let B be a disc with ζ ∈ (∂ B) ∩ (∂ D). Then we call B the osculating disc at ζ

if ∂ B and ∂ D have second order contact at ζ . Let D be at least a C2 domain. Then
there exists an osculating disc at every boundary point ζ . If this disc has radius r ,
then we define Rζ to be r if the disc lies in the direction of the interior of D, and
−r otherwise. Note that the function ζ 7→ 1/Rζ is Ck−2 in a Ck domain, k ≥ 2.

Proposition 3.2. Let D ( R2 be a C2 domain and z ∈ D \ MA(D) have closest
boundary point ζ ∈ ∂ D. Then

KD(z) = −
Rζ

Rζ − δ(z)
= −

1
1 − δ(z)/Rζ

.

If z lies on the medial axis, then KD(z) = −∞.

Proof. The medial axis consists of points equidistant to two or more nearest bound-
ary points, and of centers of osculating circles. For the former, the claim that
KD(z) = −∞ follows from [Martin and Osgood 1986, Corollary 3.12]. So we
assume that z has a unique nearest boundary point, ζ .

We suppose further that Rζ > 0, the other case begin similar. Let B(w, Rζ ) be
the osculating disc at ζ . We define Bt = B(w +

w−ζ
Rζ

t, Rζ + t), and note that ∂ Bt

contains ζ for all t > −Rζ . We have the formula

KB(0,r)(x) = −
r
|x |

= −
r

r − d(x, ∂ B(0, r))

for the curvature of the quasihyperbolic metric in a ball [Martin and Osgood 1986,
Lemma 3.7], so we can calculate KBt (z) explicitly.

Using the previous lemma with G = D and G̃ = Bt for t > 0 gives KD(z) ≤

KBt (z). If z is the center of B0, then right-hand-side of the this inequality tends to
−∞ as t → 0, which completes the proof of the claim regarding the medial axis.
So we assume that z is not the center of B0, and then we can apply the Lemma 3.1
with G = Bt for t < 0 (sufficiently close to 0) and G̃ = D to get KBt (z) ≤ KD(z).
Thus we have

KB−t (z) ≤ KD(z) ≤ KBt (z)

for small t > 0. Since KBt is continuous in t , we get KD(z) = KB0(z) as we let
t → 0. The proof is completed by applying the aforementioned formula for the
curvature to the ball B0 = B(w, Rζ ). �

Let f : D → R2 be a C1 mapping. By ∇ f we denote the gradient of f , i.e. the
vector (∂1 f, ∂2 f ), and by ∇̃ f (z) we denote δ(z)∇ f (z). The reason for multiplying
by δ(x) is that

δ(y) = lim
x→y

|x − y|

kD(x, y)
,
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so that the ∇̃ operator is more natural in the setting where the quasihyperbolic but
not the Euclidean distance is preserved (see (3-1), below).

We next present an explicit formula for ∇̃KD . For this we need a mapping which
associates to every point in D \ MA(D) its closest boundary point. We call this
mapping ζ = ζ(z).

Lemma 3.3. Let D ( R2 be a C3 domain. Then

∇̃KD(z) = (KD(z) + 1)
(
KD(z)∇δ(z) − (KD(z) + 1)∇ Rζ(z)

)
for every z off the medial axis, where all differentiation is with respect to the vari-
able z.

Proof. We use the formula from Proposition 3.2. Thus

∇KD(z) = −∇
1

1 − δ(z)/Rζ

= KD(z)2
∇

δ(z)
Rζ

=
KD(z)2

R2
ζ

(Rζ∇δ(z) − δ(z)∇ Rζ ),

where we understand ζ as a function of z. Note that Rζ and δ are C1, since D is
C3 and we are not on the medial axis. From Proposition 3.2 we also get

δ(z)
Rζ

=
KD(z) + 1

KD(z)
.

Thus we continue the equation by

∇̃KD(z) = KD(z)2 δ(z)
Rζ

(
∇δ(z) −

δ(z)
Rζ

∇ Rζ

)
= (KD(z) + 1)

(
KD(z)∇δ(z) − (KD(z) + 1)∇ Rζ

)
. �

We next show that |∇̃K| is an intrinsic quantity of the quasihyperbolic metric.

Lemma 3.4. Let D be a C3 domain. If f : D → R2 is a quasihyperbolic isometry,
then |∇̃KD(z)| = |∇̃K f (D)( f (z))| for every z ∈ D.

Proof. We know that f is conformal. For a unit vector u we find that

(3-1)
〈
∇̃KD(z), u

〉
= lim

ε→0

KD(z + εu) − KD(z)
kD(z + εu, z)

= lim
ε→0

K f (D)( f (z + εu)) − K f (D)( f (z))
k f (D)( f (z + εu), f (z))

.

Next we note that f (z +εu) = f (z)+ε f ′(z)u + O(ε2). Here f ′(z)u is understood
as complex multiplication. Now define another unit vector ũ = ( f ′(z)/| f ′(z)|)u.
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We continue the previous equation by〈
∇̃KD(z), u

〉
= lim

ε→0

K f (D)( f (z) + ε f ′(z)u) − K f (D)( f (z))
k f (D)( f (z) + ε f ′(z)u, f (z))

= lim
ε→0

ε| f ′(z)|〈∇K f (D)( f (z)), ũ〉

ε| f ′(z)|δ′( f (z))−1 =
〈
∇̃K f (D)( f (z)), ũ

〉
.

Since u was an arbitrary unit vector, we get |∇̃KD(z)| = |∇̃K f (D)( f (z))|. �

4. Isometries

We know that similarities are always quasihyperbolic isometries, and we want to
show that in most cases these are the only ones. In view of the results in Section
2, it suffices for us to show that a quasihyperbolic isometry is a Möbius mapping,
so this will be what we aim at in the proofs of this section.

A curve γ in D is a (quasihyperbolic) geodesic if

kD(x, y) = kD(x, z) + kD(z, y)

for all x, z, y ∈ γ in this order. It is clear from this definition that geodesics are
preserved by isometries. A geodesic ray is a geodesic which is isometric to R+.
For every z ∈ D we easily find one geodesic ray, namely [z, ζ(z)), which also
happens to be a Euclidean line segment. The idea is to show that this geodesic is
somehow special (from a quasihyperbolic point-of-view), so that it would map to
a geodesic ray of the same kind.

Lemma 4.1. If D(R2 be a C2 domain with a boundary point ξ such that 1/Rξ =0,
every isometry f : D → R2 of the quasihyperbolic metric is Möbius.

Proof. Let B ⊂ D be a nonmaximal disc whose boundary contains ξ and let z
denote the center of B. By Proposition 3.2 we find that KD ≡ −1 on the segment
γ = [z, ξ) Thus K f (D) ≡ −1 on γ ′, so 1/R′

ζ ′(z′) = 0 for every point z′ on this
curve. We consider two cases: either ζ ′(z′) is just a single point for all z′

∈ γ ′,
or it sweeps out a nondegenerate subcurve of the boundary ∂ D′ as z′ varies over
γ ′. (There is no third possibility, since ζ ′ is a continuous function on γ ′.) In the
single-point case we see that γ ′ has to be a line segment, since the boundary does
not have corners. In this case we find that

kD(x, y) =

∣∣∣∣ log
|x − ξ |

|y − ξ |

∣∣∣∣ and kD′(x ′, y′) =

∣∣∣∣ log
|x ′

− ξ ′
|

|y′ − ξ ′|

∣∣∣∣,
where ξ ′ is the closest boundary point to the every point on γ ′. But this easily
implies that f is Möbius on γ . Since f is conformal it follows by uniqueness of
analytic extension that f is a Möbius mapping on all of D.

So we consider the second case, that ζ ′(z′) sweeps out a nondegenerate subcurve
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of the boundary ∂ D′. Since the curvature of the boundary at all these points is zero,
it follows that the piece of the boundary is a line segment, L ′.

Let U ′
⊂ D′ be an open set such that (∂U ′)∩(∂ D′)= L ′ and the nearest boundary

point of every point in U ′ lies in L ′. The geometry of the quasihyperbolic metric
in U is the same as in a half-plane; in particular KD′ ≡ −1 on U ′. Then KD ≡ −1
on U = f −1(U ′), so it follows that (∂U ) ∩ (∂ D) = L , for some line segment L .
So it follows that f |U is the restriction of a quasihyperbolic isometry of the half-
plane. But these are only the Möbius mappings. Then we again conclude from the
uniqueness of analytic extension that f is a Möbius mapping on all of D. �

We call a domain strictly concave if its complement is strictly convex.

Corollary 4.2. If D ( R2 is a C2 domain which is not a half-plane, strictly convex
or strictly concave, every quasihyperbolic isometry is a similarity mapping.

Proof. Suppose that 1/Rζ 6= 0 for all boundary points. Since 1/Rζ is continuous
by assumption, this implies that it is either everywhere positive, or everywhere
negative. In these cases we have a strictly convex and strictly concave domain,
respectively, which was ruled out by assumption. So we find some point at which
1/Rζ = 0. Then it follows from Lemma 4.1 that the isometry is Möbius and from
Proposition 2.2 that it is a similarity. �

So we are left with only two types of domains that we cannot handle: strictly
convex and strictly concave ones. As usual when working with isometries, the
nicest domains turn out to be the most difficult. Unfortunately, we need to assume
more regularity of the boundary in order to take care of these cases.

Theorem 4.3. Let D ( R2 be a C3 domain, which is not a half-plane. Then every
isometry f : D → R2 of the quasihyperbolic metric is a similarity mapping.

Proof. In view of Corollary 4.2, we may restrict ourselves to the case when
KD(z) 6= −1 for all z ∈ D. Let z ∈ D\MA(D) and ζ be its nearest boundary point.
We note that ∇δ(z) and ∇ Rζ are perpendicular – first of all, ∇δ(z) is parallel to
z − ζ ; second, Rζ is a constant in the direction of z − ζ , since ζ is the closest
boundary point to all points on this line (near z).

If D is bounded, clearly Rζ has a critical point. If D is unbounded, 1/Rζ cannot
have any other limit than 0 at ∞ (although a limit need not exist, of course). Thus
Rζ has a critical point in the unbounded case as well. Let ζ be a critical point of
ξ 7→ Rξ and fix a point z ∈ D with KD(z) 6= −∞ whose nearest boundary point
is ζ . Of course, ∇ Rζ = 0 at the critical point ζ . Then it follows from Lemma 3.3
that

∇̃KD(z) = (KD(z) + 1)KD(z)∇δ(z).

Since the curvature is intrinsic to the metric, we have KD′(z′) = KD(z). Also,
|∇̃KD′(z′)| = |∇̃KD(z)| by Lemma 3.4, so we have
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∣∣ =

∣∣(KD(z)+1)
(
KD(z)∇δ′(z′)− (KD(z)+1)∇ R′

ζ ′(z′)

)∣∣
We know that KD(z) 6= −1 and that ∇δ′(z′) and ∇ R′

ζ ′(z′) are orthogonal. Thus the
previous equation simplifies to(

KD(z)|∇δ(z)|
)2

=
(
KD(z)|∇δ′(z′)|

)2
+

(
(KD(z) + 1)

∣∣∇ R′

ζ ′(z′)

∣∣)2
.

Since |∇δ| = 1 off the medial axis for every domain, this equation implies that
∇ R′

ζ ′ = 0.
So for our point z, ∇KD(z) and ∇KD′(z′) point to the nearest boundary point of z

and z′, respectively. Let γ =[z, ζ ). Note that γ is a geodesic of the quasihyperbolic
metric. Also, ∇KD(z) and γ are parallel at z. Now γ maps to some geodesic ray
γ ′, and since f is a conformal mapping, γ ′ is parallel to ∇KD′(z′) at z′. But [z′, ζ ′)

is a geodesic parallel to ∇KD′(z′) at z′, and since geodesics are unique (when the
density is C2, i.e. except possibly on the medial axis) we see that γ ′

= [z′, ζ ′).
So we have shown that f ([z, ζ )) = [z′, ζ ′). Moreover, we have

kD(x, y) =

∣∣∣∣ log
|x − ζ |

|y − ζ |

∣∣∣∣ and kD′(x ′, y′) =

∣∣∣∣ log
|x ′

− ζ ′
|

|y′ − ζ ′|

∣∣∣∣
for x, y ∈ [z, ζ ). Thus we see that f is just a similarity on [z, ζ ). But f is a
conformal map, so this implies that f is a similarity in all of D. �
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